851
|
Li J, Liang S, Yu H, Zhang J, Ma D, Lu X. An inhibitory effect of miR-22 on cell migration and invasion in ovarian cancer. Gynecol Oncol 2010; 119:543-8. [PMID: 20869762 DOI: 10.1016/j.ygyno.2010.08.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/22/2010] [Accepted: 08/29/2010] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Aberrant expression of microRNAs (miRNAs) has been implicated in ovarian carcinoma. However, roles of miRNAs in ovarian caner metastasis have not been comprehensively addressed. This work is aimed to identify selected miRNAs involved in ovarian cancer metastasis. METHODS We examined the distinct miRNA expression profiles between paired high-metastatic human serous ovarian cancer cell SKOV-3ip and low-metastatic human serous ovarian cell SKOV-3 using miRNA microarray. Subsequently, a validation with Real-time RT-PCR was performed for miR-22 expression level, and a functional study was carried out for miR-22. RESULTS Through a screen with microarray, we found there were a variety of miRNAs differentially expressed between paired high and low metastatic serous ovarian cancer cells. Particularly, miR-22 was identified as a potential metastasis-inhibitor in ovarian cancer. There was a negative correlation between miR-22 expression and the metastatic potential in ovarian cancer cells. Furthermore, both gain-of-function and loss-of-function studies displayed an inhibitory effect of miR-22 on cell migration and invasion in vitro without significantly affecting cell viability and apoptosis. Subsequent bioinformatics analysis revealed that miR-22 might regulate multiple pro-metastatic genes, which could provide an explanation to the inhibitory effects of miR-22 on cell migration and invasion. CONCLUSIONS Taken together, our findings suggested that miR-22 might be involved in inhibiting ovarian cancer metastasis.
Collapse
Affiliation(s)
- Jun Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
852
|
Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 2010; 39:493-506. [PMID: 20797623 DOI: 10.1016/j.molcel.2010.07.023] [Citation(s) in RCA: 690] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/30/2010] [Accepted: 06/01/2010] [Indexed: 02/06/2023]
Abstract
A transient inflammatory signal can initiate an epigenetic switch from nontransformed to cancer cells via a positive feedback loop involving NF-kappaB, Lin28, let-7, and IL-6. We identify differentially regulated microRNAs important for this switch and putative transcription factor binding sites in their promoters. STAT3, a transcription factor activated by IL-6, directly activates miR-21 and miR-181b-1. Remarkably, transient expression of either microRNA induces the epigenetic switch. MiR-21 and miR-181b-1, respectively, inhibit PTEN and CYLD tumor suppressors, leading to increased NF-kappaB activity required to maintain the transformed state. These STAT3-mediated regulatory circuits are required for the transformed state in diverse cell lines and tumor growth in xenografts, and their transcriptional signatures are observed in colon adenocarcinomas. Thus, STAT3 is not only a downstream target of IL-6 but, with miR-21, miR-181b-1, PTEN, and CYLD, is part of the positive feedback loop that underlies the epigenetic switch that links inflammation to cancer.
Collapse
Affiliation(s)
- Dimitrios Iliopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
853
|
Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Chem 2010; 285:29336-47. [PMID: 20525681 PMCID: PMC2937966 DOI: 10.1074/jbc.m110.101147] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/28/2010] [Indexed: 12/19/2022] Open
Abstract
Airway smooth muscle hypertrophy is one of the hallmarks of airway remodeling in severe asthma. Several human diseases have been now associated with dysregulated microRNA (miRNA) expression. miRNAs are a class of small non-coding RNAs, which negatively regulate gene expression at the post-transcriptional level. Here, we identify miR-26a as a hypertrophic miRNA of human airway smooth muscle cells (HASMCs). We show that stretch selectively induces the transcription of miR-26a located in the locus 3p21.3 of human chromosome 3. The transcription factor CCAAT enhancer-binding protein α (C/EBPα) directly activates miR-26a expression through the transcriptional machinery upon stretch. Furthermore, stretch or enforced expression of miR-26a induces HASMC hypertrophy, and miR-26 knockdown reverses this effect, suggesting that miR-26a is a hypertrophic gene. We identify glycogen synthase kinase-3β (GSK-3β), an anti-hypertrophic protein, as a target gene of miR-26a. Luciferase reporter assays demonstrate that miR-26a directly interact with the 3'-untranslated repeat of the GSK-3β mRNA. Stretch or enforced expression of miR-26a attenuates the endogenous GSK-3β protein levels followed by the induction of HASMC hypertrophy. miR-26 knockdown reverses this effect, suggesting that miR-26a-induced hypertrophy occurs via its target gene GSK-3β. Overall, as a first time, our study unveils that miR-26a is a mechanosensitive gene, and it plays an important role in the regulation of HASMC hypertrophy.
Collapse
Affiliation(s)
- Junaith S. Mohamed
- From Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Michael A. Lopez
- From Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Aladin M. Boriek
- From Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
854
|
Davis-Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis. J Biochem 2010; 148:381-92. [PMID: 20833630 DOI: 10.1093/jb/mvq096] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of ∼22 nt non-coding RNAs that control diverse biological functions in animals, plants and unicellular eukaryotes by promoting degradation or inhibition of translation of target mRNAs. miRNA expression is often tissue specific and developmentally regulated. Aberrant expression of miRNAs has been linked to developmental abnormalities and human diseases, including cancer and cardiovascular disorders. The recent identification of mechanisms of miRNA biogenesis regulation uncovers that various factors or growth factor signalling pathways control every step of the miRNA biogenesis pathway. Here, we review the mechanisms that control the regulation of miRNA biogenesis discovered in human cells. Further understanding of the mechanisms that control of miRNA biogenesis may allow the development of tools to modulate the expression of specific miRNAs, which is crucial for the development of novel therapies for human disorders derived from aberrant expression of miRNAs.
Collapse
|
855
|
CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 2010; 29:6390-401. [PMID: 20802525 PMCID: PMC3007676 DOI: 10.1038/onc.2010.361] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although only 1.5% of the human genome appears to code for proteins, much effort in cancer research has been devoted to this minimal fraction of our DNA. However, the last few years have witnessed the realization that a large class of non-coding RNAs (ncRNAs), named microRNAs, contribute to cancer development and progression by acting as oncogenes or tumor suppressor genes. Recent studies have also shown that epigenetic silencing of microRNAs with tumor suppressor features by CpG island hypermethylation is a common hallmark of human tumors. Thus, we wondered whether there were other ncRNAs undergoing aberrant DNA methylation-associated silencing in transformed cells. We focused on the transcribed-ultraconserved regions (T-UCRs), a subset of DNA sequences that are absolutely conserved between orthologous regions of the human, rat and mouse genomes and that are located in both intra- and intergenic regions. We used a pharmacological and genomic approach to reveal the possible existence of an aberrant epigenetic silencing pattern of T-UCRs by treating cancer cells with a DNA-demethylating agent followed by hybridization to an expression microarray containing these sequences. We observed that DNA hypomethylation induces release of T-UCR silencing in cancer cells. Among the T-UCRs that were reactivated upon drug treatment, Uc.160+, Uc283+A and Uc.346+ were found to undergo specific CpG island hypermethylation-associated silencing in cancer cells compared with normal tissues. The analysis of a large set of primary human tumors (n=283) demonstrated that hypermethylation of the described T-UCR CpG islands was a common event among the various tumor types. Our finding that, in addition to microRNAs, another class of ncRNAs (T-UCRs) undergoes DNA methylation-associated inactivation in transformed cells supports a model in which epigenetic and genetic alterations in coding and non-coding sequences cooperate in human tumorigenesis.
Collapse
|
856
|
Stasik CJ, Nitta H, Zhang W, Mosher CH, Cook JR, Tubbs RR, Unger JM, Brooks TA, Persky DO, Wilkinson ST, Grogan TM, Rimsza LM. Increased MYC gene copy number correlates with increased mRNA levels in diffuse large B-cell lymphoma. Haematologica 2010; 95:597-603. [PMID: 20378577 DOI: 10.3324/haematol.2009.012864] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Translocations involving the MYC gene and increased MYC mRNA levels are associated with poor outcome in diffuse large B-cell lymphoma. However, the presence of increased MYC gene copy number and/or polysomy of chromosome 8 have not been previously described. DESIGN AND METHODS Utilizing dual color chromogenic in situ hybridization, we investigated MYC gene copy and chromosome 8 centromere numbers in 52 cases of diffuse large B-cell lymphoma. Cases were divided into those with "increased" or "not increased" MYC gene copy number for comparison with MYC mRNA levels, Ki-67 values, and survival. RESULTS Increased MYC gene copy number was present in 38% of cases. Overall, the average MYC mRNA level was 2398 (range, 342 - 9783) and the percentage of nuclei positive for Ki-67 was 57.5% (range, 20-87%). Within the group with increased MYC copy number, the MYC mRNA values ranged from 816 to 5912 (average, 2843) and the Ki-67 values ranged from 23% to 83% (average, 57%). Within the group with not increased MYC copy number, MYC mRNA values ranged from 342 to 9783 (average, 2118) and the Ki-67 values ranged from 20% to 87% (average, 58%). There was a statistically significant relationship between increased MYC gene copy number and increased MYC mRNA (P=0.034) and a trend toward a relationship between increased mRNA and higher Ki-67 values. CONCLUSIONS This is the first report that low level copy number increases are common in diffuse large B-cell lymphoma and that these changes correlate with MYC mRNA in a statistically significant manner. MYC copy number changes are an additional possible molecular mechanism that may result in increased mRNA and, likely, high proliferation and poor outcome.
Collapse
Affiliation(s)
- Christopher J Stasik
- Department of Pathology, University of Arizona, 1501 N Campbell Avenue, PO Box 245043, Tucson, AZ 85724-5043, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
857
|
Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 2010; 585:2087-99. [PMID: 20708002 DOI: 10.1016/j.febslet.2010.08.009] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022]
Abstract
MicroRNAs have emerged as key post-transcriptional regulators of gene expression, involved in various physiological and pathological processes. It was found that several miRNAs are directly involved in human cancers, including lung, breast, brain, liver, colon cancer and leukemia. In addition, some miRNAs may function as oncogenes or tumor suppressors in tumor development. Furthermore, a widespread down-regulation of miRNAs is commonly observed in human cancers and promotes cellular transformation and tumorigenesis. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, frequently amplified or deleted in human cancer, suggesting an important role in malignant transformation. A better understanding of the miRNA regulation and misexpression in cancer may ultimately yield further insight into the molecular mechanisms of tumorigenesis and new therapeutic strategies may arise against cancer. Here, we discuss the occurrence of the deregulated expression of miRNAs in human cancers and their importance in the tumorigenic process.
Collapse
Affiliation(s)
- Sonia A Melo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | | |
Collapse
|
858
|
Marcucci G, Radmacher MD, Mrózek K, Bloomfield CD. MicroRNA expression in acute myeloid leukemia. Curr Hematol Malig Rep 2010; 4:83-8. [PMID: 20425419 DOI: 10.1007/s11899-009-0012-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute myeloid leukemia (AML) is a group of diseases that are very heterogeneous with regard to cytogenetic aberrations, gene mutations, and changes in expression of numerous genes. A new class of genes known as microRNAs recently was found to be involved in myeloid leukemogenesis. These genes are transcribed into regulatory, noncoding RNAs that control mRNA and protein expression of target genes. Genome-wide analyses of microRNA expression have revealed signatures associated with selected cytogenetic and molecular subsets of AML and have led to the recognition of previously unreported molecular pathways involved in myeloid leukemogenesis. In cytogenetically normal AML, microRNA-expression profiling has also provided prognostic information in addition to that obtained from cytogenetics and analyses of gene mutations and aberrant gene expression. This article reviews recent studies that were focused on the alterations of microRNA expression in AML and their diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Guido Marcucci
- The Comprehensive Cancer Center, The Ohio State University, A433B Starling-Loving Hall, 320 West 10th Avenue, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
859
|
Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T. The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer 2010; 103:275-84. [PMID: 20628397 PMCID: PMC2906742 DOI: 10.1038/sj.bjc.6605751] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND CCAAT/enhancer-binding protein-alpha (CEBPA) is crucial for normal granulopoiesis and is frequently disrupted in acute myeloid leukaemia (AML). Increasing evidence suggests that CEBPA exerts its effects, in parts, by regulating specific microRNAs (miRNAs), as previously shown for miR-223. The aim of this study was to investigate the genome-wide pattern of miRNAs regulated by CEBPA in myeloid cells. METHODS In Kasumi-1 cells, conditionally expressing CEBPA, we assessed the expression of 470 human miRNAs by microarray analysis. We further investigated the microarray results by qRT-PCR, luciferase reporter assays, and chromatin immunoprecipitation assays. RESULTS In all, 18 miRNAs were more than two-fold suppressed or induced after CEBPA restoration. Among these 18 miRNAs, we focused on CEBPA-mediated regulation of the tumour-suppressive miR-29b. We observed that miR-29b is suppressed in AML patients with impaired CEBPA function or loss of chromosome 7q. We found that CEBPA selectively regulates miR-29b expression on its miR-29a/b1 locus on chromosome 7q32.3, whereas miR-29b2/c on chromosome 1q32.2 is not affected. CONCLUSION This study reports the activation of the tumour-suppressive miR-29b by the haematopoietic key transcription factor CEBPA. Our data provide a rationale for miR-29b suppression in AML patients with loss of chromosome 7q or CEBPA deficiency.
Collapse
Affiliation(s)
- M Eyholzer
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
860
|
Abstract
Hyperactivity of the Myc oncogenic transcription factor dramatically reprograms gene expression to facilitate cellular proliferation and tumorigenesis. To elicit these effects, Myc coordinates the activation and repression of an extensive network of protein-coding genes and, as has recently been appreciated, noncoding RNAs including microRNAs (miRNAs). Consistent with their ability to potently influence cancer phenotypes, the regulation of miRNAs by Myc affects virtually all aspects of the Myc oncogenic program, including proliferation, survival, metabolism, angiogenesis, and metastasis. This review will summarize the current understanding of the mechanisms underlying Myc-dependent transcriptional and posttranscriptional control of miRNAs and the resultant effects on tumorigenesis. As miRNAs are integral nodes in the transcriptional network controlled by Myc, modulating their activity represents a promising new approach for cancer therapy.
Collapse
Affiliation(s)
- Thi V Bui
- Howard Hughes Medical Institute and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
861
|
Newman MA, Hammond SM. Lin-28: An early embryonic sentinel that blocks Let-7 biogenesis. Int J Biochem Cell Biol 2010; 42:1330-3. [DOI: 10.1016/j.biocel.2009.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 02/24/2009] [Accepted: 02/26/2009] [Indexed: 12/21/2022]
|
862
|
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11:597-610. [PMID: 20661255 DOI: 10.1038/nrg2843] [Citation(s) in RCA: 3541] [Impact Index Per Article: 252.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.
Collapse
Affiliation(s)
- Jacek Krol
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | | | | |
Collapse
|
863
|
Suzuki HI, Miyazono K. Dynamics of microRNA biogenesis: crosstalk between p53 network and microRNA processing pathway. J Mol Med (Berl) 2010; 88:1085-94. [PMID: 20614100 DOI: 10.1007/s00109-010-0650-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are pivotal regulators involved in various biological functions through the post-transcriptional regulation of gene expression. Alterations of miRNA expression and function contribute to both physiological and pathological processes such as development and cancer. While their roles have been attracting more attention in connection with tumor development, the mechanisms regulating miRNA biogenesis have not been well understood. Accumulating evidences have revealed the dynamic regulation of miRNA biosynthesis by several regulatory factors and demonstrated the complexity of miRNA-mediated gene regulation. In addition, several reports showed the interplay between the p53 tumor suppressor network and the miRNA-mediated gene regulatory system. We recently found that p53 modulates miRNA maturation at the processing step of primary miRNA transcripts, unraveling a novel function of p53. Here, we review the recent understanding of functional links between miRNA biogenesis and intracellular signaling pathways, with particular focus on the crosstalk between the p53 network and the miRNA biogenesis machinery. Further characterization of controlling elements for miRNA production and activity would provide important insights for a comprehensive understanding of the miRNA function in health and disease.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | |
Collapse
|
864
|
Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1231-43. [PMID: 20619301 DOI: 10.1016/j.bbamcr.2010.06.013] [Citation(s) in RCA: 589] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of small, endogenous RNAs of 21-25 nucleotides (nts) in length. They play an important regulatory role in animals and plants by targeting specific mRNAs for degradation or translation repression. Recent scientific advances have revealed the synthesis pathways and the regulatory mechanisms of miRNAs in animals and plants. miRNA-based regulation is implicated in disease etiology and has been studied for treatment. Furthermore, several preclinical and clinical trials have been initiated for miRNA-based therapeutics. In this review, the existing knowledge about miRNAs synthesis, mechanisms for regulation of the genome, and their widespread functions in animals and plants is summarized. The current status of preclinical and clinical trials regarding miRNA therapeutics is also reviewed. The recent findings in miRNA studies, summarized in this review, may add new dimensions to small RNA biology and miRNA therapeutics.
Collapse
Affiliation(s)
- Fazli Wahid
- School of life Sciences and Biotechnology, College of Natural sciences, Kyungpook National University, Buk-ku, Taegu, Korea
| | | | | | | |
Collapse
|
865
|
Chegini N. Uterine microRNA signature and consequence of their dysregulation in uterine disorders. Anim Reprod 2010; 7:117-128. [PMID: 22328907 PMCID: PMC3275910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
MicroRNA (miRNA) has emerged as key post-transcriptional regulator and through this mechanism control many normal developmental and physiological processes. Conversely, aberrant expression of some miRNAs has been correlated with various disorders, more specifically, development and progression of malignancy. Endometrium is a dynamic tissue which undergoes extensive cyclic changes in preparation for embryo implantation during reproductive years, as well as changes that occur following menopause, and establishment of benign and malignant uterine disorders. These processes are highly regulated by ovarian steroids and locally expressed genes in response to steroid hormone receptor-mediated signaling and include genes related to inflammatory reaction, apoptosis, cell-cycle progression, angiogenesis and tissue remodeling. Here we present an overview of our current understanding of uterine miRNA biogenesis and highlights their potential regulatory functions in cellular processes relevant to normal uterine physiological and pathological disorders such as endometriosis, dysfunctional uterine bleeding and endometrial cancer. Understanding the expression, regulation and functional aspects of miRNAs in uterine environment under normal and various disorders may lead to their potential utilization as diagnostic as well as therapeutic tool.
Collapse
Affiliation(s)
- Nasser Chegini
- Corresponding author: , Phone: (352) 273-7566; Fax: (352) 392-6994
| |
Collapse
|
866
|
Chan WJC. Pathogenesis of diffuse large B cell lymphoma. Int J Hematol 2010; 92:219-30. [PMID: 20582737 DOI: 10.1007/s12185-010-0602-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 05/17/2010] [Indexed: 12/19/2022]
Abstract
Substantial additional insight has been obtained in the past decade regarding the pathogenesis of diffuse large B cell lymphoma (DLBCL). Distinct subtypes of DLBCL have been defined by gene expression profiling (GEP) and they differ not only in GE profiles but also in the pattern of genetic abnormalities. The ability to correlate corresponding genetic and GEP data markedly facilitates the identification of target genes in regions with copy number abnormalities. Oncogenic pathways are often differentially activated in these different subtypes of DLBCL, suggesting that therapy should be targeted according to these differences. The tumor microenvironment plays a significant role in determining outcome and may be a novel target for therapy. The role of microRNA in lymphomagenesis is increasingly being recognized and mutation of key genes has been demonstrated to drive the activation of the NF-kappaB pathway and B cell receptor signaling. The pace of discovery will be even more rapid in the near future with the convergence of data from multiple complementary genome-wide studies and technological innovations including the rapid advance in the technology of high-throughput sequencing.
Collapse
Affiliation(s)
- Wing John C Chan
- Pathology and Microbiology and Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
867
|
Arrate MP, Vincent T, Odvody J, Kar R, Jones SN, Eischen CM. MicroRNA biogenesis is required for Myc-induced B-cell lymphoma development and survival. Cancer Res 2010; 70:6083-92. [PMID: 20587524 DOI: 10.1158/0008-5472.can-09-4736] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many tumor cells express globally reduced levels of microRNAs (miRNA), suggesting that decreased miRNA expression in premalignant cells contributes to their tumorigenic phenotype. In support of this, Dicer, an RNase III-like enzyme that controls the maturation of miRNA, was recently shown to function as a haploinsufficient tumor suppressor in nonhematopoietic cells. Because the Myc oncoprotein, a critical inducer of B-cell lymphomas, was reported to suppress the expression of multiple miRNAs in lymphoma cells, it was presumed that a deficiency of Dicer and subsequent loss of miRNA maturation would accelerate Myc-induced lymphoma development. We report here that, surprisingly, a haploinsufficiency of Dicer in B cells failed to promote B-cell malignancy or accelerate Myc-induced B-cell lymphomagenesis in mice. Moreover, deletion of Dicer in B cells of CD19-cre(+)/Emicro-myc mice significantly inhibited lymphomagenesis, and all lymphomas that did arise in these mice lacked functional Cre expression and retained at least one functional Dicer allele. Uncharacteristically, the lymphomas that frequently developed in the CD19-cre(+)/Dicer(fl/fl)/Emicro-myc mice were of very early precursor B-cell origin, a stage of B-cell development prior to Cre expression. Therefore, loss of Dicer function was not advantageous for lymphomagenesis, but rather, Dicer ablation was strongly selected against during Myc-induced B-cell lymphoma development. Moreover, deletion of Dicer in established B-cell lymphomas resulted in apoptosis, revealing that Dicer is required for B-cell lymphoma survival. Thus, Dicer does not function as a haploinsufficient tumor suppressor in B cells and is required for B-cell lymphoma development and survival.
Collapse
Affiliation(s)
- Maria Pia Arrate
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
868
|
Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene 2010; 29:4980-8. [DOI: 10.1038/onc.2010.241] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
869
|
Varol N, Konac E, Gurocak OS, Sozen S. The realm of microRNAs in cancers. Mol Biol Rep 2010; 38:1079-89. [PMID: 20563858 DOI: 10.1007/s11033-010-0205-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 06/11/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are members of the non-protein coding RNA family. miRNAs, which can regulate genes on transcriptomic level through either degrading the target messenger RNA (mRNA) or suppressing the protein synthesis, also take part in a number of biological functions that involve development, differentiation, proliferation and apoptosis. The mutations and polymorphisms in the expression levels of miRNA genes or alterations in their epigenetic mechanisms may play their roles in the formation of malignancies. Increasing evidence shows that aberrant miRNA expression profiles are present in a variety of cancers. Therefore, it has been suggested that these profiles could be useful for diagnosis and classification of different tumor types and that these small RNAs might provide significant opportunities for the development of future miRNA-based therapies. In this review, we aimed to look into the realm of miRNAs, which is a recent area of research, appraise their biological activities on molecular level and their probable benefits on clinical practice.
Collapse
Affiliation(s)
- Nuray Varol
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| | | | | | | |
Collapse
|
870
|
Ruggero K, Corradin A, Zanovello P, Amadori A, Bronte V, Ciminale V, D'Agostino DM. Role of microRNAs in HTLV-1 infection and transformation. Mol Aspects Med 2010; 31:367-82. [PMID: 20600265 DOI: 10.1016/j.mam.2010.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/26/2010] [Indexed: 12/20/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus that infects more than 20 million people worldwide, is the etiological agent of ATLL (adult T-cell leukemia/lymphoma), an aggressive leukemia of CD4+ T lymphocytes which arises in a small percentage of infected individuals after a long clinical latency. Tumor emergence is attributed primarily to the oncogenic activity of the viral protein Tax, which drives the expression of viral transcripts and controls the expression and function of a broad variety of host-cell genes involved in proliferation, genetic stability and apoptosis. Nevertheless, many aspects of HTLV-1 replication, persistence and pathogenesis remain to be understood. The emerging role of microRNAs in tumor development and viral infection has prompted investigations on the interactions between HTLV-1 and the microRNA regulatory network. In the present review we discuss recent data demonstrating changes in cellular microRNA expression in HTLV-1-infected cell lines and ATLL cells, and the functional impact of a subset microRNAs deregulated by HTLV-1 on cellular gene expression and signal transduction pathways. Mechanisms through which the viral proteins may influence microRNA expression are discussed. Results of searches for potential cellular microRNAs that target viral transcripts and for microRNAs produced by HTLV-1 are described. Observations along with regarding the expression of tRNA-derived small regulatory RNAs in HTLV-1-infected cells are presented.
Collapse
Affiliation(s)
- Katia Ruggero
- Department of Oncology and Surgical Sciences, University of Padova, Via Gattamelata 64, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
871
|
Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 2010; 285:25221-31. [PMID: 20551325 DOI: 10.1074/jbc.m110.116137] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation of human mesenchymal stem cells into osteoblasts is controlled by extracellular cues. Canonical Wnt signaling is particularly important for maintenance of bone mass in humans. Post-transcriptional regulation of gene expression, mediated by microRNAs, plays an essential role in the control of osteoblast differentiation. Here, we find that miR-29a is necessary for human osteoblast differentiation, and miR-29a is increased during differentiation in the mesenchymal precursor cell line hFOB1.19 and in primary cultures of human osteoblasts. Furthermore, the promoter of the expressed sequence tag containing the human miR-29a gene is induced by canonical Wnt signaling. This effect is mediated, at least in part, by two T-cell factor/LEF-binding sites within the proximal promoter. Furthermore, we show that the negative regulators of Wnt signaling, Dikkopf-1 (Dkk1), Kremen2, and secreted frizzled related protein 2 (sFRP2), are direct targets of miR-29a. Endogenous protein levels for these Wnt antagonists are increased in cells transfected with synthetic miR-29a inhibitor. In contrast, transfection with miR-29a mimic decreases expression of these antagonists and potentiates Wnt signaling. Overall, we demonstrate that miR-29 and Wnt signaling are involved in a regulatory circuit that can modulate osteoblast differentiation. Specifically, canonical Wnt signaling induces miR-29a transcription. The subsequent down-regulation of key Wnt signaling antagonists, Dkk1, Kremen2, and sFRP2, by miR-29a potentiates Wnt signaling, contributing to a gene expression program important for osteoblast differentiation. This novel regulatory circuit provides additional insight into how microRNAs interact with signaling molecules during osteoblast differentiation, allowing for fine-tuning of intricate cellular processes.
Collapse
Affiliation(s)
- Kristina Kapinas
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
872
|
Chira P, Vareli K, Sainis I, Papandreou C, Briasoulis E. Alterations of MicroRNAs in Solid Cancers and Their Prognostic Value. Cancers (Basel) 2010; 2:1328-53. [PMID: 24281118 PMCID: PMC3835132 DOI: 10.3390/cancers2021328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/02/2010] [Accepted: 06/10/2010] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, naturally abundant, small, regulatory non-coding RNAs that inhibit gene expression at the post-transcriptional level in a sequence-specific manner. Each miRNA represses the protein expression of several coding genes in a manner proportional to the sequence complementarity with the target transcripts. MicroRNAs play key regulatory roles in organismal development and homeostasis. They control fundamental biological processes, such as stem-cell regulation and cellular metabolism, proliferation, differentiation, stress resistance, and apoptosis. Differential miRNA expression is found in malignant tumors in comparison to normal tissue counterparts. This indicates that miRNA deregulation contributes to the initiation and progression of cancer. Currently, miRNA expression signatures are being rigorously investigated in various tumor types, with the aim of developing novel, efficient biomarkers that can improve clinical management of cancer patients. This review discusses deregulated miRNAs in solid tumors, and focuses on their emerging prognostic potential.
Collapse
Affiliation(s)
- Panagiota Chira
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
- Biomedical Research Institute, Foundation for Research & Technology, University Campus, Ioannina 45110, Greece
| | - Katerina Vareli
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
- Department of Biological Applications and Technologies, University of Ioannina, University Campus, Ioannina 45110, Greece
| | - Ioannis Sainis
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
| | - Christos Papandreou
- School of Medicine, University of Thessaly, 22 Papakiriazi, Larissa 41222, Greece; E-Mail: (C.P.)
| | - Evangelos Briasoulis
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
- School of Medicine, University of Ioannina, University Campus, Ioannina 45110, Greece
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +30-265-100-7713; Fax: +30-265-100-8087
| |
Collapse
|
873
|
Navarro F, Lieberman J. Small RNAs guide hematopoietic cell differentiation and function. THE JOURNAL OF IMMUNOLOGY 2010; 184:5939-47. [PMID: 20483778 DOI: 10.4049/jimmunol.0902567] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression that help direct normal differentiation and malignant transformation of hematopoietic cells. This review summarizes our current knowledge of how miRNAs function in normal and malignant hematopoiesis and how miRNAs might be applied for disease treatment.
Collapse
Affiliation(s)
- Francisco Navarro
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
874
|
Zeiner GM, Boothroyd JC. Use of two novel approaches to discriminate between closely related host microRNAs that are manipulated by Toxoplasma gondii during infection. RNA (NEW YORK, N.Y.) 2010; 16:1268-74. [PMID: 20423977 PMCID: PMC2874178 DOI: 10.1261/rna.2069310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 02/10/2010] [Indexed: 05/29/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, endogenously encoded regulatory RNAs that function to post-transcriptionally regulate gene expression in a wide variety of eukaryotes. Within organisms, some mature miRNAs, such as paralogous miRNAs, have nearly identical nucleotide sequences, which makes them virtually indistinguishable from one another by conventional hybridization-based approaches. Here we describe two inexpensive, sensitive methods for rapidly discriminating between paralogous miRNAs or other closely related miRNAs and for quantifying their abundance. The first approach is a sequential ribonuclease-protection and primer-extension assay; the second approach is a primer-extension assay that employs short oligonucleotide probes to exacerbate the instability of mismatched probe:miRNA hybrids. Both approaches are rapid and can be easily performed in their entirety using common laboratory equipment. As a proof of concept, we have used these methods to determine the exact identities of the human miR-17 family members that are increased by infection with the intracellular parasite Toxoplasma gondii. These methods can be used to rapidly and inexpensively discriminate between any closely related miRNAs in any organism.
Collapse
Affiliation(s)
- Gusti M Zeiner
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
875
|
Avraham R, Sas-Chen A, Manor O, Steinfeld I, Shalgi R, Tarcic G, Bossel N, Zeisel A, Amit I, Zwang Y, Enerly E, Russnes HG, Biagioni F, Mottolese M, Strano S, Blandino G, Børresen-Dale AL, Pilpel Y, Yakhini Z, Segal E, Yarden Y. EGF decreases the abundance of microRNAs that restrain oncogenic transcription factors. Sci Signal 2010; 3:ra43. [PMID: 20516477 DOI: 10.1126/scisignal.2000876] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epidermal growth factor (EGF) stimulates cells by launching gene expression programs that are frequently deregulated in cancer. MicroRNAs, which attenuate gene expression by binding complementary regions in messenger RNAs, are broadly implicated in cancer. Using genome-wide approaches, we showed that EGF stimulation initiates a coordinated transcriptional program of microRNAs and transcription factors. The earliest event involved a decrease in the abundance of a subset of 23 microRNAs. This step permitted rapid induction of oncogenic transcription factors, such as c-FOS, encoded by immediate early genes. In line with roles as suppressors of EGF receptor (EGFR) signaling, we report that the abundance of this early subset of microRNAs is decreased in breast and in brain tumors driven by the EGFR or the closely related HER2. These findings identify specific microRNAs as attenuators of growth factor signaling and oncogenesis.
Collapse
Affiliation(s)
- Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
876
|
Kim JW, Mori S, Nevins JR. Myc-induced microRNAs integrate Myc-mediated cell proliferation and cell fate. Cancer Res 2010; 70:4820-8. [PMID: 20516112 DOI: 10.1158/0008-5472.can-10-0659] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Myc pathway, often deregulated in cancer, is critical in determining cell fate by coordinating a gene expression program that links the control of cell proliferation with cell fate decisions. As such, precise control of the Myc pathway activity must be achieved to ensure faithful execution of appropriate cellular response and to prevent progressing toward a malignant state. With recent highlighted roles of microRNAs (miRNA) as critical components of gene control, we sought to evaluate the extent to which miRNAs may contribute in the execution of Myc function. Combined analysis of mRNA and miRNA expression profiles reveals an integration whereby the Myc-mediated induction of miRNAs leads to the repression of various mRNAs encoding tumor suppressors that block cell proliferation including p21, p27, and Rb. In addition, the proapoptotic PTEN tumor suppressor gene is also repressed by Myc-induced miRNAs, suggesting that Myc-induced miRNAs contribute to the precise control of a transcriptional program that coordinates the balance of cell proliferation and cell death.
Collapse
Affiliation(s)
- Jong Wook Kim
- Duke Institute for Genome Sciences & Policy, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
877
|
Varlakhanova NV, Cotterman RF, deVries WN, Morgan J, Donahue LR, Murray S, Knowles BB, Knoepfler PS. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 2010; 80:9-19. [PMID: 20537458 DOI: 10.1016/j.diff.2010.05.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/19/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
While endogenous Myc (c-myc) and Mycn (N-myc) have been reported to be separately dispensable for murine embryonic stem cell (mESC) function, myc greatly enhances induced pluripotent stem (iPS) cell formation and overexpressed c-myc confers LIF-independence upon mESC. To address the role of myc genes in ESC and in pluripotency generally, we conditionally knocked out both c- and N-myc using myc doubly homozygously floxed mESC lines (cDKO). Both lines of myc cDKO mESC exhibited severely disrupted self-renewal, pluripotency, and survival along with enhanced differentiation. Chimeric embryos injected with DKO mESC most often completely failed to develop or in rare cases survived but with severe defects. The essential nature of myc for self-renewal and pluripotency is at least in part mediated through orchestrating pluripotency-related cell cycle and metabolic programs. This study demonstrates that endogenous myc genes are essential for mESC pluripotency and self-renewal as well as providing the first evidence that myc genes are required for early embryogenesis, suggesting potential mechanisms of myc contribution to iPS cell formation.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
878
|
Gururajan M, Haga CL, Das S, Leu CM, Hodson D, Josson S, Turner M, Cooper MD. MicroRNA 125b inhibition of B cell differentiation in germinal centers. Int Immunol 2010; 22:583-92. [PMID: 20497960 DOI: 10.1093/intimm/dxq042] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs 125a and 125b are predicted to be able to bind to the B lymphocyte-induced maturation protein-1 (BLIMP-1) and IFN regulatory protein-4 (IRF-4) transcription factors, which are essential for plasma cell differentiation. A computational survey of the human and mouse genomes revealed that miR-125a and miR-125b are members of a multigene family located in paralogous clusters. The miR-125a cluster on chromosome 19 in humans includes miR-99b and let-7e, whereas the miR-125b cluster on chromosome 21 includes miR-99a and miR-let-7c. Our analysis of the expression profiles for these six miRs during B lineage differentiation indicated that mature miR-125a, miR-125b, miR-99b and let-7e transcripts are preferentially expressed by the actively dividing centroblasts in germinal centers (GC). However, miR-99b and let-7e are not predicted to bind BLIMP-1 or IRF-4 transcripts, and binding to the untranslated region of BLIMP-1 and IRF-4 messenger RNAs could be confirmed only for miR-125b. When the effect of miR-125b over-expression on terminal B cell differentiation was evaluated in an LPS-responsive B cell line, the induction of BLIMP-1 expression and IgM secretion was inhibited in this model system. Furthermore, miR-125b over-expression inhibited the differentiation of primary B cells and compromised the survival of cultured myeloma cells. These findings suggest that miR-125b promotes B lymphocyte diversification in GC by inhibiting premature utilization of essential transcription factors for plasma cell differentiation.
Collapse
Affiliation(s)
- Murali Gururajan
- Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road NE, DSB 403, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
879
|
microRNA expression patterns reveal differential expression of target genes with age. PLoS One 2010; 5:e10724. [PMID: 20505758 PMCID: PMC2873959 DOI: 10.1371/journal.pone.0010724] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/27/2010] [Indexed: 02/07/2023] Open
Abstract
Recent evidence supports a role for microRNAs (miRNAs) in regulating the life span of model organisms. However, little is known about how these small RNAs contribute to human aging. Here, we profiled the expression of over 800 miRNAs in peripheral blood mononuclear cells from young and old individuals by real-time RT-PCR analysis. This genome-wide assessment of miRNA expression revealed that the majority of miRNAs studied decreased in abundance with age. We identified nine miRNAs (miR-103, miR-107, miR-128, miR-130a, miR-155, miR-24, miR-221, miR-496, miR-1538) that were significantly lower in older individuals. Among them, five have been implicated in cancer pathogenesis. Predicted targets of several of these miRNAs, including PI3 kinase (PI3K), c-Kit and H2AX, were found to be elevated with advancing age, supporting a possible role for them in the aging process. Furthermore, we found that decreasing the levels of miR-221 was sufficient to cause a corresponding increase in the expression of the predicted target, PI3K. Taken together, these findings demonstrate that changes in miRNA expression occur with human aging and suggest that miRNAs and their predicted targets have the potential to be diagnostic indicators of age or age-related diseases.
Collapse
|
880
|
Moussay E, Palissot V, Vallar L, Poirel HA, Wenner T, El Khoury V, Aouali N, Van Moer K, Leners B, Bernardin F, Muller A, Cornillet-Lefebvre P, Delmer A, Duhem C, Ries F, van Dyck E, Berchem G. Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol Cancer 2010; 9:115. [PMID: 20487546 PMCID: PMC2881880 DOI: 10.1186/1476-4598-9-115] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 05/20/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) cells are often affected by genomic aberrations targeting key regulatory genes. Although fludarabine is the standard first line therapy to treat CLL, only few data are available about the resistance of B cells to this purine nucleoside analog in vivo. Here we sought to increase our understanding of fludarabine action and describe the mechanisms leading to resistance in vivo. We performed an analysis of genomic aberrations, gene expression profiles, and microRNAs expression in CLL blood B lymphocytes isolated during the course of patients' treatment with fludarabine. RESULTS In sensitive patients, the differentially expressed genes we identified were mainly involved in p53 signaling, DNA damage response, cell cycle and cell death. In resistant patients, uncommon genomic abnormalities were observed and the resistance toward fludarabine could be characterized based on the expression profiles of genes implicated in lymphocyte proliferation, DNA repair, and cell growth and survival. Of particular interest in some patients was the amplification of MYC (8q) observed both at the gene and transcript levels, together with alterations of myc-transcriptional targets, including genes and miRNAs involved in the regulation of cell cycle and proliferation. Differential expression of the sulfatase SULF2 and of miR-29a, -181a, and -221 was also observed between resistant and sensitive patients before treatment. These observations were further confirmed on a validation cohort of CLL patients treated with fludarabine in vitro. CONCLUSION In the present study we identified genes and miRNAs that may predict clinical resistance of CLL to fludarabine, and describe an interesting oncogenic mechanism in CLL patients resistant to fludarabine by which the complete MYC-specific regulatory network was altered (DNA and RNA levels, and transcriptional targets). These results should prove useful for understanding and overcoming refractoriness to fludarabine and also for predicting the clinical outcome of CLL patients before or early during their treatment.
Collapse
Affiliation(s)
- Etienne Moussay
- Laboratory of Experimental Hemato-Oncology, CRP-Santé, Luxembourg, Luxembourg.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
881
|
Mallanna SK, Rizzino A. Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol 2010; 344:16-25. [PMID: 20478297 DOI: 10.1016/j.ydbio.2010.05.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming.
Collapse
Affiliation(s)
- Sunil K Mallanna
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | |
Collapse
|
882
|
Steele R, Mott JL, Ray RB. MBP-1 upregulates miR-29b that represses Mcl-1, collagens, and matrix-metalloproteinase-2 in prostate cancer cells. Genes Cancer 2010; 1:381-387. [PMID: 20657750 DOI: 10.1177/1947601910371978] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
c-myc promoter binding protein (MBP-1) is a multi-functional protein known to regulate expression of targets involved in the malignant phenotype. We have previously demonstrated that exogenous expression of MBP-1 inhibits prostate tumor growth, although the mechanism of growth inhibition is not well understood. We hypothesized that MBP-1 may modulate microRNA (miRNA) expression for regulation of prostate cancer cell growth. In this study, we demonstrated that exogenous MBP-1 upregulates miR-29b by 5-9 fold in prostate cancer cells as measured by real-time quantitative reverse transcription-PCR. Subsequent studies indicated that exogenous expression of miR-29b inhibited Mcl-1, COL1A1, and COL4A1. Further, a novel target with potential implications for invasion and metastasis, matrix metallopeptidase-2 (MMP-2), was identified and confirmed to be a miR-29b target in prostate cancer cells. Together our results demonstrated that exogenous expression of miR-29b regulates prostate cancer cell growth by modulating anti-apoptotic and pro-metastatic matrix molecules, implicating therapeutic potential of miR-29b for prostate cancer inhibition.
Collapse
Affiliation(s)
- Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, MO
| | | | | |
Collapse
|
883
|
Abstract
MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T cells from 21 patients diagnosed with Sézary Syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4(+)) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4(+) T-cell controls and B-cell lymphomas. The majority (104 of 114) of SzS-associated microRNAs (P < .05) were down-regulated and their expression pattern was largely consistent with previously reported genomic copy number abnormalities and were found to be highly enriched (P < .001) for aberrantly expressed target genes. Levels of miR-223 distinguished SzS samples (n = 32) from healthy controls (n = 19) and patients with mycosis fungoides (n = 11) in more than 90% of samples. Furthermore, we demonstrate that the down-regulation of intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis, and describe a novel mechanism of regulation for this microRNA via binding of miR-199a* to its host gene. We also provide the first in vivo evidence for down-regulation of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p expression increases apoptosis and decreases cell proliferation in SzS cells.
Collapse
|
884
|
Xu H, Yao Y, Smith LP, Nair V. MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines. Cancer Cell Int 2010; 10:15. [PMID: 20441582 PMCID: PMC2873332 DOI: 10.1186/1475-2867-10-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/04/2010] [Indexed: 12/15/2022] Open
Abstract
Background Micro(mi)RNAs are a class of small non-coding RNAs that play critical roles in the induction of various cancers, including lymphomas induced by oncogenic viruses. While some of the miRNAs are oncogenic, miRNAs such as miR-26a are consistently downregulated in a number of cancers, demonstrating their potential tumor suppressor functions. Global miRNA expression profiles of a number of virus-transformed avian lymphoma cell lines have shown downregulation of gga-miR-26a expression, irrespective of molecular mechanisms of transformation or the viral aetiology. The neoplastic transformation of lymphocytes by many viruses accompanies high levels of proliferative responses, mostly mediated through cytokines such as IL-2. Chicken IL-2 can modulate T-cell proliferation and cytotoxicity in vitro and in vivo and dysregulation of IL-2 expression is observed in diseases such as leukaemia. Results The expression levels of gga-miR-26a in chicken lymphoma cells transformed by 3 distinct avian oncogenic viruses, viz Marek's disease virus (MDV), avian leukosis virus (ALV) and Reticuloendotheliosis virus (REV) were consistently downregulated compared to the levels in the normal lymphocytes. This downregulation of miR-26a regardless of the viral etiology and molecular mechanisms of transformation was consistent with the tumor suppressor role of this miRNA. Notwithstanding this well-established role in cancer, we demonstrate the additional role of this miRNA in directly targeting chicken IL-2 through reporter and biochemical assays. The downregulation of miR-26a can relieve the suppressive effect of this miRNA on IL-2 expression. Conclusions We show that miR-26a is globally downregulated in a number of avian lymphoma cells irrespective of the mechanisms of transformation, reiterating the highly conserved tumor suppressor function of this miRNA. However, with the potential for directly targeting chicken IL-2, the downregulation of miR-26a in these tumor cells could relieve the inhibitory effect on IL-2 expression assisting in the proliferative features of the transformed lymphocyte lines.
Collapse
Affiliation(s)
- Hongtao Xu
- Avian Oncogenic Virus Group, Avian Infectious Diseases Programme, Institute for Animal Health, Compton, Berkshire, UK RG20 7NN.
| | | | | | | |
Collapse
|
885
|
Abstract
Although now dogma, the idea that nonvertebrate organisms such as yeast, worms, and flies could inform, and in some cases even revolutionize, our understanding of oncogenesis in humans was not immediately obvious. Aided by the conservative nature of evolution and the persistence of a cohort of devoted researchers, the role of model organisms as a key tool in solving the cancer problem has, however, become widely accepted. In this review, we focus on the nematode Caenorhabditis elegans and its diverse and sometimes surprising contributions to our understanding of the tumorigenic process. Specifically, we discuss findings in the worm that address a well-defined set of processes known to be deregulated in cancer cells including cell cycle progression, growth factor signaling, terminal differentiation, apoptosis, the maintenance of genome stability, and developmental mechanisms relevant to invasion and metastasis.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - Kumaran Mani
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
886
|
Albihn A, Johnsen JI, Henriksson MA. MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 2010; 107:163-224. [PMID: 20399964 DOI: 10.1016/s0065-230x(10)07006-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MYC proteins (c-MYC, MYCN, and MYCL) regulate processes involved in many if not all aspects of cell fate. Therefore, it is not surprising that the MYC genes are deregulated in several human neoplasias as a result from genetic and epigenetic alterations. The near "omnipotency" together with the many levels of regulation makes MYC an attractive target for tumor intervention therapy. Here, we summarize some of the current understanding of MYC function and provide an overview of different cancer forms with MYC deregulation. We also describe available treatments and highlight novel approaches in the pursuit for MYC-targeting therapies. These efforts, at different stages of development, constitute a promising platform for novel, more specific treatments with fewer side effects. If successful a MYC-targeting therapy has the potential for tailored treatment of a large number of different tumors.
Collapse
Affiliation(s)
- Ami Albihn
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
887
|
Shalgi R, Pilpel Y, Oren M. Repression of transposable-elements - a microRNA anti-cancer defense mechanism? Trends Genet 2010; 26:253-9. [PMID: 20417576 DOI: 10.1016/j.tig.2010.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/28/2010] [Accepted: 03/30/2010] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) appear to be key players in the maintenance of genomic integrity. Recent evidence implies that cancers often avoid miRNA-mediated regulation, and global repression of miRNAs is associated with increased tumorigenicity. Here we suggest that miRNAs are directly involved in the maintenance of genomic integrity through global repression of transposable elements (TEs), whose expression and transposition are well-documented causes of genomic instability in mammalian somatic tissues. Hence, one outcome of the tumor's ability to avoid miRNA-mediated regulation might be the enhancement of genomic instability and mutability due to derepression of TEs. We outline possible mechanisms underlying TE repression by miRNAs, including post-transcriptional silencing and transcriptional silencing through DNA and histone methylation. This hypothesis calls into consideration the need to study the role of miRNAs and the RNAi machinery in the nucleus, and specifically their impact on the maintenance of genomic integrity in the context of cancer.
Collapse
Affiliation(s)
- Reut Shalgi
- Molecular Genetics Department, Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
888
|
Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Mol Cell Biol 2010; 30:2983-95. [PMID: 20404092 DOI: 10.1128/mcb.01372-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcription of microRNAs (miRNAs) is thought to be regulated similarly to that of protein-coding genes. However, how miRNAs are regulated during the cell division cycle is not well understood. We have analyzed the transcription profiles of miRNAs in response to mitogenic stimulation in primary fibroblasts. About 33% of the miRNAs expressed in these cells are induced upon exit from quiescence. Many of these miRNAs are specifically induced by E2F1 or E2F3 during the G(1)/S transition and are repressed in E2F1/3-knockout cells. At least four miRNA clusters, let-7a-d, let-7i, mir-15b-16-2, and mir-106b-25, are direct targets of E2F1 and E2F3 during G(1)/S and are repressed in E2F1/3-null cells. Interestingly, these miRNAs do not contribute to E2F-dependent entry into S phase but rather inhibit the G(1)/S transition by targeting multiple cell cycle regulators and E2F targets. In fact, E2F1 expression results in a significant increase in S-phase entry and DNA damage in the absence of these microRNAs. Thus, E2F-induced miRNAs contribute to limiting the cellular responses to E2F activation, thus preventing replicative stress. Given the known function of E2F of inducing other oncogenic miRNAs, control of miRNAs by E2F is likely to play multiple roles in cell proliferation and in proliferative diseases such as cancer.
Collapse
|
889
|
Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ, Hickey C, Yu J, Becker H, Maharry K, Radmacher MD, Li C, Whitman SP, Mishra A, Stauffer N, Eiring AM, Briesewitz R, Baiocchi RA, Chan KK, Paschka P, Caligiuri MA, Byrd JC, Croce CM, Bloomfield CD, Perrotti D, Garzon R, Marcucci G. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer Cell 2010; 17:333-47. [PMID: 20385359 PMCID: PMC2917066 DOI: 10.1016/j.ccr.2010.03.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 11/29/2009] [Accepted: 03/17/2010] [Indexed: 12/29/2022]
Abstract
The biologic and clinical significance of KIT overexpression that associates with KIT gain-of-function mutations occurring in subsets of acute myeloid leukemia (AML) (i.e., core binding factor AML) is unknown. Here, we show that KIT mutations lead to MYC-dependent miR-29b repression and increased levels of the miR-29b target Sp1 in KIT-driven leukemia. Sp1 enhances its own expression by participating in a NFkappaB/HDAC complex that further represses miR-29b transcription. Upregulated Sp1 then binds NFkappaB and transactivates KIT. Therefore, activated KIT ultimately induces its own transcription. Our results provide evidence that the mechanisms of Sp1/NFkappaB/HDAC/miR-29b-dependent KIT overexpression contribute to leukemia growth and can be successfully targeted by pharmacological disruption of the Sp1/NFkappaB/HDAC complex or synthetic miR-29b treatment in KIT-driven AML.
Collapse
Affiliation(s)
- Shujun Liu
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- To whom correspondence should be addressed: Shujun Liu and Guido Marcucci, The Ohio State University, 898 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. Phone: 614-293-7597. FAX: 614-293-7527. or
| | - Lai-Chu Wu
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, OH 4321
| | - Jiuxia Pang
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Ramasamy Santhanam
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Sebastian Schwind
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Yue-Zhong Wu
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
| | - Christopher Hickey
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
| | - Jianhua Yu
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Heiko Becker
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Kati Maharry
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Michael D Radmacher
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Chenglong Li
- Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, OH 4321
| | - Susan P. Whitman
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Anjali Mishra
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Nicole Stauffer
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Anna M. Eiring
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Roger Briesewitz
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Robert A. Baiocchi
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Kenneth K. Chan
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Division of Pharmaceutics of College of Pharmacy, The Ohio State University, Columbus, OH 4321
| | - Peter Paschka
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael A. Caligiuri
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - John C. Byrd
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Carlo M Croce
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Clara D. Bloomfield
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Danilo Perrotti
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
| | - Ramiro Garzon
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
| | - Guido Marcucci
- Divisions of Hematology-Oncology, The Ohio State University, Columbus, OH 4321
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 4321
- Department of Molecular Virology, Immunology and Cancer Genetics, The Ohio State University, Columbus, OH 4321
- Division of Pharmaceutics of College of Pharmacy, The Ohio State University, Columbus, OH 4321
- To whom correspondence should be addressed: Shujun Liu and Guido Marcucci, The Ohio State University, 898 Biomedical Research Tower, 460 West 12th Avenue, Columbus, Ohio 43210. Phone: 614-293-7597. FAX: 614-293-7527. or
| |
Collapse
|
890
|
High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci U S A 2010; 107:7904-9. [PMID: 20385818 DOI: 10.1073/pnas.0908441107] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that regulate global gene expression. miRNAs often act synergistically to repress target genes, and their dysregulation can contribute to the initiation and progression of a variety of cancers. The clinical relationship between global expression of miRNA and mRNA in cancer has not been studied in detail. We used whole-genome microarray analyses of CD138-enriched plasma cells from 52 newly diagnosed cases of multiple myeloma to correlate miRNA expression profiles with a validated mRNA-based risk stratification score, proliferation index, and predefined gene sets. In stark contrast to mRNAs, we discovered that all tested miRNAs were significantly up-regulated in high-risk disease as defined by a validated 70-gene risk score (P < 0.01) and proliferation index (P < 0.05). Increased expression of EIF2C2/AGO2, a master regulator of the maturation and function of miRNAs and a component of the 70-gene mRNA risk model, is driven by DNA copy number gains in MM. Silencing of AGO2 dramatically decreased viability in MM cell lines. Genome-wide elevated expression of miRNAs in high-risk MM may be secondary to deregulation of AGO2 and the enzyme complexes that regulate miRNA maturation and function.
Collapse
|
891
|
Vohradsky J, Panek J, Vomastek T. Numerical modelling of microRNA-mediated mRNA decay identifies novel mechanism of microRNA controlled mRNA downregulation. Nucleic Acids Res 2010; 38:4579-85. [PMID: 20371515 PMCID: PMC2919720 DOI: 10.1093/nar/gkq220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional control of mRNA by micro-RNAs (miRNAs) represents an important mechanism of gene regulation. miRNAs act by binding to the 3' untranslated region (3'UTR) of an mRNA, affecting the stability and translation of the target mRNA. Here, we present a numerical model of miRNA-mediated mRNA downregulation and its application to analysis of temporal microarray data of HepG2 cells transfected with miRNA-124a. Using the model our analysis revealed a novel mechanism of mRNA accumulation control by miRNA, predicting that specific mRNAs are controlled in a digital, switch-like manner. Specifically, the contribution of miRNAs to mRNA degradation is switched from maximum to zero in a very short period of time. Such behaviour suggests a model of control in which mRNA is at a certain moment protected from binding of miRNA and further accumulates with a basal rate. Genes associated with this process were identified and parameters of the model for all miRNA-124a affected mRNAs were computed.
Collapse
Affiliation(s)
- Jiri Vohradsky
- Institute of Microbiology ASCR vvi, Prague, Czech Republic.
| | | | | |
Collapse
|
892
|
Merkerova M, Vasikova A, Belickova M, Bruchova H. MicroRNA expression profiles in umbilical cord blood cell lineages. Stem Cells Dev 2010; 19:17-26. [PMID: 19435428 DOI: 10.1089/scd.2009.0071] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs), important regulators of cellular processes, show specific expression signatures in different blood cell lineages and stages of hematopoietic stem cell (HSC) differentiation, indicating their role in the control of hematopoiesis. Because neonatal blood displays various features of immaturity, we might expect differential miRNA regulation. Herein, we determined miRNA expression profiles of umbilical cord blood (UCB) cell lineages and compared them to those of bone marrow (BM) and peripheral blood (PB) cell counterparts. Further, we determined mRNA expression profiles using whole-genome microarrays. An approach combining bioinformatic prediction of miRNA targets with mRNA expression profiling was used to search for putative targets of miRNAs with potential functions in UCB. We pointed out several differentially expressed miRNAs and associated their expression with the target transcript levels. miR-148a expression was suppressed in HSCs and its level inversely correlated with the previously verified target, DNA methyltransferase 3B, suggesting dependence of de novo DNA methylation in HSCs on miR-148a. Prolonged cell survival of UCB HSCs may be associated with low expression of miR-143 and miR-145 and up-regulation of their downstream targets (high expression of c-MYC and miR-17-92 and following repression of TGFBR2). In HSCs, we monitored significant up-regulation of eight miRNAs, which were previously verified as regulators of HOX genes. Further, miR-146b may be associated with immaturity of neonatal immune system because it is strongly up-regulated in UCB granulocytes and T lymphocytes compared to PB cell counterparts. Comparative analysis revealed 13 miRNAs significantly altered between UCB and BM CD34(+) cells. In UCB CD34(+) cells, we monitored up-regulation of miR-520h, promoting differentiation of HSCs into progenitor cells, and reduction of miR-214, whose expression might support HSC survival. In conclusion, UCB cells show specific miRNA expression patterns, indicating different regulation in these cells.
Collapse
Affiliation(s)
- Michaela Merkerova
- Institute of Hematology and Blood Transfusion, Department of Molecular Genetics, Prague, Czech Republic
| | | | | | | |
Collapse
|
893
|
Ryu JK, Hong SM, Karikari CA, Hruban RH, Goggins MG, Maitra A. Aberrant MicroRNA-155 expression is an early event in the multistep progression of pancreatic adenocarcinoma. Pancreatology 2010; 10:66-73. [PMID: 20332664 PMCID: PMC2865485 DOI: 10.1159/000231984] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/14/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Pancreatic intraepithelial neoplasia (PanIN) is the most common noninvasive precursor to invasive pancreatic adenocarcinoma. Misexpression of microRNAs (miRNAs) is commonly encountered in invasive neoplasia; however, miRNA abnormalities in PanIN lesions have not been documented. METHODS Three candidate miRNAs (miR-21, miR-155, and miR-221) previously reported as overexpressed in pancreatic cancers were assessed in 31 microdissected PanINs (14 PanIN-1, 9 PanIN-2, 8 PanIN-3) using quantitative reverse transcription PCR (qRT-PCR). Subsequently, miR-155 was evaluated by locked nucleic acid in situ hybridization (LNA-ISH) in PanIN tissue microarrays. RESULTS Relative to microdissected non-neoplastic ductal epithelium, significant overexpression of miR-155 was observed in both PanIN-2 (2.6-fold, p = 0.02) and in PanIN-3 (7.4-fold, p = 0.014), while borderline significant overexpression of miR-21 (2.5-fold, p = 0.049) was observed in PanIN-3 only. In contrast, no significant differences in miR-221 levels were observed between ductal epithelium and PanIN lesions by qRT-PCR. LNA-ISH confirmed the aberrant expression of miR-155 in PanIN-2 (9 of 20, 45%) and in PanIN-3 (8 of 13, 62%), respectively, when compared with normal ductal epithelium (0 of 10) (p < 0.01). CONCLUSIONS Abnormalities of miRNA expression are observed in the multistep progression of pancreatic cancer, with miR-155 aberrations demonstrable at the stage of PanIN-2, and miR-21 abnormalities at the stage of PanIN-3 lesions. and IAP.
Collapse
Affiliation(s)
- Ji Kon Ryu
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Internal Medicine, Seoul National University School of Medicine, Seoul, Korea
| | - Seung-Mo Hong
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,*Seung-Mo Hong, MD, Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Room 316, CRB II, 1550 Orleans Street, Baltimore, MD 21231 (USA), Tel. +1 410 955 3511, Fax +1 410 614 0671, E-Mail
| | - Collins A. Karikari
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Ralph H. Hruban
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Michael G. Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Medicine, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Anirban Maitra
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
894
|
Abstract
Lin28, a highly conserved RNA-binding protein, has emerged as a modulator of the processing of the let-7 microRNA. This role for Lin28 has important implications for our mechanistic understanding of pluripotency, the timing of development, and oncogenesis.
Collapse
Affiliation(s)
- Srinivas R Viswanathan
- Children's Hospital Boston and Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and the Howard Hughes Medical Institute, MA 02115, USA
| | | |
Collapse
|
895
|
Abstract
Up to 70% of all human malignancies show elevated expression of MYC. MYC is a pleiotropic transcription factor involved in many aspects of cellular development and physiology. Besides direct regulation of target genes involved in proliferation and growth MYC is implicated in controlling the complex networks of microRNAs and apoptosis mediators. The mode of MYC deregulation varies between different tumor entities. In most types of cancer high MYC levels are secondary to alterations in cell signalling pathways, leading to enhanced proliferation of the transformed cells. In some haematological malignancies, like Burkitt lymphoma (BL) and subsets of diffuse large B-cell lymphomas, elevated MYC levels are a direct consequence of genomic aberrations involving the MYC locus. BL is considered the prime example for MYC-induced lymphomagenesis. In comparison to other haematological malignancies it has the highest MYC-expression and is often connected to Epstein-Barr virus (EBV) infection. Over the past five decades BL has provided an invaluable tool for the entire discipline of oncology, helping to decipher many aspects of tumor biology. This review summarizes recent advances in the research on MYC-induced lymphomagenesis, focusing on the regulation of microRNAs and apoptosis, and possible contributions of EBV for lymphoma development.
Collapse
Affiliation(s)
- Kay Klapproth
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | | |
Collapse
|
896
|
Chen J, Feilotter HE, Paré GC, Zhang X, Pemberton JGW, Garady C, Lai D, Yang X, Tron VA. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2520-9. [PMID: 20304954 DOI: 10.2353/ajpath.2010.091061] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.
Collapse
Affiliation(s)
- Jiamin Chen
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
897
|
Abstract
Background MicroRNAs (miRNAs) are 18–23 nucleotide non-coding RNAs that regulate gene expression in a sequence specific manner. Little is known about the repertoire and function of miRNAs in melanoma or the melanocytic lineage. We therefore undertook a comprehensive analysis of the miRNAome in a diverse range of pigment cells including: melanoblasts, melanocytes, congenital nevocytes, acral, mucosal, cutaneous and uveal melanoma cells. Methodology/Principal Findings We sequenced 12 small RNA libraries using Illumina's Genome Analyzer II platform. This massively parallel sequencing approach of a diverse set of melanoma and pigment cell libraries revealed a total of 539 known mature and mature-star sequences, along with the prediction of 279 novel miRNA candidates, of which 109 were common to 2 or more libraries and 3 were present in all libraries. Conclusions/Significance Some of the novel candidate miRNAs may be specific to the melanocytic lineage and as such could be used as biomarkers to assist in the early detection of distant metastases by measuring the circulating levels in blood. Follow up studies of the functional roles of these pigment cell miRNAs and the identification of the targets should shed further light on the development and progression of melanoma.
Collapse
|
898
|
Ribas J, Lupold SE. The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell Cycle 2010; 9:923-9. [PMID: 20160498 DOI: 10.4161/cc.9.5.10930] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a natural part of the most recently discovered and global regulatory pathway known as RNA interference. Functional studies have shown how specific miRNAs can function as tumor suppressors or oncogenes and, correspondingly, deregulated miRNA profiles have been observed in prostate and other cancers. However, the upstream pathways which regulate miRNA expression are only currently being uncovered. The Androgen Receptor (AR) is a nuclear hormone receptor and transcription factor which plays a paramount role in prostate cancer (PCa) pathobiology. We performed high throughput miRNA microarray analysis on two AR-responsive cell lines to identified 16 candidate AR-regulated miRNAs.(1) One of the most androgen-induced candidates was a known oncogenic miRNA, miR-21. In a small study of early grade PCa samples we found that miR-21 levels were frequently elevated in comparison to adjacent normal tissue. This observation was supported in the literature(2,3) and suggests clinical relevance. We found that the activated AR directly interacts with miR-21 regulatory regions, indicating direct transcriptional induction. Furthermore, we provide new reporter studies supporting AR-regulation. Importantly, in functional studies, we found that a modest overexpression of miR-21 enhanced tumor xenograft growth and was sufficient to support androgen-independent proliferation following surgical castration. Thus, our studies suggest a model where miR-21 contributes to androgen-dependent and androgen-independent PCa growth. However, the AR is only one of many reported transcriptional regulators of miR-21. Here we review our recent discoveries and further analyze the reported miR-21 regulatory regions, inhibitory and stimulatory signaling pathways, and primary transcripts.
Collapse
Affiliation(s)
- Judit Ribas
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
899
|
Abstract
PURPOSE OF REVIEW Inducible pluripotent stem (iPS) cells derived from somatic cells represent a novel renewable source of tissue precursors. The potential of iPS cells is considered to be at least equivalent to that of human embryonic stem cells, facilitating the treatment or cure of diseases such as diabetes mellitus, spinal cord injuries, cardiovascular disease, and neurodegenerative diseases, but with the potential added benefit of evading the adaptive immune response that otherwise limits allogeneic cell-based therapies. This review discusses recent advances in pluripotency induction and the use of iPS cells to produce differentiated cells, while highlighting roadblocks to the widespread use of this technology in the clinical arena. RECENT FINDINGS Whereas ethical and safety issues surrounding the use of human embryonic stem cells for the treatment of disease continue to be debated, use of iPS cells may be viewed as a more widely acceptable compromise. Since the first descriptions of inducible pluripotency from somatic cells, multiple laboratories have collectively made tremendous strides both in developing alternative, more clinically acceptable, induction strategies and in demonstrating the proof-of-principle that iPS cells can be differentiated into a variety of cell types to reverse mouse models of human disease. SUMMARY Although the prospect of using patient-specific iPS cells has much appeal from an ethical and immunologic perspective, the limitations of the technology from the standpoint of reprogramming efficiency and therapeutic safety necessitate much more in-depth research before the initiation of human clinical trials.
Collapse
|
900
|
Liu X, Sempere LF, Ouyang H, Memoli VA, Andrew AS, Luo Y, Demidenko E, Korc M, Shi W, Preis M, Dragnev KH, Li H, Direnzo J, Bak M, Freemantle SJ, Kauppinen S, Dmitrovsky E. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 2010; 120:1298-309. [PMID: 20237410 DOI: 10.1172/jci39566] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 01/13/2010] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression. It has been suggested that obtaining miRNA expression profiles can improve classification, diagnostic, and prognostic information in oncology. Here, we sought to comprehensively identify the miRNAs that are overexpressed in lung cancer by conducting miRNA microarray expression profiling on normal lung versus adjacent lung cancers from transgenic mice. We found that miR-136, miR-376a, and miR-31 were each prominently overexpressed in murine lung cancers. Real-time RT-PCR and in situ hybridization (ISH) assays confirmed these miRNA expression profiles in paired normal-malignant lung tissues from mice and humans. Engineered knockdown of miR-31, but not other highlighted miRNAs, substantially repressed lung cancer cell growth and tumorigenicity in a dose-dependent manner. Using a bioinformatics approach, we identified miR-31 target mRNAs and independently confirmed them as direct targets in human and mouse lung cancer cell lines. These targets included the tumor-suppressive genes large tumor suppressor 2 (LATS2) and PP2A regulatory subunit B alpha isoform (PPP2R2A), and expression of each was augmented by miR-31 knockdown. Their engineered repression antagonized miR-31-mediated growth inhibition. Notably, miR-31 and these target mRNAs were inversely expressed in mouse and human lung cancers, underscoring their biologic relevance. The clinical relevance of miR-31 expression was further independently and comprehensively validated using an array containing normal and malignant human lung tissues. Together, these findings revealed that miR-31 acts as an oncogenic miRNA (oncomir) in lung cancer by targeting specific tumor suppressors for repression.
Collapse
Affiliation(s)
- Xi Liu
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|