851
|
Christmas BJ, Rafie CI, Hopkins AC, Scott BA, Ma HS, Cruz KA, Woolman S, Armstrong TD, Connolly RM, Azad NA, Jaffee EM, Roussos Torres ET. Entinostat Converts Immune-Resistant Breast and Pancreatic Cancers into Checkpoint-Responsive Tumors by Reprogramming Tumor-Infiltrating MDSCs. Cancer Immunol Res 2018; 6:1561-1577. [PMID: 30341213 PMCID: PMC6279584 DOI: 10.1158/2326-6066.cir-18-0070] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/08/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Immune-checkpoint inhibition (ICI) has revolutionized treatment in cancers that are naturally immunogenic by enabling infiltration of T cells into the tumor microenvironment (TME) and promoting cytotoxic signaling pathways. Tumors possessing complex immunosuppressive TMEs such as breast and pancreatic cancers present unique therapeutic obstacles as response rates to ICI remain low. Such tumors often recruit myeloid-derived suppressor cells (MDSCs), whose functioning prohibits both T-cell activation and infiltration. We attempted to sensitize these tumors to ICI using epigenetic modulation to target MDSC trafficking and function to foster a less immunosuppressive TME. We showed that combining a histone deacetylase inhibitor, entinostat (ENT), with anti-PD-1, anti-CTLA-4, or both significantly improved tumor-free survival in both the HER2/neu transgenic breast cancer and the Panc02 metastatic pancreatic cancer mouse models. Using flow cytometry, gene-expression profiling, and ex vivo functional assays, we characterized populations of tumor-infiltrating lymphocytes (TILs) and MDSCs, as well as their functional capabilities. We showed that addition of ENT to checkpoint inhibition led to significantly decreased suppression by granulocytic MDSCs in the TME of both tumor types. We also demonstrated an increase in activated granzyme-B-producing CD8+ T effector cells in mice treated with combination therapy. Gene-expression profiling of both MDSCs and TILs identified significant changes in immune-related pathways. In summary, addition of ENT to ICI significantly altered infiltration and function of innate immune cells, allowing for a more robust adaptive immune response. These findings provide a rationale for combination therapy in patients with immune-resistant tumors, including breast and pancreatic cancers.
Collapse
MESH Headings
- Animals
- Female
- Male
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/mortality
- CTLA-4 Antigen/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/mortality
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Pyridines/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Mice
Collapse
Affiliation(s)
- Brian J Christmas
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine I Rafie
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander C Hopkins
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Blake A Scott
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hayley S Ma
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kayla A Cruz
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Skylar Woolman
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd D Armstrong
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roisin M Connolly
- Department of Oncology, and the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nilo A Azad
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, and the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, and the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Evanthia T Roussos Torres
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, and the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
852
|
Santoni M, Conti A, Buti S, Bersanelli M, Foghini L, Piva F, Giulietti M, Lusuardi L, Battelli N. Risk of fatigue in cancer patients treated with anti programmed cell death-1/anti programmed cell death ligand-1 agents: a systematic review and meta-analysis. Immunotherapy 2018; 10:1303-1313. [PMID: 30474475 DOI: 10.2217/imt-2018-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM We aimed to assess the incidence and relative risk (RR) of fatigue in cancer patients treated with anti programmed cell death-1 (PD-1) and anti programmed cell death ligand-1 (PD-L1) agents. PATIENTS & METHODS Eligible studies were selected according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Incidence, RR and 95% CIs were calculated using random or fixed-effects models. RESULTS Thirty-eight studies were included in this analysis, with a total of 11,719 patients. The incidences were 23.4 and 2.1% for all- and high-grade fatigue, respectively. The highest incidence of high-grade fatigue was reported by the combination of nivolumab and ipilimumab. Overall RR of high-grade fatigue with anti-PD-1/PD-L1 compared with chemotherapy or targeted therapy was 0.48. CONCLUSION Treatment with anti-PD-1/PD-L1 agents correlates with lower incidence and RR of fatigue compared with standard therapies.
Collapse
Affiliation(s)
- Matteo Santoni
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100, Macerata, Italy
| | - Alessandro Conti
- Azienda Ospedaliera dell'Alto Adige, Bressanone/Brixen Hospital, Via Dante, 51, 39042, Italy
| | - Sebastiano Buti
- University Hospital of Parma, Via Gramsci 14 - 43126, Parma, Italy
| | | | - Laura Foghini
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100, Macerata, Italy
| | - Francesco Piva
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical & Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lukas Lusuardi
- Department of Urology & Andrology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Nicola Battelli
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, 62100, Macerata, Italy
| |
Collapse
|
853
|
Pegram MD, Zong Y, Yam C, Goetz MP, Moulder SL. Innovative Strategies: Targeting Subtypes in Metastatic Breast Cancer. Am Soc Clin Oncol Educ Book 2018; 38:65-77. [PMID: 30231328 DOI: 10.1200/edbk_200715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metastatic breast cancer continues to be a life-threatening diagnosis that impacts hundreds of thousands of patients around the world. Targeted therapies are usually associated with less toxicity compared with cytotoxic chemotherapies and often induce response or durable disease control in estrogen receptor (ER) and/or HER2+ breast cancers. Drugs that target CDK 4/6 either alone or in combination with endocrine therapy have demonstrated substantial improvements in progression-free survival (PFS) compared with endocrine monotherapy. Most recently, PARP inhibitors have shown longer PFS compared with physician's choice of chemotherapy in BRCA-associated cancers, leading to the first U.S. Food and Drug Administration (FDA) approval of a targeted therapy with the potential to benefit a subgroup of patients with triple-negative breast cancer (TNBC). Finally, newer drug delivery strategies using antibody drug conjugates have also allowed a "targeted approach" to deliver moderate to extremely potent cytotoxins directly to sites of metastatic disease, with less toxicity.
Collapse
Affiliation(s)
- Mark D Pegram
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Yu Zong
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Clinton Yam
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Matthew P Goetz
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| | - Stacy L Moulder
- From the Stanford Comprehensive Cancer, Stanford, CA; The University of Texas MD Anderson Cancer Center, Houston, TX; Mayo Clinic Cancer Center, Rochester, MN
| |
Collapse
|
854
|
Martin Lluesma S, Graciotti M, Chiang CLL, Kandalaft LE. Does the Immunocompetent Status of Cancer Patients Have an Impact on Therapeutic DC Vaccination Strategies? Vaccines (Basel) 2018; 6:E79. [PMID: 30477198 PMCID: PMC6313858 DOI: 10.3390/vaccines6040079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
Although different types of therapeutic vaccines against established cancerous lesions in various indications have been developed since the 1990s, their clinical benefit is still very limited. This observed lack of effectiveness in cancer eradication may be partially due to the often deficient immunocompetent status of cancer patients, which may facilitate tumor development by different mechanisms, including immune evasion. The most frequently used cellular vehicle in clinical trials are dendritic cells (DCs), thanks to their crucial role in initiating and directing immune responses. Viable vaccination options using DCs are available, with a positive toxicity profile. For these reasons, despite their limited therapeutic outcomes, DC vaccination is currently considered an additional immunotherapeutic option that still needs to be further explored. In this review, we propose potential actions aimed at improving DC vaccine efficacy by counteracting the detrimental mechanisms recognized to date and implicated in establishing a poor immunocompetent status in cancer patients.
Collapse
Affiliation(s)
- Silvia Martin Lluesma
- Center of Experimental Therapeutics, Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| | - Michele Graciotti
- Vaccine development laboratory, Ludwig Center for Cancer Research, Lausanne 1011, Switzerland.
| | - Cheryl Lai-Lai Chiang
- Vaccine development laboratory, Ludwig Center for Cancer Research, Lausanne 1011, Switzerland.
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
- Vaccine development laboratory, Ludwig Center for Cancer Research, Lausanne 1011, Switzerland.
| |
Collapse
|
855
|
Cheng N, Watkins-Schulz R, Junkins RD, David CN, Johnson BM, Montgomery SA, Peine KJ, Darr DB, Yuan H, McKinnon KP, Liu Q, Miao L, Huang L, Bachelder EM, Ainslie KM, Ting JPY. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 2018; 3:120638. [PMID: 30429378 DOI: 10.1172/jci.insight.120638] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has few therapeutic options, and alternative approaches are urgently needed. Stimulator of IFN genes (STING) is becoming an exciting target for therapeutic adjuvants. However, STING resides inside the cell, and the intracellular delivery of CDNs, such as cGAMP, is required for the optimal activation of STING. We show that liposomal nanoparticle-delivered cGAMP (cGAMP-NP) activates STING more effectively than soluble cGAMP. These particles induce innate and adaptive host immune responses to preexisting tumors in both orthotopic and genetically engineered models of basal-like TNBC. cGAMP-NPs also reduce melanoma tumor load, with limited responsivity to anti-PD-L1. Within the tumor microenvironment, cGAMP-NPs direct both mouse and human macrophages (M), reprograming from protumorigenic M2-like phenotype toward M1-like phenotype; enhance MHC and costimulatory molecule expression; reduce M2 biomarkers; increase IFN-γ-producing T cells; augment tumor apoptosis; and increase CD4+ and CD8+ T cell infiltration. Activated T cells are required for tumor suppression, as their depletion reduces antitumor activity. Importantly, cGAMP-NPs prevent the formation of secondary tumors, and a single dose is sufficient to inhibit TNBC. These data suggest that a minimal system comprised of cGAMP-NP alone is sufficient to modulate the tumor microenvironment to effectively control PD-L1-insensitive TNBC.
Collapse
Affiliation(s)
- Ning Cheng
- Oral and Craniofacial Biomedicine Program, School of Dentistry.,Lineberger Comprehensive Cancer Center
| | | | | | | | | | | | - Kevin J Peine
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics
| | | | - Hong Yuan
- Department of Radiology.,Biomedical Imaging Research Center
| | | | - Qi Liu
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics.,University of North Carolina/North Carolina State University Joint Department of Biomedical Engineering
| | - Lei Miao
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics
| | - Leaf Huang
- Lineberger Comprehensive Cancer Center.,Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics
| | - Eric M Bachelder
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics
| | - Kristy M Ainslie
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics
| | - Jenny P-Y Ting
- Oral and Craniofacial Biomedicine Program, School of Dentistry.,Lineberger Comprehensive Cancer Center.,Curriculum of Genetics and Molecular Biology.,Department of Microbiology and Immunology.,Department of Genetics.,Institute for Inflammatory Diseases, and.,Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
856
|
Ayers M, Nebozhyn M, Cristescu R, McClanahan TK, Perini R, Rubin E, Cheng JD, Kaufman DR, Loboda A. Molecular Profiling of Cohorts of Tumor Samples to Guide Clinical Development of Pembrolizumab as Monotherapy. Clin Cancer Res 2018; 25:1564-1573. [PMID: 30442684 DOI: 10.1158/1078-0432.ccr-18-1316] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/29/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Molecular profiling of large databases of human tumor gene expression profiles offers novel opportunities for informing decisions in clinical development programs. EXPERIMENTAL DESIGN Gene expression profile of programmed death ligand 1 (PD-L1) was explored in a dataset of 16,000 samples, including approximately 4,000 metastatic tumors, across >25 tumor types prevalent in the United States, looking for new indications for the programmed death 1 (PD-1) inhibitor pembrolizumab. PD-L1 expression was highly concordant with several genomic signatures indicative of immune-inflamed tumor microenvironment. Prevalence of activated immune-inflamed tumors across all tumor types was explored and used to rank tumor types for potential response to pembrolizumab monotherapy. RESULTS The analysis yielded 3 tiers of indications in which high levels of PD-L1 and immune-inflamed signatures were found in up to 40% to 60%, 20% to 40%, and 0% to 20% of tumors. Tier 1 contained novel indications known at the time of analysis to be responsive to PD-1 checkpoint blockade in the clinic (such as melanoma and non-small cell lung cancer), as well as indications not studied in the clinic previously, including microsatellite instability-high colorectal, head and neck, bladder, and triple-negative breast cancers. Complementary analysis of an Asian/Pacific cancer dataset (gastric cancer) revealed high prevalence of immune-inflamed tumors in gastric cancer. These data contributed to prioritization of these indications for clinical development of pembrolizumab as monotherapy. CONCLUSIONS Data highlight the value of molecular profiling in identifying populations with high unmet needs with potentially favorable response characteristics and accelerating development of novel therapies for these patients.See related commentary by Mansfield and Jen, p. 1443.
Collapse
Affiliation(s)
- Mark Ayers
- Merck & Co., Inc., Kenilworth, New Jersey
| | | | | | | | | | - Eric Rubin
- Merck & Co., Inc., Kenilworth, New Jersey
| | | | | | | |
Collapse
|
857
|
Pedersen MH, Hood BL, Ehmsen S, Beck HC, Conrads TP, Bak M, Ditzel HJ, Leth‐Larsen R. CYPOR is a novel and independent prognostic biomarker of recurrence‐free survival in triple‐negative breast cancer patients. Int J Cancer 2018; 144:631-640. [DOI: 10.1002/ijc.31798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/24/2018] [Accepted: 08/02/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Martin H. Pedersen
- Department of Cancer and Inflammation ResearchInstitute of Molecular Medicine, University of Southern Denmark Odense Denmark
| | - Brian L. Hood
- Womens Health Integrated Research Center at Inova Health System; Gynecologic Cancer Center of ExcellenceHenry Jackson Foundation for the Advancement of Military Medicine Annandale VA
| | - Sidse Ehmsen
- Department of Cancer and Inflammation ResearchInstitute of Molecular Medicine, University of Southern Denmark Odense Denmark
| | - Hans C. Beck
- Department of Clinical Biochemistry and PharmacologyOdense University Hospital Odense Denmark
| | - Thomas P. Conrads
- Womens Health Integrated Research Center at Inova Health System; Gynecologic Cancer Center of ExcellenceHenry Jackson Foundation for the Advancement of Military Medicine Annandale VA
- Inova Schar Cancer InstituteInova Center for Personalized Health Fairfax VA
| | - Martin Bak
- Department of PathologyOdense University Hospital Odense Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation ResearchInstitute of Molecular Medicine, University of Southern Denmark Odense Denmark
- Department of OncologyOdense University Hospital Odense Denmark
| | - Rikke Leth‐Larsen
- Department of Cancer and Inflammation ResearchInstitute of Molecular Medicine, University of Southern Denmark Odense Denmark
- Department of Regional Health ResearchUniversity of Southern Denmark Odense Denmark
| |
Collapse
|
858
|
Szekely B, Bossuyt V, Li X, Wali V, Patwardhan G, Frederick C, Silber A, Park T, Harigopal M, Pelekanou V, Zhang M, Yan Q, Rimm D, Bianchini G, Hatzis C, Pusztai L. Immunological differences between primary and metastatic breast cancer. Ann Oncol 2018; 29:2232-2239. [DOI: 10.1093/annonc/mdy399] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
859
|
Petrelli F, Ardito R, Borgonovo K, Lonati V, Cabiddu M, Ghilardi M, Barni S. Haematological toxicities with immunotherapy in patients with cancer: a systematic review and meta-analysis. Eur J Cancer 2018; 103:7-16. [DOI: 10.1016/j.ejca.2018.07.129] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/20/2018] [Accepted: 07/24/2018] [Indexed: 01/20/2023]
|
860
|
Elion DL, Jacobson ME, Hicks DJ, Rahman B, Sanchez V, Gonzales-Ericsson PI, Fedorova O, Pyle AM, Wilson JT, Cook RS. Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancers. Cancer Res 2018; 78:6183-6195. [PMID: 30224377 DOI: 10.1158/0008-5472.can-18-0730] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/29/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022]
Abstract
Cancer immunotherapies that remove checkpoint restraints on adaptive immunity are gaining clinical momentum but have not achieved widespread success in breast cancers, a tumor type considered poorly immunogenic and which harbors a decreased presence of tumor-infiltrating lymphocytes. Approaches that activate innate immunity in breast cancer cells and the tumor microenvironment are of increasing interest, based on their ability to induce immunogenic tumor cell death, type I IFNs, and lymphocyte-recruiting chemokines. In agreement with reports in other cancers, we observe loss, downregulation, or mutation of the innate viral nucleotide sensor retinoic acid-inducible gene I (RIG-I/DDX58) in only 1% of clinical breast cancers, suggesting potentially widespread applicability for therapeutic RIG-I agonists that activate innate immunity. This was tested using an engineered RIG-I agonist in a breast cancer cell panel representing each of three major clinical breast cancer subtypes. Treatment with RIG-I agonist resulted in upregulation and mitochondrial localization of RIG-I and activation of proinflammatory transcription factors STAT1 and NF-κB. RIG-I agonist triggered the extrinsic apoptosis pathway and pyroptosis, a highly immunogenic form of cell death in breast cancer cells. RIG-I agonist also induced expression of lymphocyte-recruiting chemokines and type I IFN, confirming that cell death and cytokine modulation occur in a tumor cell-intrinsic manner. Importantly, RIG-I activation in breast tumors increased tumor lymphocytes and decreased tumor growth and metastasis. Overall, these findings demonstrate successful therapeutic delivery of a synthetic RIG-I agonist to induce tumor cell killing and to modulate the tumor microenvironment in vivo Significance: These findings describe the first in vivo delivery of RIG-I mimetics to tumors, demonstrating a potent immunogenic and therapeutic effect in the context of otherwise poorly immunogenic breast cancers. Cancer Res; 78(21); 6183-95. ©2018 AACR.
Collapse
Affiliation(s)
- David L Elion
- Cancer Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Max E Jacobson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Donna J Hicks
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bushra Rahman
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Violeta Sanchez
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Paula I Gonzales-Ericsson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Olga Fedorova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Anna M Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - John T Wilson
- Cancer Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Rebecca S Cook
- Cancer Biology Graduate Program, Vanderbilt University School of Medicine, Nashville, Tennessee.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| |
Collapse
|
861
|
Prasanna T, Wu F, Khanna KK, Yip D, Malik L, Dahlstrom JE, Rao S. Optimizing poly (ADP-ribose) polymerase inhibition through combined epigenetic and immunotherapy. Cancer Sci 2018; 109:3383-3392. [PMID: 30230653 PMCID: PMC6215877 DOI: 10.1111/cas.13799] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with poor survival outcomes. Currently, there are no targeted therapies available for TNBCs despite remarkable progress in targeted and immune-directed therapies for other solid organ malignancies. Poly (ADP-ribose) polymerase inhibitors (PARPi) are effective anticancer drugs that produce good initial clinical responses, especially in homologous recombination DNA repair-deficient cancers. However, resistance is the rule rather than the exception, and recurrent tumors tend to have an aggressive phenotype associated with poor survival. Many efforts have been made to overcome PARPi resistance, mostly by targeting genes and effector proteins participating in homologous recombination that are overexpressed during PARPi therapy. Due to many known and unknown compensatory pathways, genes, and effector proteins, overlap and shared resistance are common. Overexpression of programmed cell death-ligand 1 (PD-L1) and cancer stem cell (CSC) sparing are novel PARPi resistance hypotheses. Although adding programmed cell death-1 (PD-1)/PD-L1 inhibitors to PARPi might improve immunogenic cell death and be crucial for durable responses, they are less likely to target the CSC population that drives recurrent tumor growth. Lysine-specific histone demethylase-1A and histone deacetylase inhibitors have shown promising activity against CSCs. Combining epigenetic drugs such as lysine-specific histone demethylase-1A inhibitors or histone deacetylase inhibitors with PARPi/anti-PD-1/PD-L1 is a novel, potentially synergistic strategy for priming tumors and overcoming resistance. Furthermore, such an approach could pave the way for the identification of new upstream epigenetic and genetic signatures.
Collapse
Affiliation(s)
- Thiru Prasanna
- Health Research InstituteFaculty of ESTeMUniversity of CanberraCanberraACTAustralia
- Department of Medical OncologyThe Canberra HospitalCanberraACTAustralia
| | - Fan Wu
- Health Research InstituteFaculty of ESTeMUniversity of CanberraCanberraACTAustralia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Desmond Yip
- Department of Medical OncologyThe Canberra HospitalCanberraACTAustralia
- ANU Medical SchoolAustralian National UniversityCanberraACTAustralia
| | - Laeeq Malik
- Department of Medical OncologyThe Canberra HospitalCanberraACTAustralia
- ANU Medical SchoolAustralian National UniversityCanberraACTAustralia
| | - Jane E. Dahlstrom
- ANU Medical SchoolAustralian National UniversityCanberraACTAustralia
- Department of Anatomical PathologyACT PathologyThe Canberra HospitalCanberraACTAustralia
| | - Sudha Rao
- Health Research InstituteFaculty of ESTeMUniversity of CanberraCanberraACTAustralia
| |
Collapse
|
862
|
Fremd C, Jaeger D, Schneeweiss A. Targeted and immuno-biology driven treatment strategies for triple-negative breast cancer: current knowledge and future perspectives. Expert Rev Anticancer Ther 2018; 19:29-42. [PMID: 30351981 DOI: 10.1080/14737140.2019.1537785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Accounting for about 15% of breast cancer patients, triple-negative breast cancer (TNBC) is responsible for 25% of disease related deaths, more frequent distant spread and visceral metastasis. However, improving survival in TNBC failed and primary resistance, immunological ignorance and tumor heterogeneity limit clinical activity of novel therapies. In view of recent molecular, genetic and immunologic insights, this review aims to describe the current status of immunological and targeted treatments from a hypothesis driven perspective. Areas covered: Recent preclinical studies and ongoing clinical trials for immune directed and targeted treatments of TNBC are summarized, including immune-checkpoint blockade, resistance mechanisms, inhibition of poly (ADP-ribose) polymerase (PARP), combinatorial strategies as well as preclinical, hypothesis generating studies. Expert commentary: Sustained responses have been observed with immune-checkpoint blockade and PARP inhibitors demonstrated remarkable efficacy in germline BRCA mutated TNBC. In order to generate clinical success of many other, to date ineffective, targeted and immune therapies, the integration of multidimensional, large amounts of data, will be essential and likely accelerate treatment progress of TNBC.
Collapse
Affiliation(s)
- Carlo Fremd
- a National Center for Tumor Diseases, Department of Medical Oncology , University of Heidelberg , Heidelberg , Germany
| | - Dirk Jaeger
- a National Center for Tumor Diseases, Department of Medical Oncology , University of Heidelberg , Heidelberg , Germany
| | - Andreas Schneeweiss
- a National Center for Tumor Diseases, Department of Medical Oncology , University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
863
|
The immunologic constant of rejection classification refines the prognostic value of conventional prognostic signatures in breast cancer. Br J Cancer 2018; 119:1383-1391. [PMID: 30353048 PMCID: PMC6265245 DOI: 10.1038/s41416-018-0309-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022] Open
Abstract
Background The immunologic constant of rejection (ICR) is a broad phenomenon of Th-1 immunity-mediated, tissue-specific destruction. Methods We tested the prognostic value of a 20-gene ICR expression signature in 8766 early breast cancers. Results Thirty-three percent of tumours were ICR1, 29% ICR2, 23% ICR3, and 15% ICR4. In univariate analysis, ICR4 was associated with a 36% reduction in risk of metastatic relapse when compared with ICR1-3 (p = 2.30E–03). In multivariate analysis including notably the three major prognostic signatures (Recurrence score, 70-gene signature, ROR-P), ICR was the strongest predictive variable (p = 9.80E–04). ICR showed no prognostic value in the HR+/HER2− subtype, but prognostic value in the HER2+ and TN subtypes. Furthermore, in each molecular subtype and among the tumours defined as high risk by the three prognostic signatures, ICR4 patients had a 41–75% reduction in risk of relapse as compared with ICR1-3 patients. ICR added significant prognostic information to that provided by the clinico-genomic models in the overall population and in each molecular subtype. ICR4 was independently associated with achievement of pathological complete response to neoadjuvant chemotherapy (p = 2.97E–04). Conclusion ICR signature adds prognostic information to that of current proliferation-based signatures, with which it could be integrated to improve patients’ stratification and guide adjuvant treatment.
Collapse
|
864
|
Xiao W, Zheng S, Yang A, Zhang X, Liu P, Xie X, Tang H, Xie X. Incidence and Survival Outcomes of Breast Cancer with Synchronous Hepatic Metastases: A Population-Based Study. J Cancer 2018; 9:4306-4313. [PMID: 30519334 PMCID: PMC6277653 DOI: 10.7150/jca.29190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/27/2018] [Indexed: 01/14/2023] Open
Abstract
Background: Little is known about the clinical features of breast cancer with synchronous hepatic metastases (BCSHM). In this retrospective study, we aimed to feature the incidence and survival outcome of BCSHM. Methods: Data from the 2016 SEER*Stat database (version 8.3.2) was used. The effect of patient and tumor characteristics on the odds of developing of BCSHM was analyzed. Survival was investigated using Kaplan-Meier and Cox regression analyses. A competing risk model was also applied to further investigate cancer-specific survival. Results: Of 240911 patients with breast cancer, we identified 3468 patients (1.44%) with BCSHM. Tumor subtypes distribution of BCSHM were 45.3% HR+/HER2-, 12.2% HR+/HER2+, 7.83% HR-/HER2+ and 15.0% triple-negative subtype. The median OS of the entire cohort was 14 months, and only about 13.5% of patients survived at 3 years. Median survival was significantly shorter in triple-negative cohort (8 months) and gradually increased in HR+/HER2- (19 months), HR-/HER2+ (22 months) and HR+/HER2+ (33 months) cohorts (P<0.05). Patients BCSHM were more likely to be young age (odds ratio [OR] 1.4, 95% CI 1.0-2.0), black race (OR 1.13, 95%CI 1.11-1.37), higher tumor grade (OR 3.58, 95%CI 2.29-5.59), unmarried status (OR 3.5, 95%CI 2.1-5.7), HR-/HER2+ (OR 4.07, 95%CI 3.56-4.67), HR+/HER2+ (OR 2.5, 95%CI 2.24-2.80) and triple-negative subtypes (OR 1.64, 95%CI 1.44-1.86). Poor prognostic factors were the aged (hazard ratio 3.75, 95%CI 3.56-4.67), black race (hazard ratio 1.17, 95%CI 1.03-1.31), triple-negative subtype (hazard ratio 2.23, 95%CI 1.95-2.56) and higher grade (hazard ratio 1.32, 95%CI 1.03-1.68). Conclusion: In conclusion, patients with BCSHM had a poor survival, and only 13.5% of them were alive more than 3 years. Young patients with HER2+ tumors had higher risk for developing BCSHM, but with better prognosis.
Collapse
Affiliation(s)
- Weikai Xiao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Shaoquan Zheng
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Anli Yang
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Xingcai Zhang
- Harvard John A. Paulson School of Engineering and Applied Science, Cambridge, Massachusetts 02138, USA
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
865
|
Egelston CA, Avalos C, Tu TY, Simons DL, Jimenez G, Jung JY, Melstrom L, Margolin K, Yim JH, Kruper L, Mortimer J, Lee PP. Human breast tumor-infiltrating CD8 + T cells retain polyfunctionality despite PD-1 expression. Nat Commun 2018; 9:4297. [PMID: 30327458 PMCID: PMC6191461 DOI: 10.1038/s41467-018-06653-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
Functional CD8+ T cells in human tumors play a clear role in clinical prognosis and response to immunotherapeutic interventions. PD-1 expression in T cells involved in chronic infections and tumors such as melanoma often correlates with a state of T-cell exhaustion. Here we interrogate CD8+ tumor-infiltrating lymphocytes (TILs) from human breast and melanoma tumors to explore their functional state. Despite expression of exhaustion hallmarks, such as PD-1 expression, human breast tumor CD8+ TILs retain robust capacity for production of effector cytokines and degranulation capacity. In contrast, melanoma CD8+ TILs display dramatic reduction of cytokine production and degranulation capacity. We show that CD8+ TILs from human breast tumors can potently kill cancer cells via bi-specific antibodies. Our data demonstrate that CD8+ TILs in human breast tumors retain polyfunctionality, despite PD-1 expression, and suggest that they may be harnessed for effective immunotherapies. Expression of the checkpoint molecule programmed cell death protein 1 (PD-1) is considered a marker of T cells exhaustion. Here the authors show that CD8T cells isolated from breast cancer patients are perfectly functional despite PD-1 expression while those isolated from melanoma patients are not.
Collapse
Affiliation(s)
- Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Christian Avalos
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Travis Y Tu
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Diana L Simons
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Grecia Jimenez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jae Y Jung
- Department of Dermatologic Oncology, Norton Cancer Institute, Louisville, KY, 40202, USA
| | - Laleh Melstrom
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Kim Margolin
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - John H Yim
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Laura Kruper
- Department of Surgery, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Joanne Mortimer
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
866
|
Cheung A, Opzoomer J, Ilieva KM, Gazinska P, Hoffmann RM, Mirza H, Marlow R, Francesch-Domenech E, Fittall M, Dominguez Rodriguez D, Clifford A, Badder L, Patel N, Mele S, Pellizzari G, Bax HJ, Crescioli S, Petranyi G, Larcombe-Young D, Josephs DH, Canevari S, Figini M, Pinder S, Nestle FO, Gillett C, Spicer JF, Grigoriadis A, Tutt ANJ, Karagiannis SN. Anti-Folate Receptor Alpha-Directed Antibody Therapies Restrict the Growth of Triple-negative Breast Cancer. Clin Cancer Res 2018; 24:5098-5111. [PMID: 30068707 PMCID: PMC6193548 DOI: 10.1158/1078-0432.ccr-18-0652] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/21/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Highly aggressive triple-negative breast cancers (TNBCs) lack validated therapeutic targets and have high risk of metastatic disease. Folate receptor alpha (FRα) is a central mediator of cell growth regulation that could serve as an important target for cancer therapy.Experimental Design: We evaluated FRα expression in breast cancers by genomic (n = 3,414) and IHC (n = 323) analyses and its association with clinical parameters and outcomes. We measured the functional contributions of FRα in TNBC biology by RNA interference and the antitumor functions of an antibody recognizing FRα (MOv18-IgG1), in vitro, and in human TNBC xenograft models.Results: FRα is overexpressed in significant proportions of aggressive basal like/TNBC tumors, and in postneoadjuvant chemotherapy-residual disease associated with a high risk of relapse. Expression is associated with worse overall survival. TNBCs show dysregulated expression of thymidylate synthase, folate hydrolase 1, and methylenetetrahydrofolate reductase, involved in folate metabolism. RNA interference to deplete FRα decreased Src and ERK signaling and resulted in reduction of cell growth. An anti-FRα antibody (MOv18-IgG1) conjugated with a Src inhibitor significantly restricted TNBC xenograft growth. Moreover, MOv18-IgG1 triggered immune-dependent cancer cell death in vitro by human volunteer and breast cancer patient immune cells, and significantly restricted orthotopic and patient-derived xenograft growth.Conclusions: FRα is overexpressed in high-grade TNBC and postchemotherapy residual tumors. It participates in cancer cell signaling and presents a promising target for therapeutic strategies such as ADCs, or passive immunotherapy priming Fc-mediated antitumor immune cell responses. Clin Cancer Res; 24(20); 5098-111. ©2018 AACR.
Collapse
Affiliation(s)
- Anthony Cheung
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - James Opzoomer
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Kristina M Ilieva
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Patrycja Gazinska
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Ricarda M Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Hasan Mirza
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Rebecca Marlow
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Erika Francesch-Domenech
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Matthew Fittall
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Diana Dominguez Rodriguez
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Angela Clifford
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Luned Badder
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Nirmesh Patel
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Gyula Petranyi
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| | - Daniel Larcombe-Young
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Silvana Canevari
- Department of Applied Research and Technology Development, Fondazione, IRCCS Istituto Nazionale dei Tumori Milano, Milan, Italy
| | - Mariangela Figini
- Department of Applied Research and Technology Development, Fondazione, IRCCS Istituto Nazionale dei Tumori Milano, Milan, Italy
| | - Sarah Pinder
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
- King's Health Partners Cancer Biobank, King's College London, London, United Kingdom
| | - Frank O Nestle
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
- Immunology and Inflammation Therapeutic Research Area, Sanofi US, Cambridge, Massachusetts
| | - Cheryl Gillett
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
- King's Health Partners Cancer Biobank, King's College London, London, United Kingdom
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Andrew N J Tutt
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, United Kingdom
| | - Sophia N Karagiannis
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom.
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, & NIHR Biomedical Research Centre at Guy's and St. Thomas' Hospitals and King's College London, Guy's Hospital, King's College London, London, United Kingdom
| |
Collapse
|
867
|
A phase I trial of pembrolizumab with hypofractionated radiotherapy in patients with metastatic solid tumours. Br J Cancer 2018; 119:1200-1207. [PMID: 30318516 PMCID: PMC6251028 DOI: 10.1038/s41416-018-0281-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Background We conducted a phase I trial evaluating pembrolizumab+hypofractionated radiotherapy (HFRT) for patients with metastatic cancers. Methods There were two strata (12 patients each): (i) NSCLC/melanoma progressing on prior anti-PD-1 therapy, (ii) other cancer types; anti-PD-1-naive. Patients received 6 cycles of pembrolizumab, starting 1 week before HFRT. Patients had ≥2 lesions; only one was irradiated (8 Gy × 3 for first half; 17 Gy × 1 for second half in each stratum) and the other(s) followed for response. Results Of the 24 patients, 20 (83%) had treatment-related adverse events (AEs) (all grade 1 or 2). There were eight grade 3 AEs, none treatment related. There were no dose-limiting toxicities or grade 4/5 AEs. Stratum 1: two patients (of 12) with progression on prior PD-1 blockade experienced prolonged responses (9.2 and 28.1 months). Stratum 2: one patient experienced a complete response and two had prolonged stable disease (7.4 and 7.0 months). Immune profiling demonstrated that anti-PD-1 therapy and radiation induced a consistent increase in the proliferation marker Ki67 in PD-1-expressing CD8 T cells. Conclusions HFRT was well tolerated with pembrolizumab, and in some patients with metastatic NSCLC or melanoma, it reinvigorated a systemic response despite previous progression on anti-PD-1 therapy. Clinical Trial Registration: NCT02303990 (www.clinicaltrials.gov).
Collapse
|
868
|
Klauschen F, Müller KR, Binder A, Bockmayr M, Hägele M, Seegerer P, Wienert S, Pruneri G, de Maria S, Badve S, Michiels S, Nielsen T, Adams S, Savas P, Symmans F, Willis S, Gruosso T, Park M, Haibe-Kains B, Gallas B, Thompson A, Cree I, Sotiriou C, Solinas C, Preusser M, Hewitt S, Rimm D, Viale G, Loi S, Loibl S, Salgado R, Denkert C. Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning. Semin Cancer Biol 2018; 52:151-157. [DOI: 10.1016/j.semcancer.2018.07.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
|
869
|
IDO expression in breast cancer: an assessment of 281 primary and metastatic cases with comparison to PD-L1. Mod Pathol 2018; 31:1513-1522. [PMID: 29802358 DOI: 10.1038/s41379-018-0061-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
The immune inhibitory enzyme indoleamine 2,3-dioxygenase (IDO) has been associated with immune evasion in numerous malignancies and may mark these cancers as susceptible to anti-IDO therapies. We herein address IDO expression in breast cancers, examine the relationship between IDO and PD-L1, and investigate IDO fidelity across breast cancer primaries and metastases. IDO and PD-L1 expression was assessed in tissue microarrays containing 242 invasive primary breast cancers, 20 nodal metastases, and 19 distant metastases. IDO and PD-L1 were scored by extent in the tumor cells and immune infiltrate. Tumor IDO staining was seen in 14% of primaries including 38% of triple-negative cancers. IDO immune cell staining was seen in 14% of primaries and 29% of triple-negative cancers. Tumoral IDO and PD-L1 co-expression was seen in 8% of primaries, including 70% of tumoral PD-L1-positive cases. Immune IDO and PD-L1 co-expression was identified in 14% of primaries, including 48% of immune PD-L1-positive cases. Tumoral and immune cell IDO was conserved in 94% of matched primary/metastasis. In summary, IDO expression is common among high-grade, triple-negative breast cancers and is frequently associated with PD-L1 co-expression, suggesting that IDO might be a mechanism of anti-PD-1/PD-L1 immunotherapy resistance and that dual therapy may be of utility. Tumoral and immune cell IDO expression shows fidelity between primary and metastatic sites in treatment-naïve cancers, arguing against IDO as an independent driver for metastatic spread. Clinical trials are needed to assess the efficacy of IDO inhibition relative to IDO expression, as well as its possible role in combination with anti-PD-1/PD-L1 immunotherapy.
Collapse
|
870
|
Sawada T, Hilhorst R, Rangarajan S, Yoshida M, Tanabe Y, Tamura K, Kinoshita T, Shimoyama T, van Beuningen R, Ruijtenbeek R, Tsuda H, Koizumi F. Inactive immune pathways in triple negative breast cancers that showed resistance to neoadjuvant chemotherapy as inferred from kinase activity profiles. Oncotarget 2018; 9:34229-34239. [PMID: 30344939 PMCID: PMC6188135 DOI: 10.18632/oncotarget.26026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
About 5% of Triple negative breast cancer patients (TNBCs) who receive neoadjuvant chemotherapy (NAC) experience progressive disease (PD). Few reports are published on TNBCs with PD during NAC, whereas TNBCs that respond to NAC have been well-studied. We investigated kinase activity profiles of TNBCs to explore the biological differences underlying the lack of response to NAC. Among 740 TNBCs, 20 non-responders were identified. Seven non-responders and 10 TNBCs that did not receive NAC (control group) were evaluated. No correlation was observed between NAC response and age, menopausal status, tumor size and axillary lymph node status. Tyrosine kinase activity profiles of TNBC primary tissues from NAC non-responders and the controls were determined with a peptide microarray system. Kinase activity measurements showed that 35 peptides had significantly (p < 0.05) lower phosphorylation in non-responders. ZAP70, LCK, SYK and JAK2 were identified as differentially active upstream kinases. Pathway analysis suggested lower activity in immune-related pathways in non-responders. The number of tumor infiltrating lymphocytes (TILs) was significantly lower (p = 0.0053) in non-responders. Kinases related to the immune system are less activated in non-responders. TILs evaluation suggested that the immune system is hardly active in non-responders and is not activated by NAC treatment.
Collapse
Affiliation(s)
- Takeshi Sawada
- Shien-Lab, National Cancer Center Hospital, Tokyo, Japan.,Division of Clinical Research Support, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Riet Hilhorst
- PamGene International BV, 's-Hertogenbosch, The Netherlands
| | | | - Masayuki Yoshida
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Tanabe
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takayuki Kinoshita
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsu Shimoyama
- Division of Clinical Research Support, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | | | | | - Hitoshi Tsuda
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.,Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Fumiaki Koizumi
- Shien-Lab, National Cancer Center Hospital, Tokyo, Japan.,Division of Clinical Research Support, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| |
Collapse
|
871
|
Constantinidou A, Alifieris C, Trafalis DT. Targeting Programmed Cell Death -1 (PD-1) and Ligand (PD-L1): A new era in cancer active immunotherapy. Pharmacol Ther 2018; 194:84-106. [PMID: 30268773 DOI: 10.1016/j.pharmthera.2018.09.008] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Improved understanding of the immune system and its role in cancer development and progression has led to impressive advances in the field of cancer immunotherapy over the last decade. Whilst the field is rapidly evolving and the list of drugs receiving regulatory approval for the treatment of various cancers is fast growing, the group of PD1- PDL-1 inhibitors is establishing a leading role amongst immunomodulatory agents. PD1- PDL-1 inhibitors act against pathways involved in adaptive immune suppression resulting in immune checkpoint blockade. Within the last four years two PD-1 and three PD-L1 inhibitors have been utilized in clinical practice against a variety of malignancies. Focus was initially placed on targeting cancers considered immunogenic such as melanoma, renal and lung cancers but subsequently the application expanded to include amongst others Hodgkin Lymphoma, urothelial as well as head and neck cancer. This article provides a comprehensive review of the early and late phase trials that led to the regulatory approval of all five PD1- PDL-1 inhibitors in the corresponding cancer types. It presents available data on the combinations of PD1- PDL-1 inhibitors with other therapies (immunotherapy, targeted therapy and chemotherapy), the toxicity profile of the PD1- PDL-1 inhibitors and ongoing trials testing the efficacy of these agents in cancer types beyond those that have been addressed already. Finally, current and future challenges in the application of PD-1 and PD-L1 inhibitors are discussed with emphasis on the role of predictive biomarkers.
Collapse
Affiliation(s)
| | - Constantinos Alifieris
- Laboratory of Pharmacology, Clinical Pharmacology and Therapeutic Oncology Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Clinical Pharmacology and Therapeutic Oncology Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
872
|
Poultsidi A, Dimopoulos Y, He TF, Chavakis T, Saloustros E, Lee PP, Petrovas C. Lymph Node Cellular Dynamics in Cancer and HIV: What Can We Learn for the Follicular CD4 (Tfh) Cells? Front Immunol 2018; 9:2233. [PMID: 30319664 PMCID: PMC6170630 DOI: 10.3389/fimmu.2018.02233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
Lymph nodes (LNs) are central in the generation of adaptive immune responses. Follicular helper CD4 T (Tfh) cells, a highly differentiated CD4 population, provide critical help for the development of antigen-specific B cell responses within the germinal center. Throughout the past decade, numerous studies have revealed the important role of Tfh cells in Human Immunodeficiency Virus (HIV) pathogenesis as well as in the development of neutralizing antibodies post-infection and post-vaccination. It has also been established that tumors influence various immune cell subsets not only in their proximity, but also in draining lymph nodes. The role of local or tumor associated lymph node Tfh cells in disease progression is emerging. Comparative studies of Tfh cells in chronic infections and cancer could therefore provide novel information with regards to their differentiation plasticity and to the mechanisms regulating their development.
Collapse
Affiliation(s)
- Antigoni Poultsidi
- Department of Surgery, Medical School, University of Thessaly, Larissa, Greece
| | - Yiannis Dimopoulos
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| | - Ting-Fang He
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Emmanouil Saloustros
- Department of Internal Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States
| |
Collapse
|
873
|
Juliá EP, Amante A, Pampena MB, Mordoh J, Levy EM. Avelumab, an IgG1 anti-PD-L1 Immune Checkpoint Inhibitor, Triggers NK Cell-Mediated Cytotoxicity and Cytokine Production Against Triple Negative Breast Cancer Cells. Front Immunol 2018; 9:2140. [PMID: 30294328 PMCID: PMC6159755 DOI: 10.3389/fimmu.2018.02140] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/30/2018] [Indexed: 12/23/2022] Open
Abstract
The standard treatment for Triple Negative Breast Cancer (TNBC) patients is cytotoxic chemotherapy, but it is restricted since the duration of response is usually short. Blocking the PD-1/PD-L1 pathway through monoclonal antibodies (mAbs) appears to be a promising therapeutic strategy for TNBC patients. Avelumab is a human IgG1 anti-PD-L1 mAb being tested in clinical trials that may also trigger antibody-dependent cell-mediated cytotoxicity (ADCC) against cancer cells as an additional antitumor activity. In the present work, we studied in vitro Avelumab-mediated ADCC against a panel of TNBC cells with different PD-L1 expression using peripheral blood mononuclear cells (PBMC) or purified NK cells from healthy donors. We determined that Avelumab significantly enhanced NK-cell mediated cytotoxicity against TNBC cells and that tumor cells expressing higher levels of PD-L1 were more sensitive to Avelumab-mediated ADCC. IFN-γ treatment upregulated PD-L1 expression in tumor cells but had a variable impact on Avelumab-mediated ADCC, which could be related to the simultaneous effect of IFN-γ on the expression of NK cell ligands. Moreover, IL-2 and IL-15 stimulation of NK cells enhanced Avelumab-triggered cytokine production and degranulation along with increased lytic activity against tumor cells. Improving the treatment of TNBC remains still a considerable challenge. This in vitro study suggests that Avelumab-mediated ADCC, independently of the blockade of the PD-1/PD-L1 pathway, could be a valuable mechanism for tumor cell elimination in TNBC. Avelumab combination with immunomodulators such as IL-15 or IL-2 could be taken into consideration to increase the therapeutic efficacy of Avelumab in TNBC.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antibody-Dependent Cell Cytotoxicity/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- Cell Line, Tumor
- Cytokines/immunology
- Cytokines/metabolism
- Female
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/immunology
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
| | - Analía Amante
- Centro de Investigaciones Oncológicas CIO-FUCA, Buenos Aires, Argentina
| | | | - José Mordoh
- Centro de Investigaciones Oncológicas CIO-FUCA, Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-CONICET, Buenos Aires, Argentina
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | | |
Collapse
|
874
|
Zhang T, Li J, He Y, Yang F, Hao Y, Jin W, Wu J, Sun Z, Li Y, Chen Y, Yi Z, Liu M. A small molecule targeting myoferlin exerts promising anti-tumor effects on breast cancer. Nat Commun 2018; 9:3726. [PMID: 30213946 PMCID: PMC6137146 DOI: 10.1038/s41467-018-06179-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most lethal cancers in women when it reaches the metastatic stage. Here, we screen a library of small molecules for inhibitors of breast cancer cell invasion, and use structure/activity relationship studies to develop a series of small molecules with improved activity. We find WJ460 as one of the lead compounds exerting anti-metastatic activity in the nanomolar range in breast cancer cells. Proteomic and biochemical studies identify myoferlin (MYOF) as the direct target of WJ460. In parallel, loss of MYOF or pharmacological inhibition of MYOF by WJ460 reduces breast cancer extravasation into the lung parenchyma in an experimental metastasis mouse model, which reveals an essential role of MYOF in breast cancer progression. Our findings suggest that MYOF can be explored as a molecular target in breast cancer metastasis and that targeting MYOF by WJ460 may be a promising therapeutic strategy in MYOF-driven cancers. Improved therapeutics are needed for treating breast cancer. Here they show the druggability of myoferlin with a small molecule inhibitor in breast cancer and demonstrate its anti-breast cancer effects in vitro and in vivo.
Collapse
Affiliation(s)
- Tao Zhang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China.,Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Jingjie Li
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China.,The Institute of Cell Metabolism and Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Yuan He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Feifei Yang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yun Hao
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Wangrui Jin
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Jing Wu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Zhenliang Sun
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 201499, China
| | - Yunqi Li
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Yihua Chen
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China. .,Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, 201499, China.
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China. .,Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, 77030, Houston, USA.
| |
Collapse
|
875
|
Kleef R, Moss R, Szasz AM, Bohdjalian A, Bojar H, Bakacs T. Complete Clinical Remission of Stage IV Triple-Negative Breast Cancer Lung Metastasis Administering Low-Dose Immune Checkpoint Blockade in Combination With Hyperthermia and Interleukin-2. Integr Cancer Ther 2018; 17:1297-1303. [PMID: 30193538 PMCID: PMC6247552 DOI: 10.1177/1534735418794867] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The prognosis of triple-negative breast cancer with metastases after chemotherapy
remains dismal. We report the case of a 50-year-old female with first disease
recurrence at the axillary lymph node and, later on, bilateral pulmonary
metastases with severe shortness of breath. The patient received low-dose immune
checkpoint blockade (concurrent nivolumab and ipilimumab) weekly over 3 weeks
with regional hyperthermia 3 times a week, followed by systemic fever-range
hyperthermia induced by interleukin-2 for 5 days. She went into complete
remission of her pulmonary metastases with transient WHO I-II diarrhea and skin
rash. The patient remained alive for 27 months after the start of treatment,
with recurrence of metastases as a sternal mass, and up to 3 cm pleural
metastases. This exceptional response should instigate further research efforts
with this protocol, which consists only of approved drugs and treatments.
Collapse
Affiliation(s)
- Ralf Kleef
- 1 Immunology & Integrative Oncology, Vienna, Austria
| | | | - A Marcell Szasz
- 3 Semmelweis University, Budapest, Hungary.,4 Lund University, Lund, Sweden
| | | | - Hans Bojar
- 6 NextGen Oncology Group, Dusseldorf, Germany
| | | |
Collapse
|
876
|
Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J Cell Physiol 2018; 234:1313-1325. [PMID: 30191996 DOI: 10.1002/jcp.27172] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
Recent studies show that cancer cells are sometimes able to evade the host immunity in the tumor microenvironment. Cancer cells can express high levels of immune inhibitory signaling proteins. One of the most critical checkpoint pathways in this system is a tumor-induced immune suppression (immune checkpoint) mediated by the programmed cell death protein 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1). PD-1 is highly expressed by activated T cells, B cells, dendritic cells, and natural killer cells, whereas PD-L1 is expressed on several types of tumor cells. Many studies have shown that blocking the interaction between PD-1 and PD-L1 enhances the T-cell response and mediates antitumor activity. In this review, we highlight a brief overview of the molecular and biochemical events that are regulated by the PD-1 and PD-L1 interaction in various cancers.
Collapse
Affiliation(s)
- Fatemeh K Dermani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Golebagh Rahmani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alisa K Kohlan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
877
|
Rosato RR, Dávila-González D, Choi DS, Qian W, Chen W, Kozielski AJ, Wong H, Dave B, Chang JC. Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models. Breast Cancer Res 2018; 20:108. [PMID: 30185216 PMCID: PMC6125882 DOI: 10.1186/s13058-018-1037-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background Breast cancer has been considered not highly immunogenic, and few patients benefit from current immunotherapies. However, new strategies are aimed at changing this paradigm. In the present study, we examined the in vivo activity of a humanized anti-programmed cell death protein 1 (anti-PD-1) antibody against triple-negative breast cancer (TNBC) patient-derived xenograft (PDX) tumor models. Methods To circumvent some of the limitations posed by the lack of appropriate animal models in preclinical studies of immunotherapies, partially human leukocyte antigen-matched TNBC PDX tumor lines from our collection, as well as human melanoma cell lines, were engrafted in humanized nonobese diabetic/severe combined immunodeficiency IL2Rγnull (hNSG) mice obtained by intravenous injection of CD34+ hematopoietic stem cells into nonlethally irradiated 3–4-week-old mice. After both PDXs and melanoma cell xenografts reached ~ 150–200 mm3, animals were treated with humanized anti-PD-1 antibody or anti-CTLA-4 and evaluated for tumor growth, survival, and potential mechanism of action. Results Human CD45+, CD20+, CD3+, CD8+, CD56+, CD68+, and CD33+ cells were readily identified in blood, spleen, and bone marrow collected from hNSG, as well as human cytokines in blood and engrafted tumors. Engraftment of TNBC PDXs in hNSG was high (~ 85%), although they grew at a slightly slower pace and conserved their ability to generate lung metastasis. Human CD45+ cells were detectable in hNSG-harbored PDXs, and consistent with clinical observations, anti-PD-1 antibody therapy resulted in both a significant reduction in tumor growth and increased survival in some of the hNSG PDX tumor lines, whereas no such effects were observed in the corresponding non-hNSG models. Conclusions This study provides evidence associated with anti-PD-1 immunotherapy against TNBC tumors supporting the use of TNBC PDXs in humanized mice as a model to overcome some of the technical difficulties associated with the preclinical investigation of immune-based therapies. Electronic supplementary material The online version of this article (10.1186/s13058-018-1037-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberto R Rosato
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA.
| | | | - Dong Soon Choi
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Wei Qian
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Wen Chen
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Anthony J Kozielski
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Helen Wong
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Bhuvanesh Dave
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jenny C Chang
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
878
|
Shao B, Li CW, Lim SO, Sun L, Lai YJ, Hou J, Liu C, Chang CW, Qiu Y, Hsu JM, Chan LC, Zha Z, Li H, Hung MC. Deglycosylation of PD-L1 by 2-deoxyglucose reverses PARP inhibitor-induced immunosuppression in triple-negative breast cancer. Am J Cancer Res 2018; 8:1837-1846. [PMID: 30323975 PMCID: PMC6176188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC), the most difficult-to-treat breast cancer subtype, lacks well-defined molecular targets. TNBC has increased programmed death-ligand 1 (PD-L1) expression, and its immunosuppressive nature makes it suitable for immune checkpoint blockade therapy. However, the response rate of TNBC to anti-PD-L1 or anti-programmed cell death protein 1 (PD-1) therapy remains unsatisfactory, as only 10-20% of TNBC patients have a partial response. Glycosylated PD-L1, the functional form of PD-L1, is required for PD-L1-PD-1 interaction. TNBC cells have significantly higher levels of glycosylated PD-L1 than non-TNBC cells do. In a screening of glucose analogs to block PD-L1 glycosylation, we found that 2-deoxyglucose (2-DG) can act as a glucose analog to decrease PD-L1 glycosylation. Because PARP inhibition upregulates PD-L1, 2-DG reduced PARP inhibition-mediated expression of glycosylated PD-L1. The combination of PARP inhibition and 2-DG had potent anti-tumor activity. Together, our results provide a strong rationale for investigating the targeting of PD-L1 glycosylation in TNBC further.
Collapse
Affiliation(s)
- Bin Shao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Key Laboratory of Carcinogenesis and Transformation Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & InstituteBeijing 100142, P. R. China
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Seung-Oe Lim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue UniversityWest Lafayette, IN 47907, USA
| | - Linlin Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General HospitalTianjin, P. R. China
| | - Yun-Ju Lai
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at HoustonHouston, TX, USA
| | - Junwei Hou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Chunxiao Liu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Chiung-Wen Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Yufan Qiu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas Health Science CenterHouston, TX 77030, USA
| | - Zhengyu Zha
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Transformation Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital & InstituteBeijing 100142, P. R. China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas Health Science CenterHouston, TX 77030, USA
- Center for Molecular Medicine and Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
879
|
Greene LI, Bruno TC, Christenson JL, D'Alessandro A, Culp-Hill R, Torkko K, Borges VF, Slansky JE, Richer JK. A Role for Tryptophan-2,3-dioxygenase in CD8 T-cell Suppression and Evidence of Tryptophan Catabolism in Breast Cancer Patient Plasma. Mol Cancer Res 2018; 17:131-139. [PMID: 30143553 DOI: 10.1158/1541-7786.mcr-18-0362] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/19/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Tryptophan catabolism is an attractive target for reducing tumor progression and improving antitumor immunity in multiple cancers. Tumor infiltration by CD8 T cells correlates with improved prognosis in triple-negative breast cancer (TNBC) and a significant effort is underway to improve CD8 T-cell antitumor activity. In this study, primary human immune cells were isolated from the peripheral blood of patients and used to demonstrate that the tryptophan catabolite kynurenine induces CD8 T-cell death. Furthermore, it is demonstrated that anchorage-independent TNBC utilizes the tryptophan-catabolizing enzyme tryptophan 2,3-dioxygenase (TDO) to inhibit CD8 T-cell viability. Publicly available data revealed that high TDO2, the gene encoding TDO, correlates with poor breast cancer clinical outcomes, including overall survival and distant metastasis-free survival, while expression of the gene encoding the more commonly studied tryptophan-catabolizing enzyme, IDO1 did not. Metabolomic analysis, using quantitative mass spectrometry, of tryptophan and its catabolites, including kynurenine, in the plasma from presurgical breast cancer patients (n = 77) and 40 cancer-free donors (n = 40) indicated a strong correlation between substrate and catabolite in both groups. Interestingly, both tryptophan and kynurenine were lower in the plasma from patients with breast cancer compared with controls, particularly in women with estrogen receptor (ER)-negative and stage III and IV breast cancer. IMPLICATIONS: This study underscores the importance of tryptophan catabolism, particularly in aggressive disease, and suggests that future pharmacologic efforts should focus on developing drugs that target both TDO and IDO1.
Collapse
Affiliation(s)
- Lisa I Greene
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen Torkko
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
880
|
Burugu S, Gao D, Leung S, Chia SK, Nielsen TO. TIM-3 expression in breast cancer. Oncoimmunology 2018; 7:e1502128. [PMID: 30377566 PMCID: PMC6205019 DOI: 10.1080/2162402x.2018.1502128] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are predominantly present in breast cancer patients with estrogen receptor negative tumors, among whom increasing levels correlate with favorable outcomes. Nevertheless, currently available immune checkpoint inhibitors appear to benefit only a small number of women with breast cancer. Upregulation of additional immune checkpoint markers is one mechanism of resistance to current inhibitors that might be amenable to targeting with newer agents. T-cell Immunoglobulin and Mucin domain-containing molecule 3 (TIM-3) is an immune checkpoint receptor that is an emerging target for cancer immunotherapy. We investigated TIM-3 immunohistochemical expression in 3,992 breast cancer specimens assembled into tissue microarrays, linked to detailed outcome, clinico-pathological parameters and biomarkers including CD8, PD-1, PD-L1 and LAG-3. We scored and reported absolute counts for TIM-3+ intra-epithelial and stromal TILs (iTILs and sTILs), and find that breast cancer patients with TIM-3+ iTILs (≥ 1) represent a minority of cases (11%), with a predilection for basal-like breast cancers (among which 28% had TIM-3+ iTILs). TIM-3+ sTILs (≥ 2) represented 20% of cases and included more non-basal cases. The presence of TIM-3+ iTILs highly correlates with hematoxylin and eosin-stained stromal TILs and with other immune checkpoint markers (PD-1+ iTILs, LAG-3+ iTILs and PD-L1+ tumors). In prognostic analyses, early breast cancer patients with TIM-3+ iTILs have significantly improved breast cancer-specific survival whereas TIM-3+ sTILs did not reach statistical significance. In multivariate analyses, the presence of TIM-3+ iTILs is an independent favorable prognostic factor in the whole cohort as well as among ER negative patients. Our study supports TIM-3 as a target for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Samantha Burugu
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, Canada
- Pathology and Laboratory Medicine Department, University of British Columbia, Vancouver, Canada
| | - Dongxia Gao
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, Canada
| | | | - Torsten O. Nielsen
- Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, Canada
- Pathology and Laboratory Medicine Department, University of British Columbia, Vancouver, Canada
| |
Collapse
|
881
|
Wu B, Sun X, Gupta HB, Yuan B, Li J, Ge F, Chiang HC, Zhang X, Zhang C, Zhang D, Yang J, Hu Y, Curiel TJ, Li R. Adipose PD-L1 Modulates PD-1/PD-L1 Checkpoint Blockade Immunotherapy Efficacy in Breast Cancer. Oncoimmunology 2018; 7:e1500107. [PMID: 30393583 PMCID: PMC6209395 DOI: 10.1080/2162402x.2018.1500107] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) modulate antitumor immunity and are major targets of checkpoint blockade immunotherapy. However, clinical trials of anti-PD-L1 and anti-PD-1 antibodies in breast cancer demonstrate only modest efficacy. Furthermore, specific PD-L1 contributions in various tissue and cell compartments to antitumor immunity remain incompletely elucidated. Here we show that PD-L1 expression is markedly elevated in mature adipocytes versus preadipocytes. Adipocyte PD-L1 prevents anti-PD-L1 antibody from activating important antitumor functions of CD8+ T cells in vitro. Adipocyte PD-L1 ablation obliterates, whereas forced preadipocyte PD-L1 expression confers, these inhibitory effects. Pharmacologic inhibition of adipogenesis selectively reduces PD-L1 expression in mouse adipose tissue and enhances the antitumor efficacy of anti-PD-L1 or anti-PD-1 antibodies in syngeneic mammary tumor models. Our findings provide a previously unappreciated approach to bolster anticancer immunotherapy efficacy and suggest a mechanism for the role of adipose tissue in breast cancer progression.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Xiujie Sun
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Harshita B. Gupta
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Bin Yuan
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Jingwei Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Fei Ge
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Xiaowen Zhang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Chi Zhang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Deyi Zhang
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Jing Yang
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Yanfen Hu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Tyler J. Curiel
- Department of Medicine, University of Texas Health San Antonio, San Antonio, USA
| | - Rong Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, USA
| |
Collapse
|
882
|
Westphal T, Gampenrieder SP, Rinnerthaler G, Greil R. Cure in metastatic breast cancer. MEMO 2018; 11:172-179. [PMID: 30220923 PMCID: PMC6132799 DOI: 10.1007/s12254-018-0426-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Abstract
Oligometastatic disease characterizes a distinct subgroup of metastatic breast cancer patients that might benefit from different treatment strategies to achieve long-lasting remission and potentially cure. Those long-lasting remissions are reported after locoregional treatment of the primary tumor and all metastatic sites in several case series; however, unlike other tumor entities, prospective data are lacking. Furthermore, tumor eradication by excellent systemic anticancer therapy with novel chemotherapies and targeted agents can lead to long-term survival. In addition, reactivation of the host immune defense by immuno-oncologic drugs can achieve long-lasting tumor control. So far, unfortunately, checkpoint inhibitors as monotherapy have led to responses only in a small percentage of patients with metastatic breast cancer. This short review summarizes available data on long-lasting remissions and potential cure in metastatic breast cancers. It describes and discusses data on locoregional treatment, chemo-, antibody- and immunotherapy and tries to select individual patients for whom a multidisciplinary treatment approach with curative intention might be an option to achieve long-term survival.
Collapse
Affiliation(s)
- Theresa Westphal
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
- Arbeitsgemeinschaft Medikamentöse Tumortherapie (AGMT), Vienna, Austria
| | - Simon Peter Gampenrieder
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
- Arbeitsgemeinschaft Medikamentöse Tumortherapie (AGMT), Vienna, Austria
| | - Gabriel Rinnerthaler
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
- Arbeitsgemeinschaft Medikamentöse Tumortherapie (AGMT), Vienna, Austria
| | - Richard Greil
- IIIrd Medical Department with Hematology and Medical Oncology, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
- Arbeitsgemeinschaft Medikamentöse Tumortherapie (AGMT), Vienna, Austria
| |
Collapse
|
883
|
Tsai CW, Chang WS, Shen TC, Su CH, Wang HC, Liu LC, Bau DT. Contribution of excision repair cross-complementing group 1 genotypes to triple negative breast cancer risk. PLoS One 2018; 13:e0202112. [PMID: 30096175 PMCID: PMC6086438 DOI: 10.1371/journal.pone.0202112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022] Open
Abstract
Compared with other subgroups of breast cancer, triple negative breast cancer (TNBC) is considered to be the one with the greatest invasiveness and metastatic mobility, and the highest recurrence rate. Considering the lack of predictive markers for TNBC, we aimed to examine the contribution of excision repair cross complementing-group 1 (ERCC1) genotypes to TNBC. The rs11615 and rs3212986 of ERCC1 were investigated and evaluated for their associations with susceptibility to breast cancer, especially TNBC, in Taiwan. In this study, 1,232 breast cancer patients (104 were TNBC) and 1,232 healthy controls were recruited and their genotypes at ERCC1 rs11615 and rs3212986 were revealed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis. Our results indicated that genotypes of ERCC1 rs11615 (Ptrend = 2.2*10E-9), but not rs3212986 (Ptrend = 0.6181), were associated with breast cancer risk. In the allelic frequency distribution analysis, breast cancer patients carried the T allele of ERCC1 rs11615 a higher rate than the control subjects, further supporting the idea that ERCC1 rs11615 TT genotype is positively associated with breast cancer susceptibility. More importantly, the frequency of the ERCC1 rs11615 TT genotype was even higher among TNBC patients than among other subtypes of breast cancer patients (P = 0.0001, odds ratio = 1.73, 95% confidence interval = 1.15-2.63). The genotypes of ERCC1 rs11615 were not associated with Ki67 status. Our findings firstly show that the T allele of ERCC1 rs11615 can serve as a predictive biomarker for breast cancer and TNBC. We believe that ERCC1 could serve as a target for personalized treatment of breast cancer, especially for TNBC.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Te-Chun Shen
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Chen-Hsien Su
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hwei-Chung Wang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Liang-Chih Liu
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
884
|
Wu N, Zhang J, Zhao J, Mu K, Zhang J, Jin Z, Yu J, Liu J. Precision medicine based on tumorigenic signaling pathways for triple-negative breast cancer. Oncol Lett 2018; 16:4984-4996. [PMID: 30250564 PMCID: PMC6144355 DOI: 10.3892/ol.2018.9290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022] Open
Abstract
As a clinically heterogeneous subtype of breast cancer, triple-negative breast cancer (TNBC) is associated with a poor clinical outcome and a high relapse rate. Conventional chemotherapy and radiotherapy are effective treatments for patients with TNBC. However, the prognosis of TNBC remains unsatisfactory. Therefore, a large volume of research has explored the molecular markers and oncogenic signaling pathways associated with TNBC, including the cell cycle, DNA damage response and androgen receptor (AR) signaling pathways, to identify more efficient targeted therapies. However, whether these predicted pathways are effective targets has yet to be confirmed. In the present review, potentially carcinogenic signaling pathways in TNBCs from previous reports were considered, and ultimately five tumorigenic signaling pathways were selected, specifically receptor tyrosine kinases and downstream signaling pathways, the epithelial-to-mesenchymal transition and associated pathways, the immunoregulatory tumor microenvironment, DNA damage repair pathways, and AR and coordinating pathways. The conclusions of the preclinical and clinical trials of each pathway were then consolidated. Although a number of signaling pathways in TNBC have been considered in preclinical and clinical trials, the aforementioned pathways account for the majority of the malignant behaviors of TNBC. Identifying the alterations to different carcinogenic signaling pathways and their association with the heterogeneity of TNBC may facilitate the development of optimal precision medical approaches for patients with TNBC, potentially improving the efficiency of anticancer therapy.
Collapse
Affiliation(s)
- Nan Wu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinghua Zhang
- Department of Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China
| | - Jing Zhao
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Kun Mu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jun Zhang
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhao Jin
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jinpu Yu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Biotherapy Center, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Juntian Liu
- Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China.,Key Laboratory of Breast Cancer Prevention and Therapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
885
|
Chiang CS, Lin YJ, Lee R, Lai YH, Cheng HW, Hsieh CH, Shyu WC, Chen SY. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. NATURE NANOTECHNOLOGY 2018; 13:746-754. [PMID: 29760523 DOI: 10.1038/s41565-018-0146-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/12/2018] [Indexed: 05/17/2023]
Abstract
Checkpoint immunotherapy that inhibits tumour immune evasion has demonstrated significant clinical success. However, the therapeutic response is limited to certain patient populations, and immunotoxicity as well as autoimmunity have compromised the therapeutic benefits. Here, we report on an inherently therapeutic fucoidan-dextran-based magnetic nanomedicine (IO@FuDex3) conjugated with a checkpoint inhibitor (anti-PD-L1) and T-cell activators (anti-CD3 and anti-CD28). IO@FuDex3 can repair the immunosuppressive tumour microenvironment by reinvigorating tumour-infiltrating lymphocytes, while targeting the nanomedicine via magnetic navigation to the tumour to minimize off-target effects. Treatment that combines IO@FuDex3 and magnetic navigation reduces the occurrence of adverse events and extends the median survival from 32 to 63 days with less than 1 per cent dose compared with soluble anti-PD-L1. Thus, we demonstrate the potential of integrating anti-PD-L1 and T-cell activators as a form of inherently therapeutic nanomedicine to augment the therapeutic index of combination checkpoint immunotherapy.
Collapse
Affiliation(s)
- Chih-Sheng Chiang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Yu-Jung Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, Republic of China
| | - Rachel Lee
- Undergraduate Honours Program of Nano Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Yen-Ho Lai
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Hung-Wei Cheng
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, Republic of China.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China.
- Department of Biomedical Informatics, Asia University, Taichung, Taiwan, Republic of China.
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, Republic of China.
- Translational Medicine Research Centre, and Department of Neurology, China Medical University Hospital, Taichung, Taiwan, Republic of China.
- Graduate Institute of Biomedical Science, China Medical University Hospital, Taichung, Taiwan, Republic of China.
- Department of Occupational Therapy, Asia University, Taichung, Taiwan, Republic of China.
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.
- Frontier Research Centre on Fundamental and Applied Sciences of Matters, NTHU, Taiwan, Republic of China.
| |
Collapse
|
886
|
Fujii T, Colen RR, Bilen MA, Hess KR, Hajjar J, Suarez-Almazor ME, Alshawa A, Hong DS, Tsimberidou A, Janku F, Gong J, Stephen B, Subbiah V, Piha-Paul SA, Fu S, Sharma P, Mendoza T, Patel A, Thirumurthi S, Sheshadri A, Meric-Bernstam F, Naing A. Incidence of immune-related adverse events and its association with treatment outcomes: the MD Anderson Cancer Center experience. Invest New Drugs 2018; 36:638-646. [PMID: 29159766 PMCID: PMC5962379 DOI: 10.1007/s10637-017-0534-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022]
Abstract
Background Immunotherapy is emerging as the cornerstone for treatment of patients with advanced cancer, but significant toxicity (immune-related adverse events [irAEs]) associated with unbridled T cell activity remains a concern. Patients and methods A retrospective review of the electronic medical records of 290 patients with advanced cancer treated on an immunotherapy-based clinical trial in the Department of Investigational Cancer Therapeutics at The University of Texas MD Anderson Cancer Center between February 2010 and September 2015 was performed. Clinical and laboratory parameters were collected to determine the incidence of irAEs, risk factors, and their association with treatment outcomes. Results Ninety eight of 290 patients (34%) experienced any grade irAEs. Among the 15 (5.2%) patients with grade ≥ 3 irAEs, the most common irAEs were dermatitis and enterocolitis. Although 80% of the patients with grade ≥ 3 irAEs required systemic corticosteroids, all the 15 patients recovered from the irAEs. On re-challenge, 4 of the 5 patients who had received systemic corticosteroids for irAE continued to respond. There were no irAE-related deaths. Importantly, patients with grade ≥ 3 irAEs had improved overall response rate (25 vs. 6%; p = 0.039) and longer median time to progression (30 weeks vs. 10 weeks; p = 0.0040) when compared to those without grade ≥ 3 irAEs. Conclusion Incidence of irAEs with immunotherapeutic agents indicates an active immune status, suggestive of potential clinical benefit to the patient. Further validation of this association in a large prospective study is warranted.
Collapse
Affiliation(s)
- Takeo Fujii
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Rivka R Colen
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet Asim Bilen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Kenneth R Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joud Hajjar
- Department of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Maria E Suarez-Almazor
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anas Alshawa
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Apostolia Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jing Gong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tito Mendoza
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anisha Patel
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Selvi Thirumurthi
- Department of Gastroenterology Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
887
|
Thomas A, Routh ED, Pullikuth A, Jin G, Su J, Chou JW, Hoadley KA, Print C, Knowlton N, Black MA, Demaria S, Wang E, Bedognetti D, Jones WD, Mehta GA, Gatza ML, Perou CM, Page DB, Triozzi P, Miller LD. Tumor mutational burden is a determinant of immune-mediated survival in breast cancer. Oncoimmunology 2018; 7:e1490854. [PMID: 30386679 PMCID: PMC6207420 DOI: 10.1080/2162402x.2018.1490854] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Mounting evidence supports a role for the immune system in breast cancer outcomes. The ability to distinguish highly immunogenic tumors susceptible to anti-tumor immunity from weakly immunogenic or inherently immune-resistant tumors would guide development of therapeutic strategies in breast cancer. Genomic, transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) breast cancer cohorts were used to examine statistical associations between tumor mutational burden (TMB) and the survival of patients whose tumors were assigned to previously-described prognostic immune subclasses reflecting favorable, weak or poor immune-infiltrate dispositions (FID, WID or PID, respectively). Tumor immune subclasses were associated with survival in patients with high TMB (TMB-Hi, P < 0.001) but not in those with low TMB (TMB-Lo, P = 0.44). This statistical relationship was confirmed in the METABRIC cohort (TMB-Hi, P = 0.047; TMB-Lo, P = 0.39), and also found to hold true in the more-indolent Luminal A tumor subtype (TMB-Hi, P = 0.011; TMB-Lo, P = 0.91). In TMB-Hi tumors, the FID subclass was associated with prolonged survival independent of tumor stage, molecular subtype, age and treatment. Copy number analysis revealed the reproducible, preferential amplification of chromosome 1q immune-regulatory genes in the PID immune subclass. These findings demonstrate a previously unappreciated role for TMB as a determinant of immune-mediated survival of breast cancer patients and identify candidate immune-regulatory mechanisms associated with immunologically cold tumors. Immune subtyping of breast cancers may offer opportunities for therapeutic stratification.
Collapse
Affiliation(s)
- Alexandra Thomas
- Section of Hematology and Oncology, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA.,Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Eric D Routh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ashok Pullikuth
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Guangxu Jin
- Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jing Su
- Division of Radiologic Sciences and Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Jeff W Chou
- Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, USA.,Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Katherine A Hoadley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cristin Print
- Department of Molecular Medicine and Pathology and Maurice Wilkins Institute, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Nick Knowlton
- Department of Molecular Medicine and Pathology and Maurice Wilkins Institute, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Michael A Black
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sandra Demaria
- Department of Radiation Oncology and Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ena Wang
- Department of Tumor Biology, Immunology and Therapy, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Davide Bedognetti
- Department of Tumor Biology, Immunology and Therapy, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | | | - Gaurav A Mehta
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Michael L Gatza
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Charles M Perou
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David B Page
- Department of Medicine, Providence Cancer Center, Earle A. Chiles Research Institute, Portland, OR, USA
| | - Pierre Triozzi
- Section of Hematology and Oncology, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA.,Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Lance D Miller
- Wake Forest Comprehensive Cancer Center, Winston-Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
888
|
Moore-Smith L, Forero-Torres A, Stringer-Reasor E. Future Developments in Neoadjuvant Therapy for Triple-Negative Breast Cancer. Surg Clin North Am 2018; 98:773-785. [PMID: 30005773 DOI: 10.1016/j.suc.2018.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Breast cancer is the 2nd leading cause of cancer-related death in women in the United States. In general, advances in targeted treatment for breast cancer have improved over the last twenty years, except in the triple-negative breast cancer (TNBC) subtype. TNBC is an aggressive breast cancer subtype with limited treatment options as compared to hormone positive breast cancers. Recently, genomic profiling of TNBC shows promise in aiding clinicians to develop personalized targeted agents. Prioritizing novel molecular-based therapies in the neoadjuvant setting may help investigators understand mechanisms of resistance and ultimately improve patient outcomes in TNBC.
Collapse
Affiliation(s)
- Lakisha Moore-Smith
- Department of Medicine, Brookwood Baptist Health - Princeton, 833 Princeton Avenue, POB III Suite 200, Birmingham, AL 35211-1311, USA
| | - Andres Forero-Torres
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, 1720 2nd Avenue South, NP 2517, Birmingham, AL 35294-3300, USA
| | - Erica Stringer-Reasor
- Department of Medicine, Division of Hematology Oncology, University of Alabama at Birmingham, 1720 2nd Avenue South, NP 2501, Birmingham, AL 35294-3300, USA.
| |
Collapse
|
889
|
Brahmer JR, Govindan R, Anders RA, Antonia SJ, Sagorsky S, Davies MJ, Dubinett SM, Ferris A, Gandhi L, Garon EB, Hellmann MD, Hirsch FR, Malik S, Neal JW, Papadimitrakopoulou VA, Rimm DL, Schwartz LH, Sepesi B, Yeap BY, Rizvi NA, Herbst RS. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of non-small cell lung cancer (NSCLC). J Immunother Cancer 2018; 6:75. [PMID: 30012210 PMCID: PMC6048854 DOI: 10.1186/s40425-018-0382-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) accounting for over 85% of all cases. Until recently, chemotherapy – characterized by some benefit but only rare durable responses – was the only treatment option for patients with NSCLC whose tumors lacked targetable mutations. By contrast, immune checkpoint inhibitors have demonstrated distinctly durable responses and represent the advent of a new treatment approach for patients with NSCLC. Three immune checkpoint inhibitors, pembrolizumab, nivolumab and atezolizumab, are now approved for use in first- and/or second-line settings for selected patients with advanced NSCLC, with promising benefit also seen in patients with stage III NSCLC. Additionally, durvalumab following chemoradiation has been approved for use in patients with locally advanced disease. Due to the distinct features of cancer immunotherapy, and rapid progress in the field, clinical guidance is needed on the use of these agents, including appropriate patient selection, sequencing of therapies, response monitoring, adverse event management, and biomarker testing. The Society for Immunotherapy of Cancer (SITC) convened an expert Task Force charged with developing consensus recommendations on these key issues. Following a systematic process as outlined by the National Academy of Medicine, a literature search and panel voting were used to rate the strength of evidence for each recommendation. This consensus statement provides evidence-based recommendations to help clinicians integrate immune checkpoint inhibitors into the treatment plan for patients with NSCLC. This guidance will be updated following relevant advances in the field.
Collapse
Affiliation(s)
- Julie R Brahmer
- Bloomberg Kimmel Immunotherapy Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD, 21231, USA
| | | | | | - Scott J Antonia
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Sarah Sagorsky
- Johns Hopkins Kimmel Cancer Center, Baltimore, MD, 21231, USA
| | - Marianne J Davies
- Yale Comprehensive Cancer Center, Yale University School of Nursing, New Haven, CT, 06520, USA
| | - Steven M Dubinett
- University of California Los Angeles Lung Cancer Research Program, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | | | - Leena Gandhi
- Department of Medicine, New York University, Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Edward B Garon
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90404, USA
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Fred R Hirsch
- University of Colorado Denver School of Medicine, Denver, CO, 80011, USA
| | - Shakuntala Malik
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, Rockville, USA
| | - Joel W Neal
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University College of Physicians and Surgeons and New York Presbyterian Hospital, New York City, NY, 10032, USA
| | - Boris Sepesi
- Thoracic Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Beow Yong Yeap
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Naiyer A Rizvi
- Columbia University Medical Center, New York, NY, 10028, USA
| | - Roy S Herbst
- Yale Comprehensive Cancer Center, Yale School of Medicine, 333 Cedar Street, WWW221, New Haven, CT, 06520-8028, USA.
| |
Collapse
|
890
|
Wu TC, Xu K, Martinek J, Young RR, Banchereau R, George J, Turner J, Kim KI, Zurawski S, Wang X, Blankenship D, Brookes HM, Marches F, Obermoser G, Lavecchio E, Levin MK, Bae S, Chung CH, Smith JL, Cepika AM, Oxley KL, Snipes GJ, Banchereau J, Pascual V, O'Shaughnessy J, Palucka AK. IL1 Receptor Antagonist Controls Transcriptional Signature of Inflammation in Patients with Metastatic Breast Cancer. Cancer Res 2018; 78:5243-5258. [PMID: 30012670 DOI: 10.1158/0008-5472.can-18-0413] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/04/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
Inflammation affects tumor immune surveillance and resistance to therapy. Here, we show that production of IL1β in primary breast cancer tumors is linked with advanced disease and originates from tumor-infiltrating CD11c+ myeloid cells. IL1β production is triggered by cancer cell membrane-derived TGFβ. Neutralizing TGFβ or IL1 receptor prevents breast cancer progression in humanized mouse model. Patients with metastatic HER2- breast cancer display a transcriptional signature of inflammation in the blood leukocytes, which is attenuated after IL1 blockade. When present in primary breast cancer tumors, this signature discriminates patients with poor clinical outcomes in two independent public datasets (TCGA and METABRIC).Significance: IL1β orchestrates tumor-promoting inflammation in breast cancer and can be targeted in patients using an IL1 receptor antagonist. Cancer Res; 78(18); 5243-58. ©2018 AACRSee related commentary by Dinarello, p. 5200.
Collapse
Affiliation(s)
- Te-Chia Wu
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Kangling Xu
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Jan Martinek
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Department of Biomedical Studies, Baylor University, Waco, Texas
| | - Robyn R Young
- The Center for Cancer and Blood Disorders, Fort Worth, Texas
| | - Romain Banchereau
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Jacob Turner
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Kyung In Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Sandra Zurawski
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Xuan Wang
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Derek Blankenship
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Hannah M Brookes
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Florentina Marches
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Gerlinde Obermoser
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Elizabeth Lavecchio
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Maren K Levin
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Sookyoung Bae
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Cheng-Han Chung
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Department of Biomedical Studies, Baylor University, Waco, Texas
| | - Jennifer L Smith
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Alma-Martina Cepika
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Kyp L Oxley
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - George J Snipes
- Baylor University Medical Center, Sammons Cancer Center, Dallas, Texas
| | - Jacques Banchereau
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Charles A. Sammons Cancer Center, Texas Oncology, Dallas, Texas
| | - A Karolina Palucka
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, Texas. .,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| |
Collapse
|
891
|
Ekiz HA, Lai SCA, Gundlapalli H, Haroun F, Williams MA, Welm AL. Inhibition of RON kinase potentiates anti-CTLA-4 immunotherapy to shrink breast tumors and prevent metastatic outgrowth. Oncoimmunology 2018; 7:e1480286. [PMID: 30228950 PMCID: PMC6140584 DOI: 10.1080/2162402x.2018.1480286] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 12/16/2022] Open
Abstract
The advent of immune checkpoint blockade as a new strategy for immunotherapy has changed the outlook for many aggressive cancers. Although complete tumor eradication is attainable in some cases, durable clinical responses are observed only in a small fraction of patients, underlining urgent need for improvement. We previously showed that RON, a receptor tyrosine kinase expressed in macrophages, suppresses antitumor immune responses, and facilitates progression and metastasis of breast cancer. Here, we investigated the molecular changes that occur downstream of RON activation in macrophages, and whether inhibition of RON can cooperate with checkpoint immunotherapy to eradicate tumors. Activation of RON by its ligand, MSP, altered the gene expression profile of macrophages drastically and upregulated surface levels of CD80 and PD-L1, ligands for T-cell checkpoint receptors CTLA-4 and PD-1. Genetic deletion or pharmacological inhibition of RON in combination with anti-CTLA-4, but not with anti-PD-1, resulted in improved clinical responses against orthotopically transplanted tumors compared to single-agent treatment groups, resulting in complete tumor eradication in 46% of the animals. Positive responses to therapy were associated with higher levels of T-cell activation markers and tumor-infiltrating lymphocytes. Importantly, co-inhibition of RON and anti-CTLA-4 was also effective in clearing metastatic breast cancer cells in lungs, resulting in clinical responses in nearly 60% of the mice. These findings suggest that RON inhibition can be a novel approach to potentiate responses to checkpoint immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Huseyin Atakan Ekiz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shu-Chin Alicia Lai
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Harika Gundlapalli
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Fadi Haroun
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Matthew A Williams
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
892
|
Ju J, Zhu AJ, Yuan P. Progress in targeted therapy for breast cancer. Chronic Dis Transl Med 2018; 4:164-175. [PMID: 30276363 PMCID: PMC6160667 DOI: 10.1016/j.cdtm.2018.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is a multistep, multifactorial, and heterogeneous disease. Significant transformations have occurred in the systemic management of breast cancer in the past decade. Due to the further understanding of pathogenesis, scientists have found plenty of signaling pathways and correspondingly therapeutic targets in breast cancer, such as hormone receptor, human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), phosphoinositide-3-kinase (PI3K), v-akt murine thymoma viral oncogene homolog (AKT), mechanistic target of rapamycin (mTOR), cyclin-dependent kinase 4/6 (CDK4/6), poly (adenosine diphosphate-ribose) polymerase (PARP), and programmed death-1 (PD-1). Targeted therapy, which optimizes the accuracy of antitumor activity and minimizes toxicity to normal tissues, plays a crucial role in breast cancer treatment in the era of precision medicine. In this review, we aimed to summarize the latest developments in targeted therapy for breast cancer and discuss the existing problems.
Collapse
Affiliation(s)
- Jie Ju
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - An-Jie Zhu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
893
|
Borcherding N, Kolb R, Gullicksrud J, Vikas P, Zhu Y, Zhang W. Keeping Tumors in Check: A Mechanistic Review of Clinical Response and Resistance to Immune Checkpoint Blockade in Cancer. J Mol Biol 2018; 430:2014-2029. [PMID: 29800567 PMCID: PMC6071324 DOI: 10.1016/j.jmb.2018.05.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/26/2022]
Abstract
Immune checkpoints are a diverse set of inhibitory signals to the immune system that play a functional role in adaptive immune response and self-tolerance. Dysregulation of these pathways is a vital mechanism in the avoidance of immune destruction by tumor cells. Immune checkpoint blockade (ICB) refers to targeted strategies to disrupt the tumor co-opted immune suppression to enhance anti-tumor immunity. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1) are two immune checkpoints that have the widest range of antibody-based therapies. These therapies have gone from promising approaches to Food and Drug Administration-approved first- and second-line agents for a number of immunogenic cancers. The burgeoning investigations of ICB efficacy in blood and solid cancers have underscored the importance of identifying the predictors of response and resistance to ICB. Identification of response correlates is made complicated by the observations of mixed reactions, or different responses in multiple lesions from the same patient, and delayed responses that can occur over a year after the induction therapy. Factors that can influence response and resistance in ICB can illuminate underlying molecular mechanisms of immune activation and suppression. These same response predictors can guide the identification of patients who would benefit from ICB, reduce off-target immune-relate adverse events, and facilitate the use of combinatorial therapies to increase efficacy. Here we review the underlying principles of immune checkpoint therapy and results of single-agent ICB clinical trials, and summarize the predictors of response and resistance.
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Cancer Biology Graduate Program, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Medical Scientist Training Program, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA
| | - Ryan Kolb
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA
| | - Jodi Gullicksrud
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveen Vikas
- Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Weizhou Zhang
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Cancer Biology Graduate Program, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Medical Scientist Training Program, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA; Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA 52242-11, USA.
| |
Collapse
|
894
|
Pang X, Liu M, Wang R, Liao X, Yan P, Zhang C. Radioimmunoimaging and targeting treatment in an immunocompetent murine model of triple-negative breast cancer using radiolabeled anti-programmed death-ligand 1 monoclonal antibody. J Labelled Comp Radiopharm 2018; 61:826-836. [PMID: 29923634 DOI: 10.1002/jlcr.3650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/02/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
The overall aim of this study was to evaluate whether iodine-131 radiolabeled monoclonal antibody (mAb) targeting programmed death-ligand 1 (PD-L1) can be used for imaging of PD-L1 expression noninvasively in vivo and playing synergistic effect combined with immunotherapy. Anti-PD-L1 mAb was radiolabeled with iodine-131 (131 I-PD-L1 mAb) and was characterized in vitro. Biodistribution and imaging in vivo were performed periodically. Therapy study was conducted in triple-negative breast cancer-bearing BALB/c mice. As results, the labeling efficiencies of 131 I-PD-L1 mAb reached 80% ± 3%, with radiochemical purity of 97% ± 1%. 131 I-PD-L1 mAb preserved the capacity to bind living PD-L1-expressing cells specifically in vitro. Tumor radioactivity uptake of 131 I-PD-L1 mAb was significantly higher than that of control groups. The xenografts were clearly imaged from 48 to 72 hours noninvasively after injection of 131 I-PD-L1 mAb, while the xenografts were not imaged in control groups. Tumor growth was significantly inhibited, and median survival time was remarkably prolonged in combination therapy group compared with control groups. It was concluded that 131 I-PD-L1 mAb can be a potential theranostic candidate for visualizing of PD-L1 expression noninvasively and performing synergistic therapy in carcinomas.
Collapse
Affiliation(s)
- Xiaoxi Pang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xuhe Liao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
895
|
Wein L, Luen SJ, Savas P, Salgado R, Loi S. Checkpoint blockade in the treatment of breast cancer: current status and future directions. Br J Cancer 2018; 119:4-11. [PMID: 29808015 PMCID: PMC6035268 DOI: 10.1038/s41416-018-0126-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/03/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
There is now accumulating evidence that the host immune system plays an important role in influencing response to treatment and prognosis in breast cancer. Immunotherapy with immune checkpoint inhibitors is a promising and rapidly growing field of interest in many solid tumours, including breast cancer. Trials to date have largely focused on metastatic triple-negative disease, a genomically unstable subtype of breast cancer that is believed to be the most immunogenic and following the development of treatment resistance, has limited treatment options and a particularly poor prognosis. Both checkpoint inhibitor monotherapy and combinations with chemotherapy are being investigated. In this review, we discuss the current evidence for PD-1/PD-L1 blockade in metastatic triple-negative breast cancer (TNBC), HER2+ breast cancer and ER+ disease, as well as the emerging evidence for use in the early-stage (neoadjuvant) setting. We also propose potential ways of improving responses to checkpoint blockade in breast cancer.
Collapse
Affiliation(s)
- Lironne Wein
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen J Luen
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter Savas
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Roberto Salgado
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Pathology/GZA, Antwerp, Belgium
| | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
896
|
Cohen NA, Strong VE, Janjigian YY. Checkpoint blockade in esophagogastric cancer. J Surg Oncol 2018; 118:77-85. [PMID: 29878357 PMCID: PMC7891842 DOI: 10.1002/jso.25116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022]
Abstract
There are few effective treatment options for metastatic esophagogastric adenocarcinomas after progression on second-line chemotherapy. Immune checkpoint blockade therapy is a promising treatment strategy for selected advanced esophagogastric cancer, and the PD-1 inhibitor pembrolizumab has recently been approved for metastatic or recurrent gastric or gastroesophageal junction cancer that has progressed beyond second-line systemic therapy. We review the current data supporting immune checkpoint blockade therapy in advanced esophagogastric adenocarcinoma.
Collapse
Affiliation(s)
- Noah A. Cohen
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Vivian E. Strong
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Yelena Y. Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
897
|
Lo Re G, Lo Re F, Doretto P, Del Conte A, Amadio M, Cozzi C, Casarotto MM, Maruzzi D, Marus W, Ubiali P, Sandri P. Cyclophosphamide with or without fluorouracil followed by subcutaneous or intravenous interleukin-2 use in solid tumors: A feasibility off-label experience. Cytokine 2018; 113:50-60. [PMID: 29958796 DOI: 10.1016/j.cyto.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 05/13/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune tolerance seems to correlate with disease progression and T regulatory cells (Tregs) and myeloid-derived suppressor cells play a relevant role in immunosuppression. Cyclophosphamide (Cyt) and Fluorouracil (FU) seem to reduce these cell populations. METHODS AND OBJECTIVE Establishing safety, feasibility, activity and impact on the immune system (neutrophil/lymphocyte [N/L], platelet/L [Plt/L], monocyte [M] and lymphocyte subpopulation (CD3, CD4, CD8, CD16, HLADR/CD3, Tregs, cells count), CD8/Treg and C-reactive protein (CRP). TREATMENT 1) Cyt 300 mg/sqm ± FU 500 mg/sqm day (d) 1 and interleukin 2 (IL-2) 18 MUI/sqm intravenous (I.V.) d 4-6, 18-20 or 2) Cyt 300 mg/sqm + FU 500 mg/sqm day d 1, IL-2 4.5 MUI subcutaneous (S.C.) d 3-6, 17-20. The cycle was repeated every four weeks for 2 cycles. Stable or responding patients (pts) continued therapy for 3 cycles. RESULTS From February 2014 to December 2016, 13/14 pre-treated pts (mean 3 lines) with solid tumors were enrolled. Male/Female: 1/1. The median age and Eastern Cooperative Oncology Group Performance Status (ECOG PS) was 68 years and 1 respectively. Mean 2 cycles of therapy were administered. G3-4 toxicities presented as diarrhea and bleeding anemia in 2 pts and proteinuria and erhytroderma in 1pt, respectively. Regarding the hematological profile, a more reduction in Plt, less decrease of Plt/Ly, and less increase of Treg with I.V. than S.C. IL-2 administration was observed. However a transient decrease of Treg on day 7 of first cycle in the I.V. IL-2 was reported. RESPONSE PR 3 (23%), SD 3 (23%), PD 7 (54%). The response duration was 2+ and 3 months in 2 HCC and 18+ months in the pancreatic cancer (PC). Pathological CR was reported in one HCC treated with I.V. IL-2. The median progression-free-survival (PFS) and overall survival (OS) were 1 and 7 months. CONCLUSION Cyt-FU-IL-2 can be considered safe, feasible and moderately active in heavily pre-treated pts. Plt, Plt/Ly, CD8/Treg and a transient Tregs reduction were observed without significative difference on survival.
Collapse
Affiliation(s)
| | | | - Paolo Doretto
- Clinical Patholgy, AAS5 Pordenonese, Pordenone, Italy.
| | | | - Maria Amadio
- Medical Direction, AAS5 Pordenonese, Pordenone, Italy.
| | | | | | | | - Wally Marus
- Pathology Unit, AAS5 Pordenonese, Pordenone, Italy.
| | - Paolo Ubiali
- Surgery Unit, AAS5 Pordenonese, Pordenone, Italy.
| | - Paolo Sandri
- CRO Pordenone-S. Vito Oncology, Pordenone, Italy.
| |
Collapse
|
898
|
de la Cruz-Merino L, Palazón-Carrión N, Henao-Carrasco F, Nogales-Fernández E, Álamo-de la Gala M, Vallejo-Benítez A, Chiesa M, Sánchez-Margalet V. New horizons in breast cancer: the promise of immunotherapy. Clin Transl Oncol 2018; 21:117-125. [PMID: 29916188 DOI: 10.1007/s12094-018-1907-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022]
Abstract
Immunology and immunotherapy of cancer is an expanding field in oncology, with recent great achievements obtained through the new successful approaches implemented to circumvent immune evasion, which is undoubtedly considered a novel hallmark of cancer. Translational research in this topic has revealed targets that can be modulated in the clinical setting with new compounds and strategies. Like most of the tumors, breast cancer is considered a complex and heterogeneous disease in which host immune responses have been also recently demonstrated of critical relevance. T infiltrating lymphocyte measurement is suggested as a powerful new tool necessary to predict early breast cancer evolution, especially for the her2-positive and triple-negative subtypes. Other biomarkers in tissue and peripheral blood are under intense scrutiny to ascertain their eventual role as prognostic and/or predictive factors. This background has fueled the interest in developing clinical research strategies to test activity of modern immunotherapy in breast cancer, which constitutes the main focus of this review.
Collapse
Affiliation(s)
- L de la Cruz-Merino
- Clinical Oncology Department, Hospital Universitario Virgen Macarena, Avda Dr Fedriani s/n, 41009, Seville, Spain.
| | - N Palazón-Carrión
- Clinical Oncology Department, Hospital Universitario Virgen Macarena, Avda Dr Fedriani s/n, 41009, Seville, Spain
| | - F Henao-Carrasco
- Clinical Oncology Department, Hospital Universitario Virgen Macarena, Avda Dr Fedriani s/n, 41009, Seville, Spain
| | - E Nogales-Fernández
- Clinical Oncology Department, Hospital Universitario Virgen Macarena, Avda Dr Fedriani s/n, 41009, Seville, Spain
| | - M Álamo-de la Gala
- Clinical Oncology Department, Hospital Universitario Virgen Macarena, Avda Dr Fedriani s/n, 41009, Seville, Spain
| | - A Vallejo-Benítez
- Pathology Department, Hospital Universitario Virgen Macarena, Avda Dr Fedriani s/n, 41009, Seville, Spain
| | - M Chiesa
- Spanish Breast Cancer Research Group (GEICAM), 28703, Madrid, Spain
| | - V Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Hospital Universitario Virgen Macarena, Avda Dr Fedriani s/n, 41009, Seville, Spain
| | | |
Collapse
|
899
|
AR negative triple negative or "quadruple negative" breast cancers in African American women have an enriched basal and immune signature. PLoS One 2018; 13:e0196909. [PMID: 29912871 PMCID: PMC6005569 DOI: 10.1371/journal.pone.0196909] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
There is increasing evidence that Androgen Receptor (AR) expression has prognostic usefulness in Triple negative breast cancer (TNBC), where tumors that lack AR expression are considered “Quadruple negative” Breast Cancers (“QNBC”). However, a comprehensive analysis of AR expression within all breast cancer subtypes or stratified by race has not been reported. We assessed AR mRNA expression in 925 tumors from The Cancer Genome Atlas (TCGA), and 136 tumors in 2 confirmation sets. AR protein expression was determined by immunohistochemistry in 197 tumors from a multi-institutional cohort, for a total of 1258 patients analyzed. Cox hazard ratios were used to determine correlations to PAM50 breast cancer subtypes, and TNBC subtypes. Overall, AR-negative patients are diagnosed at a younger age compared to AR-positive patients, with the average age of AA AR-negative patients being, 49. AA breast tumors express AR at lower rates compared to Whites, independent of ER and PR expression (p<0.0001). AR-negative patients have a (66.60; 95% CI, 32–146) odds ratio of being basal-like compared to other PAM50 subtypes, and this is associated with an increased time to progression and decreased overall survival. AA “QNBC” patients predominately demonstrated BL1, BL2 and IM subtypes, with differential expression of E2F1, NFKBIL2, CCL2, TGFB3, CEBPB, PDK1, IL12RB2, IL2RA, and SOS1 genes compared to white patients. Immune checkpoint inhibitors PD-1, PD-L1, and CTLA-4 were significantly upregulated in both overall “QNBC” and AA “QNBC” patients as well. Thus, AR could be used as a prognostic marker for breast cancer, particularly in AA “QNBC” patients.
Collapse
|
900
|
Mostafa AA, Meyers DE, Thirukkumaran CM, Liu PJ, Gratton K, Spurrell J, Shi Q, Thakur S, Morris DG. Oncolytic Reovirus and Immune Checkpoint Inhibition as a Novel Immunotherapeutic Strategy for Breast Cancer. Cancers (Basel) 2018; 10:cancers10060205. [PMID: 29914097 PMCID: PMC6025420 DOI: 10.3390/cancers10060205] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
As the current efficacy of oncolytic viruses (OVs) as monotherapy is limited, exploration of OVs as part of a broader immunotherapeutic treatment strategy for cancer is necessary. Here, we investigated the ability for immune checkpoint blockade to enhance the efficacy of oncolytic reovirus (RV) for the treatment of breast cancer (BrCa). In vitro, oncolysis and cytokine production were assessed in human and murine BrCa cell lines following RV exposure. Furthermore, RV-induced upregulation of tumor cell PD-L1 was evaluated. In vivo, the immunocompetent, syngeneic EMT6 murine model of BrCa was employed to determine therapeutic and tumor-specific immune responses following treatment with RV, anti-PD-1 antibodies or in combination. RV-mediated oncolysis and cytokine production were observed following BrCa cell infection and RV upregulated tumor cell expression of PD-L1. In vivo, RV monotherapy significantly reduced disease burden and enhanced survival in treated mice, and was further enhanced by PD-1 blockade. RV therapy increased the number of intratumoral regulatory T cells, which was reversed by the addition of PD-1 blockade. Finally, dual treatment led to the generation of a systemic adaptive anti-tumor immune response evidenced by an increase in tumor-specific IFN-γ producing CD8+ T cells, and immunity from tumor re-challenge. The combination of PD-1 blockade and RV appears to be an efficacious immunotherapeutic strategy for the treatment of BrCa, and warrants further investigation in early-phase clinical trials.
Collapse
Affiliation(s)
- Ahmed A Mostafa
- Department of Pathology and Laboratory Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
- Histocompatibility and Immunogenetics, Calgary Lab Services, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada.
| | - Daniel E Meyers
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Chandini M Thirukkumaran
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Peter J Liu
- Faculty of Medicine, University of Toronto, King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Kathy Gratton
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Jason Spurrell
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Qiao Shi
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Satbir Thakur
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| | - Don G Morris
- Department of Oncology, University of Calgary, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
- Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, AB T2N 4N2, Canada.
| |
Collapse
|