851
|
Sredni ST, Gadd S, Jafari N, Huang CC. A Parallel Study of mRNA and microRNA Profiling of Peripheral Blood in Young Adult Women. Front Genet 2011; 2:49. [PMID: 22303345 PMCID: PMC3268602 DOI: 10.3389/fgene.2011.00049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/06/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aging is a complex process that involves the interplay of genetic, epigenetic, and environmental factors. Identifying aging-related biomarkers holds great potential for improving our understanding of complex physiological changes, thereby providing a means to investigate the mechanism by which aging influences various diseases. METHOD AND RESULTS We performed a parallel study of microRNA and gene expression profiling of peripheral blood in a group of healthy young adult women, among which 13 were aged 22-25 and 9 were aged 36-39 years old. We identified a significantly distinct pattern of microRNA, but not gene expression profiling, between these two young adult women groups. We also performed correlation analysis of expression levels between all pairs of age-associated microRNAs and genes and identified a weak global correlation between these two types of expression levels. A significant involvement of estrogen regulation was observed by pathway analysis of the most differentially expressed microRNAs that included miR-155, -18a, -142, -340, -363, -195, and -24. CONCLUSION Our results suggest that the change in global microRNA expression in the peripheral blood is associated with normal aging in young adult women. This change may precede global gene expression changes. Future studies are needed to investigate the regulatory mechanism of the estrogen-related microRNAs and associated diseases.
Collapse
Affiliation(s)
- Simone T Sredni
- Center of Excellence in Clinical Immunology and Neurosurgery Research Program, Children's Memorial Research Center Chicago, IL, USA
| | | | | | | |
Collapse
|
852
|
Abstract
MicroRNAs (miRNAs) are non-coding, single-stranded small RNAs, usually 18-25 nucleotides long, have ability to regulate gene expression post-transcriptionally. miRNAs are highly homologous, conserved and are found in various living organisms including plants and animals. Present studies show that these small RNAs anticipate and are directly involved in many important physiological and pathological processes including growth, proliferation, maturation, metabolism, and inflammation among others. Evidences are accumulating that miRNAs play active role in directing immune responses and, therefore, might be involved in pathogenesis of autoimmune diseases. Recent studies have found that miRNAs are critical in proliferation, maturation and differentiation of T cells, B cells and, therefore, may affect the outcome of an immune response. In light of such understanding, this review briefly introduces miRNAs and discusses its role in the pathogenesis of various autoimmune diseases, as well as its potential as a biomarker and therapeutic target in the management of autoimmune diseases.
Collapse
|
853
|
Zhou R, O'Hara SP, Chen XM. MicroRNA regulation of innate immune responses in epithelial cells. Cell Mol Immunol 2011; 8:371-9. [PMID: 21725335 DOI: 10.1038/cmi.2011.19] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mucosal surface epithelial cells are equipped with several defense mechanisms that guard against pathogens. Recent studies indicate that microRNAs (miRNAs) mediate post-transcriptional gene suppression and may be a critical component of the complex regulatory networks in epithelial immune responses. Transcription of miRNA genes in epithelial cells can be elaborately controlled through pathogen recognition receptors, such as Toll-like receptors (TLRs), and associated nuclear factor kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, and ultimately nuclear transcription factor associated-transactivation and transrepression. Activation of these intracellular signaling pathways may also modulate the process of miRNA maturation. Functionally, miRNAs may modulate epithelial immune responses at every step of the innate immune network, including production and release of cytokines/chemokines, expression of adhesion and costimulatory molecules, shuttling of miRNAs through release of exosomes and feedback regulation of immune homeostasis. Therefore, miRNAs act as critical regulators to the fine-tuning of epithelial immune responses.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | | | | |
Collapse
|
854
|
Abstract
MicroRNAs (miRNAs) are a class of posttranscriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. There are currently over 10,000 miRNAs that have been identified in a range of species including metazoa, mycetozoa, viridiplantae, and viruses, of which 940, to date, are found in humans. It is estimated that more than 60% of human protein-coding genes harbor miRNA target sites in their 3′ untranslated region and, thus, are potentially regulated by these molecules in health and disease. This review will first briefly describe the discovery, structure, and mode of function of miRNAs in mammalian cells, before elaborating on their roles and significance during development and pathogenesis in the various mammalian organs, while attempting to reconcile their functions with our existing knowledge of their targets. Finally, we will summarize some of the advances made in utilizing miRNAs in therapeutics.
Collapse
Affiliation(s)
- Danish Sayed
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| |
Collapse
|
855
|
Abstract
The past 5 years have seen an explosion of knowledge about miRNAs and their roles in hematopoiesis, cancer, and other diseases. In myeloid development, there is a growing appreciation for both the importance of particular miRNAs and the unique features of myelopoiesis that are being uncovered by experimental manipulation of miRNAs. Here, we review in detail the roles played by 4 miRNAs, miR-125, miR-146, miR-155, and miR-223 in myeloid development and activation, and correlate these roles with their dysregulation in disease. All 4 miRNAs demonstrate effects on myelopoiesis, and their loss of function or overexpression leads to pathologic phenotypes in the myeloid lineage. We review their functions at distinct points in development, their targets, and the regulatory networks that they are embedded into in the myeloid lineage.
Collapse
|
856
|
Ha TY. MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease. Immune Netw 2011; 11:135-54. [PMID: 21860607 PMCID: PMC3153666 DOI: 10.4110/in.2011.11.3.135] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 12/17/2022] Open
Abstract
The great discovery of microRNAs (miRNAs) has revolutionized current cell biology and medical science. miRNAs are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region of specific messenger RNAs for degradation or translational repression. New members of the miRNA family are being discovered on a daily basis and emerging evidence has demonstrated that miRNAs play a major role in a wide range of developmental process including cell proliferation, cell cycle, cell differentiation, metabolism, apoptosis, developmental timing, neuronal cell fate, neuronal gene expression, brain morphogenesis, muscle differentiation and stem cell division. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, psychiatric and neurological diseases, cardiovascular disease, and autoimmune disease. Interestingly, in addition, miRNA deficiencies or excesses have been correlated with a number of clinically important diseases ranging from cancer to myocardial infarction. miRNAs can repress the gene translation of hundreds of their targets and are therefore well-positioned to target a multitude of cellular mechanisms. As a consequence of extensive participation in normal functions, it is quite logical to ask the question if abnormalities in miRNAs should have importance in human diseases. Great discoveries and rapid progress in the past few years on miRNAs provide the hope that miRNAs will in the near future have a great potential in the diagnosis and treatment of many diseases. Currently, an explosive literature has focussed on the role of miRNA in human cancer and cardiovascular disease. In this review, I briefly summarize the explosive current studies about involvement of miRNA in various human cancers and cardiovascular disease.
Collapse
Affiliation(s)
- Tai-You Ha
- Department of Immunology, Chonbuk National University Medical School, Chonju 561-180, Korea
| |
Collapse
|
857
|
Oncogenic IRFs provide a survival advantage for Epstein-Barr virus- or human T-cell leukemia virus type 1-transformed cells through induction of BIC expression. J Virol 2011; 85:8328-37. [PMID: 21680528 DOI: 10.1128/jvi.00570-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
miR-155, processed from the B-cell integration cluster (BIC), is one of the few well-studied microRNAs (miRNAs) and is involved in both innate immunity and tumorigenesis. BIC/miR-155 is induced by distinct signaling pathways, but little is known about the underlying mechanisms. We have identified two conserved potential interferon (IFN) regulatory factor (IRF)-binding/interferon-stimulated response element motifs in the Bic gene promoter. Two oncogenic IRFs, IRF4 and -7, in addition to some other members of the family, bind to and significantly transactivate the Bic promoter. Correspondingly, the endogenous levels of IRF4 and -7 are correlated with that of the BIC transcript in Epstein-Barr virus (EBV)-transformed cells. However, RNA interference studies have shown that depletion of IRF4, rather than of IRF7, dramatically decreases the endogenous level of BIC by up to 70% in EBV- or human T-cell leukemia virus type 1 (HTLV1)-transformed cell lines and results in apoptosis and reduction of proliferation rates that are restored by transient expression of miR-155. Moreover, the endogenous levels of the miR-155 target, SHIP1, are consistently elevated in EBV- and HTLV1-transformed cell lines stably expressing shIRF4. In contrast, transient expression of IRF4 decreases the SHIP1 level in EBV-negative B cells. Furthermore, the level of IRF4 mRNA is significantly correlated with that of BIC in adult T-cell lymphoma/leukemia (ATLL) tumors. These results show that IRF4 plays an important role in the regulation of BIC in the context of EBV and HTLV1 infection. Our findings have identified Bic as the first miRNA-encoding gene for IRFs and provide evidence for a novel molecular mechanism underlying the IRF/BIC pathway in viral oncogenesis.
Collapse
|
858
|
Quinn SR, O'Neill LA. A trio of microRNAs that control Toll-like receptor signalling. Int Immunol 2011; 23:421-5. [PMID: 21652514 DOI: 10.1093/intimm/dxr034] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) in the host recognize conserved microbial products and defend against pathogenic attack by initiating an immune response via signalling pathways that lead to an increase in immune and inflammatory gene expression. TLR signalling must be stringently regulated in order to ensure sufficient clearance of pathogens and a timely return to homeostasis after infection. MicroRNAs (miRNAs) are a newly discovered class of gene regulators which bind to the 3' untranslated region of target mRNA and direct their post-transcriptional repression. They are global regulators potentially controlling up to 30% of the human genome. Several miRNAs have been shown to be up-regulated in response to TLR ligands, and many directly target components of the TLR signalling system, revealing a whole extra level of control of TLR signalling which is being extensively researched. The dysregulation of miRNAs may be involved in many inflammatory diseases and cancers and thus merits further investigation. In this review, we focus in on a trio of miRNA which have proven to be key in many immune and inflammatory pathways; miR-155, miR-21 and miR-146.
Collapse
Affiliation(s)
- Susan R Quinn
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland.
| | | |
Collapse
|
859
|
van Loo G, Beyaert R. Negative regulation of NF-κB and its involvement in rheumatoid arthritis. Arthritis Res Ther 2011; 13:221. [PMID: 21639951 PMCID: PMC3218875 DOI: 10.1186/ar3324] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcription factor NF-κB plays crucial roles in the regulation of inflammation and mmune responses, and inappropriate NF-κB activity has been linked with many autoimmune and inflammatory diseases, including rheumatoid arthritis. Cells employ a multilayered control system to keep NF-κB signalling in check, including a repertoire of negative feedback regulators ensuring termination of NF-κB responses. Here we will review various negative regulatory mechanisms that have evolved to control NF-κB signalling and which have been implicated in the pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
- Geert van Loo
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium.
| | | |
Collapse
|
860
|
Hennessy EJ, Sheedy FJ, Santamaria D, Barbacid M, O'Neill LAJ. Toll-like receptor-4 (TLR4) down-regulates microRNA-107, increasing macrophage adhesion via cyclin-dependent kinase 6. J Biol Chem 2011; 286:25531-9. [PMID: 21628465 DOI: 10.1074/jbc.m111.256206] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptors (TLRs) modulate the expression of multiple microRNAs (miRNAs). Here, we report the down-regulation of miR-107 by TLR4 in multiple cell types. The miR-107 sequence occurs in an intron within the sequence encoding the gene for pantothenate kinase 1α (PanK1α), which is regulated by the transcription factor peroxisome proliferator-activating receptor α (PPAR-α). PanK1α is also decreased in response to lipopolysaccharide (LPS). The effect on both miR-107 and PanK1α is consistent with a decrease in PPAR-α expression. We have found that the putative miR-107 target cyclin-dependent kinase 6 (CDK6) expression is increased by TLR4 as a result of the decrease in miR-107. This effect is required for increased adhesion of macrophages in response to LPS, and CDK6-deficient mice are resistant to the lethal effect of LPS. We have therefore identified a mechanism for LPS signaling which involves a decrease in miR-107 leading to an increase in CDK6.
Collapse
Affiliation(s)
- Elizabeth J Hennessy
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
861
|
Mandrekar P. Epigenetic regulation in alcoholic liver disease. World J Gastroenterol 2011; 17:2456-64. [PMID: 21633650 PMCID: PMC3103803 DOI: 10.3748/wjg.v17.i20.2456] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/02/2011] [Accepted: 03/09/2011] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is characterized by steatosis or fat deposition in the liver and inflammation, which leads to cirrhosis and hepatocellular carcinoma. Induction of target genes without involving changes in DNA sequence seems to contribute greatly to liver injury. Chromatin modifications including alterations in histones and DNA, as well as post-transcriptional changes collectively referred to as epigenetic effects are altered by alcohol. Recent studies have pointed to a significant role for epigenetic mechanisms at the nucleosomal level influencing gene expression and disease outcome in ALD. Specifically, epigenetic alterations by alcohol include histone modifications such as changes in acetylation and phosphorylation, hypomethylation of DNA, and alterations in miRNAs. These modifications can be induced by alcohol-induced oxidative stress that results in altered recruitment of transcriptional machinery and abnormal gene expression. Delineating these mechanisms in initiation and progression of ALD is becoming a major area of interest. This review summarizes key epigenetic mechanisms that are dysregulated by alcohol in the liver. Alterations by alcohol in histone and DNA modifications, enzymes related to histone acetylation such as histone acetyltransferases, histone deacetylases and sirtuins, and methylation enzymes such as DNA methyltransferases are discussed. Chromatin modifications and miRNA alterations that result in immune cell dysfunction contributing to inflammatory cytokine production in ALD is reviewed. Finally, the role of alcohol-mediated oxidative stress in epigenetic regulation in ALD is described. A better understanding of these mechanisms is crucial for designing novel epigenetic based therapies to ameliorate ALD.
Collapse
|
862
|
Graeser AC, Boesch-Saadatmandi C, Lippmann J, Wagner AE, Huebbe P, Storm N, Höppner W, Wiswedel I, Gardemann A, Minihane AM, Döring F, Rimbach G. Nrf2-dependent gene expression is affected by the proatherogenic apoE4 genotype-studies in targeted gene replacement mice. J Mol Med (Berl) 2011; 89:1027-35. [PMID: 21626108 DOI: 10.1007/s00109-011-0771-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/31/2011] [Accepted: 05/09/2011] [Indexed: 01/05/2023]
Abstract
An apoE4 genotype is an important risk factor for cardiovascular and other chronic diseases. The higher cardiovascular disease risk of apoE4 carriers as compared to the apoE3 genotype has been mainly attributed to the differences in blood lipids between the two genotype subgroups. Recently, a potential protective role of the transcription factor Nrf2 in cardiovascular disease prevention has been suggested. In this study, we show that Nrf2-dependent gene expression is affected by the apoE genotype. ApoE4 vs. apoE3 mice exhibited lower hepatic Nrf2 nuclear protein levels. Furthermore, mRNA and protein levels of Nrf2 target genes including glutathione-S-transferase, heme oxygenase-1 and NAD(P)H dehydrogenase, quinone 1 were significantly lower in apoE4 as compared to apoE3 mice. Lower hepatic mRNA levels of phase II enzymes, as observed in apoE4 vs. apoE3 mice, were accompanied by higher mRNA levels of phase I enzymes including Cyp26a1 and Cyp3a16. Furthermore, miRNA-144, miRNA-125b, and miRNA-29a involved in Nrf2 signaling, inflammation, and regulation of phase I enzyme gene expression were affected by the apoE genotype. We provide first evidence that Nrf2 is differentially regulated in response to the apoE genotype.
Collapse
Affiliation(s)
- Anne-Christin Graeser
- Institute of Human Nutrition and Food Science, Department of Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
863
|
Guan Y, Yao H, Zheng Z, Qiu G, Sun K. MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer 2011; 128:2274-83. [PMID: 20658525 DOI: 10.1002/ijc.25575] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Micro-RNAs (miRNAs) important for post-transcriptional gene expression as negative regulators are endogenous 21- to 23-nucleotide noncoding RNAs. Many miRNAs are expressed in ovarian cancer (OC). In this study, we reported that miR-125b was underexpressed in human OC specimens. Ectopic expression of miR-125b in OC cells induced cell cycle arrest and led to reduction in proliferation and clonal formation. This inhibitory effect on OC cell growth was mediated by miR-125b inhibition of the translation of an mRNA encoding a proto-oncogene, BCL3. Furthermore, expression of miR-125b suppressed the tumor formation generated by injecting OC cells in nude mice. Our results suggest that aberrantly expressed miR-125b may contribute to OC development.
Collapse
Affiliation(s)
- Yi Guan
- Department of Medical Genetics, China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
864
|
McCall CE, El Gazzar M, Liu T, Vachharajani V, Yoza B. Epigenetics, bioenergetics, and microRNA coordinate gene-specific reprogramming during acute systemic inflammation. J Leukoc Biol 2011; 90:439-46. [PMID: 21610199 DOI: 10.1189/jlb.0211075] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute systemic inflammation from infectious and noninfectious etiologies has stereotypic features that progress through an initiation (proinflammatory) phase, an adaptive (anti-inflammatory) phase, and a resolution (restoration of homeostasis) phase. These phase-shifts are accompanied by profound and predictable changes in gene expression and metabolism. Here, we review the emerging concept that the temporal phases of acute systemic inflammation are controlled by an integrated bioenergy and epigenetic bridge that guides the timing of transcriptional and post-transcriptional processes of specific gene sets. This unifying connection depends, at least in part, on redox sensor NAD(+)-dependent deacetylase, Sirt1, and a NF-κB-dependent p65 and RelB feed-forward and gene-specific pathway that generates silent facultative heterochromatin and active euchromatin. An additional level of regulation for gene-specific reprogramming is generated by differential expression of miRNA that directly and indirectly disrupts translation of inflammatory genes. These molecular reprogramming circuits generate a dynamic chromatin landscape that temporally defines the course of acute inflammation.
Collapse
Affiliation(s)
- Charles E McCall
- Wake Forest University Medical Center, Winston Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
865
|
MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation. FEBS Lett 2011; 585:1963-8. [DOI: 10.1016/j.febslet.2011.05.029] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 12/16/2022]
|
866
|
Semaan N, Frenzel L, Alsaleh G, Suffert G, Gottenberg JE, Sibilia J, Pfeffer S, Wachsmann D. miR-346 controls release of TNF-α protein and stability of its mRNA in rheumatoid arthritis via tristetraprolin stabilization. PLoS One 2011; 6:e19827. [PMID: 21611196 PMCID: PMC3096642 DOI: 10.1371/journal.pone.0019827] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 04/05/2011] [Indexed: 01/01/2023] Open
Abstract
TNF-α is a major cytokine implicated in rheumatoid arthritis. Its expression is regulated both at the transcriptional and posttranscriptional levels and recent data demonstrated that miRNAs are implicated in TNF-α response in macrophages. LPS-activated FLS isolated from RA patients express TNF-α mRNA but not the mature protein. This prompted us to look for miRNAs which could be implicated in this anti-inflammatory effect. Using a microarray, we found two miRNAs, miR-125b and miR-939 predicted to target the 3′-UTR of TNF-α mRNA, to be up-regulated in RA FLS in response to LPS, but their repression did not restore mature TNF-α expression in FLS. We showed previously that miR-346, which is upregulated in LPS-activated FLS, inhibited Btk expression that stabilized TNF-α mRNA. Blocking miR-346 reestablished TNF-α expression in activated FLS. Interestingly, transfection of miR-346 in LPS-activated THP-1 cells inhibited TNF-α secretion. We also demonstrated that TTP, a RNA binding protein which inhibited TNF-α synthesis, is overexpressed in activated FLS and that inhibition of miR-346 decreases its expression. Conversely, transfection of miR-346 in LPS-activated THP-1 cells increased TTP mRNA expression and inhibited TNF-α release. These results indicate that miR-346 controls TNF-α synthesis by regulating TTP expression.
Collapse
Affiliation(s)
- Noha Semaan
- Laboratoire Physiopathologie des Arthrites, EA4438, Université de Strasbourg, UFR Sciences Pharmaceutiques, Illkirch, France and Departement de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg Hautepierre, France
| | - Laurent Frenzel
- Laboratoire Physiopathologie des Arthrites, EA4438, Université de Strasbourg, UFR Sciences Pharmaceutiques, Illkirch, France and Departement de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg Hautepierre, France
| | - Ghada Alsaleh
- Laboratoire Physiopathologie des Arthrites, EA4438, Université de Strasbourg, UFR Sciences Pharmaceutiques, Illkirch, France and Departement de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg Hautepierre, France
| | - Guillaume Suffert
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Jacques-Eric Gottenberg
- Laboratoire Physiopathologie des Arthrites, EA4438, Université de Strasbourg, UFR Sciences Pharmaceutiques, Illkirch, France and Departement de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg Hautepierre, France
| | - Jean Sibilia
- Laboratoire Physiopathologie des Arthrites, EA4438, Université de Strasbourg, UFR Sciences Pharmaceutiques, Illkirch, France and Departement de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg Hautepierre, France
| | - Sebastien Pfeffer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
- * E-mail: (SP); (DW)
| | - Dominique Wachsmann
- Laboratoire Physiopathologie des Arthrites, EA4438, Université de Strasbourg, UFR Sciences Pharmaceutiques, Illkirch, France and Departement de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg Hautepierre, France
- * E-mail: (SP); (DW)
| |
Collapse
|
867
|
Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc Natl Acad Sci U S A 2011; 108:9250-5. [PMID: 21576469 DOI: 10.1073/pnas.1105469108] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The obligate endosymbiont Wolbachia pipientis is found in a wide range of invertebrates where they are best known for manipulating host reproduction. Recent studies have shown that Wolbachia also can modulate the lifespan of host insects and interfere with the development of human pathogens in mosquito vectors. Despite considerable study, very little is known about the molecular interactions between Wolbachia and its hosts that might mediate these effects. Using microarrays, we show that the microRNA (miRNA) profile of the mosquito, Aedes aegypti, is significantly altered by the wMelPop-CLA strain of W. pipientis. We found that a host miRNA (aae-miR-2940) is induced after Wolbachia infection in both mosquitoes and cell lines. One target of aae-miR-2940 is the Ae. aegypti metalloprotease gene. Interestingly, expression of the target gene was induced after Wolbachia infection, ectopic expression of the miRNA independent of Wolbachia, or transfection of an artificial mimic of the miRNA into mosquito cells. We also confirmed the interaction of aae-miR-2940 with the target sequences using GFP as a reporter gene. Silencing of the metalloprotease gene in both Wolbachia-infected cells and adult mosquitoes led to a significant reduction in Wolbachia density, as did inhibition of the miRNA in cells. These results indicate that manipulation of the mosquito metalloprotease gene via aae-miR-2940 is crucial for efficient maintenance of the endosymbiont. This report shows how Wolbachia alters the host miRNA profile and provides insight into the mechanisms of host manipulation used by this widespread endosymbiont.
Collapse
|
868
|
Iliopoulos D, Kavousanaki M, Ioannou M, Boumpas D, Verginis P. The negative costimulatory molecule PD-1 modulates the balance between immunity and tolerance via miR-21. Eur J Immunol 2011; 41:1754-63. [PMID: 21469086 DOI: 10.1002/eji.201040646] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 01/29/2011] [Accepted: 03/10/2011] [Indexed: 12/28/2022]
Abstract
Disruption of the programmed death-1 (PD-1) pathway leads to breakdown of peripheral tolerance and initiation of autoimmunity. The molecular pathways that mediate this effect remain largely unknown. We report here that PD-1 knockout (PD-1(-/-) ) mice develop more severe and sustained Ag-induced arthritis (AIA) than WT animals, which is associated with increased T-cell proliferation and elevated levels of IFN-γ and IL-17 secretion. MicroRNA analysis of Ag-specific CD4(+) T cells revealed a significant upregulation of microRNA 21 (miR-21) in PD-1(-/-) T cells compared with WT controls. In addition, PD-1 inhibition, via siRNA, upregulated miR-21 expression and enhanced STAT5 binding in the miR-21 promoter area. Computational analysis confirmed that miR-21 targets directly the expression of programmed cell death 4 (PDCD4) and overexpression of miR-21 in cells harboring the 3'UTR of PDCD4 resulted in reduced transcription and PDCD4 protein expression. Importantly, in vitro delivery of antisense-miR-21 suppressed the Ag-specific proliferation and cytokine secretion by PD-1(-/-) T cells, whereas adoptive transfer of Ag-specific T cells, overexpressing miR-21, induced severe AIA. Collectively, our data demonstrate that breakdown of tolerance in PD-1(-/-) mice activates a signaling cascade mediated by STAT5, miR-21, and PDCD4 and establish their role in maintaining the balance between immune activation and tolerance.
Collapse
Affiliation(s)
- Dimitrios Iliopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
869
|
Mor E, Cabilly Y, Goldshmit Y, Zalts H, Modai S, Edry L, Elroy-Stein O, Shomron N. Species-specific microRNA roles elucidated following astrocyte activation. Nucleic Acids Res 2011; 39:3710-23. [PMID: 21247879 PMCID: PMC3089466 DOI: 10.1093/nar/gkq1325] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 11/14/2010] [Accepted: 11/14/2010] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play a central role in regulation of gene expression by binding to target genes. Many miRNAs were associated with the function of the central nervous system (CNS) in health and disease. Astrocytes are the CNS most abundant glia cells, providing support by maintaining homeostasis and by regulating neuronal signaling, survival and synaptic plasticity. Astrocytes play a key role in repair of brain insults, as part of local immune reactivity triggered by inflammatory or pathological conditions. Thus, astrocyte activation, or astrogliosis, is an important outcome of the innate immune response, which can be elicited by endotoxins such as lipopolysaccharide (LPS) and cytokines such as interferon-gamma (IFN-γ). The involvement of miRNAs in inflammation and stress led us to hypothesize that astrogliosis is mediated by miRNA function. In this study, we compared the miRNA regulatory layer expressed in primary cultured astrocyte derived from rodents (mice) and primates (marmosets) brains upon exposure to LPS and IFN-γ. We identified subsets of differentially expressed miRNAs some of which are shared with other immunological related systems while others, surprisingly, are mouse and rat specific. Of interest, these specific miRNAs regulate genes involved in the tumor necrosis factor-alpha (TNF-α) signaling pathway, indicating a miRNA-based species-specific regulation. Our data suggests that miRNA function is more significant in the mechanisms governing astrocyte activation in rodents compared to primates.
Collapse
Affiliation(s)
- Eyal Mor
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Yuval Cabilly
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Yona Goldshmit
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Harel Zalts
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Shira Modai
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Liat Edry
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Orna Elroy-Stein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
870
|
Upregulation of MiR-155 in nasopharyngeal carcinoma is partly driven by LMP1 and LMP2A and downregulates a negative prognostic marker JMJD1A. PLoS One 2011; 6:e19137. [PMID: 21541331 PMCID: PMC3082546 DOI: 10.1371/journal.pone.0019137] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/17/2011] [Indexed: 11/20/2022] Open
Abstract
The role of microRNA-155 (miR-155) has been associated with oncogenesis of several human tumors. However the expression pattern of miR-155 has not been investigated in nasopharyngeal carcinoma (NPC). The present study was to assess miR-155 expression pattern and its possible function in NPC, to identify its targets and evaluate their clinical applications in NPC. MiR-155 was found to be upregulated in two Epstein-Barr virus (EBV) negative NPC derived cell lines CNE1 and TW03, as well as in NPC clinical samples by quantitative Real-time PCR and in situ hybridization detection. EBV encoded LMP1 and LMP2A could further enhance the expression of miR-155 in NPC CNE1 and TW03 cells. JMJD1A and BACH1 were identified as putative targets of miR-155 in a bioinformatics screen. Overexpression of miR-155 downregulated a luciferase transcript fused to the 3′UTR of JMJD1A and BACH1. MiR-155 mimic could downregulate the expression of JMJD1A and BACH1, while miR-155 inhibitor could upregulate JMJD1A expression in NPC cell lines. Moreover, downregulation of JMJD1A was significantly correlated with N stage in TNM classification (p = 0.023), a lower five-year survival rate (p = 0.021), and a lower five-year disease-free survival rate (p = 0.049) of NPC patients. Taken together, up-regulation of miR-155 in NPC is partly driven by LMP1 and LMP2A, and results in downregulation of JMJD1A, which is associated with N stage and poor prognosis of NPC patients. The potential of miR-155 and JMJD1A as therapeutic targets in NPC should be further investigated.
Collapse
|
871
|
Ma X, Becker Buscaglia LE, Barker JR, Li Y. MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 2011; 3:159-66. [PMID: 21502305 DOI: 10.1093/jmcb/mjr007] [Citation(s) in RCA: 493] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor κB (NF-κB) is a transcriptional factor that regulates a battery of genes that are critical to innate and adaptive immunity, cell proliferation, inflammation, and tumor development. MicroRNAs (miRNAs) are short RNA molecules of 20-25 nucleotides in length that negatively regulate gene expression in animals and plants primarily by targeting 3' untranslated regions of mRNAs. In this work, we review the convergence of miRNAs and NF-κB signaling and dysregulation of miRNAs and NF-κB activation in human diseases, particularly in cancer. The function of miR-146, miR-155, miR-181b, miR-21, and miR-301a in NF-κB activation and their impact on tumorigenesis are discussed. Given that over 1000 human miRNAs have been identified, rendering miRNAs one of the most abundant classes of regulatory molecules, deciphering their biological function and pathological contribution in NF-κB dysregulation is essential to appreciate the complexity of immune systems and to develop therapeutics against cancer.
Collapse
Affiliation(s)
- Xiaodong Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
872
|
Abstract
While miRNAs are increasingly linked to various immune responses, whether they can be targeted for regulating in vivo inflammatory processes such as endotoxin-induced Gram-negative sepsis is not known. Production of cytokines by the dendritic cells (DCs) plays a critical role in response to endotoxin, lipopolysaccharide (LPS). We profiled the miRNA and mRNA of CD11c⁺ DCs in an unbiased manner and found that at baseline, miR-142-3p was among the most highly expressed endogenous miRs while IL-6 was among the most highly expressed mRNA after LPS stimulation. Multiple computational algorithms predicted the IL-6 3' untranslated region (UTR) to be a target of miR-142-3p. Studies using luciferase reporters carrying wild-type (WT) and mutant IL-6 3'UTR confirmed IL-6 as a target for miR-142-3p. In vitro knockdown and overexpression studies demonstrated a critical and specific role for miR142-3p in regulating IL-6 production by the DCs after LPS stimulation. Importantly, treatment of only WT but not the IL-6-deficient (IL-6(⁻/⁻)) mice with locked nucleic acid (LNA)-modified phosphorothioate oligonucleotide complementary to miR 142-3p reduced endotoxin-induced mortality. These results demonstrate a critical role for miR-142-3p in regulating DC responses to LPS and provide proof of concept for targeting miRs as a novel strategy for treatment of endotoxin-induced mortality.
Collapse
|
873
|
Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J 2011; 30:1977-89. [PMID: 21468030 DOI: 10.1038/emboj.2011.94] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 03/04/2011] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs have well-established roles in eukaryotic host responses to viruses and extracellular bacterial pathogens. In contrast, microRNA responses to invasive bacteria have remained unknown. Here, we report cell type-dependent microRNA regulations upon infection of mammalian cells with the enteroinvasive pathogen, Salmonella Typhimurium. Murine macrophages strongly upregulate NF-κB associated microRNAs; strikingly, these regulations which are induced by bacterial lipopolysaccharide (LPS) occur and persist regardless of successful host invasion and/or replication, or whether an inflammatory response is mounted, suggesting that microRNAs belong to the first line of anti-bacterial defence. However, a suppression of the global immune regulator miR-155 in endotoxin-tolerant macrophages revealed that microRNA responses also depend on the status of infected cells. This study identifies the let-7 family as the common denominator of Salmonella-regulated microRNAs in macrophages and epithelial cells, and suggests that repression of let-7 relieves cytokine IL-6 and IL-10 mRNAs from negative post-transcriptional control. Our results establish a paradigm of microRNA-mediated feed-forward activation of inflammatory factors when mammalian cells are targeted by bacterial pathogens.
Collapse
|
874
|
Zhou T, Garcia JG, Zhang W. Integrating microRNAs into a system biology approach to acute lung injury. Transl Res 2011; 157:180-90. [PMID: 21420028 PMCID: PMC3073780 DOI: 10.1016/j.trsl.2011.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/15/2011] [Accepted: 01/18/2011] [Indexed: 01/02/2023]
Abstract
Acute lung injury (ALI), including the ventilator-induced lung injury (VILI) and the more severe acute respiratory distress syndrome (ARDS), are common and complex inflammatory lung diseases potentially affected by various genetic and nongenetic factors. Using the candidate gene approach, genetic variants associated with immune response and inflammatory pathways have been identified and implicated in ALI. Because gene expression is an intermediate phenotype that resides between the DNA sequence variation and the higher level cellular or whole-body phenotypes, the illustration of gene expression regulatory networks potentially could enhance understanding of disease susceptibility and the development of inflammatory lung syndromes. MicroRNAs (miRNAs) have emerged as a novel class of gene regulators that play critical roles in complex diseases including ALI. Comparisons of global miRNA profiles in animal models of ALI and VILI identified several miRNAs (eg, miR-146a and miR-155) previously implicated in immune response and inflammatory pathways. Therefore, via regulation of target genes in these biological processes and pathways, miRNAs potentially contribute to the development of ALI. Although this line of inquiry exists at a nascent stage, miRNAs have the potential to be critical components of a comprehensive model for inflammatory lung disease built by a systems biology approach that integrates genetic, genomic, proteomic, epigenetic as well as environmental stimuli information. Given their particularly recognized role in regulation of immune and inflammatory responses, miRNAs also serve as novel therapeutic targets and biomarkers for ALI/ARDS or VILI, thus facilitating the realization of personalized medicine for individuals with acute inflammatory lung disease.
Collapse
Affiliation(s)
- Tong Zhou
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joe G.N. Garcia
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wei Zhang
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Human Genetics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
875
|
Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 2011; 157:163-79. [PMID: 21420027 PMCID: PMC3072681 DOI: 10.1016/j.trsl.2011.01.007] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are newly discovered, small, noncoding ribonucleic acids (RNAs) that play critical roles in the regulation of host genome expression at the posttranscriptional level. During last 20 years, miRNAs have emerged as key regulators of various biological processes including immune cell lineage commitment, differentiation, maturation, and maintenance of immune homeostasis and normal function. Thus, it is not surprising that dysregulated miRNA expression patterns now have been documented in a broad range of diseases including cancer as well as inflammatory and autoimmune diseases. This rapidly emerging field has revolutionized our understanding of normal immunoregulation and breakdown of self-tolerance. This review focuses on the current understanding of miRNA biogenesis, the role of miRNAs in the regulation of innate and adaptive immunity, and the association of miRNAs with autoimmune diseases. We have discussed miRNA dysregulation and the potential role of miRNAs in systemic lupus erythematosus (SLE), rheumatoid arthritis, and multiple sclerosis. Given that most autoimmune diseases are female-predominant, we also have discussed sex hormone regulation of miRNAs in inflammatory responses, with an emphasis on estrogen, which now has been shown to regulate miRNAs in the immune system. The field of miRNA regulation of mammalian genes has tremendous potential. The identification of specific miRNA expression patterns in autoimmune diseases as well as a comprehensive understanding of the role of miRNA in disease pathogenesis offers promise of not only novel molecular diagnostic markers but also new gene therapy strategies for treating SLE and other inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Rujuan Dai
- Center for Molecular Medicine and Infectious Diseases (CMMID), Department of Biomedical Sciences and Pathology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - S. Ansar Ahmed
- Center for Molecular Medicine and Infectious Diseases (CMMID), Department of Biomedical Sciences and Pathology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
876
|
Gantier MP, McCoy CE, Rusinova I, Saulep D, Wang D, Xu D, Irving AT, Behlke MA, Hertzog PJ, Mackay F, Williams BRG. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res 2011; 39:5692-703. [PMID: 21447562 PMCID: PMC3141258 DOI: 10.1093/nar/gkr148] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although microRNAs (miRNAs) are key regulators of gene expression, little is known of their overall persistence in the cell following processing. Characterization of such persistence is key to the full appreciation of their regulatory roles. Accordingly, we measured miRNA decay rates in mouse embryonic fibroblasts following loss of Dicer1 enzymatic activity. The results confirm the inherent stability of miRNAs, the intracellular levels of which were mostly affected by cell division. Using the decay rates of a panel of six miRNAs representative of the global trend of miRNA decay, we establish a mathematical model of miRNA turnover and determine an average miRNA half-life of 119 h (i.e. ∼5 days). In addition, we demonstrate that select miRNAs turnover more rapidly than others. This study constitutes, to our knowledge, the first in-depth characterization of miRNA decay in mammalian cells. Our findings indicate that miRNAs are up to 10× more stable than messenger RNA and support the existence of novel mechanism(s) controlling selective miRNA cellular concentration and function.
Collapse
Affiliation(s)
- Michael P Gantier
- Centre for Cancer Research, Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
877
|
Junker A. Pathophysiology of translational regulation by microRNAs in multiple sclerosis. FEBS Lett 2011; 585:3738-46. [PMID: 21453702 DOI: 10.1016/j.febslet.2011.03.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/24/2011] [Accepted: 03/24/2011] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) comprise a group of several hundred, small non-coding RNA molecules with a fundamental influence on the regulation of gene expression. Certain miRNAs are altered in blood cells of multiple sclerosis (MS), and active and inactive MS brain lesions have distinct miRNA expression profiles. Several miRNAs such as miR-155 or miR-326 are considerably overexpressed in active MS lesions versus controls, and mice lacking these miRNAs either through knock-out (miR-155) or by in vivo silencing (miR-326) show a reduction of symptoms in experimental autoimmune encephalomyelitis (EAE), a model system for multiple sclerosis. This review describes miRNAs regulated in the blood or in brain lesions of MS patients in the context of their previously described functions in physiology and pathophysiology.
Collapse
Affiliation(s)
- Andreas Junker
- Department of Neuropathology, University Medical Center, Georg August University, Göttingen, Germany.
| |
Collapse
|
878
|
Zhang Y, Yan LX, Wu QN, Du ZM, Chen J, Liao DZ, Huang MY, Hou JH, Wu QL, Zeng MS, Huang WL, Zeng YX, Shao JY. miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer Res 2011; 71:3552-62. [PMID: 21444677 DOI: 10.1158/0008-5472.can-10-2435] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The microRNA miR-125b is dysregulated in various human cancers but its underlying mechanisms of action are poorly understood. Here, we report that miR-125b is downregulated in invasive breast cancers where it predicts poor patient survival. Hypermethylation of the miR-125b promoter partially accounted for reduction of miR-125b expression in human breast cancer. Ectopic restoration of miR-125b expression in breast cancer cells suppressed proliferation, induced G(1) cell-cycle arrest in vitro, and inhibited tumorigenesis in vivo. We identified the ETS1 gene as a novel direct target of miR-125b. siRNA-mediated ETS1 knockdown phenocopied the effect of miR-125b in breast cell lines and ETS1 overexpression in invasive breast cancer tissues also correlated with poor patient prognosis. Taken together, our findings point to an important role for miR-125b in the molecular etiology of invasive breast cancer, and they suggest miR-125b as a potential theranostic tool in this disease.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Oncology in Southern China, and Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
879
|
Liu Q, Zhang M, Jiang X, Zhang Z, Dai L, Min S, Wu X, He Q, Liu J, Zhang Y, Zhang Z, Yang R. miR-223 suppresses differentiation of tumor-induced CD11b⁺ Gr1⁺ myeloid-derived suppressor cells from bone marrow cells. Int J Cancer 2011; 129:2662-73. [PMID: 21213211 DOI: 10.1002/ijc.25921] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 12/16/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022]
Abstract
Tumor-associated factors are related to increased accumulation of CD11b(+) Gr1(+) myeloid-derived suppressor cells (MDSCs). However, the exact mechanism of how genetic factors control the expansion of MDSCs in tumor-bearing hosts remains elusive. Herein, we found that tumor-associated MDSCs and their subsets, mononuclear MDSCs and polymorphonuclear MDSCs, have decreased expression of miR-223 when compared to CD11b(+) Gr1(+) cells from the spleen of disease-free mice. With the differentiation of CD11b(+) Gr1(+) MDSCs from bone marrow cells (BMCs) upon exposure to tumor-associated factors, the expression of both pri-miR-223 and mature miR-223 was downregulated, indicating that the expression of miR-223 could be regulated by tumor-associated factors. Interestingly, miR-223 remarkably inhibits differentiation of BMCs into CD11b(+) Gr1(+) MDSCs in the presence of tumor-associated factors by targeting myocyte enhancer factor 2C (MEF2C). Using reconstituted s.c. tumor models, miR-223 also suppresses accumulation of CD11b(+) Gr1(+) MDSCs, whereas its targeting molecule MEF2C increases the number of MDSCs. Tumor growth is slower in mice infused by miR223-engineered BMCs than in mice infused with control transfected BMCs. As miR-223 and its target molecule MEF2C are highly conserved between mice and humans, the modulation of miR-223 in tumor-induced CD11b(+) Gr1(+) MDSCs may exert an important role in controlling the increased accumulation of CD11b(+) Gr1(+) MDSCs in patients with tumor.
Collapse
Affiliation(s)
- Qiaofei Liu
- Key Laboratory of Bioactive Materials, Department of Immunology, Ministry of Education, Nankai University School of Medicine, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
880
|
Tili E, Michaille JJ, Wernicke D, Alder H, Costinean S, Volinia S, Croce CM. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci U S A 2011; 108:4908-4913. [PMID: 21383199 PMCID: PMC3064319 DOI: 10.1073/pnas.1101795108] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Infection-driven inflammation has been implicated in the pathogenesis of ~15-20% of human tumors. Expression of microRNA-155 (miR-155) is elevated during innate immune response and autoimmune disorders as well as in various malignancies. However, the molecular mechanisms providing miR-155 with its oncogenic properties remain unclear. We examined the effects of miR-155 overexpression and proinflammatory environment on the frequency of spontaneous hypoxanthine phosphoribosyltransferase (HPRT) mutations that can be detected based on the resistance to 6-thioguanine. Both miR-155 overexpression and inflammatory environment increased the frequency of HPRT mutations and down-regulated WEE1 (WEE1 homolog-S. pombe), a kinase that blocks cell-cycle progression. The increased frequency of HPRT mutation was only modestly attributable to defects in mismatch repair machinery. This result suggests that miR-155 enhances the mutation rate by simultaneously targeting different genes that suppress mutations and decreasing the efficiency of DNA safeguard mechanisms by targeting of cell-cycle regulators such as WEE1. By simultaneously targeting tumor suppressor genes and inducing a mutator phenotype, miR-155 may allow the selection of gene alterations required for tumor development and progression. Hence, we anticipate that the development of drugs reducing endogenous miR-155 levels might be key in the treatment of inflammation-related cancers.
Collapse
Affiliation(s)
- Esmerina Tili
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210; and
| | - Jean-Jacques Michaille
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210; and
- Laboratoire de Biochimie Métabolique et Nutritionelle-Institut National de la Santé et de la Recherche Médicale U866, Faculté Gabriel, Université de Bourgogne, 21000 Dijon, France
| | - Dorothee Wernicke
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210; and
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210; and
| | - Stefan Costinean
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210; and
| | - Stefano Volinia
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210; and
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, OH 43210; and
| |
Collapse
|
881
|
Micro-RNA Expression and Function in Lymphomas. Adv Hematol 2011; 2011:347137. [PMID: 21461378 PMCID: PMC3063410 DOI: 10.1155/2011/347137] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/27/2010] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
The recent discovery of microRNAs (miRNAs) has introduced a new layer of complexity to the process of gene regulation. MiRNAs are essential for cellular function, and their dysregulation often results in disease. Study of miRNA expression and function in animal models and human lymphomas has improved our knowledge of the pathogenesis of this heterogeneous disease. In this paper, we attempt to describe the expression of miRNAs and their function in lymphomas and discuss potential miRNA-based therapies in the diagnosis and treatment of lymphomas.
Collapse
|
882
|
Differential microRNA expression in experimental cerebral and noncerebral malaria. Infect Immun 2011; 79:2379-84. [PMID: 21422175 DOI: 10.1128/iai.01136-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are posttranscriptional regulatory molecules that have been implicated in the regulation of immune responses, but their role in the immune response to Plasmodium infection is unknown. We studied the expression of selected miRNAs following infection of CBA mice with Plasmodium berghei ANKA (PbA), which causes cerebral malaria (CM), or Plasmodium berghei K173 (PbK), which causes severe malaria but without cerebral complications, termed non-CM. The differential expression profiles of selected miRNAs (let-7i, miR-27a, miR-150, miR-126, miR-210, and miR-155) were analyzed in mouse brain and heart tissue by quantitative reverse transcription-PCR (qRT-PCR). We identified three miRNAs that were differentially expressed in the brain of PbA-infected CBA mice: let7i, miR-27a, and miR-150. In contrast, no miRNA changes were detected in the heart, an organ with no known pathology during acute malaria. To investigate the involvement of let-7i, miR-27a, and miR-150 in CM-resistant mice, we assessed the expression levels in gamma interferon knockout (IFN-γ(-/-)) mice on a C57BL/6 genetic background. The expression of let-7i, miR-27a, and miR-150 was unchanged in both wild-type (WT) and IFN-γ(-/-) mice following infection. Overexpression of these three miRNAs during PbA, but not PbK, infection in WT mice may be critical for the triggering of the neurological syndrome via regulation of their potential downstream targets. Our data suggest that in the CBA mouse at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.
Collapse
|
883
|
Zhang M, Liu Q, Mi S, Liang X, Zhang Z, Su X, Liu J, Chen Y, Wang M, Zhang Y, Guo F, Zhang Z, Yang R. Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. THE JOURNAL OF IMMUNOLOGY 2011; 186:4716-24. [PMID: 21383238 DOI: 10.4049/jimmunol.1002989] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) were one of the major components of the immune suppressive network. STAT3 has an important role in regulating the suppressive potential of MDSCs. In this study, we found that the expression of STAT3 could be modulated by both miR-17-5p and miR-20a. The transfection of miR-17-5p or miR-20a remarkably reduces the expression of reactive oxygen species and the production of H(2)O(2), which are regulated by STAT3. MDSCs transfected with miR-17-5p or miR-20a are less able to suppress Ag-specific CD4 and CD8 T cells. Importantly, both miR-17-5p and miR-20a alleviate the suppressive function of MDSCs in vivo. The expression of miR-17-5p and miR-20a in tumor-associated MDSCs was found to be lower than in Gr1(+)CD11b(+) cells isolated from the spleens of disease-free mice. Tumor-associated factor downregulates the expression of both miR-17-5p and miR-20a. The modulation of miR-17-5p and miR-20a expression may be important for the process by which patients with a tumor can overcome the immune tolerance mediated by MDSCs. Our results suggest that miR-17-5p and miR-20a could potentially be used for immunotherapy against diseases, especially cancer, by blocking STAT3 expression.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
884
|
Biton M, Levin A, Slyper M, Alkalay I, Horwitz E, Mor H, Kredo-Russo S, Avnit-Sagi T, Cojocaru G, Zreik F, Bentwich Z, Poy MN, Artis D, Walker MD, Hornstein E, Pikarsky E, Ben-Neriah Y. Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk. Nat Immunol 2011; 12:239-246. [PMID: 21278735 DOI: 10.1038/ni.1994] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/10/2011] [Indexed: 12/12/2022]
Abstract
Colonic homeostasis entails epithelium-lymphocyte cooperation, yet many participants in this process are unknown. We show here that epithelial microRNAs mediate the mucosa-immune system crosstalk necessary for mounting protective T helper type 2 (T(H)2) responses. Abolishing the induction of microRNA by gut-specific deletion of Dicer1 (Dicer1(Δgut)), which encodes an enzyme involved in microRNA biogenesis, deprived goblet cells of RELMβ, a key T(H)2 antiparasitic cytokine; this predisposed the host to parasite infection. Infection of Dicer1(Δgut) mice with helminths favored a futile T(H)1 response with hallmarks of inflammatory bowel disease. Interleukin 13 (IL-13) induced the microRNA miR-375, which regulates the expression of TSLP, a T(H)2-facilitating epithelial cytokine; this indicated a T(H)2-amplification loop. We found that miR-375 was required for RELMβ expression in vivo; miR-375-deficient mice had significantly less intestinal RELMβ, which possibly explains the greater susceptibility of Dicer1(Δgut) mice to parasites. Our findings indicate that epithelial microRNAs are key regulators of gut homeostasis and mucosal immunity.
Collapse
Affiliation(s)
- Moshe Biton
- Lautenberg Center for Immunology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
885
|
Kanwar JR, Mahidhara G, Kanwar RK. Antiangiogenic therapy using nanotechnological-based delivery system. Drug Discov Today 2011; 16:188-202. [DOI: 10.1016/j.drudis.2011.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 11/19/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
|
886
|
Ha TY. The Role of MicroRNAs in Regulatory T Cells and in the Immune Response. Immune Netw 2011; 11:11-41. [PMID: 21494372 PMCID: PMC3072673 DOI: 10.4110/in.2011.11.1.11] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 01/25/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022] Open
Abstract
The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA.
Collapse
Affiliation(s)
- Tai-You Ha
- Department of Immunology, Chonbuk National University Medical School, Chonju, Chonbuk 561-180, Korea
| |
Collapse
|
887
|
O'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011; 11:163-75. [DOI: 10.1038/nri2957] [Citation(s) in RCA: 680] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
888
|
Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Krueger T, Lange M, Tönjes M, Dunkel I, Sperling SR. The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet 2011; 7:e1001313. [PMID: 21379568 PMCID: PMC3040678 DOI: 10.1371/journal.pgen.1001313] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 01/18/2011] [Indexed: 12/15/2022] Open
Abstract
The transcriptome, as the pool of all transcribed elements in a given cell, is regulated by the interaction between different molecular levels, involving epigenetic, transcriptional, and post-transcriptional mechanisms. However, many previous studies investigated each of these levels individually, and little is known about their interdependency. We present a systems biology study integrating mRNA profiles with DNA–binding events of key cardiac transcription factors (Gata4, Mef2a, Nkx2.5, and Srf), activating histone modifications (H3ac, H4ac, H3K4me2, and H3K4me3), and microRNA profiles obtained in wild-type and RNAi–mediated knockdown. Finally, we confirmed conclusions primarily obtained in cardiomyocyte cell culture in a time-course of cardiac maturation in mouse around birth. We provide insights into the combinatorial regulation by cardiac transcription factors and show that they can partially compensate each other's function. Genes regulated by multiple transcription factors are less likely differentially expressed in RNAi knockdown of one respective factor. In addition to the analysis of the individual transcription factors, we found that histone 3 acetylation correlates with Srf- and Gata4-dependent gene expression and is complementarily reduced in cardiac Srf knockdown. Further, we found that altered microRNA expression in Srf knockdown potentially explains up to 45% of indirect mRNA targets. Considering all three levels of regulation, we present an Srf-centered transcription network providing on a single-gene level insights into the regulatory circuits establishing respective mRNA profiles. In summary, we show the combinatorial contribution of four DNA–binding transcription factors in regulating the cardiac transcriptome and provide evidence that histone modifications and microRNAs modulate their functional consequence. This opens a new perspective to understand heart development and the complexity cardiovascular disorders. An evolutionary conserved orchestra of transcription factors controls cardiac development and function. More recently the contributions of epigenetic and post-transcriptional mechanisms like histone modifications and microRNAs have been identified. The interplay between these regulatory mechanisms is still an open question. However, perturbations of the cardiac transcriptome, triggered by all three levels of regulation, are underlying cardiovascular disease such as congenital heart malformations. Here, we show the impact of the interdependencies of four key transcription factors (Gata4, Mef2a, Nkx2.5, and Srf) and the contribution of activating histone modifications and microRNAs on the cardiac transcriptome. We found that even these non-paralogous transcription factors can partially compensate each other's function. Our data show that histone 3 acetylation correlates with Srf- and Gata4- dependent gene activation. Moreover, we predict a large proportion of indirect Srf targets to be regulated by Srf-dependent microRNAs, which thus might represent an important intermediate layer of regulation. Taken together, we suggest that the different levels regulating cardiac mRNA profiles have a high degree of interdependency and the potential to buffer each other, which presents a starting point to understand the phenotypic variability typically seen in complex cardiovascular disorders.
Collapse
Affiliation(s)
- Jenny Schlesinger
- Group Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Free University Berlin, Berlin, Germany
| | - Markus Schueler
- Group Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Marcel Grunert
- Group Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jenny J. Fischer
- Group Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Qin Zhang
- Group Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Sciences and Technology, Northwest A & F University, Yangling, China
| | - Tammo Krueger
- Group Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Lange
- Group Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martje Tönjes
- Group Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ilona Dunkel
- Group Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Silke R. Sperling
- Group Cardiovascular Genetics, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| |
Collapse
|
889
|
Niu Y, Mo D, Qin L, Wang C, Li A, Zhao X, Wang X, Xiao S, Wang Q, Xie Y, He Z, Cong P, Chen Y. Lipopolysaccharide-induced miR-1224 negatively regulates tumour necrosis factor-α gene expression by modulating Sp1. Immunology 2011; 133:8-20. [PMID: 21320120 DOI: 10.1111/j.1365-2567.2010.03374.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The innate immune response provides the initial defence mechanism against infection by other organisms. However, an excessive immune response will cause damage to host tissues. In an attempt to identify microRNAs (miRNAs) that regulate the innate immune response in inflammation and homeostasis, we examined the differential expression of miRNAs using microarray analysis in the spleens of mice injected intraperitoneally with lipopolysaccharide (LPS) and saline, respectively. Following challenge, we observed 19 miRNAs up-regulated (1.5-fold) in response to LPS. Among these miRNAs, miR-1224, whose expression level increased 5.7-fold 6 hr after LPS injection and 2.3-fold after 24 hr, was selected for further study. Tissue expression patterns showed that mouse miR-1224 is highly expressed in mouse spleen, kidney and lung. Transfection of miR-1224 mimics resulted in a decrease in basal tumour necrosis factor-α (TNF-α) promoter reporter gene activity and a down-regulation of LPS-induced TNF-α mRNA in RAW264.7 cells. With public databases of miRNA target prediction, miR-1224 was shown to bind to the 3' untranslated region (UTR) of Sp1 mRNA, whose coding product controls TNF-α expression at the transcriptional level. Furthermore, we found that in HEK-293 cells, the activity of the luciferase reporter bearing Sp1 mRNA 3' UTR was down-regulated significantly when transfected with miR-1224 mimics. After transfection of miR-1224 in RAW264.7 cells, nucleus Sp1 protein level decreased, and when endogenous miR-1224 was blocked, the decrease was abolished. Therefore, we initially speculated that miR-1224 was a negative regulator of TNF-α in an Sp1-dependent manner, which was confirmed in vivo by chromatin immunoprecipitation assay, and might be involved in regulating the LPS-mediated inflammatory responses.
Collapse
Affiliation(s)
- Yuna Niu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
890
|
Ho PC, Chang KC, Chuang YS, Wei LN. Cholesterol regulation of receptor-interacting protein 140 via microRNA-33 in inflammatory cytokine production. FASEB J 2011; 25:1758-66. [PMID: 21285396 DOI: 10.1096/fj.10-179267] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Receptor interacting protein 140 (RIP140) is a nuclear receptor coregulator that affects a wide spectrum of biological processes. It is unclear whether and how the expression level of RIP140 can be modulated and whether RIP140 is involved in inflammatory diseases. Here, we examine how intracellular cholesterol regulates RIP140 expression, and we evaluate the effect of RIP140 expression on macrophage proinflammatory potential. Macrophages treated with modified low-density lipoprotein express higher RIP140 mRNA and protein levels. Consistently, simvastatin reduces RIP140 levels, which can be reversed by mevalonate. Moreover, a high-fat diet elevates RIP140 but lowers miR-33 levels in peritoneal macrophages, and increases the production of IL-1β and TNF-α in macrophages. Mechanistically, miR-33 targets RIP140 mRNA by recognizing its target located in a highly conserved sequence of the 3'-untranslated region (3'-UTR) of RIP140 mRNA. Consequentially, miR-33 reduces RIP140 coactivator activity for NF-κB, which is supported by the reduction in NF-κB reporter activity and the inflammatory potential in macrophages. This study uncovers a cholesterol-miR-33-RIP140 regulatory pathway that modulates the proinflammatory potential in macrophages in response to an alteration in the intracellular cholesterol status, and identifies RIP140 as a direct target of miR-33 that mediates simvastatin-triggered anti-inflammation.
Collapse
Affiliation(s)
- Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, 55455-0217, USA
| | | | | | | |
Collapse
|
891
|
Abstract
A group of small non-coding RNA molecules, termed microRNAs (miRNAs), have generated considerable interest in recent years due to their central role in a growing number of biologic processes. Serving as post-transcriptional regulators of gene expression, miRNAs have also emerged as critical factors in the pathogenesis of many diseases. As a result, they show great potential as accurate diagnostic and prognostic markers, as well as viable therapeutic targets for treating disease. It has been proposed that miRNAs play a significant role in cutaneous wound repair and that aberrant miRNA expression may result in disorganized or poor healing. Specific patterns of miRNA expression have been identified in wound healing models. miRNAs are important regulators of leucocyte function and the cytokine network, and are necessary for endothelial cell migration and capillary formation. These molecules also control proliferation and differentiation of wound-specific cells and can determine extracellular matrix composition. This article reviews the evidence for miRNA regulation of inflammation, angiogenesis, fibroblast function, keratinocyte function, and apoptosis, which are essential components for effective wound repair. The future potential for improving wound healing outcomes using miRNA-based therapies is also discussed.
Collapse
|
892
|
Zhang Z, Zou J, Wang GK, Zhang JT, Huang S, Qin YW, Jing Q. Uracils at nucleotide position 9-11 are required for the rapid turnover of miR-29 family. Nucleic Acids Res 2011; 39:4387-95. [PMID: 21288881 PMCID: PMC3105410 DOI: 10.1093/nar/gkr020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are endogenous small RNA molecules that regulate gene expression. Although the biogenesis of microRNAs and their regulation have been thoroughly elucidated, the degradation of microRNAs has not been fully understood. Here by using the pulse–chase approach, we performed the direct measurement of microRNA lifespan. Five representative microRNAs demonstrated a general feature of relatively long lifespan. However, the decay dynamic varies considerably between these individual microRNAs. Mutation analysis of miR-29b sequence revealed that uracils at nucleotide position 9–11 are required for its rapid decay, in that both specific nucleotides and their position are critical. The effect of uracil-rich element on miR-29b decay dynamic occurs in duplex but not in single strand RNA. Moreover, analysis of published data on microRNA expression profile during development reveals that a substantial subset of microRNAs with the uracil-rich sequence tends to be down-regulated compared to those without the sequence. Among them, Northern blotting shows that miR-29c and fruit fly bantam possess a relatively rapid turnover rate. The effect of uracil-rich sequence on microRNA turnover depends on the sequence context. The present work indicates that microRNAs contain sequence information in the middle region besides the sequence element at both ends.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Cardiology, Changhai Hospital, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
893
|
Mao CP, He L, Tsai YC, Peng S, Kang TH, Pang X, Monie A, Hung CF, Wu TC. In vivo microRNA-155 expression influences antigen-specific T cell-mediated immune responses generated by DNA vaccination. Cell Biosci 2011; 1:3. [PMID: 21711593 PMCID: PMC3116247 DOI: 10.1186/2045-3701-1-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/18/2011] [Indexed: 11/18/2022] Open
Abstract
Background MicroRNA (miRNA) molecules are potent mediators of post-transcriptional gene silencing that are emerging to be critical in the regulation of innate and adaptive immunity. Results Here we report that miR-155--an oncogenic miRNA with important function in the mammalian immune system--is induced in dendritic cells (DCs) upon maturation and potentially attenuates their ability to activate T cells. Biolistic epidermal transfection with DNA encoding miR-155 suppressed the induction of antigen-specific T cell-mediated immunity, whereas reduction of endogenous miR-155 by a partially complementary antisense sequence reversed this effect. Because DCs represent a significant component of epidermal tissue and are among the most potent of antigen-presenting cells, the inhibitory actions of miR-155 could be mediated through this subset of cells. Conclusions These results suggest that miR-155 may repress the expression of key molecules involved in lymph node migration, antigen presentation, or T cell activation in DCs, and thus forms part of a negative regulatory pathway that dampens the generation of T cell-mediated immune responses. Modulation of miR-155 expression in epidermis therefore represents a potentially promising form of gene therapy for the control of diseases ranging from autoimmunity to cancer and viral infection.
Collapse
Affiliation(s)
- Chih-Ping Mao
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
894
|
Lu Z, Li Y, Takwi A, Li B, Zhang J, Conklin DJ, Young KH, Martin R, Li Y. miR-301a as an NF-κB activator in pancreatic cancer cells. EMBO J 2011; 30:57-67. [PMID: 21113131 PMCID: PMC3020116 DOI: 10.1038/emboj.2010.296] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/28/2010] [Indexed: 01/05/2023] Open
Abstract
NF-κB is constitutively activated in most human pancreatic adenocarcinoma, which is a deadly malignancy with a 5-year survival rate of about 5%. In this work, we investigate whether microRNAs (miRNAs) contribute to NF-κB activation in pancreatic cancer. We demonstrate that miR-301a down-regulates NF-κB-repressing factor (Nkrf) and elevates NF-κB activation. As NF-κB promotes the transcription of miR-301a, our results support a positive feedback loop as a mechanism for persistent NF-κB activation, in which miR-301a represses Nkrf to elevate NF-κB activity, which in turn promotes miR-301a transcription. Nkrf was found down-regulated and miR-301a up-regulated in human pancreatic adenocarcinoma tissues. Moreover, miR-301a inhibition or Nkrf up-regulation in pancreatic cancer cells led to reduced NF-κB target gene expression and attenuated xenograft tumour growth, indicating that miR-301a overexpression contributes to NF-κB activation. Revealing this novel mechanism of NF-κB activation by an miRNA offers new avenues for therapeutic interventions against pancreatic cancer.
Collapse
Affiliation(s)
- Zhongxin Lu
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA
| | - Yan Li
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, KY, USA
| | - Apana Takwi
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA
| | - Benhui Li
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA
| | - Jingwen Zhang
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Ken H Young
- Department of Pathology and Laboratory Medicine/Oncology, Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Robert Martin
- Department of Surgery, Division of Surgical Oncology, University of Louisville, Louisville, KY, USA
| | - Yong Li
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
895
|
Giovannini-Chami L, Grandvaux N, Zaragosi LE, Robbe-Sermesant K, Marcet B, Cardinaud B, Coraux C, Berthiaume Y, Waldmann R, Mari B, Barbry P. Impact of microRNA in normal and pathological respiratory epithelia. Methods Mol Biol 2011; 741:171-91. [PMID: 21594785 PMCID: PMC7121186 DOI: 10.1007/978-1-61779-117-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive sequencing efforts, combined with ad hoc bioinformatics developments, have now led to the identification of 1222 distinct miRNAs in human (derived from 1368 distinct genomic loci) and of many miRNAs in other multicellular organisms. The present chapter is aimed at describing a general experimental strategy to identify specific miRNA expression profiles and to highlight the functional networks operating between them and their mRNA targets, including several miRNAs deregulated in cystic fibrosis and during differentiation of airway epithelial cells.
Collapse
|
896
|
Ji JD, Kim TH, Lee B, Na KS, Choi SJ, Lee YH, Song GG. Integrated Analysis of MicroRNA and mRNA Expression Profiles in Rheumatoid Arthritis Synovial Monocytes. JOURNAL OF RHEUMATIC DISEASES 2011. [DOI: 10.4078/jrd.2011.18.4.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jong Dae Ji
- Division of Rheumatology, College of Medicine, Korea University, Seoul, Korea
| | - Tae-Hwan Kim
- The Hospital for Rheumatic Diseases, College of Medicine, Hanyang University, Seoul, Korea
| | - Bitnara Lee
- The Hospital for Rheumatic Diseases, College of Medicine, Hanyang University, Seoul, Korea
| | | | - Sung Jae Choi
- Division of Rheumatology, College of Medicine, Korea University, Seoul, Korea
| | - Young Ho Lee
- Division of Rheumatology, College of Medicine, Korea University, Seoul, Korea
| | - Gwan Gyu Song
- Division of Rheumatology, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
897
|
MicroRNAs: key components of immune regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:15-26. [PMID: 21842361 DOI: 10.1007/978-1-4419-5632-3_2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The regulation of gene expression at the posttranscriptional level has revealed important control levels for genes important to the immune system. MicroRNAs (miRNAs) are small RNAs that regulate gene expression by inhibiting protein translation or by degrading the mRNA transcript. A single miRNA can potentially regulate the expression of multiple genes and the proteins encoded. MiRNA can influence molecular signaling pathways and regulate many biological processes including immune function. Although the role of miRNAs in development and oncogenesis has been well characterized, their role in the immune system has only begun to emerge. During the past few years, many miRNAs have been found to be important in the development, differentiation, survival, and function of B and T lymphocytes, dendritic cells, macrophages, and other immune cell types. We discuss here recent findings revealing important roles for miRNA in immunity and how miRNAs can regulate innate and adaptive immune responses.
Collapse
|
898
|
Nahid MA, Satoh M, Chan EKL. Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. THE JOURNAL OF IMMUNOLOGY 2010; 186:1723-34. [PMID: 21178010 DOI: 10.4049/jimmunol.1002311] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human TLRs are critical sensors for microbial components leading to the production of proinflammatory cytokines that are controlled by various mechanisms. Monocytes pretreated with LPS exhibit a state of hyporesponsiveness, referred to as cross-tolerance, to both homologous and heterologous ligands, which play a broader role in innate immunity. To date, LPS-induced cross-tolerance has not been examined regarding microRNA expression kinetics. In this study, THP-1 monocytes treated with various inflammatory ligands showed a continuous amplification of microRNA (miR)-146a over 24 h that is inversely correlated to TNF-α production. In contrast, inhibition of miR-146a showed a reciprocal effect. Thus, the characteristic upregulation of miR-146a in LPS-exposed THP-1 monocytes was studied for cross-tolerance. Strikingly, in LPS-tolerized THP-1 monocytes, only miR-146a showed a continuous overexpression, suggesting its crucial role in cross-tolerance. Similarly, peptidoglycan-primed THP-1 cells showed homologous tolerance associated with miR-146a upregulation. Subsequently, interchangeable differential cross-regulation was observed among non-LPS ligands. TLR2 and TLR5 ligands showed both homologous and heterologous tolerance correlated to miR-146a overexpression. More importantly, inflammatory responses to TLR4, TLR2, and TLR5 ligands were reduced due to knockdown of miR-146a targets IL-1R-associated kinase 1 or TNFR-associated factor 6, suggesting the regulatory effect of miR-146a on these TLRs signaling. Transfection of miR-146a into THP-1 cells caused reduction of TNF-α production, mimicking LPS-induced cross-tolerance. Aside from individual ligands, a whole bacterial challenge in LPS-primed THP-1 monocytes was accompanied by less TNF-α production, which is conversely correlated to miR-146a expression. Our studies have thus demonstrated that miR-146a plays a crucial role for in vitro monocytic cell-based endotoxin-induced cross-tolerance.
Collapse
Affiliation(s)
- Md A Nahid
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
899
|
Chen LS, Balakrishnan K, Gandhi V. Inflammation and survival pathways: chronic lymphocytic leukemia as a model system. Biochem Pharmacol 2010; 80:1936-45. [PMID: 20696142 PMCID: PMC3749885 DOI: 10.1016/j.bcp.2010.07.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/22/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
Abstract
A primary response to inflammation is an increased survival of the target cell. Several pathways have been identified that promote maintenance of the cell. The principal mechanism for the extended survival is through induction of anti-apoptotic Bcl-2 family proteins. Bcl-2 was the founding member of this family with five additional members, Bcl-X(L), Bcl-W, Bcl-B, Bfl-1, and Mcl-1, discovered mostly in hematological malignancies. Another mechanism that could add to cell survival is the Pim kinase pathway. This family of enzymes is associated with Myc-driven transcription, cell cycle regulation, degradation of pro-apoptotic proteins, and protein translation. Chronic lymphocytic leukemia serves as an optimal model to understand the mechanism by which these two protein families provide survival advantage to cells. In addition, since this malignancy is known to be maintained by microenvironment milieu, this further adds advantage to investigate mechanisms by which these pro-survival proteins are induced in the presence of stromal support. Multiple mechanisms exists that result in increase in transcript and protein level of anti-apoptotic Bcl-2 family members. Following these inductions, post-translational modifications occur resulting in increased stability of pro-survival proteins, while Pim-mediated phosphorylation inhibits pro-apoptotic protein activity. Furthermore, there is a cross-talk between these two (Bcl-2 family proteins and Pim family proteins) pathways that co-operate with each other for CLL cell survival and maintenance. Vigorous efforts are being made to create small molecules that affect these proteins directly or indirectly. Several of these pharmacological inhibitors are in early clinical trials for patients with hematological malignancies.
Collapse
Affiliation(s)
- Lisa S Chen
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030-4095, USA
| | | | | |
Collapse
|
900
|
Abstract
Chronic wounds represent a major and rising socioeconomic threat affecting over 6.5 million people in the United States costing in excess of US $25 billion annually. Wound healing is a physiological response to injury that is conserved across tissue systems. In humans, wounding is followed by instant response aimed at hemostasis, which in turn provides the foundation for inflammatory processes that closely follow. Inflammation is helpful and a prerequisite for healing as long as it is mounted and resolved in a timely manner. Chronic inflammation derails the healing cascade resulting in impaired wound closure. Disruption of Dicer, the RNase III enzyme that generates functional miRNAs, has a major impact on the overall immune system. Emerging studies indicate that miRNAs, especially miR-21, miR-146a/b, and miR-155, play a key role in regulating several hubs that orchestrate the inflammatory process. Direct evidence from studies addressing wound inflammation being limited, the current work represents a digest of the relevant literature that is aimed at unveiling the potential significance of miRNAs in the regulation of wound inflammation. Such treatment would help establish new paradigms highlighting a central role of miRs in the understanding and management of dysregulated inflammation as noted in conjunction with chronic wounds.
Collapse
Affiliation(s)
- Sashwati Roy
- Comprehensive Wound Center and Davis Heart and Lung Research Institute, Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | |
Collapse
|