901
|
Walker E, Chang WY, Hunkapiller J, Cagney G, Garcha K, Torchia J, Krogan NJ, Reiter JF, Stanford WL. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2010; 6:153-66. [PMID: 20144788 DOI: 10.1016/j.stem.2009.12.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 10/15/2009] [Accepted: 12/17/2009] [Indexed: 01/06/2023]
Abstract
Polycomb group (PcG) proteins are conserved epigenetic transcriptional repressors that control numerous developmental gene expression programs and have recently been implicated in modulating embryonic stem cell (ESC) fate. We identified the PcG protein PCL2 (polycomb-like 2) in a genome-wide screen for regulators of self-renewal and pluripotency and predicted that it would play an important role in mouse ESC-fate determination. Using multiple biochemical strategies, we provide evidence that PCL2 is a Polycomb Repressive Complex 2 (PRC2)-associated protein in mouse ESCs. Knockdown of Pcl2 in ESCs resulted in heightened self-renewal characteristics, defects in differentiation, and altered patterns of histone methylation. Integration of global gene expression and promoter occupancy analyses allowed us to identify PCL2 and PRC2 transcriptional targets and draft regulatory networks. We describe the role of PCL2 in both modulating transcription of ESC self-renewal genes in undifferentiated ESCs as well as developmental regulators during early commitment and differentiation.
Collapse
Affiliation(s)
- Emily Walker
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
902
|
Fan J, Zeller K, Chen YC, Watkins T, Barnes KC, Becker KG, Dang CV, Cheadle C. Time-dependent c-Myc transactomes mapped by Array-based nuclear run-on reveal transcriptional modules in human B cells. PLoS One 2010; 5:e9691. [PMID: 20300622 PMCID: PMC2837740 DOI: 10.1371/journal.pone.0009691] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/23/2010] [Indexed: 12/24/2022] Open
Abstract
Background The definition of transcriptional networks through measurements of changes in gene expression profiles and mapping of transcription factor binding sites is limited by the moderate overlap between binding and gene expression changes and the inability to directly measure global nuclear transcription (coined “transactome”). Methodology/Principal Findings We developed a method to measure nascent nuclear gene transcription with an Array-based Nuclear Run-On (ANRO) assay using commercial microarray platforms. This strategy provides the missing component, the transactome, to fully map transcriptional networks. ANRO measurements in an inducible c-Myc expressing human P493-6 B cell model reveals time-dependent waves of transcription, with a transactome early after c-Myc induction that does not persist at a late, steady-state phase, when genes that are regulated by c-Myc and E2F predominate. Gene set matrix analysis further uncovers functionally related groups of genes putatively regulated by waves of transcription factor motifs following Myc induction, starting with AP1 and CREB that are followed by EGR1, NFkB and STAT, and ending with E2F, Myc and ARNT/HIF motifs. Conclusions/Significance By coupling ANRO with previous global mapping of c-Myc binding sites by chromatin immunoprecipitation (ChIP) in P493-6 cells, we define a set of transcriptionally regulated direct c-Myc target genes and pave the way for the use of ANRO to comprehensively map any transcriptional network.
Collapse
Affiliation(s)
- JinShui Fan
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Karen Zeller
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yu-Chi Chen
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tonya Watkins
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathleen C. Barnes
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kevin G. Becker
- Research Resources Branch, National Institutes on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Chi V. Dang
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Pathology, School of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (CVD); (CC)
| | - Chris Cheadle
- Lowe Family Genomics Core, Division of Allergy and Clinical Immunology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (CVD); (CC)
| |
Collapse
|
903
|
Onichtchouk D, Geier F, Polok B, Messerschmidt DM, Mössner R, Wendik B, Song S, Taylor V, Timmer J, Driever W. Zebrafish Pou5f1-dependent transcriptional networks in temporal control of early development. Mol Syst Biol 2010; 6:354. [PMID: 20212526 PMCID: PMC2858445 DOI: 10.1038/msb.2010.9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/18/2010] [Indexed: 12/22/2022] Open
Abstract
The transcription factor POU5f1/OCT4 controls pluripotency in mammalian ES cells, but little is known about its functions in the early embryo. We used time-resolved transcriptome analysis of zebrafish pou5f1 MZspg mutant embryos to identify genes regulated by Pou5f1. Comparison to mammalian systems defines evolutionary conserved Pou5f1 targets. Time-series data reveal many Pou5f1 targets with delayed or advanced onset of expression. We identify two Pou5f1-dependent mechanisms controlling developmental timing. First, several Pou5f1 targets are transcriptional repressors, mediating repression of differentiation genes in distinct embryonic compartments. We analyze her3 gene regulation as example for a repressor in the neural anlagen. Second, the dynamics of SoxB1 group gene expression and Pou5f1-dependent regulation of her3 and foxD3 uncovers differential requirements for SoxB1 activity to control temporal dynamics of activation, and spatial distribution of targets in the embryo. We establish a mathematical model of the early Pou5f1 and SoxB1 gene network to demonstrate regulatory characteristics important for developmental timing. The temporospatial structure of the zebrafish Pou5f1 target networks may explain aspects of the evolution of the mammalian stem cell networks.
Collapse
Affiliation(s)
- Daria Onichtchouk
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
904
|
Niakan KK, Ji H, Maehr R, Vokes SA, Rodolfa KT, Sherwood RI, Yamaki M, Dimos JT, Chen AE, Melton DA, McMahon AP, Eggan K. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev 2010; 24:312-26. [PMID: 20123909 DOI: 10.1101/gad.1833510] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In embryonic stem (ES) cells, a well-characterized transcriptional network promotes pluripotency and represses gene expression required for differentiation. In comparison, the transcriptional networks that promote differentiation of ES cells and the blastocyst inner cell mass are poorly understood. Here, we show that Sox17 is a transcriptional regulator of differentiation in these pluripotent cells. ES cells deficient in Sox17 fail to differentiate into extraembryonic cell types and maintain expression of pluripotency-associated transcription factors, including Oct4, Nanog, and Sox2. In contrast, forced expression of Sox17 down-regulates ES cell-associated gene expression and directly activates genes functioning in differentiation toward an extraembryonic endoderm cell fate. We show these effects of Sox17 on ES cell gene expression are mediated at least in part through a competition between Sox17 and Nanog for common DNA-binding sites. By elaborating the function of Sox17, our results provide insight into how the transcriptional network promoting ES cell self-renewal is interrupted, allowing cellular differentiation.
Collapse
Affiliation(s)
- Kathy K Niakan
- Stowers Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
905
|
van Dartel DA, Pennings JL, van Schooten FJ, Piersma AH. Transcriptomics-based identification of developmental toxicants through their interference with cardiomyocyte differentiation of embryonic stem cells. Toxicol Appl Pharmacol 2010; 243:420-8. [DOI: 10.1016/j.taap.2009.12.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/15/2009] [Indexed: 11/16/2022]
|
906
|
Leeb M, Pasini D, Novatchkova M, Jaritz M, Helin K, Wutz A. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev 2010; 24:265-76. [PMID: 20123906 DOI: 10.1101/gad.544410] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycomb complexes establish chromatin modifications for maintaining gene repression and are essential for embryonic development in mice. Here we use pluripotent embryonic stem (ES) cells to demonstrate an unexpected redundancy between Polycomb-repressive complex 1 (PRC1) and PRC2 during the formation of differentiated cells. ES cells lacking the function of either PRC1 or PRC2 can differentiate into cells of the three germ layers, whereas simultaneous loss of PRC1 and PRC2 abrogates differentiation. On the molecular level, the differentiation defect is caused by the derepression of a set of genes that is redundantly repressed by PRC1 and PRC2 in ES cells. Furthermore, we find that genomic repeats are Polycomb targets and show that, in the absence of Polycomb complexes, endogenous murine leukemia virus elements can mobilize. This indicates a contribution of the Polycomb group system to the defense against parasitic DNA, and a potential role of genomic repeats in Polycomb-mediated gene regulation.
Collapse
Affiliation(s)
- Martin Leeb
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
907
|
Kidder BL, Palmer S. Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance. Genome Res 2010; 20:458-72. [PMID: 20176728 DOI: 10.1101/gr.101469.109] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trophoblast stem cells (TS cells), derived from the trophectoderm (TE) of blastocysts, require transcription factors (TFs) and external signals (FGF4, INHBA/NODAL/TGFB1) for self-renewal. While many reports have focused on TF networks that regulate embryonic stem cell (ES cell) self-renewal and pluripotency, little is know about TF networks that regulate self-renewal in TS cells. To further understand transcriptional networks in TS cells, we used chromatin immunoprecipitation with DNA microarray hybridization (ChIP-chip) analysis to investigate targets of the TFs-TCFAP2C, EOMES, ETS2, and GATA3-and a chromatin remodeling factor, SMARCA4. We then evaluated the transcriptional states of target genes using transcriptome analysis and genome-wide analysis of histone H3 acetylation (AcH3). Our results describe previously unknown transcriptional networks in TS cells, including TF occupancy of genes involved in ES cell self-renewal and pluripotency, co-occupancy of TCFAP2C, SMARCA4, and EOMES at a significant number of genes, and transcriptional regulatory circuitry within the five factors. Moreover, RNAi depletion of Tcfap2c, Smarca4, and Eomes transcripts resulted in a loss of normal colony morphology and down-regulation of TS cell-specific genes, suggesting an important role for TCFAP2C, SMARCA4, and EOMES in TS cell self-renewal. Through genome-wide mapping and global expression analysis of five TF target genes, our data provide a comprehensive analysis of transcriptional networks that regulate TS cell self-renewal.
Collapse
|
908
|
Mae SI, Shirasawa S, Yoshie S, Sato F, Kanoh Y, Ichikawa H, Yokoyama T, Yue F, Tomotsune D, Sasaki K. Combination of small molecules enhances differentiation of mouse embryonic stem cells into intermediate mesoderm through BMP7-positive cells. Biochem Biophys Res Commun 2010; 393:877-82. [PMID: 20171952 DOI: 10.1016/j.bbrc.2010.02.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 12/14/2022]
Abstract
Embryonic stem cells (ESCs) are potentially powerful tools for regenerative medicine and establishment of disease models. The recent progress in ESC technologies is noteworthy, but ESC differentiation into renal lineages is relatively less established. The present study aims to differentiate mouse ESCs (mESCs) into a renal progenitor pool, the intermediate mesoderm (IM), without addition of exogenous cytokines and embryoid formation. First, we treated mESCs with a combination of small molecules (Janus-associated tyrosine kinase inhibitor 1, LY294002, and CCG1423) and differentiated them into BMP7-positive cells, BMP7 being the presumed inducing factor for IM. When these cells were cultured with adding retinoic acid, expression of odd-skipped related 1 (Osr1), which is essential to IM differentiation, was enhanced. To simplify the differentiation protocol, the abovementioned four small molecules (including retinoic acid) were combined and added to the culture. Under this condition, more than one-half of the cells were positive for Osr1, and at the same time, Pax2 (another IM marker) was detected by real-time PCR. Expressions of ectodermal marker and endodermal marker were not enhanced, while mesodermal marker changed. Moreover, expression of genes indispensable to kidney development, i.e., Lim1 and WT1, was detected by RT-PCR. These results indicate the establishment of a specific, effective method for differentiation of the ESC monolayer into IM using a combination of small molecules, resulting in an attractive cell source that could be experimentally differentiated to understand nephrogenic mechanisms and cell-to-cell interactions in embryogenesis.
Collapse
Affiliation(s)
- Shin-Ichi Mae
- Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
909
|
Pluripotency maintenance mechanism of embryonic stem cells and reprogramming. Int J Hematol 2010; 91:360-72. [DOI: 10.1007/s12185-010-0517-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 11/12/2009] [Indexed: 11/25/2022]
|
910
|
Sokolov MV, Panyutin IV, Onyshchenko MI, Panyutin IG, Neumann RD. Expression of pluripotency-associated genes in the surviving fraction of cultured human embryonic stem cells is not significantly affected by ionizing radiation. Gene 2010; 455:8-15. [PMID: 20123005 DOI: 10.1016/j.gene.2010.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/08/2010] [Accepted: 01/24/2010] [Indexed: 01/29/2023]
Abstract
Human embryonic stem cells (hESC) are capable to give rise to all cell types in the human body during the normal course of development. Therefore, these cells hold a great promise in regenerative cell replacement based therapeutical approaches. However, some controversy exists in literature concerning the ultimate fate of hESC after exposure to genotoxic agents, in particular, regarding the effect of DNA damaging insults on pluripotency of hESC. To comprehensively address this issue, we performed an analysis of the expression of marker genes, associated with pluripotent state of hESC, such as Oct-4, Nanog, Sox-2, SSEA-4, TERT, TRA-1-60 and TRA-1-81 up to 65h after exposure to ionizing radiation (IR) using flow cytometry, immunocytochemistry and quantitative real-time polymerase chain reaction techniques. We show that irradiation with relatively low doses of gamma-radiation (0.2Gy and 1Gy) does not lead to loss of expression of the pluripotency-associated markers in the surviving hESC. While changes in the levels of expression of some of the pluripotency markers were observed at different time points after IR exposure, these alterations were not persistent, and, in most cases, the expression of the pluripotency-associated markers remained significantly higher than that observed in fully differentiated human fibroblasts, and in hESCs differentiated into definitive endodermal lineage. Our data suggest that exposure of hESC to relatively low doses of IR as a model genotoxic agent does not significantly affect pluripotency of the surviving fraction of hESC.
Collapse
Affiliation(s)
- Mykyta V Sokolov
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
911
|
Chen D, Pacal M, Wenzel P, Knoepfler PS, Leone G, Bremner R. Division and apoptosis of E2f-deficient retinal progenitors. Nature 2010; 462:925-9. [PMID: 20016601 DOI: 10.1038/nature08544] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/25/2009] [Indexed: 12/16/2022]
Abstract
The activating E2f transcription factors (E2f1, E2f2 and E2f3) induce transcription and are widely viewed as essential positive cell cycle regulators. Indeed, they drive cells out of quiescence, and the 'cancer cell cycle' in Rb1 null cells is E2f-dependent. Absence of activating E2fs in flies or mammalian fibroblasts causes cell cycle arrest, but this block is alleviated by removing repressive E2f or the tumour suppressor p53, respectively. Thus, whether activating E2fs are indispensable for normal division is an area of debate. Activating E2fs are also well known pro-apoptotic factors, providing a defence against oncogenesis, yet E2f1 can limit irradiation-induced apoptosis. In flies this occurs through repression of hid (also called Wrinkled; Smac/Diablo in mammals). However, in mammals the mechanism is unclear because Smac/Diablo is induced, not repressed, by E2f1, and in keratinocytes survival is promoted indirectly through induction of DNA repair targets. Thus, a direct pro-survival function for E2f1-3 and/or its relevance beyond irradiation has not been established. To address E2f1-3 function in normal cells in vivo we focused on the mouse retina, which is a relatively simple central nervous system component that can be manipulated genetically without compromising viability and has provided considerable insight into development and cancer. Here we show that unlike fibroblasts, E2f1-3 null retinal progenitor cells or activated Müller glia can divide. We attribute this effect to functional interchangeability with Mycn. However, loss of activating E2fs caused downregulation of the p53 deacetylase Sirt1, p53 hyperacetylation and elevated apoptosis, establishing a novel E2f-Sirt1-p53 survival axis in vivo. Thus, activating E2fs are not universally required for normal mammalian cell division, but have an unexpected pro-survival role in development.
Collapse
Affiliation(s)
- Danian Chen
- Toronto Western Research Institute, University Health Network, Department of Ophthalmology, and Laboratory Medicine and Pathobiology, University of Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | |
Collapse
|
912
|
Won KJ, Ren B, Wang W. Genome-wide prediction of transcription factor binding sites using an integrated model. Genome Biol 2010; 11:R7. [PMID: 20096096 PMCID: PMC2847719 DOI: 10.1186/gb-2010-11-1-r7] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/30/2009] [Accepted: 01/22/2010] [Indexed: 12/19/2022] Open
Abstract
A new approach for genome-wide transcription factor binding site prediction is presented that integrates sequence and chromatin modification data. We present an integrated method called Chromia for the genome-wide identification of functional target loci of transcription factors. Designed to capture the characteristic patterns of transcription factor binding motif occurrences and the histone profiles associated with regulatory elements such as promoters and enhancers, Chromia significantly outperforms other methods in the identification of 13 transcription factor binding sites in mouse embryonic stem cells, evaluated by both binding (ChIP-seq) and functional (RNA interference knockdown) experiments.
Collapse
Affiliation(s)
- Kyoung-Jae Won
- University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
913
|
Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 2010; 139:1290-302. [PMID: 20064375 DOI: 10.1016/j.cell.2009.12.002] [Citation(s) in RCA: 384] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/17/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
Polycomb Repressive Complex 2 (PRC2) regulates key developmental genes in embryonic stem (ES) cells and during development. Here we show that Jarid2/Jumonji, a protein enriched in pluripotent cells and a founding member of the Jumonji C (JmjC) domain protein family, is a PRC2 subunit in ES cells. Genome-wide ChIP-seq analyses of Jarid2, Ezh2, and Suz12 binding reveal that Jarid2 and PRC2 occupy the same genomic regions. We further show that Jarid2 promotes PRC2 recruitment to the target genes while inhibiting PRC2 histone methyltransferase activity, suggesting that it acts as a "molecular rheostat" that finely calibrates PRC2 functions at developmental genes. Using Xenopus laevis as a model we demonstrate that Jarid2 knockdown impairs the induction of gastrulation genes in blastula embryos and results in failure of differentiation. Our findings illuminate a mechanism of histone methylation regulation in pluripotent cells and during early cell-fate transitions.
Collapse
Affiliation(s)
- Jamy C Peng
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
914
|
Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR, Yuan GC, Lee Y, Orkin SH. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 2010; 139:1303-14. [PMID: 20064376 DOI: 10.1016/j.cell.2009.12.003] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 10/21/2009] [Accepted: 12/02/2009] [Indexed: 11/28/2022]
Abstract
Trimethylation on histone H3 lysine 27 (H3K27me3) by Polycomb repressive complex 2 (PRC2) regulates the balance between self-renewal and differentiation of embryonic stem cells (ESCs). The mechanisms controlling the activity and recruitment of PRC2 are largely unknown. Here we demonstrate that the founding member of the Jumonji family, JMJ (JUMONJI or JARID2), is associated with PRC2, colocalizes with PRC2 and H3K27me3 on chromatin, and modulates PRC2 function. In vitro JMJ inhibits PRC2 methyltransferase activity, consistent with increased H3K27me3 marks at PRC2 targets in Jmj(-/-) ESCs. Paradoxically, JMJ is required for efficient binding of PRC2, indicating that the interplay of PRC2 and JMJ fine-tunes deposition of the H3K27me3 mark. During differentiation, activation of genes marked by H3K27me3 and lineage commitments are delayed in Jmj(-/-) ESCs. Our results demonstrate that dynamic regulation of Polycomb complex activity orchestrated by JMJ balances self-renewal and differentiation, highlighting the involvement of chromatin dynamics in cell-fate transitions.
Collapse
Affiliation(s)
- Xiaohua Shen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
915
|
Paris DBBP, Stout TAE. Equine embryos and embryonic stem cells: defining reliable markers of pluripotency. Theriogenology 2010; 74:516-24. [PMID: 20071015 DOI: 10.1016/j.theriogenology.2009.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 11/29/2009] [Accepted: 11/29/2009] [Indexed: 01/22/2023]
Abstract
Cartilage and tendon injuries are a significant source of animal wastage and financial loss within the horse-racing industry. Moreover, both cartilage and tendon have limited intrinsic capacity for self-repair, and the functionally inferior tissue produced within a lesion may reduce performance and increase the risk of reinjury. Stem cells offer tremendous potential for accelerating and improving tissue healing, and adult mesenchymal stem cells (MSCs) are already used to treat cartilage and tendon injuries in horses. However, MSCs are scarce in the bone marrow isolates used, have limited potential for proliferation and differentiation in vitro, and do not appear to noticeably improve long-term functional repair. Embryonic stem cells (ESCs) or induced pluripotent stem (iPS) cells could overcome many of the limitations and be used to generate tissues of value for equine regenerative medicine. To date, six lines of putative ESCs have been described in the horse. All expressed stem cell-associated markers and exhibited longevity and pluripotency in vitro, but none have been proven to exhibit pluripotency in vivo. Moreover, it is becoming clear that the markers used to characterize the putative ESCs were inadequate, primarily because studies in domestic species have revealed that they are not specific to ESCs or the pluripotent inner cell mass, but also because the function of most in the maintenance of pluripotency is not known. Future derivation and validation of equine embryonic or other pluripotent stem cells would benefit greatly from a reliable panel of molecular markers specific to pluripotent cells of the developing horse embryo.
Collapse
Affiliation(s)
- D B B P Paris
- Department of Equine Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands.
| | | |
Collapse
|
916
|
Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 2010; 463:621-6. [PMID: 20054295 PMCID: PMC2894702 DOI: 10.1038/nature08725] [Citation(s) in RCA: 532] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 12/07/2009] [Indexed: 12/12/2022]
Abstract
When embryonic stem cells (ESCs) differentiate, they must both silence the ESC self-renewal program as well as activate new tissue specific programs. In the absence of DGCR8 (Dgcr8 -/-), a protein required for microRNA (miRNA) biogenesis, mouse ESCs are unable to silence self-renewal. Here, we find that the introduction of let-7 miRNAs, a family of miRNAs highly expressed in somatic cells, can suppress self-renewal in Dgcr8 -/-, but not wild-type ESCs. Introduction of ESC cell cycle regulating (ESCC) miRNAs into the Dgcr8 -/- ESCs, blocks the capacity of let-7 to suppress self-renewal. Profiling and bioinformatic analyses show that let-7 inhibits while ESCC miRNAs indirectly activate numerous self-renewal genes. Furthermore, inhibition of the let-7 family promotes de-differentiation of somatic cells to induced pluripotent stem (iPS) cells. Together, these findings show how the ESCC and let-7 miRNAs act through common pathways to alternatively stabilize the self-renewing versus differentiated cell fates.
Collapse
|
917
|
Stk40 links the pluripotency factor Oct4 to the Erk/MAPK pathway and controls extraembryonic endoderm differentiation. Proc Natl Acad Sci U S A 2010; 107:1402-7. [PMID: 20080709 DOI: 10.1073/pnas.0905657107] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Self-renewal and differentiation of embryonic stem cells (ESCs) are controlled by intracellular transcriptional factors and extracellular factor-activated signaling pathways. Transcription factor Oct4 is a key player maintaining ESCs in an undifferentiated state, whereas the Erk/MAPK pathway is known to be important for ESC differentiation. However, the manner in which intracellular pluripotency factors modulate extracellular factor-activated signaling pathways in ESCs is not well understood. Here, we report identification of a target gene of Oct4, serine/threonine kinase 40 (Stk40), which is able to activate the Erk/MAPK pathway and induce extraembryonic-endoderm (ExEn) differentiation in mouse ESCs. Interestingly, cells overexpressing Stk40 exclusively contribute to the ExEn layer of chimeric embryos when injected into host blastocysts. In contrast, deletion of Stk40 in ESCs markedly reduces ExEn differentiation in vitro. Mechanistically, Stk40 interacts with Rcn2, which also activates Erk1/2 to induce ExEn specification in mouse ESCs. Moreover, Rcn2 proteins are specifically located in the cytoplasm of the ExEn layer of early mouse embryos. Importantly, knockdown of Rcn2 blocks Stk40-activated Erk1/2 and ESC differentiation. Therefore, our study establishes a link between the pluripotency factor Oct4 and the Erk/MAPK signaling pathway, and it uncovers cooperating signals in the Erk/MAPK activation that control ExEn differentiation.
Collapse
|
918
|
Heng JCD, Ng HH. Transcriptional Regulation in Embryonic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:76-91. [DOI: 10.1007/978-1-4419-7037-4_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
919
|
Williamson AJ, Whetton AD. Development of approaches for systematic analysis of protein networks in stem cells. ACTA ACUST UNITED AC 2010; 50:273-84. [DOI: 10.1016/j.advenzreg.2009.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
920
|
Abstract
Embryonic stem (ES) cells possess a globally open, decondensed chromatin structure that, together with trans-acting factors, supports transcriptional competence of developmentally regulated genes. However, our understanding of the mechanisms that establish transcriptional competence of specific genes is limited. In this issue of Genes & Development, Xu and colleagues (pp. 2824-2838) show that tissue-specific enhancers are actively marked by an unmethylated window in ES cells and induced pluripotent stem (iPS) cells. They propose a model and present supporting evidence to demonstrate the active involvement of pioneer transcription factors in this process. This work marks an important step toward the understanding of the mechanisms that define and maintain pluripotency, and calls for the identification of the factors that participate in the establishment of transcriptional competence in pluripotent cells.
Collapse
Affiliation(s)
- Edupuganti V S Raghu Ram
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
921
|
Zhu XQ, Pan XH, Wang W, Chen Q, Pang RQ, Cai XM, Hoffman AR, Hu JF. Transient in vitro epigenetic reprogramming of skin fibroblasts into multipotent cells. Biomaterials 2009; 31:2779-87. [PMID: 20044135 DOI: 10.1016/j.biomaterials.2009.12.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 12/11/2009] [Indexed: 12/16/2022]
Abstract
Multipotent stem cells have the potential to establish a new field of promising regenerative medicine to treat tissue damage, genetic disorders, and degenerative diseases. However, limited resource of stem cells has turned to be an evitable obstacle in clinical applications. We utilized a simple in vitro epigenetic reprogramming approach to convert skin fibroblasts into multipotent cells. After transient reprogramming, stem cell markers, including Oct4 and Nanog, became activated in the treated cells. The reprogrammed cells were multipotent as demonstrated by their ability to differentiate into a variety of cells and to form teratomas. Genomic imprinting of insulin-like growth factor II (Igf2) and H19 was not affected by this short period of cell reprogramming. This study may provide an alternative strategy to efficiently generate patient-specific stem cells for basic and clinical research, solving major hurdles of virally-induced pluripotent stem (iPS) cells that entail the potential risks of mutation, gene instability, and malignancy.
Collapse
Affiliation(s)
- Xiang-Qing Zhu
- The Research Center of Stem Cell, Tissue and Organ Engineering, Kunming Army General Hospital, Kunming 650032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
922
|
Yamaguchi S, Kurimoto K, Yabuta Y, Sasaki H, Nakatsuji N, Saitou M, Tada T. Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells. Development 2009; 136:4011-20. [PMID: 19906868 DOI: 10.1242/dev.041160] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pluripotency factor Nanog is expressed in peri-implantation embryos and primordial germ cells (PGCs). Nanog-deficient mouse embryos die soon after implantation. To explore the function of Nanog in germ cells, Nanog RNA was conditionally knocked down in vivo by shRNA. Nanog shRNA transgenic (NRi-Tg) mice were generated through the formation of germline chimeras with NRi-Tg embryonic stem cells. In E12.5 Cre-induced ER-Cre/NRi-Tg and TNAP-Cre/NRi-Tg double-transgenic embryos, the number of alkaline phosphatase-positive and SSEA1-positive PGCs decreased significantly. In the E9.5 and E10.5 migrating Nanog-knockdown PGCs, TUNEL-positive apoptotic cell death became prominent in vivo and in vitro, despite Oct4 expression. Single-cell microarray analysis of E10.5 Nanog-knockdown PGCs revealed significant up- and downregulation of a substantial number of genes, including Tial1, Id1 and Suz12. These data suggest that Nanog plays a key role in the proliferation and survival of migrating PGCs as a safeguard of the PGC-specific molecular network.
Collapse
Affiliation(s)
- Shinpei Yamaguchi
- Stem Cell Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
923
|
Nishiyama A, Xin L, Sharov AA, Thomas M, Mowrer G, Meyers E, Piao Y, Mehta S, Yee S, Nakatake Y, Stagg C, Sharova L, Correa-Cerro LS, Bassey U, Hoang H, Kim E, Tapnio R, Qian Y, Dudekula D, Zalzman M, Li M, Falco G, Yang HT, Lee SL, Monti M, Stanghellini I, Islam MN, Nagaraja R, Goldberg I, Wang W, Longo DL, Schlessinger D, Ko MSH. Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. Cell Stem Cell 2009; 5:420-33. [PMID: 19796622 DOI: 10.1016/j.stem.2009.07.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 06/10/2009] [Accepted: 07/22/2009] [Indexed: 12/22/2022]
Abstract
To examine transcription factor (TF) network(s), we created mouse ESC lines, in each of which 1 of 50 TFs tagged with a FLAG moiety is inserted into a ubiquitously controllable tetracycline-repressible locus. Of the 50 TFs, Cdx2 provoked the most extensive transcriptome perturbation in ESCs, followed by Esx1, Sox9, Tcf3, Klf4, and Gata3. ChIP-Seq revealed that CDX2 binds to promoters of upregulated target genes. By contrast, genes downregulated by CDX2 did not show CDX2 binding but were enriched with binding sites for POU5F1, SOX2, and NANOG. Genes with binding sites for these core TFs were also downregulated by the induction of at least 15 other TFs, suggesting a common initial step for ESC differentiation mediated by interference with the binding of core TFs to their target genes. These ESC lines provide a fundamental resource to study biological networks in ESCs and mice.
Collapse
Affiliation(s)
- Akira Nishiyama
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
924
|
Jeong Y, Mangelsdorf DJ. Nuclear receptor regulation of stemness and stem cell differentiation. Exp Mol Med 2009; 41:525-37. [PMID: 19696553 DOI: 10.3858/emm.2009.41.8.091] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cells include a diverse number of toti-, pluri-, and multi-potent cells that play important roles in cellular genesis and differentiation, tissue development, and organogenesis. Genetic regulation involving various transcription factors results in the self-renewal and differentiation properties of stem cells. The nuclear receptor (NR) superfamily is composed of 48 ligand-activated transcription factors involved in diverse physiological functions such as metabolism, development, and reproduction. Increasing evidence shows that certain NRs function in regulating stemness or differentiation of embryonic stem (ES) cells and tissue-specific adult stem cells. Here, we review the role of the NR superfamily in various aspects of stem cell biology, including their regulation of stemness, forward- and trans-differentiation events; reprogramming of terminally differentiated cells; and interspecies differences. These studies provide insights into the therapeutic potential of the NR superfamily in stem cell therapy and in treating stem cell-associated diseases (e.g., cancer stem cell).
Collapse
Affiliation(s)
- Yangsik Jeong
- Department of Pharmacology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Texas 75390, USA
| | | |
Collapse
|
925
|
Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 2009; 18:1093-108. [PMID: 19480567 DOI: 10.1089/scd.2009.0113] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Coordinated transcription factor networks have emerged as the master regulatory mechanisms of stem cell pluripotency and differentiation. Many stem cell-specific transcription factors, including the pluripotency transcription factors, OCT4, NANOG, and SOX2 function in combinatorial complexes to regulate the expression of loci, which are involved in embryonic stem (ES) cell pluripotency and cellular differentiation. This review will address how these pathways form a reciprocal regulatory circuit whereby the equilibrium between stem cell self-renewal, proliferation, and differentiation is in perpetual balance. We will discuss how distinct epigenetic repressive pathways involving polycomb complexes, DNA methylation, and microRNAs cooperate to reduce transcriptional noise and to prevent stochastic and aberrant induction of differentiation. We will provide a brief overview of how these networks cooperate to modulate differentiation along hematopoietic and neuronal lineages. Finally, we will describe how aberrant functioning of components of the stem cell regulatory network may contribute to malignant transformation of adult stem cells and the establishment of a "cancer stem cell" phenotype and thereby underlie multiple types of human malignancies.
Collapse
Affiliation(s)
- Vasundhra Kashyap
- Department of Pharmacology, Graduate Programs in Pharmacology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
926
|
ChIP-Seq of transcription factors predicts absolute and differential gene expression in embryonic stem cells. Proc Natl Acad Sci U S A 2009; 106:21521-6. [PMID: 19995984 DOI: 10.1073/pnas.0904863106] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Next-generation sequencing has greatly increased the scope and the resolution of transcriptional regulation study. RNA sequencing (RNA-Seq) and ChIP-Seq experiments are now generating comprehensive data on transcript abundance and on regulator-DNA interactions. We propose an approach for an integrated analysis of these data based on feature extraction of ChIP-Seq signals, principal component analysis, and regression-based component selection. Compared with traditional methods, our approach not only offers higher power in predicting gene expression from ChIP-Seq data but also provides a way to capture cooperation among regulators. In mouse embryonic stem cells (ESCs), we find that a remarkably high proportion of variation in gene expression (65%) can be explained by the binding signals of 12 transcription factors (TFs). Two groups of TFs are identified. Whereas the first group (E2f1, Myc, Mycn, and Zfx) act as activators in general, the second group (Oct4, Nanog, Sox2, Smad1, Stat3, Tcfcp2l1, and Esrrb) may serve as either activator or repressor depending on the target. The two groups of TFs cooperate tightly to activate genes that are differentially up-regulated in ESCs. In the absence of binding by the first group, the binding of the second group is associated with genes that are repressed in ESCs and derepressed upon early differentiation.
Collapse
|
927
|
Savarese F, Dávila A, Nechanitzky R, De La Rosa-Velazquez I, Pereira CF, Engelke R, Takahashi K, Jenuwein T, Kohwi-Shigematsu T, Fisher AG, Grosschedl R. Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression. Genes Dev 2009; 23:2625-38. [PMID: 19933152 DOI: 10.1101/gad.1815709] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1(-/-) cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1(-/-) cultures have a higher proportion of Nanog(high) cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1(-/-)Satb2(-/-) ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency.
Collapse
Affiliation(s)
- Fabio Savarese
- Max Planck Institute of Immunobiology, Department of Cellular and Molecular Immunology, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
928
|
Expression and activation of the reprogramming transcription factors. Biochem Biophys Res Commun 2009; 390:1081-6. [DOI: 10.1016/j.bbrc.2009.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/04/2009] [Indexed: 01/15/2023]
|
929
|
Lu R, Markowetz F, Unwin RD, Leek JT, Airoldi EM, MacArthur BD, Lachmann A, Rozov R, Ma'ayan A, Boyer LA, Troyanskaya OG, Whetton AD, Lemischka IR. Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 2009; 462:358-62. [PMID: 19924215 DOI: 10.1038/nature08575] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 10/09/2009] [Indexed: 01/04/2023]
Abstract
Molecular regulation of embryonic stem cell (ESC) fate involves a coordinated interaction between epigenetic, transcriptional and translational mechanisms. It is unclear how these different molecular regulatory mechanisms interact to regulate changes in stem cell fate. Here we present a dynamic systems-level study of cell fate change in murine ESCs following a well-defined perturbation. Global changes in histone acetylation, chromatin-bound RNA polymerase II, messenger RNA (mRNA), and nuclear protein levels were measured over 5 days after downregulation of Nanog, a key pluripotency regulator. Our data demonstrate how a single genetic perturbation leads to progressive widespread changes in several molecular regulatory layers, and provide a dynamic view of information flow in the epigenome, transcriptome and proteome. We observe that a large proportion of changes in nuclear protein levels are not accompanied by concordant changes in the expression of corresponding mRNAs, indicating important roles for translational and post-translational regulation of ESC fate. Gene-ontology analysis across different molecular layers indicates that although chromatin reconfiguration is important for altering cell fate, it is preceded by transcription-factor-mediated regulatory events. The temporal order of gene expression alterations shows the order of the regulatory network reconfiguration and offers further insight into the gene regulatory network. Our studies extend the conventional systems biology approach to include many molecular species, regulatory layers and temporal series, and underscore the complexity of the multilayer regulatory mechanisms responsible for changes in protein expression that determine stem cell fate.
Collapse
Affiliation(s)
- Rong Lu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
930
|
Yu M, Riva L, Xie H, Schindler Y, Moran TB, Cheng Y, Yu D, Hardison R, Weiss MJ, Orkin SH, Bernstein BE, Fraenkel E, Cantor AB. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell 2009; 36:682-95. [PMID: 19941827 PMCID: PMC2800995 DOI: 10.1016/j.molcel.2009.11.002] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/05/2009] [Accepted: 10/30/2009] [Indexed: 01/29/2023]
Abstract
The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1-induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA-binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus nondifferentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1-bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that polycomb repressive complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1-repressed genes. These data provide insights into GATA-1-mediated gene regulation in vivo.
Collapse
Affiliation(s)
- Ming Yu
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Laura Riva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Huafeng Xie
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yocheved Schindler
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tyler B. Moran
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yong Cheng
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Duonan Yu
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ross Hardison
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stuart H. Orkin
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Bradley E. Bernstein
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School and the Broad Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA, USA
| | - Alan B. Cantor
- Department of Pediatric Hematology-Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
931
|
Bilodeau S, Kagey MH, Frampton GM, Rahl PB, Young RA. SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 2009; 23:2484-9. [PMID: 19884255 DOI: 10.1101/gad.1837309] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription factors that play key roles in regulating embryonic stem (ES) cell state have been identified, but the chromatin regulators that help maintain ES cells are less well understood. A high-throughput shRNA screen was used to identify novel chromatin regulators that influence ES cell state. Loss of histone H3 Lys 9 (H3K9) methyltransferases, particularly SetDB1, had the most profound effects on ES cells. Chromatin immunoprecipitation (ChIP) coupled with massively parallel DNA sequencing (ChIP-Seq) and functional analysis revealed that SetDB1 and histone H3K9-methylated nucleosomes occupy and repress genes encoding developmental regulators. These SetDB1-occupied genes are a subset of the "bivalent" genes, which contain nucleosomes with H3K4me3 (H3K4 trimethylation) and H3K27me3 modifications catalyzed by Trithorax and Polycomb group proteins, respectively. These genes are subjected to repression by both Polycomb group proteins and SetDB1, and loss of either regulator can destabilize ES cell state.
Collapse
Affiliation(s)
- Steve Bilodeau
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
932
|
Yuan P, Han J, Guo G, Orlov YL, Huss M, Loh YH, Yaw LP, Robson P, Lim B, Ng HH. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev 2009; 23:2507-20. [PMID: 19884257 DOI: 10.1101/gad.1831909] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The histone H3 Lys 9 (H3K9) methyltransferase Eset is an epigenetic regulator critical for the development of the inner cell mass (ICM). Although ICM-derived embryonic stem (ES) cells are normally unable to contribute to the trophectoderm (TE) in blastocysts, we find that depletion of Eset by shRNAs leads to differentiation with the formation of trophoblast-like cells and induction of trophoblast-associated gene expression. Using chromatin immmunoprecipitation (ChIP) and sequencing (ChIP-seq) analyses, we identified Eset target genes with Eset-dependent H3K9 trimethylation. We confirmed that genes that are preferentially expressed in the TE (Tcfap2a and Cdx2) are bound and repressed by Eset. Single-cell PCR analysis shows that the expression of Cdx2 and Tcfap2a is also induced in Eset-depleted morula cells. Importantly, Eset-depleted cells can incorporate into the TE of a blastocyst and, subsequently, placental tissues. Coimmunoprecipitation and ChIP assays further demonstrate that Eset interacts with Oct4, which in turn recruits Eset to silence these trophoblast-associated genes. Our results suggest that Eset restricts the extraembryonic trophoblast lineage potential of pluripotent cells and links an epigenetic regulator to key cell fate decision through a pluripotency factor.
Collapse
Affiliation(s)
- Ping Yuan
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672
| | | | | | | | | | | | | | | | | | | |
Collapse
|
933
|
Fei T, Xia K, Li Z, Zhou B, Zhu S, Chen H, Zhang J, Chen Z, Xiao H, Han JDJ, Chen YG. Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. Genome Res 2009; 20:36-44. [PMID: 19926752 DOI: 10.1101/gr.092114.109] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Embryonic stem (ES) cells are under precise control of both intrinsic self-renewal gene regulatory network and extrinsic growth factor-triggered signaling cascades. How external signaling pathways connect to core self-renewal transcriptional circuits is largely unknown. To probe this, we chose BMP signaling, which is previously recognized as a master control for both self-renewal and lineage commitment of murine ES cells. Here, we mapped target gene promoter occupancy of SMAD1/5 and SMAD4 on a genome-wide scale and found that they associate with a large group of developmental regulators that are enriched for H3K27 trimethylation and H3K4 trimethylation bivalent marks and are repressed in the self-renewing state, whereas they are rapidly induced upon differentiation. Smad knockdown experiments further indicate that SMAD-mediated BMP signaling is largely required for differentiation-related processes rather than directly influencing self-renewal. Among the SMAD-associated genes, we further identified Dpysl2 (previously known as Crmp2) and the H3K27 demethylase Kdm6b (previously known as Jmjd3) as BMP4-modulated early neural differentiation regulators. Combined with computational analysis, our results suggest that SMAD-mediated BMP signaling balances self-renewal versus differentiation by modulating a set of developmental regulators.
Collapse
Affiliation(s)
- Teng Fei
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
934
|
Kinsey M, Smith R, Iyer AK, McCabe ERB, Lessnick SL. EWS/FLI and its downstream target NR0B1 interact directly to modulate transcription and oncogenesis in Ewing's sarcoma. Cancer Res 2009; 69:9047-55. [PMID: 19920188 DOI: 10.1158/0008-5472.can-09-1540] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most Ewing's sarcomas harbor chromosomal translocations that encode fusions between EWS and ETS family members. The most common fusion, EWS/FLI, consists of an EWSR1-derived strong transcriptional activation domain fused, in-frame, to the DNA-binding domain-containing portion of FLI1. EWS/FLI functions as an aberrant transcription factor to regulate genes that mediate the oncogenic phenotype of Ewing's sarcoma. One of these regulated genes, NR0B1, encodes a corepressor protein, and likely plays a transcriptional role in tumorigenesis. However, the genes that NR0B1 regulates and the transcription factors it interacts with in Ewing's sarcoma are largely unknown. We used transcriptional profiling and chromatin immunoprecipitation to identify genes that are regulated by NR0B1, and compared these data to similar data for EWS/FLI. Although the transcriptional profile overlapped as expected, we also found that the genome-wide localization of NR0B1 and EWS/FLI overlapped as well, suggesting that they regulate some genes coordinately. Further analysis revealed that NR0B1 and EWS/FLI physically interact. This protein-protein interaction is likely to be relevant for the development of Ewing's sarcoma because mutations in NR0B1 that disrupt the interaction have transcriptional consequences and also abrogate oncogenic transformation. Taken together, these data suggest that EWS/FLI and NR0B1 physically interact, coordinately modulate gene expression, and mediate the transformed phenotype of Ewing's sarcoma.
Collapse
Affiliation(s)
- Michelle Kinsey
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | | | |
Collapse
|
935
|
Lin CH, Lin C, Tanaka H, Fero ML, Eisenman RN. Gene regulation and epigenetic remodeling in murine embryonic stem cells by c-Myc. PLoS One 2009; 4:e7839. [PMID: 19915707 PMCID: PMC2773118 DOI: 10.1371/journal.pone.0007839] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 10/17/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Myc oncoprotein, a transcriptional regulator involved in the etiology of many different tumor types, has been demonstrated to play an important role in the functions of embryonic stem (ES) cells. Nonetheless, it is still unclear as to whether Myc has unique target and functions in ES cells. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the role of c-Myc in murine ES cells, we mapped its genomic binding sites by chromatin-immunoprecipitation combined with DNA microarrays (ChIP-chip). In addition to previously identified targets we identified genes involved in pluripotency, early development, and chromatin modification/structure that are bound and regulated by c-Myc in murine ES cells. Myc also binds and regulates loci previously identified as Polycomb (PcG) targets, including genes that contain bivalent chromatin domains. To determine whether c-Myc influences the epigenetic state of Myc-bound genes, we assessed the patterns of trimethylation of histone H3-K4 and H3-K27 in mES cells containing normal, increased, and reduced levels of c-Myc. Our analysis reveals widespread and surprisingly diverse changes in repressive and activating histone methylation marks both proximal and distal to Myc binding sites. Furthermore, analysis of bulk chromatin from phenotypically normal c-myc null E7 embryos demonstrates a 70-80% decrease in H3-K4me3, with little change in H3-K27me3, compared to wild-type embryos indicating that Myc is required to maintain normal levels of histone methylation. CONCLUSIONS/SIGNIFICANCE We show that Myc induces widespread and diverse changes in histone methylation in ES cells. We postulate that these changes are indirect effects of Myc mediated by its regulation of target genes involved in chromatin remodeling. We further show that a subset of PcG-bound genes with bivalent histone methylation patterns are bound and regulated in response to altered c-Myc levels. Our data indicate that in mES cells c-Myc binds, regulates, and influences the histone modification patterns of genes involved in chromatin remodeling, pluripotency, and differentiation.
Collapse
Affiliation(s)
- Chin-Hsing Lin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - ChenWei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Matthew L. Fero
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Robert N. Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
936
|
Analysis of allele-specific RNA transcription in FSHD by RNA-DNA FISH in single myonuclei. Eur J Hum Genet 2009; 18:448-56. [PMID: 19888305 DOI: 10.1038/ejhg.2009.183] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Autosomal dominant facioscapulohumeral muscular dystrophy (FSHD) is likely caused by epigenetic alterations in chromatin involving contraction of the D4Z4 repeat array near the telomere of chromosome 4q. The precise mechanism by which deletions of D4Z4 influence gene expression in FSHD is not yet resolved. Regulatory models include a cis effect on proximal gene transcription (position effect), DNA looping, non-coding RNA, nuclear localization and trans-effects. To directly test whether deletions of D4Z4 affect gene expression in cis, nascent RNA was examined in single myonuclei so that transcription from each allele could be measured independently. FSHD and control myotubes (differentiated myoblasts) were subjected to sequential RNA-DNA FISH. A total of 16 genes in the FSHD region (FRG2, TUBB4Q, FRG1, FAT1, F11, KLKB1, CYP4V2, TLR3, SORBS2, PDLIM3 (ALP), LRP2BP, ING2, SNX25, SLC25A4 (ANT1), HELT and IRF2) were examined for interallelic variation in RNA expression within individual myonuclei. Sequential DNA hybridization with a unique 4q35 chromosome probe was then applied to confirm the localization of nascent RNA to 4q. A D4Z4 probe, labeled with a third fluorochrome, distinguished between the deleted and normal allele in FSHD nuclei. Our data do not support an FSHD model in which contracted D4Z4 arrays induce altered transcription in cis from 4q35 genes, even for those genes (FRG1, FRG2 and SLC25A4 (ANT1)) for which such an effect has been proposed.
Collapse
|
937
|
Seuntjens E, Umans L, Zwijsen A, Sampaolesi M, Verfaillie CM, Huylebroeck D. Transforming Growth Factor type beta and Smad family signaling in stem cell function. Cytokine Growth Factor Rev 2009; 20:449-58. [PMID: 19892581 DOI: 10.1016/j.cytogfr.2009.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligands of the Transforming Growth Factor type beta (TGFbeta) family exert multiple and sometimes opposite effects on most cell types in vivo depending on cellular context, which mainly includes the stage of the target cell, the local environment of this cell or niche, and the identity and the dosage of the ligand. Significant progress has been made in the molecular dissection of the regulation of the activity of the ligands and their intracellular signal transduction pathways, including via the canonical Smad pathway where Smads interact with many transcription factors. This knowledge together with results from functional studies within the embryology and stem cell research fields is giving us insight in the role of individual ligands and other components of this signaling system and where and how it regulates many properties of embryonic and adult stem/progenitor cells, which is anticipated to contribute to successful cell-based therapy in the future. We review and discuss recent progress on the effects of Nodal/Activin and Bone Morphogenetic Proteins (BMPs) and their canonical signaling in cells with stem cell properties. We focus on embryonic stem cells and their maintenance and pluripotency, and conversion into selected cell types of neuroectoderm, mesoderm and endoderm, on induced pluripotent cells and on neurogenic cells in the adult brain.
Collapse
Affiliation(s)
- Eve Seuntjens
- Laboratory of Molecular Biology (Celgen) of the Center for Human Genetics, University of Leuven, Flanders Institute of Biotechnology (VIB), Campus Gasthuisberg, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
938
|
Nandan MO, Yang VW. The role of Krüppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells. Histol Histopathol 2009; 24:1343-55. [PMID: 19688699 DOI: 10.14670/hh-24.1343] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The potential for clinical application of pluripotent embryonic stem cells is immense but hampered by moral and ethical complications. Recent advances in the reprogramming of somatic cells by defined factors to a state that resemble embryonic stem cells have created tremendous excitement in the field. Four factors, Sox2, Oct4, Klf4 and c-Myc, when exogenously introduced into somatic cells, can lead to the formation of induced pluripotent stem (iPS) cells that have the capacity for self-renewal and differentiation into tissues of all three germ layers. In this review, we focus on the role of Krüppel-like factors (KLFs) in regulating somatic cell reprogramming. KLFs are zinc finger-containing transcription factors with diverse biological functions. We first provide an overview of the KLF family of regulatory proteins, paying special attention to the established biological and biochemical functions of KLF4 and KLF5. We then review the role of KLFs in somatic cell reprogramming and delineate the putative mechanism by which KLFs participates the establishment and self-renewal of iPS cells. Further research is likely to provide additional insight into the mechanisms of somatic cell reprogramming and refinement of the technique with which to generate clinically relevant iPS cells.
Collapse
Affiliation(s)
- Mandayam O Nandan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | |
Collapse
|
939
|
Amaral PP, Neyt C, Wilkins SJ, Askarian-Amiri ME, Sunkin SM, Perkins AC, Mattick JS. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA (NEW YORK, N.Y.) 2009; 15:2013-2027. [PMID: 19767420 PMCID: PMC2764477 DOI: 10.1261/rna.1705309] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 08/18/2009] [Indexed: 05/28/2023]
Abstract
The Sox2 gene is a key regulator of pluripotency embedded within an intron of a long noncoding RNA (ncRNA), termed Sox2 overlapping transcript (Sox2ot), which is transcribed in the same orientation. However, this ncRNA remains uncharacterized. Here we show that Sox2ot has multiple transcription start sites associated with genomic features that indicate regulated expression, including highly conserved elements (HCEs) and chromatin marks characteristic of gene promoters. To identify biological processes in which Sox2ot may be involved, we analyzed its expression in several developmental systems, compared to expression of Sox2. We show that Sox2ot is a stable transcript expressed in mouse embryonic stem cells, which, like Sox2, is down-regulated upon induction of embryoid body (EB) differentiation. However, in contrast to Sox2, Sox2ot is up-regulated during EB mesoderm-lineage differentiation. In adult mouse, Sox2ot isoforms were detected in tissues where Sox2 is expressed, as well as in different tissues, supporting independent regulation of expression of the ncRNA. Sox2dot, an isoform of Sox2ot transcribed from a distal HCE located >500 kb upstream of Sox2, was detected exclusively in the mouse brain, with enrichment in regions of adult neurogenesis. In addition, Sox2ot isoforms are transcribed from HCEs upstream of Sox2 in other vertebrates, including in several regions of the human brain. We also show that Sox2ot is dynamically regulated during chicken and zebrafish embryogenesis, consistently associated with central nervous system structures. These observations provide insight into the structure and regulation of the Sox2ot gene, and suggest conserved roles for Sox2ot orthologs during vertebrate development.
Collapse
Affiliation(s)
- Paulo P Amaral
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia,QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
940
|
Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15:6479-83. [PMID: 19861459 DOI: 10.1158/1078-0432.ccr-09-0889] [Citation(s) in RCA: 683] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although cancers have altered glucose metabolism, termed the Warburg effect, which describes the increased uptake and conversion of glucose to lactate by cancer cells under adequate oxygen tension, changes in the metabolism of glutamine and fatty acid have also been documented. The MYC oncogene, which contributes to the genesis of many human cancers, encodes a transcription factor c-Myc, which links altered cellular metabolism to tumorigenesis. c-Myc regulates genes involved in the biogenesis of ribosomes and mitochondria, and regulation of glucose and glutamine metabolism. With E2F1, c-Myc induces genes involved in nucleotide metabolism and DNA replication, and microRNAs that homeostatically attenuate E2F1 expression. With the hypoxia inducible transcription factor HIF-1, ectopic c-Myc cooperatively induces a transcriptional program for hypoxic adaptation. Myc regulates gene expression either directly, such as glycolytic genes including lactate dehydrogenase A (LDHA), or indirectly, such as repression of microRNAs miR-23a/b to increase glutaminase (GLS) protein expression and glutamine metabolism. Ectopic MYC expression in cancers, therefore, could concurrently drive aerobic glycolysis and/or oxidative phosphorylation to provide sufficient energy and anabolic substrates for cell growth and proliferation in the context of the tumor microenvironment. Collectively, these studies indicate that Myc-mediated altered cancer cell energy metabolism could be translated for the development of new anticancer therapies.
Collapse
Affiliation(s)
- Chi V Dang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | |
Collapse
|
941
|
Hartzell DD, Trinklein ND, Mendez J, Murphy N, Aldred SF, Wood K, Urh M. A functional analysis of the CREB signaling pathway using HaloCHIP-chip and high throughput reporter assays. BMC Genomics 2009; 10:497. [PMID: 19860899 PMCID: PMC2774331 DOI: 10.1186/1471-2164-10-497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 10/27/2009] [Indexed: 01/30/2023] Open
Abstract
Background Regulation of gene expression is essential for normal development and cellular growth. Transcriptional events are tightly controlled both spatially and temporally by specific DNA-protein interactions. In this study we finely map the genome-wide targets of the CREB protein across all known and predicted human promoters, and characterize the functional consequences of a subset of these binding events using high-throughput reporter assays. To measure CREB binding, we used HaloCHIP, an antibody-free alternative to the ChIP method that utilizes the HaloTag fusion protein, and also high-throughput promoter-luciferase reporter assays, which provide rapid and quantitative screening of promoters for transcriptional activation or repression in living cells. Results In analysis of CREB genome-wide binding events using a comprehensive DNA microarray of human promoters, we observe for the first time that CREB has a strong preference for binding at bidirectional promoters and unlike unidirectional promoters, these binding events often occur downstream of transcription start sites. Comparison between HaloCHIP-chip and ChIP-chip data reveal this to be true for both methodologies, indicating it is not a bias of the technology chosen. Transcriptional data obtained from promoter-luciferase reporter arrays also show an unprecedented, high level of activation of CREB-bound promoters in the presence of the co-activator protein TORC1. Conclusion These data suggest for the first time that TORC1 provides directional information when CREB is bound at bidirectional promoters and possible pausing of the CREB protein after initial transcriptional activation. Also, this combined approach demonstrates the ability to more broadly characterize CREB protein-DNA interactions wherein not only DNA binding sites are discovered, but also the potential of the promoter sequence to respond to CREB is evaluated.
Collapse
Affiliation(s)
- Danette D Hartzell
- SwitchGear Genomics 1455 Adams Drive, Suite 1317, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | |
Collapse
|
942
|
Singh AM, Dalton S. The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell 2009; 5:141-9. [PMID: 19664987 DOI: 10.1016/j.stem.2009.07.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pluripotent stem cells have long-term proliferative capacity and an unusual mode of cell-cycle regulation and can divide independently of extrinsic mitogenic signals. The last few years has seen evidence emerge that links cell-cycle regulation to the maintenance and establishment of pluripotency. Myc transcription factors appear to be central to this regulation. This review addresses these links and discusses how cell-cycle controls and Myc impact on the maintenance and establishment of pluripotency.
Collapse
Affiliation(s)
- Amar M Singh
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
943
|
Nagel S, Venturini L, Przybylski GK, Grabarczyk P, Meyer C, Kaufmann M, Battmer K, Schmidt CA, Drexler HG, Scherr M, Macleod RA. NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells. BMC Cancer 2009; 9:371. [PMID: 19835636 PMCID: PMC2770077 DOI: 10.1186/1471-2407-9-371] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/19/2009] [Indexed: 11/16/2022] Open
Abstract
Background Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs. Methods Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses. Results Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3 and HEY1 was detected in primary TLX1/3 positive T-ALL cells corresponding to the cell line data. Conclusion Identification and analysis of MSX2 in hematopoietic cells implicates a modulatory role via NOTCH3-signaling in early T-cell differentiation. Our data suggest that reduction of NOTCH3-signaling by physiological downregulation of MSX2 expression during T-cell development is abrogated by ectopic expression of oncogenic NKLs, substituting MSX2 function.
Collapse
Affiliation(s)
- Stefan Nagel
- Dept. of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr, 7B, 38124 Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
944
|
Preferential binding of HIF-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol 2009; 10:R113. [PMID: 19828020 PMCID: PMC2784328 DOI: 10.1186/gb-2009-10-10-r113] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/18/2009] [Accepted: 10/14/2009] [Indexed: 11/10/2022] Open
Abstract
ChIP-chip and microarray expression studies show that, in response to hypoxia, HIF-1 preferentially binds to and up-regulates already active genes. Background Hypoxia-inducible factor 1 (HIF-1) plays a key role in cellular adaptation to hypoxia. To better understand the determinants of HIF-1 binding and transactivation, we used ChIP-chip and gene expression profiling to define the relationship between the epigenetic landscape, sites of HIF-1 binding, and genes transactivated by hypoxia in two cell lines. Results We found that when cells were acutely subjected to hypoxia, HIF-1 preferentially bound to loci that were already transcriptionally active under normal growth conditions characterized by the presence of histone H3 lysine 4 methylation, the presence of RNA polymerase II, and basal production of mRNA. Cell type-specific differences in HIF-1 binding were largely attributable to differences in the basal gene expression patterns in the cells prior to the onset of hypoxia. Conclusions These results suggest that the repertoire of genes active in a cell (for example, through lineage specific transcription factors) defines the subset of genes that are permissive for binding and transactivation by stimulus-responsive transcription factors.
Collapse
|
945
|
Laurenti E, Wilson A, Trumpp A. Myc's other life: stem cells and beyond. Curr Opin Cell Biol 2009; 21:844-54. [PMID: 19836223 DOI: 10.1016/j.ceb.2009.09.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 12/17/2022]
Abstract
Over the last three decades genetic and biochemical studies have revealed the pleiotropic effects of the Myc oncoprotein. While cell line studies have defined the intracellular processes regulated by Myc such as proliferation, differentiation, and metabolic growth, in vivo studies have confirmed these functions, and revealed roles in acquisition and maintenance of stem cell properties. These roles may be partially mediated by Myc's capacity to modify the chromatin landscape on a global scale. Myc also regulates numerous protein-coding transcripts, and many noncoding RNAs (rRNAs, tRNAs, and miRNAs). As Myc activity directly correlates with protein expression, further complexity is provided by post-translational modifications that regulate Myc in normal stem cells or deregulate it in malignant stem cells.
Collapse
Affiliation(s)
- Elisa Laurenti
- Ludwig Institute for Cancer Research Ltd, Lausanne Branch, University of Lausanne, Switzerland
| | | | | |
Collapse
|
946
|
Huang H, Cantor AB. Common features of megakaryocytes and hematopoietic stem cells: what's the connection? J Cell Biochem 2009; 107:857-64. [PMID: 19492306 DOI: 10.1002/jcb.22184] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Megakaryocytes (Mks) are rare polyploid bone marrow cells whose function is to produce blood platelets. Since the purification and cloning of the major Mk cytokine, thrombopoietin, in 1994, considerable progress has been made in understanding the biology of Mk development. Remarkably, these advances have revealed a number of key features of Mks that are shared with hematopoietic stem cells (HSCs), such as common surface receptors, lineage-specific transcription factors, and specialized signaling pathways. Why there should be such a close connection between these two cell types remains unclear. In this Prospect article, we summarize the data supporting these shared features and speculate on possible teleological bases. In particular, we focus on common links involving developmental hierarchy, endothelial cells, and bone marrow niche interactions. This discussion highlights new data showing close ontologic relationship between HSCs and specialized "hemogenic" endothelial cells during development, and functional overlap between Mks/platelets and endothelial cells. Overall, these findings may be of relevance in the development of techniques for HSC ex vivo culture and/or possible generation of HSCs via somatic cell reprogramming.
Collapse
Affiliation(s)
- Hui Huang
- Division of Pediatric Hematology-Oncology, Children's Hospital Boston, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
947
|
Yeap LS, Hayashi K, Surani MA. ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage. Epigenetics Chromatin 2009; 2:12. [PMID: 19811652 PMCID: PMC2763847 DOI: 10.1186/1756-8935-2-12] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/07/2009] [Indexed: 12/27/2022] Open
Abstract
Background Pluripotency, the capacity for indefinite self-renewal and differentiation into diverse cell types is a unique state exhibited by embryonic stem (ES) cells. Transcriptional regulators, such as Oct4, are critical for pluripotency, but the role of epigenetic modifiers remains to be fully elucidated. Results Here, we show that ERG-associated protein with SET domain (ESET), a histone methyltransferase enzyme, maintains pluripotency through repression of Cdx2, a key trophectoderm determinant, by histone H3 lysine 9 trimethylation (H3K9me3) of the promoter region. Notably, this repression is mediated through the synergistic function of small ubiquitin-related modifier (SUMO)ylated ESET and Oct4. ESET localises to the promyelocytic leukaemia (PML) nuclear bodies and is SUMOylated in ES cells. Interaction of ESET with Oct4 depends on a SUMO-interacting motif (SIM) in Oct4, which is critical for the repression of Cdx2. Conclusion Loss of ESET or Oct4 results in strikingly similar phenotypes both in ES cells with their differentiation into trophectoderm cells, and in early embryos where there is a failure of development of the pluripotent inner cell mass (ICM) of blastocysts. We propose that SUMOylated ESET-Oct4 complex is critical for both the initiation and maintenance of pluripotency through repression of differentiation, particularly of the trophectoderm lineage by epigenetic silencing of Cdx2.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
948
|
Cheng PC, Chang HK, Chen SH. Quantitative nanoproteomics for protein complexes (QNanoPX) related to estrogen transcriptional action. Mol Cell Proteomics 2009; 9:209-24. [PMID: 19805454 DOI: 10.1074/mcp.m900183-mcp200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We developed an integrated proteomics approach using a chemically functionalized gold nanoparticle (AuNP) as a novel probe for affinity purification to analyze a large protein complex in vivo. We then applied this approach to globally map the transcriptional activation complex of the estrogen response element (ERE). This approach was designated as quantitative nanoproteomics for protein complexes (QNanoPX). In this approach, the positive AuNP-ERE probes were functionalized with polyethylene glycol (PEG), and the consensus sequence of ERE and negative AuNP-PEG probes were functionalized with PEG without the ERE via a thiolated self-assembly monolayer technique. The AuNP-ERE probe had substantially low nonspecific binding and high solubility, which resulted in a 20-fold enrichment of the factor compared with gel beads. In addition, the surface-only binding allows the probe to capture a large protein complex without any restrictions due to pore size. The affinity purification method was combined with MS-based quantitative proteomics and statistical methods to reveal the components of the ERE complex in MCF-7 cells and to identify those components within the complex that were altered by the presence of 17beta-estradiol (E2). Results indicated that a majority of proteins pulled down by the positive probe exhibited significant binding, and approximately one-half of the proteins, including estrogen receptor alpha (ERalpha), were slightly but significantly affected by a 24-h treatment with E2. Based on a combination of bioinformatics and pathway analysis, most of the affected proteins, however, appeared to be related to the transcriptional regulation of not only ERalpha but also c-Myc. Further confirmation indicated that E2 enhanced the ERE binding of c-Myc by 14-fold, indicating that c-Myc may play a major role, along with ERalpha, in E2-mediated transcription. Taken together, our results demonstrated a successful QNanoPX approach toward new pathway discovery and further revealed the importance of cross-interactions among transcription factors.
Collapse
Affiliation(s)
- Pai-Chiao Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
949
|
Boheler KR. Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J Cell Physiol 2009; 221:10-7. [PMID: 19562686 PMCID: PMC3326661 DOI: 10.1002/jcp.21866] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Embryonic stem (ES) and induced pluripotent stem (iPS) cells self-renew and are pluripotent. Differentiation of these cells can yield over 200 somatic cell types, making pluripotent cells an obvious source for regenerative medicine. Before the potential of these cells can be maximally harnessed for clinical applications, it will be necessary to understand the processes that maintain pluripotentiality and signal differentiation. Currently, three unique molecular properties distinguish pluripotent stem cells from somatic cells. These include a unique transcriptional hierarchy that sustains the pluripotent state during the process of self-renewal; a poised epigenetic state that maintains chromatin in a form ready for rapid cell fate decisions; and a cell cycle characterized by an extremely short gap 1 (G1) phase and the near absence of normal somatic cell checkpoint controls. Recently, B-MYB (MYBL2) was implicated in the gene regulation of two pluripotency factors and normal cell cycle progression. In this article, the three pluripotency properties and the potential role of B-Myb to regulate these processes will be discussed.
Collapse
|
950
|
Abstract
A fundamental goal in biology is to understand the molecular basis of cell identity. Pluripotent embryonic stem (ES) cell identity is governed by a set of transcription factors centred on the triumvirate of Oct4, Sox2 and Nanog. These proteins often bind to closely localised genomic sites. Recent studies have identified additional transcriptional modulators that bind to chromatin near sites occupied by Oct4, Sox2 and Nanog. This suggests that the combinatorial control of gene transcription might be fundamental to the ES cell state. Here we discuss how these observations advance our understanding of the transcription factor network that controls pluripotent identity and highlight unresolved issues that arise from these studies.
Collapse
Affiliation(s)
- Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JQ, UK.
| | | |
Collapse
|