901
|
Epigenetics in Paediatric Gastroenterology, Hepatology, and Nutrition: Present Trends and Future Perspectives. J Pediatr Gastroenterol Nutr 2016; 62:521-9. [PMID: 26628441 DOI: 10.1097/mpg.0000000000001053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epigenetics can be defined as stable, potentially heritable changes in the cellular phenotype caused by mechanisms other than alterations to the underlying DNA sequence. As such, any observed phenotypic changes including organ development, aging, and the occurrence of disease could be driven by epigenetic mechanisms in the presence of stable cellular DNA sequences. Indeed, with the exception of rare mutations, the human genome-sequence has remained remarkably stable over the past centuries. In contrast, substantial changes to our environment as part of our modern life style have not only led to a significant reduction of certain infectious diseases but also seen the exponential increase in complex traits including obesity and multifactorial diseases such as autoimmune disorders. It is becoming increasingly clear that epigenetic mechanisms operate at the interface between the genetic code and our environment, and a large body of existing evidence supports the importance of environmental factors such as diet and nutrition, infections, and exposure to toxins on human health. This seems to be particularly the case during vulnerable periods of human development such as pregnancy and early life. Importantly, as the first point of contact for many of such environmental factors including nutrition, the digestive system is being increasingly linked to a number of "modern" pathologies. In this review article, we aim to give a brief introduction to the basic molecular principals of epigenetics and provide a concise summary of the existing evidence for the role of epigenetic mechanisms in gastrointestinal health and disease, hepatology, and nutrition.
Collapse
|
902
|
Timms JA, Relton CL, Rankin J, Strathdee G, McKay JA. DNA methylation as a potential mediator of environmental risks in the development of childhood acute lymphoblastic leukemia. Epigenomics 2016; 8:519-36. [PMID: 27035209 PMCID: PMC4928498 DOI: 10.2217/epi-2015-0011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/22/2016] [Indexed: 11/21/2022] Open
Abstract
5-year survival rate for childhood acute lymphoblastic leukemia (ALL) has risen to approximately 90%, yet the causal disease pathway is still poorly understood. Evidence suggests multiple 'hits' are required for disease progression; an initial genetic abnormality followed by additional secondary 'hits'. It is plausible that environmental influences may trigger these secondary hits, and with the peak incidence of diagnosis between 2 and 5 years of age, early life exposures are likely to be key. DNA methylation can be modified by many environmental exposures and is dramatically altered in cancers, including childhood ALL. Here we explore the potential that DNA methylation may be involved in the causal pathway toward disease by acting as a mediator between established environmental factors and childhood ALL development.
Collapse
Affiliation(s)
- Jessica A Timms
- Institute of Health & Society, Newcastle University, Newcastle, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, UK
| | - Judith Rankin
- Institute of Health & Society, Newcastle University, Newcastle, UK
| | - Gordon Strathdee
- Northern Institute for Cancer Research, Newcastle University, UK
| | - Jill A McKay
- Institute of Health & Society, Newcastle University, Newcastle, UK
| |
Collapse
|
903
|
Gokhman D, Meshorer E, Carmel L. Epigenetics: It's Getting Old. Past Meets Future in Paleoepigenetics. Trends Ecol Evol 2016; 31:290-300. [DOI: 10.1016/j.tree.2016.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 01/08/2023]
|
904
|
Janowitz Koch I, Clark MM, Thompson MJ, Deere-Machemer KA, Wang J, Duarte L, Gnanadesikan GE, McCoy EL, Rubbi L, Stahler DR, Pellegrini M, Ostrander EA, Wayne RK, Sinsheimer JS, vonHoldt BM. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Mol Ecol 2016; 25:1838-55. [PMID: 27112634 PMCID: PMC4849173 DOI: 10.1111/mec.13480] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022]
Abstract
The process of domestication can exert intense trait-targeted selection on genes and regulatory regions. Specifically, rapid shifts in the structure and sequence of genomic regulatory elements could provide an explanation for the extensive, and sometimes extreme, variation in phenotypic traits observed in domesticated species. Here, we explored methylation differences from >24 000 cytosines distributed across the genomes of the domesticated dog (Canis familiaris) and the grey wolf (Canis lupus). PCA and model-based cluster analyses identified two primary groups, domestic vs. wild canids. A scan for significantly differentially methylated sites (DMSs) revealed species-specific patterns at 68 sites after correcting for cell heterogeneity, with weak yet significant hypermethylation typical of purebred dogs when compared to wolves (59% and 58%, P < 0.05, respectively). Additionally, methylation patterns at eight genes significantly deviated from neutrality, with similar trends of hypermethylation in purebred dogs. The majority (>66%) of differentially methylated regions contained or were associated with repetitive elements, indicative of a genotype-mediated trend. However, DMSs were also often linked to functionally relevant genes (e.g. neurotransmitters). Finally, we utilized known genealogical relationships among Yellowstone wolves to survey transmission stability of methylation marks, from which we found a substantial fraction that demonstrated high heritability (both H(2) and h(2 ) > 0.99). These analyses provide a unique epigenetic insight into the molecular consequences of recent selection and radiation of our most ancient domesticated companion, the dog. These findings suggest selection has acted on methylation patterns, providing a new genomic perspective on phenotypic diversification in domesticated species.
Collapse
Affiliation(s)
- Ilana Janowitz Koch
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Michelle M Clark
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael J Thompson
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Jun Wang
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48085, USA
| | - Lionel Duarte
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Eskender L McCoy
- Yale School of Management, Yale University, New Haven, CT, 06511, USA
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel R Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, WY, 82190, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert K Wayne
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Janet S Sinsheimer
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics and Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Bridgett M vonHoldt
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
905
|
Consales C, Toft G, Leter G, Bonde JPE, Uccelli R, Pacchierotti F, Eleuteri P, Jönsson BAG, Giwercman A, Pedersen HS, Struciński P, Góralczyk K, Zviezdai V, Spanò M. Exposure to persistent organic pollutants and sperm DNA methylation changes in Arctic and European populations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:200-9. [PMID: 26801515 DOI: 10.1002/em.21994] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/06/2015] [Indexed: 05/28/2023]
Abstract
Persistent organic pollutants (POPs), such as PCBs (polychlorinated biphenyls) and DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane], are environmental contaminants with potential endocrine disrupting activity. DNA methylation levels in peripheral blood lymphocytes have been associated with serum concentrations of POPs in Greenland Inuit and Korean populations. Greenland Inuits are characterized by the highest worldwide POP levels. In this cross-sectional study we evaluated the relationship between serum POP concentrations and DNA methylation levels in sperm of non-occupationally exposed fertile men from Greenland, Warsaw (Poland), and Kharkiv (Ukraine). Serum levels of PCB-153 [1,2,4-trichloro-5-(2,4,5-trichlorophenyl)benzene], as a proxy of the total PCBs body burden, and of p,p'-DDE [1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene], the main metabolite of DDT were measured. Sperm DNA methylation level was assessed globally by flow cytometric (FCM) immunodetection of 5-methyl-cytosines and at specific repetitive DNA sequences (Alu, LINE-1, Satα) by PCR-pyrosequencing after bisulfite conversion. Multivariate linear regression analysis was applied to investigate correlations between serum POP concentrations and DNA methylation. No consistent associations between exposure to POPs and sperm DNA methylation at repetitive DNA sequences were detected. A statistically significant global decrease in methylation was associated with exposure to either POP by FCM analysis. This is the first study to investigate environmental exposure to POPs and DNA methylation levels considering sperm as the target cells. Although POP exposure appears to have a limited negative impact on sperm DNA methylation levels in adult males, the global hypomethylation detected by one of the methods applied suggests that further investigation is warranted.
Collapse
Affiliation(s)
- Claudia Consales
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| | - Gunnar Toft
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
| | - Giorgio Leter
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| | - Jens Peter E Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg University Hospital of Copenhagen, Copenhagen, NV, DK-2400, Denmark
| | - Raffaella Uccelli
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| | - Francesca Pacchierotti
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| | - Patrizia Eleuteri
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| | - Bo A G Jönsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, SE-22185, Sweden
| | - Aleksander Giwercman
- Molecular Reproductive Medicine, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, Malmö, SE-20502, Sweden
| | - Henning S Pedersen
- Centre for Arctic Environmental Medicine, Greenland Institute of Natural Resources, Nuuk, Greenland, DK-3900, Denmark
| | - Paweł Struciński
- Department of Toxicology and Risk Assessment, National Institute of Public Health-National Institute of Hygiene, Warsaw, 00791, Poland
| | - Katarzyna Góralczyk
- Department of Toxicology and Risk Assessment, National Institute of Public Health-National Institute of Hygiene, Warsaw, 00791, Poland
| | - Valentyna Zviezdai
- Laboratory of Human Reproduction, Department of Social Medicine and Organization of Public Health, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Marcello Spanò
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| |
Collapse
|
906
|
Zhou F, Wang W, Shen C, Li H, Zuo X, Zheng X, Yue M, Zhang C, Yu L, Chen M, Zhu C, Yin X, Tang M, Li Y, Chen G, Wang Z, Liu S, Zhou Y, Zhang F, Zhang W, Li C, Yang S, Sun L, Zhang X. Epigenome-Wide Association Analysis Identified Nine Skin DNA Methylation Loci for Psoriasis. J Invest Dermatol 2016; 136:779-787. [DOI: 10.1016/j.jid.2015.12.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/10/2015] [Accepted: 11/27/2015] [Indexed: 12/27/2022]
|
907
|
Lea AJ, Altmann J, Alberts SC, Tung J. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus). Mol Ecol 2016; 25:1681-96. [PMID: 26508127 PMCID: PMC4846536 DOI: 10.1111/mec.13436] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
Abstract
Variation in resource availability commonly exerts strong effects on fitness-related traits in wild animals. However, we know little about the molecular mechanisms that mediate these effects, or about their persistence over time. To address these questions, we profiled genome-wide whole-blood DNA methylation levels in two sets of wild baboons: (i) 'wild-feeding' baboons that foraged naturally in a savanna environment and (ii) 'Lodge' baboons that had ready access to spatially concentrated human food scraps, resulting in high feeding efficiency and low daily travel distances. We identified 1014 sites (0.20% of sites tested) that were differentially methylated between wild-feeding and Lodge baboons, providing the first evidence that resource availability shapes the epigenome in a wild mammal. Differentially methylated sites tended to occur in contiguous stretches (i.e., in differentially methylated regions or DMRs), in promoters and enhancers, and near metabolism-related genes, supporting their functional importance in gene regulation. In agreement, reporter assay experiments confirmed that methylation at the largest identified DMR, located in the promoter of a key glycolysis-related gene, was sufficient to causally drive changes in gene expression. Intriguingly, all dispersing males carried a consistent epigenetic signature of their membership in a wild-feeding group, regardless of whether males dispersed into or out of this group as adults. Together, our findings support a role for DNA methylation in mediating ecological effects on phenotypic traits in the wild and emphasize the dynamic environmental sensitivity of DNA methylation levels across the life course.
Collapse
Affiliation(s)
- Amanda J. Lea
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Jeanne Altmann
- Department of Ecology and Evolution, Princeton University, 106A Guyot Hall, Princeton, NJ 08544, USA
- Institute of Primate Research, National Museums of Kenya, P. O. Box 24481, Karen 00502, Nairobi, Kenya
| | - Susan C. Alberts
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, P. O. Box 24481, Karen 00502, Nairobi, Kenya
| | - Jenny Tung
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, P. O. Box 24481, Karen 00502, Nairobi, Kenya
- Department of Evolutionary Anthropology, Box 90383, Durham, NC 27708, USA
- Duke University Population Research Institute, Box 90420, Durham, NC 27708, USA
| |
Collapse
|
908
|
Akkerman KC, Sattarin A, Kelly JK, Scoville AG. Transgenerational plasticity is sex-dependent and persistent in yellow monkeyflower ( Mimulus guttatus). ENVIRONMENTAL EPIGENETICS 2016; 2:dvw003. [PMID: 29492285 PMCID: PMC5804517 DOI: 10.1093/eep/dvw003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2015] [Accepted: 01/27/2016] [Indexed: 05/19/2023]
Abstract
Transgenerational phenotypic plasticity, whereby environmental cues experienced by parents alter the phenotype of their progeny, has now been documented in diverse organisms. Transmission of environmentally determined responses is known to occur through both maternal and paternal gametes, but the underlying mechanisms have rarely been compared. In addition, the persistence of induction over multiple generations appears to vary widely, but has been characterized for relatively few systems. Yellow monkeyflower (Mimulus guttatus) is known to exhibit transgenerational induction of increased glandular trichome production in response to simulated insect damage. Here, we test for differences between maternal and paternal transmission of this response and examine its persistence over five generations following damage. Maternal and paternal damage resulted in similar and apparently additive increases in progeny trichome production. Treatment of germinating seeds with the genome-wide demethylating agent 5-azacytidine erased the effect of maternal but not paternal damage. The number of glandular trichomes remained elevated for three generations following damage. These results indicate that transgenerational transmission occurs through both maternal and paternal germ lines, but that they differ in the proximate mechanism of epigenetic inheritance. Our results also indicate that a wounding response can persist for multiple generations in the absence of subsequent damage.
Collapse
Affiliation(s)
- Kayla C. Akkerman
- Department of Biology, Central Washington University, Ellensburg, WA 98926, USA
| | - Arash Sattarin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Alison G. Scoville
- Department of Biology, Central Washington University, Ellensburg, WA 98926, USA
- *Correspondence address. Department of Biology, Central Washington University, Ellensburg, 400 E University Way, Ellensburg, WA, 98926. Tel: 509-963-2802. Fax: 509-963-2730 E-mail:
| |
Collapse
|
909
|
Trucchi E, Mazzarella AB, Gilfillan GD, Lorenzo MT, Schönswetter P, Paun O. BsRADseq: screening DNA methylation in natural populations of non-model species. Mol Ecol 2016; 25:1697-713. [PMID: 26818626 PMCID: PMC4949719 DOI: 10.1111/mec.13550] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/01/2015] [Accepted: 01/15/2016] [Indexed: 12/24/2022]
Abstract
Epigenetic modifications are expected to occur at a much faster rate than genetic mutations, potentially causing isolated populations to stochastically drift apart, or if they are subjected to different selective regimes, to directionally diverge. A high level of genome‐wide epigenetic divergence between individuals occupying distinct habitats is therefore predicted. Here, we introduce bisulfite‐converted restriction site associated DNA sequencing (bsRADseq), an approach to quantify the level of DNA methylation differentiation across multiple individuals. This reduced representation method is flexible in the extent of DNA sequence interrogated. We showcase its applicability in three natural systems, each comprising individuals adapted to divergent environments: a diploid plant (Heliosperma, Caryophyllaceae), a tetraploid plant (Dactylorhiza, Orchidaceae) and an animal (Gasterosteusaculeatus, Gasterosteidae). We present a robust bioinformatic pipeline, combining tools for RAD locus assembly, SNP calling, bisulfite‐converted read mapping and DNA methylation calling to analyse bsRADseq data with or without a reference genome. Importantly, our approach accurately distinguishes between SNPs and methylation polymorphism (SMPs). Although DNA methylation frequency between different positions of a genome varies widely, we find a surprisingly high consistency in the methylation profile between individuals thriving in divergent ecological conditions, particularly in Heliosperma. This constitutive stability points to significant molecular or developmental constraints acting on DNA methylation variation. Altogether, by combining the flexibility of RADseq with the accuracy of bisulfite sequencing in quantifying DNA methylation, the bsRADseq methodology and our bioinformatic pipeline open up the opportunity for genome‐wide epigenetic investigations of evolutionary and ecological relevance in non‐model species, independent of their genomic features.
Collapse
Affiliation(s)
- Emiliano Trucchi
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria.,Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Anna B Mazzarella
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital, PO Box 4590 Nydalen, N-0420, Oslo, Norway
| | - Maria T Lorenzo
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| | - Peter Schönswetter
- Institute of Botany, University of Innsbruck, Sternwartestrasse 15, A-6020, Innsbruck, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
| |
Collapse
|
910
|
Larriba E, del Mazo J. Role of Non-Coding RNAs in the Transgenerational Epigenetic Transmission of the Effects of Reprotoxicants. Int J Mol Sci 2016; 17:452. [PMID: 27023531 PMCID: PMC4848908 DOI: 10.3390/ijms17040452] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are regulatory elements of gene expression and chromatin structure. Both long and small ncRNAs can also act as inductors and targets of epigenetic programs. Epigenetic patterns can be transmitted from one cell to the daughter cell, but, importantly, also through generations. Diversity of ncRNAs is emerging with new and surprising roles. Functional interactions among ncRNAs and between specific ncRNAs and structural elements of the chromatin are drawing a complex landscape. In this scenario, epigenetic changes induced by environmental stressors, including reprotoxicants, can explain some transgenerationally-transmitted phenotypes in non-Mendelian ways. In this review, we analyze mechanisms of action of reprotoxicants upon different types of ncRNAs and epigenetic modifications causing transgenerationally transmitted characters through germ cells but affecting germ cells and reproductive systems. A functional model of epigenetic mechanisms of transgenerational transmission ncRNAs-mediated is also proposed.
Collapse
Affiliation(s)
- Eduardo Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain.
| | - Jesús del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
911
|
Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 2016; 15:473-84. [PMID: 26965202 DOI: 10.1038/nrd.2016.32] [Citation(s) in RCA: 965] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolomics is an emerging 'omics' science involving the comprehensive characterization of metabolites and metabolism in biological systems. Recent advances in metabolomics technologies are leading to a growing number of mainstream biomedical applications. In particular, metabolomics is increasingly being used to diagnose disease, understand disease mechanisms, identify novel drug targets, customize drug treatments and monitor therapeutic outcomes. This Review discusses some of the latest technological advances in metabolomics, focusing on the application of metabolomics towards uncovering the underlying causes of complex diseases (such as atherosclerosis, cancer and diabetes), the growing role of metabolomics in drug discovery and its potential effect on precision medicine.
Collapse
Affiliation(s)
- David S Wishart
- Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.,Department of Computing Science, 2-21 Athabasca Hall University of Alberta, Edmonton, Alberta, Canada T6G 2E8.,National Institute of Nanotechnology, National Research Council, Edmonton, Alberta, Canada T6G 2M9
| |
Collapse
|
912
|
Stachowiak M, Szczerbal I, Switonski M. Genetics of Adiposity in Large Animal Models for Human Obesity-Studies on Pigs and Dogs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:233-70. [PMID: 27288831 DOI: 10.1016/bs.pmbts.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of domestic mammals in the development of human biomedical sciences has been widely documented. Among these model species the pig and dog are of special importance. Both are useful for studies on the etiology of human obesity. Genome sequences of both species are known and advanced genetic tools [eg, microarray SNP for genome wide association studies (GWAS), next generation sequencing (NGS), etc.] are commonly used in such studies. In the domestic pig the accumulation of adipose tissue is an important trait, which influences meat quality and fattening efficiency. Numerous quantitative trait loci (QTLs) for pig fatness traits were identified, while gene polymorphisms associated with these traits were also described. The situation is different in dog population. Generally, excessive accumulation of adipose tissue is considered, similar to humans, as a complex disease. However, research on the genetic background of canine obesity is still in its infancy. Between-breed differences in terms of adipose tissue accumulation are well known in both animal species. In this review we show recent advances of studies on adipose tissue accumulation in pigs and dogs, and their potential importance for studies on human obesity.
Collapse
Affiliation(s)
- M Stachowiak
- Department of Genetics, Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - I Szczerbal
- Department of Genetics, Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - M Switonski
- Department of Genetics, Animal Breeding, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
913
|
Song L, Jiang W, Liu W, Ji J, Shi T, Zhang J, Xia C. Protein tyrosine phosphatases receptor type D is a potential tumour suppressor gene inactivated by deoxyribonucleic acid methylation in paediatric acute myeloid leukaemia. Acta Paediatr 2016; 105:e132-41. [PMID: 26607758 DOI: 10.1111/apa.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/27/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023]
Abstract
AIM Protein tyrosine phosphatases receptor type D (PTPRD) is a tumour suppressor gene, and its epigenetic silencing is frequently found in glioblastoma. As aberrant deoxyribonucleic acid (DNA) methylation patterning has been shown to play a role in leukaemogenesis, we studied the promoter methylation, expression profiles and molecular functions of PTPRD in paediatric patients with acute myeloid leukaemia (AML). METHODS Bone marrow specimens were obtained from 32 Chinese patients with a mean age of 7.2 years (range 1.1-16.5). PTPRD and methylation status were evaluated by real-time polymerase chain reaction (PCR) and methylation-specific PCR. Western blot and flow cytometry techniques were also used. RESULTS PTPRD expression was decreased by promoter region methylation in six AML cells and methylated in 21 (65.6%) of the 32 samples. In addition, PTPRD expression could be induced by the DNA demethylating agent 5-aza-2'-deoxycytidine. Furthermore, functional studies showed that overexpression of PTPRD in AML cells inhibited cell proliferation and clonogenicity as well as inducing apoptosis. However, PTPRD knockdown increased cell proliferation. These effects were associated with downregulation of cyclin D1, c-myc and upregulation of Bax. CONCLUSION The results of this study demonstrated that PTPRD was a potential tumour suppressor gene inactivated by DNA methylation in paediatric AML.
Collapse
Affiliation(s)
- Lei Song
- Department of Paediatrics The Second Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Wen Jiang
- Department of Gastroenterology Nantong Third People's Hospital Nantong Jiangsu China
| | - Wei Liu
- Department of Surgery The Second Affiliated Hospital of Nantong University Nantong Jiangsu China
| | - Ju‐Hua Ji
- Department of Gastroenterology Nantong Third People's Hospital Nantong Jiangsu China
| | - Tai‐Feng Shi
- Department of Gastroenterology Nantong Third People's Hospital Nantong Jiangsu China
| | - Jie Zhang
- School of Medicine Nantong University Nantong Jiangsu China
| | - Chun‐Qiu Xia
- Department of Surgery The Second Affiliated Hospital of Nantong University Nantong Jiangsu China
| |
Collapse
|
914
|
Warton K, Mahon KL, Samimi G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer 2016; 23:R157-71. [PMID: 26764421 PMCID: PMC4737995 DOI: 10.1530/erc-15-0369] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
Circulating tumor DNA (ctDNA) in the plasma or serum of cancer patients provides an opportunity for non-invasive sampling of tumor DNA. This 'liquid biopsy' allows for interrogations of DNA such as quantity, chromosomal alterations, sequence mutations and epigenetic changes, and can be used to guide and improve treatment throughout the course of the disease. This tremendous potential for real-time 'tracking' in a cancer patient has led to substantial research efforts in the ctDNA field. ctDNA can be distinguished from non-tumor DNA by the presence of tumor-specific mutations and copy number variations, and also by aberrant DNA methylation, with both DNA sequence and methylation changes corresponding to those found in the tumor. Aberrant methylation of specific promoter regions can be a very consistent feature of cancer, in contrast to mutations, which typically occur at a wide range of sites. This consistency makes ctDNA methylation amenable to the design of widely applicable clinical assays. In this review, we examine ctDNA methylation in the context of monitoring disease status, treatment response and determining the prognosis of cancer patients.
Collapse
Affiliation(s)
- Kristina Warton
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia
| | - Kate L Mahon
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia
| | - Goli Samimi
- Garvan Institute of Medical ResearchThe Kinghorn Cancer Centre and St Vincent's Clinical School, 370 Victoria Street, Darlinghurst, Sydeny, New South Wales, AustraliaChris O'Brien LifehouseCamperdown, New South Wales, Australia
| |
Collapse
|
915
|
Affiliation(s)
- Melvin M. Bonilla
- Department of Biology and Program in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
- Department of Environmental Health, T.H. Chan School of Public HealthHarvard UniversityBostonMAUSA
| | - Jeanne A. Zeh
- Department of Biology and Program in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
| | - David W. Zeh
- Department of Biology and Program in Ecology, Evolution and Conservation BiologyUniversity of NevadaRenoNVUSA
| |
Collapse
|
916
|
Li X, Yu J, Brock MV, Tao Q, Herman JG, Liang P, Guo M. Epigenetic silencing of BCL6B inactivates p53 signaling and causes human hepatocellular carcinoma cell resist to 5-FU. Oncotarget 2016; 6:11547-60. [PMID: 25909168 PMCID: PMC4484475 DOI: 10.18632/oncotarget.3413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/19/2015] [Indexed: 12/13/2022] Open
Abstract
BCL6B is a potential tumor suppressor in human gastric cancer, but the regulation and mechanism of BCL6B in human hepatocellular carcinogenesis remain unclear. This study is to explore the epigenetic change and mechanism of BCL6B in human hepatocellular carcinoma (HCC). Nineteen hepatic cancer cell lines, 50 cases of adjacent tissue and 149 cases of HCC samples were employed. BCL6B is methylated in 100% (19/19) of human HCC cell lines, 40.0% (20/50) of adjacent tissue samples and 86.6% (129/149) of primary cancer samples. Methylation of BCL6B is associated with HBV positive (p < 0.05). But no association was found with age, sex, tumor size, differentiation, TNM stage, recurrence and survival. Loss of BCL6B expression was found in 19 of completely methylated HCC cell lines. BCL6B was re-expressed after 5-aza-2′-deoxycytidine treatment. Restoration of BCL6B expression suppressed cell proliferation, induced apoptosis and G1/S arrest in HCC cells. The expression of EGR1, a key component of p53 signaling, was increased after re-expression BCL6B in HCC cells. Re-expression of BCL6B activated p53 signaling and sensitized HCC cells to 5-fluorouracil. BCL6B is frequently methylated in human HCC and the expression of BCL6B is regulated by promoter region hypermethylation. BCL6B activates p53 signaling by increasing EGR1 expression in HCC.
Collapse
Affiliation(s)
- Xin Li
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China.,Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Malcolm V Brock
- Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qian Tao
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - James G Herman
- Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
917
|
Jacobi JL, Yang B, Li X, Menze AK, Laurentz SM, Janle EM, Ferruzzi MG, McCabe GP, Chapple C, Kirchmaier AL. Impacts on Sirtuin Function and Bioavailability of the Dietary Bioactive Compound Dihydrocoumarin. PLoS One 2016; 11:e0149207. [PMID: 26882112 PMCID: PMC4755582 DOI: 10.1371/journal.pone.0149207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
The plant secondary metabolite and common food additive dihydrocoumarin (DHC) is an inhibitor of the Sirtuin family of NAD+-dependent deacetylases. Sirtuins are key regulators of epigenetic processes that maintain silent chromatin in yeast and have been linked to gene expression, metabolism, apoptosis, tumorogenesis and age-related processes in multiple organisms, including humans. Here we report that exposure to the polyphenol DHC led to defects in several Sirtuin-regulated processes in budding yeast including the establishment and maintenance of Sir2p-dependent silencing by causing disassembly of silent chromatin, Hst1p-dependent repression of meiotic-specific genes during the mitotic cell cycle. As both transient and prolonged exposure to environmental and dietary factors have the potential to lead to heritable alterations in epigenetic states and to modulate additional Sirtuin-dependent phenotypes, we examined the bioavailability and digestive stability of DHC using an in vivo rat model and in vitro digestive simulator. Our analyses revealed that DHC was unstable during digestion and could be converted to melilotic acid (MA), which also caused epigenetic defects, albeit less efficiently. Upon ingestion, DHC was observed primarily in intestinal tissues, but did not accumulate over time and was readily cleared from the animals. MA displayed a wider tissue distribution and, in contrast to DHC, was also detected in the blood plasma, interstitial fluid, and urine, implying that the conversion of DHC to the less bioactive compound, MA, occurred efficiently in vivo.
Collapse
Affiliation(s)
- Jennifer L. Jacobi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| | - Bo Yang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| | - Xu Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Anna K. Menze
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, United States of America
| | - Sara M. Laurentz
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Elsa M. Janle
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana, United States of America
| | - Mario G. Ferruzzi
- Department of Food Science, Purdue University, West Lafayette, Indiana, United States of America
| | - George P. McCabe
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Ann L. Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
918
|
A genome-wide search for epigenetically [corrected] regulated genes in zebra finch using MethylCap-seq and RNA-seq. Sci Rep 2016; 6:20957. [PMID: 26864856 PMCID: PMC4750092 DOI: 10.1038/srep20957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/14/2016] [Indexed: 01/20/2023] Open
Abstract
Learning and memory formation are known to require dynamic CpG (de)methylation and gene expression changes. Here, we aimed at establishing a genome-wide DNA methylation map of the zebra finch genome, a model organism in neuroscience, as well as identifying putatively epigenetically regulated genes. RNA- and MethylCap-seq experiments were performed on two zebra finch cell lines in presence or absence of 5-aza-2′-deoxycytidine induced demethylation. First, the MethylCap-seq methodology was validated in zebra finch by comparison with RRBS-generated data. To assess the influence of (variable) methylation on gene expression, RNA-seq experiments were performed as well. Comparison of RNA-seq and MethylCap-seq results showed that at least 357 of the 3,457 AZA-upregulated genes are putatively regulated by methylation in the promoter region, for which a pathway analysis showed remarkable enrichment for neurological networks. A subset of genes was validated using Exon Arrays, quantitative RT-PCR and CpG pyrosequencing on bisulfite-treated samples. To our knowledge, this study provides the first genome-wide DNA methylation map of the zebra finch genome as well as a comprehensive set of genes of which transcription is under putative methylation control.
Collapse
|
919
|
Role of Viral miRNAs and Epigenetic Modifications in Epstein-Barr Virus-Associated Gastric Carcinogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6021934. [PMID: 26977250 PMCID: PMC4764750 DOI: 10.1155/2016/6021934] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/26/2023]
Abstract
MicroRNAs are short (21–23 nucleotides), noncoding RNAs that typically silence posttranscriptional gene expression through interaction with target messenger RNAs. Currently, miRNAs have been identified in almost all studied multicellular eukaryotes in the plant and animal kingdoms. Additionally, recent studies reported that miRNAs can also be encoded by certain single-cell eukaryotes and by viruses. The vast majority of viral miRNAs are encoded by the herpesviruses family. These DNA viruses including Epstein-Barr virus encode their own miRNAs and/or manipulate the expression of cellular miRNAs to facilitate respective infection cycles. Modulation of the control pathways of miRNAs expression is often involved in the promotion of tumorigenesis through a specific cascade of transduction signals. Notably, latent infection with Epstein-Barr virus is considered liable of causing several types of malignancies, including the majority of gastric carcinoma cases detected worldwide. In this review, we describe the role of the Epstein-Barr virus in gastric carcinogenesis, summarizing the functions of the Epstein-Barr virus-encoded viral proteins and related epigenetic alterations as well as the roles of Epstein-Barr virus-encoded and virally modulated cellular miRNAs.
Collapse
|
920
|
Rauwerda H, Wackers P, Pagano JFB, de Jong M, Ensink W, Dekker R, Nehrdich U, Spaink HP, Jonker M, Breit TM. Mother-Specific Signature in the Maternal Transcriptome Composition of Mature, Unfertilized Zebrafish Eggs. PLoS One 2016; 11:e0147151. [PMID: 26799215 PMCID: PMC4723340 DOI: 10.1371/journal.pone.0147151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/28/2015] [Indexed: 12/19/2022] Open
Abstract
Maternal mRNA present in mature oocytes plays an important role in the proper development of the early embryo. As the composition of the maternal transcriptome in general has been studied with pooled mature eggs, potential differences between individual eggs are unknown. Here we present a transcriptome study on individual zebrafish eggs from clutches of five mothers in which we focus on the differences in maternal mRNA abundance per gene between and within clutches. To minimize technical interference, we used mature, unfertilized eggs from siblings. About half of the number of analyzed genes was found to be expressed as maternal RNA. The expressed and non-expressed genes showed that maternal mRNA accumulation is a non-random process, as it is related to specific biological pathways and processes relevant in early embryogenesis. Moreover, it turned out that overall the composition of the maternal transcriptome is tightly regulated as about half of the expressed genes display a less than twofold expression range between the observed minimum and maximum expression values of a gene in the experiment. Even more, the maximum gene-expression difference within clutches is for 88% of the expressed genes lower than twofold. This means that expression differences observed in maternally expressed genes are primarily caused by differences between mothers, with only limited variability between eggs from the same mother. This was underlined by the fact that 99% of the expressed genes were found to be differentially expressed between any of the mothers in an ANOVA test. Furthermore, linking chromosome location, transcription factor binding sites, and miRNA target sites of the genes in clusters of distinct and unique mother-specific gene-expression, suggest biological relevance of the mother-specific signatures in the maternal transcriptome composition. Altogether, the maternal transcriptome composition of mature zebrafish oocytes seems to be tightly regulated with a distinct mother-specific signature.
Collapse
Affiliation(s)
- Han Rauwerda
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Wackers
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Johanna F. B. Pagano
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark de Jong
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim Ensink
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Rob Dekker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Ulrike Nehrdich
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Faculty of Science, Leiden University, Leiden, the Netherlands
| | - Martijs Jonker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Timo M. Breit
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
921
|
Roos L, van Dongen J, Bell CG, Burri A, Deloukas P, Boomsma DI, Spector TD, Bell JT. Integrative DNA methylome analysis of pan-cancer biomarkers in cancer discordant monozygotic twin-pairs. Clin Epigenetics 2016; 8:7. [PMID: 26798410 PMCID: PMC4721070 DOI: 10.1186/s13148-016-0172-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/12/2016] [Indexed: 02/06/2023] Open
Abstract
Background A key focus in cancer research is the discovery of biomarkers that accurately diagnose early lesions in non-invasive tissues. Several studies have identified malignancy-associated DNA methylation changes in blood, yet no general cancer biomarker has been identified to date. Here, we explore the potential of blood DNA methylation as a biomarker of pan-cancer (cancer of multiple different origins) in 41 female cancer discordant monozygotic (MZ) twin-pairs sampled before or after diagnosis using the Illumina HumanMethylation450 BeadChip. Results We analysed epigenome-wide DNA methylation profiles in 41 cancer discordant MZ twin-pairs with affected individuals diagnosed with tumours at different single primary sites: the breast, cervix, colon, endometrium, thyroid gland, skin (melanoma), ovary, and pancreas. No significant global differences in whole blood DNA methylation profiles were observed. Epigenome-wide analyses identified one novel pan-cancer differentially methylated position at false discovery rate (FDR) threshold of 10 % (cg02444695, P = 1.8 × 10−7) in an intergenic region 70 kb upstream of the SASH1 tumour suppressor gene, and three suggestive signals in COL11A2, AXL, and LINC00340. Replication of the four top-ranked signals in an independent sample of nine cancer-discordant MZ twin-pairs showed a similar direction of association at COL11A2, AXL, and LINC00340, and significantly greater methylation discordance at AXL compared to 480 healthy concordant MZ twin-pairs. The effects at cg02444695 (near SASH1), COL11A2, and LINC00340 were the most promising in biomarker potential because the DNA methylation differences were found to pre-exist in samples obtained prior to diagnosis and were limited to a 5-year period before diagnosis. Gene expression follow-up at the top-ranked signals in 283 healthy individuals showed correlation between blood methylation and gene expression in lymphoblastoid cell lines at PRL, and in the skin tissue at AXL. A significant enrichment of differential DNA methylation was observed in enhancer regions (P = 0.03). Conclusions We identified DNA methylation signatures in blood associated with pan-cancer, at or near SASH1, COL11A2, AXL, and LINC00340. Three of these signals were present up to 5 years prior to cancer diagnosis, highlighting the potential clinical utility of whole blood DNA methylation analysis in cancer surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0172-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonie Roos
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jenny van Dongen
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Christopher G Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK ; MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK ; Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, UK ; Epigenomic Medicine, Centre for Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, UK
| | - Andrea Burri
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
922
|
dbEM: A database of epigenetic modifiers curated from cancerous and normal genomes. Sci Rep 2016; 6:19340. [PMID: 26777304 PMCID: PMC4726101 DOI: 10.1038/srep19340] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022] Open
Abstract
We have developed a database called dbEM (database of Epigenetic Modifiers) to maintain the genomic information of about 167 epigenetic modifiers/proteins, which are considered as potential cancer targets. In dbEM, modifiers are classified on functional basis and comprise of 48 histone methyl transferases, 33 chromatin remodelers and 31 histone demethylases. dbEM maintains the genomic information like mutations, copy number variation and gene expression in thousands of tumor samples, cancer cell lines and healthy samples. This information is obtained from public resources viz. COSMIC, CCLE and 1000-genome project. Gene essentiality data retrieved from COLT database further highlights the importance of various epigenetic proteins for cancer survival. We have also reported the sequence profiles, tertiary structures and post-translational modifications of these epigenetic proteins in cancer. It also contains information of 54 drug molecules against different epigenetic proteins. A wide range of tools have been integrated in dbEM e.g. Search, BLAST, Alignment and Profile based prediction. In our analysis, we found that epigenetic proteins DNMT3A, HDAC2, KDM6A, and TET2 are highly mutated in variety of cancers. We are confident that dbEM will be very useful in cancer research particularly in the field of epigenetic proteins based cancer therapeutics. This database is available for public at URL: http://crdd.osdd.net/raghava/dbem.
Collapse
|
923
|
Feng L, Yao C, Li P, Feng Y, Wang F, Liu YF, Guo YB, Mao QS, Xue WJ. Low expression of fibulin-1 correlates with unfavorable prognosis in gastric cancer. Tumour Biol 2016; 37:9399-410. [PMID: 26779638 DOI: 10.1007/s13277-015-4537-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/27/2015] [Indexed: 12/11/2022] Open
Abstract
The tumor-suppressing role of fibulin-1 has been described in several types of cancers. However, the expression and role of fibulin-1 in the development and progression of gastric cancer (GC) remain largely unknown. In this study, RT-PCR and immunochemistry were used to detect the fibulin-1 expression in GC samples. We have found that the fibulin-1 protein and mRNA levels were downregulated in GC. When investigating the correlation between fibulin-1 expression and clinicopathological characteristics, we have found that low fibulin-1 protein expression was associated with poor tumor differentiation and advanced N stage. Low fibulin-1 protein expression was also an independent prognostic factor for patient survival. To clarify the reason of fibulin-1 downregulation in GC, the mRNA expression and methylation status of fibulin-1 were examined in GC fresh tissue samples (n = 36). We found that the transcriptional expression of fibulin-1 was negatively associated with fibulin-1 promoter hypermethylation, and fibulin-1 hypermethylation was associated with Helicobacter pylori infection. Finally, the effects of fibulin-1 overexpression on cell proliferation and apoptosis were examined. We have found that fibulin-1 overexpression suppressed the growth of GC both in vitro and in vivo and induced apoptosis by increasing cleaved caspase-3 expression. In conclusion, fibulin-1 acts as a tumor suppressor gene, is frequently hypermethylated in GC, and can potentially serve as a useful biomarker for patient prognosis.
Collapse
Affiliation(s)
- Liang Feng
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | - Chan Yao
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | - Peng Li
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | - Ying Feng
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | - Fei Wang
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | - Yi-Fei Liu
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | - Yi-Bing Guo
- Department of Surgical Comprehensive Laboratory, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China
| | - Qin-Sheng Mao
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China. .,Department of Minimally Invasive Surgery, The Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China.
| | - Wan-Jiang Xue
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, 226001, Jiangsu, China. .,Department of Minimally Invasive Surgery, The Affiliated Hospital of Nantong University, 20 Xisi Street, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
924
|
Voelter-Mahlknecht S. Epigenetic associations in relation to cardiovascular prevention and therapeutics. Clin Epigenetics 2016; 8:4. [PMID: 26779291 PMCID: PMC4714496 DOI: 10.1186/s13148-016-0170-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/06/2016] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) increasingly burden societies with vast financial and health care problems. Therefore, the importance of improving preventive and therapeutic measures against cardiovascular diseases is continually growing. To accomplish such improvements, research must focus particularly on understanding the underlying mechanisms of such diseases, as in the field of epigenetics, and pay more attention to strengthening primary prevention. To date, preliminary research has found a connection between DNA methylation, histone modifications, RNA-based mechanisms and the development of CVD like atherosclerosis, cardiac hypertrophy, myocardial infarction, and heart failure. Several therapeutic agents based on the findings of such research projects are currently being tested for use in clinical practice. Although these tests have produced promising data so far, no epigenetically active agents or drugs targeting histone acetylation and/or methylation have actually entered clinical trials for CVDs, nor have they been approved by the FDA. To ensure the most effective prevention and treatment possible, further studies are required to understand the complex relationship between epigenetic regulation and the development of CVD. Similarly, several classes of RNA therapeutics are currently under development. The use of miRNAs and their targets as diagnostic or prognostic markers for CVDs is promising, but has not yet been realized. Further studies are necessary to improve our understanding of the involvement of lncRNA in regulating gene expression changes underlying heart failure. Through the data obtained from such studies, specific therapeutic strategies to avoid heart failure based on interference with incRNA pathways could be developed. Together, research and testing findings raise hope for enhancing the therapeutic armamentarium. This review presents the currently available data concerning epigenetic mechanisms and compounds involved in cardiovascular diseases, as well as preventive and therapeutic approaches against them.
Collapse
Affiliation(s)
- Susanne Voelter-Mahlknecht
- University Hospital of Tuebingen, Institute of Occupational and Social Medicine and Health Services Research, Wilhelmstr. 27, 72074 Tuebingen, Germany
| |
Collapse
|
925
|
O’Dea RE, Noble DWA, Johnson SL, Hesselson D, Nakagawa S. The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. ENVIRONMENTAL EPIGENETICS 2016; 2:dvv014. [PMID: 29492283 PMCID: PMC5804513 DOI: 10.1093/eep/dvv014] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 05/17/2023]
Abstract
Rapid environmental change is predicted to compromise population survival, and the resulting strong selective pressure can erode genetic variation, making evolutionary rescue unlikely. Non-genetic inheritance may provide a solution to this problem and help explain the current lack of fit between purely genetic evolutionary models and empirical data. We hypothesize that epigenetic modifications can facilitate evolutionary rescue through 'epigenetic buffering'. By facilitating the inheritance of novel phenotypic variants that are generated by environmental change-a strategy we call 'heritable bet hedging'-epigenetic modifications could maintain and increase the evolutionary potential of a population. This process may facilitate genetic adaptation by preserving existing genetic variation, releasing cryptic genetic variation and/or facilitating mutations in functional loci. Although we show that examples of non-genetic inheritance are often maladaptive in the short term, accounting for phenotypic variance and non-adaptive plasticity may reveal important evolutionary implications over longer time scales. We also discuss the possibility that maladaptive epigenetic responses may be due to 'epigenetic traps', whereby evolutionarily novel factors (e.g. endocrine disruptors) hack into the existing epigenetic machinery. We stress that more ecologically relevant work on transgenerational epigenetic inheritance is required. Researchers conducting studies on transgenerational environmental effects should report measures of phenotypic variance, so that the possibility of both bet hedging and heritable bet hedging can be assessed. Future empirical and theoretical work is required to assess the relative importance of genetic and epigenetic variation, and their interaction, for evolutionary rescue.
Collapse
Affiliation(s)
- Rose E. O’Dea
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daniel W. A. Noble
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sheri L. Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, UNSW, Australia, Sydney, NSW, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Department of Zoology, University of Otago, Dunedin, New Zealand
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence address. School of BEES, UNSW, Sydney, NSW 2052, Australia, Tel:
+61-2-9385-8084
; Fax:
+61-2-9385-9138
; E-mail:
| |
Collapse
|
926
|
Bowers ME, Yehuda R. Intergenerational Transmission of Stress in Humans. Neuropsychopharmacology 2016; 41:232-44. [PMID: 26279078 PMCID: PMC4677138 DOI: 10.1038/npp.2015.247] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Abstract
The hypothesis that offspring are affected by parental trauma or stress exposure, first noted anecdotally, is now supported empirically by data from Holocaust survivor offspring cohorts and other populations. These findings have been extended to less extreme forms of stress, where differential physical, behavioral, and cognitive outcomes are observed in affected offspring. Parental stress-mediated effects in offspring could be explained by genetics or social learning theory. Alternatively, biological variations stemming from stress exposure in parents could more directly have an impact on offspring, a concept we refer to here as 'intergenerational transmission', via changes to gametes and the gestational uterine environment. We further extend this definition to include the transmission of stress to offspring via early postnatal care, as animal studies demonstrate the importance of early maternal care of pups in affecting offsprings' long-term behavioral changes. Here, we review clinical observations in offspring, noting that offspring of stress- or trauma-exposed parents may be at greater risk for physical, behavioral, and cognitive problems, as well as psychopathology. Furthermore, we review findings concerning offspring biological correlates of parental stress, in particular, offspring neuroendocrine, epigenetic, and neuroanatomical changes, in an attempt to determine the extent of parental stress effects. Although understanding the etiology of effects in offspring is currently impeded by methodological constraints, and limitations in our knowledge, we summarize current information and conclude by presenting hypotheses that have been prompted by recent studies in the field.
Collapse
Affiliation(s)
- Mallory E Bowers
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY, USA
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, NY, USA,Mental Health Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount, NY, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, James J. Peters Veterans Affairs Medical Center, 526 OOMH PTSD 116/A, JJP VAMC, 130 W Kingsbridge Road, Bronx, NY 10468, USA, Tel: +718 741 4000, ext. 6964, Fax: +718 741 4703, E-mail:
| |
Collapse
|
927
|
|
928
|
Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016; 41:261-74. [PMID: 26250598 PMCID: PMC4677131 DOI: 10.1038/npp.2015.235] [Citation(s) in RCA: 397] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022]
Abstract
Stress responses and related outcomes vary markedly across individuals. Elucidating the molecular underpinnings of this variability is of great relevance for developing individualized prevention strategies and treatments for stress-related disorders. An important modulator of stress responses is the FK506-binding protein 51 (FKBP5/FKBP51). FKBP5 acts as a co-chaperone that modulates not only glucocorticoid receptor activity in response to stressors but also a multitude of other cellular processes in both the brain and periphery. Notably, the FKBP5 gene is regulated via complex interactions among environmental stressors, FKBP5 genetic variants, and epigenetic modifications of glucocorticoid-responsive genomic sites. These interactions can result in FKBP5 disinhibition that has been shown to contribute to a number of aberrant phenotypes in both rodents and humans. Consequently, FKBP5 blockade may hold promise as treatment intervention for stress-related disorders, and recently developed selective FKBP5 blockers show encouraging results in vitro and in rodent models. Although risk for stress-related disorders is conferred by multiple environmental and genetic factors, the findings related to FKBP5 illustrate how a deeper understanding of the molecular and systemic mechanisms underlying specific gene-environment interactions may provide insights into the pathogenesis of stress-related disorders.
Collapse
|
929
|
Paradigms of Lifestyle Medicine and Wellness. LIFESTYLE MEDICINE 2016. [DOI: 10.1007/978-3-319-24687-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
930
|
Piertney SB. High-Throughput DNA Sequencing and the Next Generation of Molecular Markers in Wildlife Research. CURRENT TRENDS IN WILDLIFE RESEARCH 2016. [DOI: 10.1007/978-3-319-27912-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
931
|
Monastero R, García-Serrano S, Lago-Sampedro A, Rodríguez-Pacheco F, Colomo N, Morcillo S, Martín-Nuñez GM, Gomez-Zumaquero JM, García-Fuentes E, Soriguer F, Rojo-Martínez G, García-Escobar E. Methylation patterns of Vegfb promoter are associated with gene and protein expression levels: the effects of dietary fatty acids. Eur J Nutr 2015; 56:715-726. [DOI: 10.1007/s00394-015-1115-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/22/2015] [Indexed: 12/13/2022]
|
932
|
High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction. Genome Biol 2015; 16:291. [PMID: 26699738 PMCID: PMC4699364 DOI: 10.1186/s13059-015-0842-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Genetic influence on DNA methylation is potentially an important mechanism affecting individual differences in humans. We use next-generation sequencing to assay blood DNA methylation at approximately 4.5 million loci, each comprising 2.9 CpGs on average, in 697 normal subjects. Methylation measures at each locus are tested for association with approximately 4.5 million single nucleotide polymorphisms (SNPs) to exhaustively screen for methylation quantitative trait loci (meQTLs). RESULTS Using stringent false discovery rate control, 15 % of methylation sites show genetic influence. Most meQTLs are local, where the associated SNP and methylation site are in close genomic proximity. Distant meQTLs and those spanning different chromosomes are less common. Most local meQTLs encompass common SNPs that alter CpG sites (CpG-SNPs). Local meQTLs encompassing CpG-SNPs are enriched in regions of inactive chromatin in blood cells. In contrast, local meQTLs lacking CpG-SNPs are enriched in regions of active chromatin and transcription factor binding sites. Of 393 local meQTLs that overlap disease-associated regions from genome-wide studies, a high percentage encompass common CpG-SNPs. These meQTLs overlap active enhancers, differentiating them from CpG-SNP meQTLs in inactive chromatin. CONCLUSIONS Genetic influence on the human blood methylome is common, involves several heterogeneous processes and is predominantly dependent on local sequence context at the meQTL site. Most meQTLs involve CpG-SNPs, while sequence-dependent effects on chromatin binding are also important in regions of active chromatin. An abundance of local meQTLs resulting from methylation of CpG-SNPs in inactive chromatin suggests that many meQTLs lack functional consequence. Integrating meQTL and Roadmap Epigenomics data could assist fine-mapping efforts.
Collapse
|
933
|
Klughammer J, Datlinger P, Printz D, Sheffield NC, Farlik M, Hadler J, Fritsch G, Bock C. Differential DNA Methylation Analysis without a Reference Genome. Cell Rep 2015; 13:2621-2633. [PMID: 26673328 PMCID: PMC4695333 DOI: 10.1016/j.celrep.2015.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 01/22/2023] Open
Abstract
Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish). Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org). The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.
Collapse
Affiliation(s)
- Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Dieter Printz
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Nathan C Sheffield
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Johanna Hadler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gerhard Fritsch
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Max Planck Institute for Informatics, 66123 Saarbrücken, Germany.
| |
Collapse
|
934
|
Brun JM, Bernadet MD, Cornuez A, Leroux S, Bodin L, Basso B, Davail S, Jaglin M, Lessire M, Martin X, Sellier N, Morisson M, Pitel F. Influence of grand-mother diet on offspring performances through the male line in Muscovy duck. BMC Genet 2015; 16:145. [PMID: 26690963 PMCID: PMC4687110 DOI: 10.1186/s12863-015-0303-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/10/2015] [Indexed: 01/28/2023] Open
Abstract
Background In mammals, multigenerational environmental effects have been documented by either epidemiological studies in human or animal experiments in rodents. Whether such phenomena also occur in birds for more than one generation is still an open question. The objective of this study was to investigate if a methionine deficiency experienced by a mother (G0) could affect her grand-offspring phenotypes (G2 hybrid mule ducks and G2 purebred Muscovy ducks), through their Muscovy sons (G1). Muscovy drakes are used for the production of mule ducks, which are sterile offspring of female common duck (Anas platyrhynchos) and Muscovy drakes (Cairina moschata). In France, mule ducks are bred mainly for the production of “foie gras”, which stems from hepatic steatosis under two weeks of force-feeding (FF). Two groups of female Muscovy ducks received either a methionine deficient diet or a control diet. Their sons were mated to Muscovy or to common duck females to produce Muscovy or Mule ducks, respectively. Several traits were measured in the G2 progenies, concerning growth, feed efficiency during FF, body composition after FF, and quality of foie gras and magret. Results In the G2 mule duck progeny, grand-maternal methionine deficiency (GMMD) decreased 4, 8, and 12 week body weights but increased weight gain and feed efficiency during FF, and abdominal fat weight. The plasmatic glucose and triglyceride contents at the end of FF were higher in the methionine deficient group. In the G2 purebred Muscovy progeny, GMMD tended to decrease 4 week body weight in both sexes, and decreased weight gain between the ages of 4 and 12 weeks, 12 week body weight, and body weight at the end of FF in male offspring only. GMMD tended to increase liver weight and increased the carcass proportion of liver in both sexes. Conclusion Altogether, these results show that the mother’s diet is able to affect traits linked to growth and to lipid metabolism in the offspring of her sons, in Muscovy ducks. Whether this transmission through the father of information induced in the grand-mother by the environment is epigenetic remains to be demonstrated. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0303-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Michel Brun
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Marie-Dominique Bernadet
- Institut National de la Recherche Agronomique, Unité Expérimentale des Palmipèdes à Foie Gras, UE89, 40280, Benquet, France.
| | - Alexis Cornuez
- Institut National de la Recherche Agronomique, Unité Expérimentale des Palmipèdes à Foie Gras, UE89, 40280, Benquet, France.
| | - Sophie Leroux
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Loys Bodin
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Benjamin Basso
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,Present addresses: ITSAP-Institut de l'Abeille, Site Agroparc, 84914, Avignon, France. .,UMT Protection des Abeilles dans l'Environnement, CS 40506, 84914, Avignon, France.
| | - Stéphane Davail
- UMR5254 IUT des Pays de l'Adour-CNRS, 40004, Mont de Marsan Cedex, France.
| | - Mathilde Jaglin
- UMR5254 IUT des Pays de l'Adour-CNRS, 40004, Mont de Marsan Cedex, France.
| | - Michel Lessire
- Institut National de la Recherche Agronomique, UR83 Unité de Recherche Avicole, 37380, Nouzilly, France.
| | - Xavier Martin
- Institut National de la Recherche Agronomique, Unité Expérimentale des Palmipèdes à Foie Gras, UE89, 40280, Benquet, France.
| | - Nadine Sellier
- Institut National de la Recherche Agronomique, Pôle d'Expérimentation Avicole de Tours, UE1295, 37380, Nouzilly, France.
| | - Mireille Morisson
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| | - Frédérique Pitel
- UMR INRA, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENSAT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France. .,INPT ENVT, Génétique, Physiologie et Systèmes d'Elevage, INRA, 31328, Castanet Tolosan, France.
| |
Collapse
|
935
|
Gardiner LJ, Quinton-Tulloch M, Olohan L, Price J, Hall N, Hall A. A genome-wide survey of DNA methylation in hexaploid wheat. Genome Biol 2015; 16:273. [PMID: 26653535 PMCID: PMC4674939 DOI: 10.1186/s13059-015-0838-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND DNA methylation is an important mechanism of epigenetic gene expression control that can be passed between generations. Here, we use sodium bisulfite treatment and targeted gene enrichment to study genome-wide methylation across the three sub-genomes of allohexaploid wheat. RESULTS While the majority of methylation is conserved across all three genomes we demonstrate that differential methylation exists between the sub-genomes in approximately equal proportions. We correlate sub-genome-specific promoter methylation with decreased expression levels and show that altered growing temperature has a small effect on methylation state, identifying a small but functionally relevant set of methylated genes. Finally, we demonstrate long-term methylation maintenance using a comparison between the D sub-genome of hexaploid wheat and its progenitor Aegilops tauschii. CONCLUSIONS We show that tri-genome methylation is highly conserved with the diploid wheat progenitor while sub-genome-specific methylation shows more variation.
Collapse
Affiliation(s)
- Laura-Jayne Gardiner
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Mark Quinton-Tulloch
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Lisa Olohan
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Jonathan Price
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Neil Hall
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| | - Anthony Hall
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, UK.
| |
Collapse
|
936
|
Bartlett TE, Jones A, Goode EL, Fridley BL, Cunningham JM, Berns EMJJ, Wik E, Salvesen HB, Davidson B, Trope CG, Lambrechts S, Vergote I, Widschwendter M. Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women's Cancers. PLoS One 2015; 10:e0143178. [PMID: 26629914 PMCID: PMC4667934 DOI: 10.1371/journal.pone.0143178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022] Open
Abstract
We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF) binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes.
Collapse
Affiliation(s)
- Thomas E. Bartlett
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
- Deparment of Mathematics, University College London, London, United Kingdom
- CoMPLEX, University College London, London, United Kingdom
| | - Allison Jones
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| | - Ellen L. Goode
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Els M. J. J. Berns
- Department of Medical Oncology, Erasmus MC-Cancer Center, Rotterdam, The Netherlands
| | - Elisabeth Wik
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
| | - Helga B. Salvesen
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
| | - Claes G. Trope
- Department of Gynaecological Oncology, Oslo University Hospital, Norwegian Radium Hospital, Oslo, Norway
| | - Sandrina Lambrechts
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ignace Vergote
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Leuven Cancer Institute, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Martin Widschwendter
- Department of Women’s Cancer, Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, United Kingdom
| |
Collapse
|
937
|
Abstract
The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next‐generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site‐specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age‐related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining ‘epigenetic age’ for human health and outline some important caveats to existing and future studies.
Collapse
Affiliation(s)
- Meaghan J. Jones
- Centre for Molecular Medicine and Therapeutics Child and Family Research InstituteUniversity of British Columbia Vancouver BC Canada
- Department of Medical Genetics University of British ColumbiaVancouver BC Canada
| | - Sarah J. Goodman
- Centre for Molecular Medicine and Therapeutics Child and Family Research InstituteUniversity of British Columbia Vancouver BC Canada
- Department of Medical Genetics University of British ColumbiaVancouver BC Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics Child and Family Research InstituteUniversity of British Columbia Vancouver BC Canada
- Department of Medical Genetics University of British ColumbiaVancouver BC Canada
- Human Early Learning Partnership School of Population and Public Health University of British Columbia Vancouver BC Canada
| |
Collapse
|
938
|
Oppold A, Kreß A, Vanden Bussche J, Diogo JB, Kuch U, Oehlmann J, Vandegehuchte MB, Müller R. Epigenetic alterations and decreasing insecticide sensitivity of the Asian tiger mosquito Aedes albopictus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:45-53. [PMID: 26188644 DOI: 10.1016/j.ecoenv.2015.06.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
A range of environmental factors, including chemicals, can affect epigenetic processes in organisms leading to variations in phenotype. Thus, epigenetics displays an important environmentally responsive element. The transgenerational impact of environmental stressors on DNA methylation and phenotype was the focus of this study. The influence of two known DNA methylation-changing agents, the phytoestrogen genistein and the fungicide vinclozolin, on the overall DNA methylation level in the Asian tiger mosquito Aedes albopictus was investigated. The experiment comprised four generations in a full life-cycle design with an exposed parental generation and three consecutive non-exposed offspring generations. Application of the methylation agents to the parental generation of the study led to an alteration of the global DNA methylation level of the exposed individuals and those in two subsequent generations. The phenotypic variability of the offspring generations was assessed by examining their insecticide sensitivity. Here, a significant decrease in sensitivity (p<0.01) towards the model insecticide imidacloprid revealed alterations of the mosquito's phenotype in two subsequent generations. Thus, the evaluation of A. albopictus from an epigenetic perspective can contribute important information to the study of the high adaptability of this invasive disease vector to new environments, and its underlying mechanisms.
Collapse
Affiliation(s)
- A Oppold
- Biodiversity and Climate Research Centre (BiKF), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - A Kreß
- Biodiversity and Climate Research Centre (BiKF), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - J Vanden Bussche
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - J B Diogo
- Biodiversity and Climate Research Centre (BiKF), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - U Kuch
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, Haus 9b, 60590 Frankfurt am Main, Germany
| | - J Oehlmann
- Biodiversity and Climate Research Centre (BiKF), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - M B Vandegehuchte
- Laboratory of Environmental Toxicology and Aquatic Ecology (GhEnToxLab), Faculty of Bioscience Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent, Belgium
| | - R Müller
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, Haus 9b, 60590 Frankfurt am Main, Germany
| |
Collapse
|
939
|
Fernández-Santiago R, Carballo-Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez-Danés A, Vilarrasa-Blasi R, Sánchez-Pla A, Mosquera JL, Soriano J, López-Barneo J, Canals JM, Alberch J, Raya Á, Vila M, Consiglio A, Martín-Subero JI, Ezquerra M, Tolosa E. Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients. EMBO Mol Med 2015; 7:1529-46. [PMID: 26516212 PMCID: PMC4693505 DOI: 10.15252/emmm.201505439] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022] Open
Abstract
The epigenomic landscape of Parkinson's disease (PD) remains unknown. We performed a genomewide DNA methylation and a transcriptome studies in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons (DAn) generated by cell reprogramming of somatic skin cells from patients with monogenic LRRK2-associated PD (L2PD) or sporadic PD (sPD), and healthy subjects. We observed extensive DNA methylation changes in PD DAn, and of RNA expression, which were common in L2PD and sPD. No significant methylation differences were present in parental skin cells, undifferentiated iPSCs nor iPSC-derived neural cultures not-enriched-in-DAn. These findings suggest the presence of molecular defects in PD somatic cells which manifest only upon differentiation into the DAn cells targeted in PD. The methylation profile from PD DAn, but not from controls, resembled that of neural cultures not-enriched-in-DAn indicating a failure to fully acquire the epigenetic identity own to healthy DAn in PD. The PD-associated hypermethylation was prominent in gene regulatory regions such as enhancers and was related to the RNA and/or protein downregulation of a network of transcription factors relevant to PD (FOXA1, NR3C1, HNF4A, and FOSL2). Using a patient-specific iPSC-based DAn model, our study provides the first evidence that epigenetic deregulation is associated with monogenic and sporadic PD.
Collapse
Affiliation(s)
- Rubén Fernández-Santiago
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Hospital Clínic of Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain
| | - Iria Carballo-Carbajal
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Neurodegenerative Diseases Research Laboratory, Hospital Vall d'Hebron Vall d'Hebron Research Institute (VHIR) Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Giancarlo Castellano
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona (UB) Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roger Torrent
- Institute for Biomedicine (IBUB) University of Barcelona (UB), Barcelona, Spain
| | - Yvonne Richaud
- Control of Stem Cell Potency Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain Centre for Networked Biomedical Research on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | | | - Roser Vilarrasa-Blasi
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona (UB) Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alex Sánchez-Pla
- Department of Statistics, University of Barcelona (UB), Barcelona, Spain Department of Statistics, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - José Luis Mosquera
- Department of Statistics, University of Barcelona (UB), Barcelona, Spain
| | - Jordi Soriano
- Departament d'Estructura i Constituents de la Matèria (ECM), Facultat de Física, University of Barcelona (UB), Barcelona, Spain
| | - José López-Barneo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Institute of Biomedicine of Seville (IBiS) Hospital Universitario Virgen del Rocío Consejo Superior de Investigaciones Científicas (CSIC) University of Seville, Seville, Spain
| | - Josep M Canals
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain Department of Cell Biology, Immunology and Neuroscience, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain
| | - Jordi Alberch
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain Department of Cell Biology, Immunology and Neuroscience, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain
| | - Ángel Raya
- Control of Stem Cell Potency Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain Centre for Networked Biomedical Research on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miquel Vila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Neurodegenerative Diseases Research Laboratory, Hospital Vall d'Hebron Vall d'Hebron Research Institute (VHIR) Universitat Autònoma de Barcelona (UAB), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antonella Consiglio
- Institute for Biomedicine (IBUB) University of Barcelona (UB), Barcelona, Spain Department of Molecular and Translational Medicine, University of Brescia and National Institute of Neuroscience, Brescia, Italy
| | - José I Martín-Subero
- Department of Pathological Anatomy, Pharmacology and Microbiology, University of Barcelona (UB) Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Hospital Clínic of Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain
| | - Eduardo Tolosa
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Hospital Clínic of Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain Movement Disorders Unit, Department of Neurology, Hospital Clínic of Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
940
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1423] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
941
|
Fagny M, Patin E, MacIsaac JL, Rotival M, Flutre T, Jones MJ, Siddle KJ, Quach H, Harmant C, McEwen LM, Froment A, Heyer E, Gessain A, Betsem E, Mouguiama-Daouda P, Hombert JM, Perry GH, Barreiro LB, Kobor MS, Quintana-Murci L. The epigenomic landscape of African rainforest hunter-gatherers and farmers. Nat Commun 2015; 6:10047. [PMID: 26616214 PMCID: PMC4674682 DOI: 10.1038/ncomms10047] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/28/2015] [Indexed: 12/23/2022] Open
Abstract
The genetic history of African populations is increasingly well documented, yet their patterns of epigenomic variation remain uncharacterized. Moreover, the relative impacts of DNA sequence variation and temporal changes in lifestyle and habitat on the human epigenome remain unknown. Here we generate genome-wide genotype and DNA methylation profiles for 362 rainforest hunter-gatherers and sedentary farmers. We find that the current habitat and historical lifestyle of a population have similarly critical impacts on the methylome, but the biological functions affected strongly differ. Specifically, methylation variation associated with recent changes in habitat mostly concerns immune and cellular functions, whereas that associated with historical lifestyle affects developmental processes. Furthermore, methylation variation—particularly that correlated with historical lifestyle—shows strong associations with nearby genetic variants that, moreover, are enriched in signals of natural selection. Our work provides new insight into the genetic and environmental factors affecting the epigenomic landscape of human populations over time. Genetic and environmental factors affect genome-wide patterns of epigenetic variation. Here, the authors show that while current habitat and historical lifestyle impact the methylome of rainforest hunter-gatherers and sedentary farmers, the biological functions affected and the degree of genetic control differ.
Collapse
Affiliation(s)
- Maud Fagny
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France.,Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris 75015, France
| | - Etienne Patin
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, Canada BC V5Z 4H4
| | - Maxime Rotival
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| | | | - Meaghan J Jones
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, Canada BC V5Z 4H4
| | - Katherine J Siddle
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| | - Hélène Quach
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| | - Christine Harmant
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, Canada BC V5Z 4H4
| | - Alain Froment
- IRD-MNHN, Sorbonne Universités, UMR208, Paris 75005, France
| | - Evelyne Heyer
- CNRS, MNHN, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Université, UMR7206, Paris 75005, France
| | - Antoine Gessain
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris 75015, France
| | - Edouard Betsem
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris 75015, France.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, BP1364 Yaoundé, Cameroon
| | - Patrick Mouguiama-Daouda
- Laboratoire Langue, Culture et Cognition (LCC), Université Omar Bongo, BP 13131 Libreville, Gabon
| | | | - George H Perry
- Departments of Anthropology and Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Luis B Barreiro
- Université de Montréal, Centre de Recherche CHU Sainte-Justine, Montréal, Canada H3T 1C5
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, Canada BC V5Z 4H4
| | - Lluis Quintana-Murci
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France.,Centre National de la Recherche Scientifique, URA3012, Paris 75015, France
| |
Collapse
|
942
|
Transgenerational epigenetic inheritance of diabetes risk as a consequence of early nutritional imbalances. Proc Nutr Soc 2015; 75:78-89. [DOI: 10.1017/s0029665115004231] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In today's world, there is an unprecedented rise in the prevalence of chronic metabolic diseases, including obesity, insulin resistance and type 2 diabetes (T2D). The pathogenesis of T2D includes both genetic and environmental factors, such as excessive energy intake and physical inactivity. It has recently been suggested that environmental factors experienced during early stages of development, including the intrauterine and neonatal periods, might play a major role in predisposing individuals to T2D. Furthermore, several studies have shown that such early environmental conditions might even contribute to disease risk in further generations. In this review, we summarise recent data describing how parental nutrition during development increases the risk of diabetes in the offspring. We also discuss the potential mechanisms underlying transgenerational inheritance of metabolic disease, with particular emphasis on epigenetic mechanisms.
Collapse
|
943
|
Guo Y, Yu S, Zhang C, Kong ANT. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med 2015; 88:337-349. [PMID: 26117320 PMCID: PMC4955581 DOI: 10.1016/j.freeradbiomed.2015.06.013] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022]
Abstract
The kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling axis serves as a "master regulator" in response to oxidative/electrophilic stresses and chemical insults through the coordinated induction of a wide array of cytoprotective genes. Therefore, activation of Nrf2 is considered to be an important approach for preventing chronic diseases triggered by stresses and toxins, including cancer. Despite extensive studies suggested that the Keap1-Nrf2 signaling pathway is subject to multiple layers of regulation at the transcriptional, translational, and post-translational levels, the potential epigenetic regulation of Nrf2 and Keap1 has begun to be recognized only in recent years. Epigenetic modifications, heritable alterations in gene expression that occur without changes in the primary DNA sequence, have been reported to be profoundly involved in oxidative stress responses. In this review, we discuss the latest findings regarding the epigenetic regulation of Keap1-Nrf2 signaling by DNA methylation, histone modification, and microRNAs. The crosstalk among these epigenetic modifications in the regulation of Keap1-Nrf2 signaling pathways is also discussed. Studies of the epigenetic modification of Nrf2 and Keap1 have not only enhanced our understanding of this complex cellular defense system but have also provided potential new therapeutic targets for the prevention of certain diseases.
Collapse
Affiliation(s)
- Yue Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, and Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China.
| | - Chengyue Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
944
|
Ghantous A, Hernandez-Vargas H, Byrnes G, Dwyer T, Herceg Z. Characterising the epigenome as a key component of the fetal exposome in evaluating in utero exposures and childhood cancer risk. Mutagenesis 2015; 30:733-42. [PMID: 25724893 PMCID: PMC4757935 DOI: 10.1093/mutage/gev010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent advances in laboratory sciences hold a promise for a 'leap forward' in understanding the aetiology of complex human diseases, notably cancer, potentially providing an evidence base for prevention. For example, remarkable advances in epigenomics have an important impact on our understanding of biological phenomena and importance of environmental stressors in complex diseases. Environmental and lifestyle factors are thought to be implicated in the development of a wide range of human cancers by eliciting changes in the epigenome. These changes, thus, represent attractive targets for biomarker discovery intended for the improvement of exposure and risk assessment, diagnosis and prognosis and provision of short-term outcomes in intervention studies. The epigenome can be viewed as an interface between the genome and the environment; therefore, aberrant epigenetic events associated with environmental exposures are likely to play an important role in the onset and progression of different human diseases. The advent of powerful technologies for analysing epigenetic patterns in both cancer tissues and normal cells holds promise that the next few years will be fundamental for the identification of critical cancer- and exposure-associated epigenetic changes and for their evaluation as new generation of biomarkers. Here, we discuss new opportunities in the current age of 'omics' technologies for studies with prospective design and associated biospecimens that represent exciting potential for characterising the epigenome as a key component of the fetal exposome and for understanding causal pathways and robust predictors of cancer risk and associated environmental determinants during in utero life. Such studies should improve our knowledge concerning the aetiology of childhood cancer and identify both novel biomarkers and clues to causation, thus, providing an evidence base for cancer prevention.
Collapse
Affiliation(s)
- Akram Ghantous
- Epigenetics and
- Biostatistics Groups, International Agency for Research on Cancer (IARC), 150 rue Albert-Thomas, F-69008 Lyon, France
- The George Institute for Global Health and Nuffield Department of Population Health, Oxford Martin School | University of Oxford, 34 Broad Street Oxford OX1 3BD, UK
| | - Hector Hernandez-Vargas
- Epigenetics and
- Biostatistics Groups, International Agency for Research on Cancer (IARC), 150 rue Albert-Thomas, F-69008 Lyon, France
- The George Institute for Global Health and Nuffield Department of Population Health, Oxford Martin School | University of Oxford, 34 Broad Street Oxford OX1 3BD, UK
| | - Graham Byrnes
- Biostatistics Groups, International Agency for Research on Cancer (IARC), 150 rue Albert-Thomas, F-69008 Lyon, France
| | - Terence Dwyer
- The George Institute for Global Health and Nuffield Department of Population Health, Oxford Martin School | University of Oxford, 34 Broad Street Oxford OX1 3BD, UK
| | - Zdenko Herceg
- *To whom correspondence should be addressed. Tel: +33-4-72 73 83 98; Fax: +33-4-72 73 83 29; E-mail:
| |
Collapse
|
945
|
Lea AJ, Tung J, Zhou X. A Flexible, Efficient Binomial Mixed Model for Identifying Differential DNA Methylation in Bisulfite Sequencing Data. PLoS Genet 2015; 11:e1005650. [PMID: 26599596 PMCID: PMC4657956 DOI: 10.1371/journal.pgen.1005650] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/14/2015] [Indexed: 11/26/2022] Open
Abstract
Identifying sources of variation in DNA methylation levels is important for understanding gene regulation. Recently, bisulfite sequencing has become a popular tool for investigating DNA methylation levels. However, modeling bisulfite sequencing data is complicated by dramatic variation in coverage across sites and individual samples, and because of the computational challenges of controlling for genetic covariance in count data. To address these challenges, we present a binomial mixed model and an efficient, sampling-based algorithm (MACAU: Mixed model association for count data via data augmentation) for approximate parameter estimation and p-value computation. This framework allows us to simultaneously account for both the over-dispersed, count-based nature of bisulfite sequencing data, as well as genetic relatedness among individuals. Using simulations and two real data sets (whole genome bisulfite sequencing (WGBS) data from Arabidopsis thaliana and reduced representation bisulfite sequencing (RRBS) data from baboons), we show that our method provides well-calibrated test statistics in the presence of population structure. Further, it improves power to detect differentially methylated sites: in the RRBS data set, MACAU detected 1.6-fold more age-associated CpG sites than a beta-binomial model (the next best approach). Changes in these sites are consistent with known age-related shifts in DNA methylation levels, and are enriched near genes that are differentially expressed with age in the same population. Taken together, our results indicate that MACAU is an efficient, effective tool for analyzing bisulfite sequencing data, with particular salience to analyses of structured populations. MACAU is freely available at www.xzlab.org/software.html.
Collapse
Affiliation(s)
- Amanda J. Lea
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Jenny Tung
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Duke University Population Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
946
|
Ma W, Zhou X, Ji H, Luo M, Liu G, Li J, Wang Q, Duan S. Population difference in the association of BDNF promoter methylation with mild cognitive impairment in the Xinjiang Uygur and Han populations. Psychiatry Res 2015; 229:926-32. [PMID: 26292618 DOI: 10.1016/j.psychres.2015.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/14/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a clinical transitional stage between normal aging and Alzheimer disease, which leads to memory loss and a reduction in cognitive function. Brain derived neurotrophic factor (BDNF) plays an important role in neuronal development and plasticity. The aim of this study was to explore the association between BDNF promoter methylation and MCI in the Xinjiang Uygur and Han populations. METHODS A DNA methylation assay using bisulfite pyrosequencing technology was performed on 96 Uygur and 96 Han Chinese individuals from Xinjiang province, China. RESULTS We found a significantly higher BDNF methylation level in Han MCI cases than in Uygur MCI cases in males from Xinjiang province (p=0.022). In addition, the methylation level was significantly higher in Xinjiang Han healthy Chinese individuals (Northwestern China) than in Ningbo Han healthy Chinese individuals (Southeastern China) (Female and Male: p=1.17E-05; Female: p=0.020; Male: p=1.37E-04). But our results showed no significant association of BDNF methylation with MCI in either the Uygur or Han Chinese populations (p>0.05). Further gender-based subgroup analyses did not find any significant results (p>0.05). CONCLUSION Our results indicate that different levels of BDNF methylation may be present in different populations and environments. This study also provides further information regarding the relationship between BDNF methylation levels and MCI in Xinjiang Uygur and Han ethnic groups.
Collapse
Affiliation(s)
- Wenjuan Ma
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumchi 830000, China
| | - Xiaohui Zhou
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumchi 830000, China.
| | - Huihui Ji
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Mei Luo
- Department of Internal Medicine for Cadres, The First Affiliated Hospital of Xinjiang Medical University, Urumchi 830000, China
| | - Guili Liu
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinyun Li
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qinwen Wang
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shiwei Duan
- Ningbo Key Lab of Behavior Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
947
|
Magnusson M, Lu EX, Larsson P, Ulfhammer E, Bergh N, Carén H, Jern S. Dynamic Enhancer Methylation--A Previously Unrecognized Switch for Tissue-Type Plasminogen Activator Expression. PLoS One 2015; 10:e0141805. [PMID: 26509603 PMCID: PMC4625093 DOI: 10.1371/journal.pone.0141805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023] Open
Abstract
Tissue-type plasminogen activator (t-PA), which is synthesized in the endothelial cells lining the blood vessel walls, is a key player in the fibrinolytic system protecting the circulation against occluding thrombus formation. Although classical gene regulation has been quite extensively studied in order to understand the mechanisms behind t-PA regulation, epigenetics, including DNA methylation, still is a largely unexplored field. The aim of this study was to establish the methylation pattern in the t-PA promoter and enhancer in non-cultured compared to cultured human umbilical vein endothelial cells (HUVECs), and to simultaneously examine the level of t-PA gene expression. Bisulphite sequencing was used to evaluate the methylation status, and real-time RT-PCR to determine the gene expression level. While the t-PA promoter was stably unmethylated, we surprisingly observed a rapid reduction in the amount of methylation in the enhancer during cell culturing. This demethylation was in strong negative correlation with a pronounced (by a factor of approximately 25) increase in t-PA gene expression levels. In this study, we show that the methylation level in the t-PA enhancer appears to act as a previously unrecognized switch controlling t-PA expression. Our findings, which suggest that DNA methylation is quite dynamic, have implications also for the interpretation of cell culture experiments in general, as well as in a wider biological context.
Collapse
Affiliation(s)
- Mia Magnusson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Emma Xuchun Lu
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pia Larsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Ulfhammer
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Bergh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (HC); (SJ)
| | - Sverker Jern
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail: (HC); (SJ)
| |
Collapse
|
948
|
Wedd L, Kucharski R, Maleszka R. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera. Epigenetics 2015; 11:1-10. [PMID: 26507253 DOI: 10.1080/15592294.2015.1107695] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality.
Collapse
Affiliation(s)
| | | | - Ryszard Maleszka
- a Research School of Biology, The Australian National University , Canberra , ACT , Australia
| |
Collapse
|
949
|
DNA methylation Landscape of body size variation in sheep. Sci Rep 2015; 5:13950. [PMID: 26472088 PMCID: PMC4607979 DOI: 10.1038/srep13950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022] Open
Abstract
Sub-populations of Chinese Mongolian sheep exhibit significant variance in body mass. In the present study, we sequenced the whole genome DNA methylation in these breeds to detect whether DNA methylation plays a role in determining the body mass of sheep by Methylated DNA immunoprecipitation – sequencing method. A high quality methylation map of Chinese Mongolian sheep was obtained in this study. We identified 399 different methylated regions located in 93 human orthologs, which were previously reported as body size related genes in human genome-wide association studies. We tested three regions in LTBP1, and DNA methylation of two CpG sites showed significant correlation with its RNA expression. Additionally, a particular set of differentially methylated windows enriched in the “development process” (GO: 0032502) was identified as potential candidates for association with body mass variation. Next, we validated small part of these windows in 5 genes; DNA methylation of SMAD1, TSC1 and AKT1 showed significant difference across breeds, and six CpG were significantly correlated with RNA expression. Interestingly, two CpG sites showed significant correlation with TSC1 protein expression. This study provides a thorough understanding of body size variation in sheep from an epigenetic perspective.
Collapse
|
950
|
Guerrini R, Duchowny M, Jayakar P, Krsek P, Kahane P, Tassi L, Melani F, Polster T, Andre VM, Cepeda C, Krueger DA, Cross JH, Spreafico R, Cosottini M, Gotman J, Chassoux F, Ryvlin P, Bartolomei F, Bernasconi A, Stefan H, Miller I, Devaux B, Najm I, Giordano F, Vonck K, Barba C, Blumcke I. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 2015; 56:1669-86. [DOI: 10.1111/epi.13200] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Renzo Guerrini
- Pediatric Neurology and Neurogenetics Unit and Laboratories; Children's Hospital Meyer-University of Florence; Florence Italy
- IRCCS Stella Maris Foundation; Pisa Italy
| | - Michael Duchowny
- Neuroscience Program and the Comprehensive Epilepsy Center; Miami Children's Hospital; Miami Florida U.S.A
| | - Prasanna Jayakar
- Department of Neurology; Miami Children's Hospital; Miami Florida U.S.A
| | - Pavel Krsek
- Department of Pediatric Neurology; 2nd Faculty of Medicine; Motol University Hospital; Charles University; Prague Czech Republic
| | - Philippe Kahane
- INSERM U836; University of Grenoble Alpes, GIN; Grenoble; France
- Epilepsy Unit; Michallon Hospital; Grenoble France
| | - Laura Tassi
- Epilepsy Surgery Center; Niguarda Hospital; Milan Italy
| | - Federico Melani
- Pediatric Neurology and Neurogenetics Unit and Laboratories; Children's Hospital Meyer-University of Florence; Florence Italy
| | - Tilman Polster
- Department of Child Neurology; Bethel Epilepsy Center; Bielefeld Germany
| | | | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center; David Geffen School of Medicine; University of California at Los Angeles; Los Angeles California U.S.A
| | - Darcy A. Krueger
- Division of Neurology; Department of Pediatrics; Cincinnati Children's Hospital Medical Center; University of Cincinnati College of Medicine; Cincinnati Ohio U.S.A
| | - J. Helen Cross
- UCL-Institute of Child Health; Great Ormond Street Hospital for Children NHS Foundation Trust; London United Kingdom
- Young Epilepsy; Lingfield United Kingdom
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit; Neurological InstituteC. Besta”; Milan Italy
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery; University of Pisa; Pisa Italy
| | - Jean Gotman
- Montreal Neurological Institute and Hospital; McGill University; Montreal Quebec Canada
| | | | - Philippe Ryvlin
- Department of Clinical Neurosciences; CHUV; Lausanne Switzerland
- Translational and Integrative Group in Epilepsy Research (TIGER) and Institute for Epilepsies (IDEE); Lyon's Neuroscience Center; INSERM U1028; CNRS 5292; UCBL; Le Vinatier Hospital; Bron; Lyon France
| | - Fabrice Bartolomei
- Faculty of Medicine; INSERM, U1106; Institute of Neurosciences of Systems; Marseille France
- Faculty of Medicine; Aix Marseille University; Marseille France
- Clinical Neurophysiology Unit; Department of Clinical Neurosciences; CHU Timone; Marseille France
- Henri-Gastaut Hospital; Saint-Paul Center; Marseille France
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory; McConnell Brain Imaging Center; Montreal Neurological Institute and Hospital; McGill University; Montreal Quebec Canada
| | - Hermann Stefan
- Epilepsy Center Erlangen (ZEE); University Erlangen-Nürnberg; Erlangen Germany
| | - Ian Miller
- Department of Neurology and Comprehensive Epilepsy Program; Brain Institute; Miami Children's Hospital; Miami Florida U.S.A
| | | | - Imad Najm
- Epilepsy Center; Neurological Institute; Cleveland Clinic; Cleveland OH U.S.A
| | - Flavio Giordano
- Pediatric Neurosurgery Unit; Children's Hospital Meyer-University of Florence; Florence Italy
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent Belgium
| | - Carmen Barba
- Pediatric Neurology and Neurogenetics Unit and Laboratories; Children's Hospital Meyer-University of Florence; Florence Italy
| | - Ingmar Blumcke
- Department of Neuropathology; University Hospital Erlangen; Erlangen Germany
| |
Collapse
|