901
|
Macfarlan T, Kutney S, Altman B, Montross R, Yu J, Chakravarti D. Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor. J Biol Chem 2004; 280:7346-58. [PMID: 15561719 DOI: 10.1074/jbc.m411675200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identities of signal transducer proteins that integrate histone hypoacetylation and transcriptional repression are largely unknown. Here we demonstrate that THAP7, an uncharacterized member of the recently identified THAP (Thanatos-associated protein) family of proteins, is ubiquitously expressed, associates with chromatin, and represses transcription. THAP7 binds preferentially to hypoacetylated (un-, mono-, and diacetylated) histone H4 tails in vitro via its C-terminal 77 amino acids. Deletion of this domain, or treatment of cells with the histone deacetylase inhibitor TSA, which leads to histone hyperacetylation, partially disrupts THAP7/chromatin association in living cells. THAP7 coimmunoprecipitates with histone deacetylase 3 (HDAC3) and the nuclear hormone receptor corepressor (NCoR) and represses transcription as a Gal4 fusion protein. Chromatin immunoprecipitation assays demonstrate that these corepressors are recruited to promoters in a THAP7 dependent manner and promote histone H3 hypoacetylation. The conserved THAP domain is a key determinant for full HDAC3 association in vitro, and both the THAP domain and the histone interaction domain are important for the repressive properties of THAP7. Full repression mediated by THAP7 is also dependent on NCoR expression. We hypothesize that THAP7 is a dual function repressor protein that actively targets deacetylation of histone H3 necessary to establish transcriptional repression and functions as a signal transducer of the repressive mark of hypoacetylated histone H4. This is the first demonstration of the transcriptional regulatory properties of a human THAP domain protein, and a critical identification of a potential transducer of the repressive signal of hypoacetylated histone H4 in higher eukaryotes.
Collapse
|
902
|
Sif S. ATP-dependent nucleosome remodeling complexes: enzymes tailored to deal with chromatin. J Cell Biochem 2004; 91:1087-98. [PMID: 15048866 DOI: 10.1002/jcb.20005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromatin remodeling complexes play a central role in the control of nuclear processes that utilize genomic DNA as a template including transcription, replication, recombination, and repair. Modulation of chromatin structure is mediated by a wide variety of enzymes which can affect nucleosome stability by either disrupting histone-DNA contacts or by covalently modifying histones and/or DNA. Although the biochemical properties of most chromatin-modifying enzymes have been well characterized and links between histone and DNA-modifying enzymes and ATP-dependent chromatin remodeling complexes have been established, the importance of their concerted action has just begun to emerge. As more and more genes are examined, new rules are being established about their transcriptional regulation, and it is becoming clear that diverse mechanisms are used to modify chromatin and either promote or hinder accessibility to DNA and histones. Moreover, the involvement of ATP-dependent chromatin remodelers in transcriptional regulation of cyclin genes and the association of misregulated expression of chromatin remodeling subunits with many cancers highlight the importance of chromatin remodeling complexes in the control of cell growth and proliferation.
Collapse
Affiliation(s)
- Saïd Sif
- Department of Molecular and Cellular Biochemistry, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
903
|
Abstract
The base sequence of DNA provides the genetic code for proteins. The regulation of expression or suppression of gene transcription is largely determined by the structure of the chromatin--referred to as epigenetic gene regulation (Agalioti et al., 2002; Jenuwein and Allis, 2001; Richards and Elgin, 2002; Spotswood and Turner, 2002; Zhang and Reinberg, 2001). Posttranslational modifications of the histones of chromatin play an important role in regulating gene expression. Some of the most extensively studied epigenetic modifications involve acetylation/deacetylation of lysines in the tails of the core histones, which is controlled by the action of histone deacetylases (HDACs) and histone acetyltransferases (HATs). A controlled balance between histone acetylation and deacetylation appears to be essential for normal cell growth (Waterborg, 2002). Alterations in the structure or expression of HATs and HDACs occur in many cancers (Jones and Baylin, 2002; Marks et al., 2001, 2003; Timmermann et al., 2001; Wang et al., 2001). A structurally diverse group of molecules has been developed that can inhibit HDACs (HDACi) (Arts et al., 2003; Bouchain and Delorme, 2003; Curtin and Glaser, 2003; Johnstone and Licht, 2003; Marks et al., 2003; Remiszewski, 2003; Richon et al., 1998; Yoshida et al., 2003). These inhibitors induce growth arrest, differentiation, and?or apoptosis of cancer cells in vitro and in in vivo tumor-bearing animal models. Clinical trials with several of these agents have shown that certain HDACi have antitumor activity against various cancers at doses that are well tolerated by patients (Gottlicher et al., 2001; Kelly et al., 2002a,b; Piekarz et al., 2001; Wozniak et al., 1999).
Collapse
Affiliation(s)
- Paul A Marks
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
904
|
Zhang B, Laribee RN, Klemsz MJ, Roman A. Human papillomavirus type 16 E7 protein increases acetylation of histone H3 in human foreskin keratinocytes. Virology 2004; 329:189-98. [PMID: 15476886 DOI: 10.1016/j.virol.2004.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Revised: 07/15/2004] [Accepted: 08/11/2004] [Indexed: 01/07/2023]
Abstract
Histone acetylation plays an important role in chromatin remodeling and transcription control. Acetylation of histones is regulated by histone acetyltransferases and histone deacetylases (HDACs). Human papillomavirus type 16 (HPV16) E7 can inactivate retinoblastoma protein (pRB), which recruits histone deacetylases, and also physically interacts with histone acetyltransferases and histone deacetylases, suggesting E7 may affect histone acetylation. To test this, we have analyzed the state of acetylation of histone H3 in human foreskin keratinocytes. HPV16 E7 increased acetylation of histone H3 on lysine 9, which is related to transcription activation. The ability to bind both pRB and histone deacetylase was required for HPV16 E7 to increase histone acetylation. Chromatin immunoprecipitations showed HPV16 E7 increases histone acetylation on the E2F1 and cdc25A promoters. Consistent with this, RT-PCR analysis showed an increase in the expression of E2F-responsive genes involved in cell cycle control. HPV16 E7 affected neither the steady-state levels of histone acetyltransferases or deacetylases nor histone deacetylase activity. However, HPV16 E7 did increase the level of methylation of histone H3 on lysine 4, which normally requires displacement of histone deacetylase. In contrast, sodium butyrate, a known inhibitor of histone deacetylases, caused an increase in acetylated but not methylated histone H3. These data suggest HPV16 E7, by increasing histone acetylation, may create a transcriptionally active chromatin structure to promote expression of genes vital for cell cycle progression.
Collapse
Affiliation(s)
- Benyue Zhang
- Department of Microbiology and Immunology, Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA
| | | | | | | |
Collapse
|
905
|
Baxter J, Sauer S, Peters A, John R, Williams R, Caparros ML, Arney K, Otte A, Jenuwein T, Merkenschlager M, Fisher AG. Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes. EMBO J 2004; 23:4462-72. [PMID: 15510223 PMCID: PMC526455 DOI: 10.1038/sj.emboj.7600414] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 08/20/2004] [Indexed: 12/31/2022] Open
Abstract
Post-translational modifications of histone amino termini are thought to convey epigenetic information that extends the coding potential of DNA. In particular, histone lysine methylation has been implicated in conveying transcriptional memory and maintaining lineage fidelity. Here an analysis of histone lysine methylation in quiescent (G(0)) and cycling lymphocytes showed that methylation of histone H3 at lysines 4 (H3K4), 9 (H3K9), 27 (H3K27) and histone H4 at lysine 20 is markedly reduced in resting B lymphocytes as compared with cycling cells. Quiescent B cells also lacked heterochromatin-associated HP1beta and Ikaros at pericentric chromatin and expressed low levels of Ezh2 and ESET histone methyl transferases (HMTases). Nuclei from resting B or T cells were approximately three times more efficiently reprogrammed in nuclear transfer assays than cells in which HMTase expression, histone methylation and HP1beta binding had been restored following mitotic stimulation. These results showing local and global changes in histone lysine methylation levels in vivo demonstrate that constitutive heterochromatin organization is modified in resting lymphocytes and suggest that histone hypomethylation is a useful indicator of epigenetic plasticity.
Collapse
Affiliation(s)
- Jonathan Baxter
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | - Stephan Sauer
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | - Antoine Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, Vienna, Austria
| | - Rosalind John
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | - Ruth Williams
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | - Marie-Laure Caparros
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | - Katharine Arney
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | - Arie Otte
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas Jenuwein
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, Vienna, Austria
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK. Tel.: +44 208 383 8238/39; Fax: +44 208 383 8338; E-mail:
| |
Collapse
|
906
|
Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 2004; 14:155-64. [PMID: 15196462 DOI: 10.1016/j.gde.2004.02.001] [Citation(s) in RCA: 693] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polycomb group (PcG) proteins are important for maintaining the silenced state of homeotic genes. Biochemical and genetic studies in Drosophila and mammalian cells indicate that PcG proteins function in at least two distinct protein complexes: the ESC-E(Z) or EED-EZH2 complex, and the PRC1 complex. Recent work has shown that at least part of the silencing function of the ESC-E(Z) complex is mediated by its intrinsic activity for methylating histone H3 on lysine 27. In addition to being involved in Hox gene silencing, the complex and its associated histone methyltransferase activity are important in other biological processes including X-inactivation, germline development, stem cell pluripotency and cancer metastasis.
Collapse
Affiliation(s)
- Ru Cao
- Department of Biochemistry & Biophysics, Curriculum in Genetics & Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
907
|
Fang J, Chen T, Chadwick B, Li E, Zhang Y. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem 2004; 279:52812-5. [PMID: 15509584 DOI: 10.1074/jbc.c400493200] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histone modifications are thought to serve as epigenetic markers that mediate dynamic changes in chromatin structure and regulation of gene expression. As a model system for understanding epigenetic silencing, X chromosome inactivation has been previously linked to a number of histone modifications including methylation and hypoacetylation. In this study, we provide evidence that supports H2A ubiquitination as a novel epigenetic marker for the inactive X chromosome (Xi) and links H2A ubiquitination to initiation of X inactivation. We found that the H2A-K119 ubiquitin E3 ligase Ring1b, a Polycomb group protein, is enriched on Xi in female trophoblast stem (TS) cells as well as differentiating embryonic stem (ES) cells. Consistent with Ring1b mediating H2A ubiquitination, ubiquitinated H2A (ubH2A) is also enriched on the Xi of both TS and ES cells. We demonstrate that the enrichment of Ring1b and ubH2A on Xi is transient during TS and ES cell differentiation, suggesting that the Ring1b and ubH2A are involved in the initiation of both imprinted and random X inactivation. Furthermore, we showed that the association of Ring1b and ubH2A with Xi is mitotically stable in non-differentiated TS cells.
Collapse
Affiliation(s)
- Jia Fang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | |
Collapse
|
908
|
Thomson S, Hollis A, Hazzalin CA, Mahadevan LC. Distinct stimulus-specific histone modifications at hsp70 chromatin targeted by the transcription factor heat shock factor-1. Mol Cell 2004; 15:585-94. [PMID: 15327774 DOI: 10.1016/j.molcel.2004.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 05/27/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
A question of major current interest is whether histone modification at a given gene correlates simply with transcriptional status or if distinctive modifications appear depending on how that gene is activated. The stress-inducible gene Hsp70 is activated by heat shock or by sodium arsenite. Heat shock produces acetylation of histone H4 at Hsp70 chromatin, whereas arsenite produces both H4 acetylation and H3 phosphorylation at the gene. Histone H3 remains markedly hypoacetylated at Hsp70 under these conditions. Arsenite, but not heat shock, requires signaling via p38 MAP kinase for Hsp70 induction and histone H3 phosphorylation. However, independently of p38 MAP kinase, both stresses strongly activate the transcription factor Hsf1. Using Hsf1-/- cells, we show that this factor is responsible for targeting histone H4 acetylation to Hsp70 chromatin. We establish here that histone modifications at inducible genes are not simply a reflection of transcriptional activity, but are strictly dependent on the stimulus used for induction.
Collapse
Affiliation(s)
- Stuart Thomson
- Nuclear Signalling Laboratory, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
909
|
Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, Ryu H, Langley B, Ratan RR, Ferrante RJ, Beal MF. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington's disease. J Biol Chem 2004; 280:556-63. [PMID: 15494404 DOI: 10.1074/jbc.m410210200] [Citation(s) in RCA: 341] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Huntington's disease (HD) is caused by an expansion of exonic CAG triplet repeats in the gene encoding the huntingtin protein (Htt), however, the means by which neurodegeneration occurs remains obscure. There is evidence that mutant Htt interacts with transcription factors leading to reduced histone acetylation. We report that administration of the histone deacetylase inhibitor phenylbutyrate after onset of symptoms in a transgenic mouse model of HD significantly extends survival and attenuates both gross brain and neuronal atrophy. Administration of phenylbutyrate increased brain histone acetylation and decreased histone methylation levels as assessed by both immunocytochemistry and Western blots. Phenylbutyrate increased mRNA for components of the ubiquitin-proteosomal pathway and down-regulated caspases implicated in apoptotic cell death, and active caspase 3 immunoreactivity in the striatum. These results show that administration of phenylbutyrate, at doses that are well tolerated in man, exerts significant neuroprotective effects in a transgenic mouse model of HD, and therefore represents a very promising therapeutic approach for HD.
Collapse
Affiliation(s)
- Gabriella Gardian
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
910
|
|
911
|
Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004; 431:873-8. [PMID: 15386022 DOI: 10.1038/nature02985] [Citation(s) in RCA: 1314] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 09/02/2004] [Indexed: 11/09/2022]
Abstract
Covalent modification of histones is important in regulating chromatin dynamics and transcription. One example of such modification is ubiquitination, which mainly occurs on histones H2A and H2B. Although recent studies have uncovered the enzymes involved in histone H2B ubiquitination and a 'cross-talk' between H2B ubiquitination and histone methylation, the responsible enzymes and the functions of H2A ubiquitination are unknown. Here we report the purification and functional characterization of an E3 ubiquitin ligase complex that is specific for histone H2A. The complex, termed hPRC1L (human Polycomb repressive complex 1-like), is composed of several Polycomb-group proteins including Ring1, Ring2, Bmi1 and HPH2. hPRC1L monoubiquitinates nucleosomal histone H2A at lysine 119. Reducing the expression of Ring2 results in a dramatic decrease in the level of ubiquitinated H2A in HeLa cells. Chromatin immunoprecipitation analysis demonstrated colocalization of dRing with ubiquitinated H2A at the PRE and promoter regions of the Drosophila Ubx gene in wing imaginal discs. Removal of dRing in SL2 tissue culture cells by RNA interference resulted in loss of H2A ubiquitination concomitant with derepression of Ubx. Thus, our studies identify the H2A ubiquitin ligase, and link H2A ubiquitination to Polycomb silencing.
Collapse
Affiliation(s)
- Hengbin Wang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | | | |
Collapse
|
912
|
Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 2004; 306:279-83. [PMID: 15345777 DOI: 10.1126/science.1101400] [Citation(s) in RCA: 747] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methylation of arginine (Arg) and lysine residues in histones has been correlated with epigenetic forms of gene regulation. Although histone methyltransferases are known, enzymes that demethylate histones have not been identified. Here, we demonstrate that human peptidylarginine deiminase 4 (PAD4) regulates histone Arg methylation by converting methyl-Arg to citrulline and releasing methylamine. PAD4 targets multiple sites in histones H3 and H4, including those sites methylated by coactivators CARM1 (H3 Arg17) and PRMT1 (H4 Arg3). A decrease of histone Arg methylation, with a concomitant increase of citrullination, requires PAD4 activity in human HL-60 granulocytes. Moreover, PAD4 activity is linked with the transcriptional regulation of estrogen-responsive genes in MCF-7 cells. These data suggest that PAD4 mediates gene expression by regulating Arg methylation and citrullination in histones.
Collapse
Affiliation(s)
- Yanming Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
913
|
Sarmento OF, Digilio LC, Wang Y, Perlin J, Herr JC, Allis CD, Coonrod SA. Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 2004; 117:4449-59. [PMID: 15316069 DOI: 10.1242/jcs.01328] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In order to investigate whether covalent histone modifications may be involved in early embryonic reprogramming events, changes in global levels of a series of histone tail modifications were studied during oocyte maturation and pre-implantation mouse development using indirect immunofluorescence and scanning confocal microscopy. Results showed that histone modifications could be classified into two strikingly distinct categories. The first contains stable `epigenetic' marks such as histone H3 lysine 9 methylation [Me(Lys9)H3], histone H3 lysine 4 methylation [Me(Lys4)H3] and histone H4/H2A serine 1 phosphorylation [Ph(Ser1)H4/H2A]. The second group contains dynamic and reversible marks and includes hyperacetylated histone H4, histone H3 arginine 17 methylation [Me(Arg17)H3] and histone H4 arginine 3 methylation [Me(Arg3)H4]). Our results also showed that removal of these marks in eggs and early embryos occurs during metaphase suggesting that the enzymes responsible for the loss of these modifications are probably cytoplasmic in nature. Finally, we provide data demonstrating that treatment of cellular histones with peptidylarginine deiminase (PAD) results in loss of staining for the histone H4 arginine 3 methyl mark, suggesting that PADs can reverse histone arginine methyl modifications.
Collapse
Affiliation(s)
- Olga F Sarmento
- Department of Cell Biology, University of Virginia Health Science Center, PO Box 800732, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
914
|
Wang S, Yu X, Zhang T, Zhang X, Zhang Z, Chen Y. Chick Pcl2 regulates the left-right asymmetry by repressing Shh expression in Hensen's node. Development 2004; 131:4381-91. [PMID: 15294861 DOI: 10.1242/dev.01269] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asymmetric expression of sonic hedgehog (Shh) in the left side of Hensen's node, a crucial step for specifying the left-right (LR) axis in the chick embryo, is established by the repression of Shhexpression in the right side of the node. The transcriptional regulator that mediates this repression has not been identified. We report the isolation and characterization of a novel chick Polycomblike 2 gene, chick Pcl2, which encodes a transcription repressor and displays an asymmetric expression, downstream from Activin-βB and Bmp4, in the right side of Hensen's node in the developing embryo. In vitro mapping studies define the transcription repression activity to the PHD finger domain of the chick Pcl2 protein. Repression of chick Pcl2expression in the early embryo results in randomized heart looping direction,which is accompanied by the ectopic expression of Shh in the right side of the node and Shh downstream genes in the right lateral plate mesoderm (LPM), while overexpression of chick Pcl2 represses Shh expression in the node. The repression of Shh by chick Pcl2 was also supported by studies in which chick Pcl2 was overexpressed in the developing chick limb bud and feather bud. Similarly,transgenic overexpression of chick Pcl2 in the developing mouse limb inhibits Shh expression in the ZPA. In vitro pull-down assays demonstrated a direct interaction of the chick Pcl2 PHD finger with EZH2, a component of the ESC/E(Z) repressive complex. Taken together with the fact that chick Pcl2 was found to directly repress Shh promoter activity in vitro, our results demonstrate a crucial role for chick Pcl2 in regulating LR axis patterning in the chick by silencing Shh in the right side of the node.
Collapse
Affiliation(s)
- Shusheng Wang
- Division of Developmental Biology, Department of Cell and Molecular Biology and Center for Bioenvironmental Research, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
915
|
Mochan TA, Venere M, DiTullio RA, Halazonetis TD. 53BP1, an activator of ATM in response to DNA damage. DNA Repair (Amst) 2004; 3:945-52. [PMID: 15279780 DOI: 10.1016/j.dnarep.2004.03.017] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
p53 Binding protein 1 (53BP1) belongs to a family of evolutionarily conserved DNA damage checkpoint proteins with C-terminal BRCT domains and is most likely the human ortholog of the budding yeast Rad9 protein, the first cell cycle checkpoint protein to be described. 53BP1 localizes rapidly to sites of DNA double strand breaks (DSBs) and its initial recruitment to these sites has not been shown to be dependent on any other protein. Initially, 53BP1 was thought to be a mediator of DNA DSB signaling, but now it has been shown to function upstream of ataxia-telangiectasia mutated (ATM), in one of at least two parallel pathways leading to ATM activation in response to DNA damage. Currently, only a single tudor and two BRCT domains are recognized in 53BP1; however, their precise functional role is not understood. Elucidating the function of 53BP1 will be critical to understanding how cells recognize DNA DSBs and how ATM is activated.
Collapse
Affiliation(s)
- Tamara A Mochan
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104-4268, USA
| | | | | | | |
Collapse
|
916
|
Sawada K, Yang Z, Horton JR, Collins RE, Zhang X, Cheng X. Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase. J Biol Chem 2004; 279:43296-306. [PMID: 15292170 PMCID: PMC2688786 DOI: 10.1074/jbc.m405902200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of Lys79 on histone H3 by Dot1p is important for gene silencing. The elongated structure of the conserved core of yeast Dot1p contains an N-terminal helical domain and a seven-stranded catalytic domain that harbors the binding site for the methyl-donor and an active site pocket sided with conserved hydrophobic residues. The S-adenosyl-L-homocysteine exhibits an extended conformation distinct from the folded conformation observed in structures of SET domain histone lysine methyltransferases. A catalytic asparagine (Asn479), located at the bottom of the active site pocket, suggests a mechanism similar to that employed for amino methylation in DNA and protein glutamine methylation. The acidic, concave cleft between the two domains contains two basic residue binding pockets that could accommodate the outwardly protruding basic side chains around Lys79 of histone H3 on the disk-like nucleosome surface. Biochemical studies suggest that recombinant Dot1 proteins are active on recombinant nucleosomes, free of any modifications.
Collapse
Affiliation(s)
- Ken Sawada
- Department of Biochemistry, Cell, and Development Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Zhe Yang
- Department of Biochemistry, Cell, and Development Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - John R. Horton
- Department of Biochemistry, Cell, and Development Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Robert E. Collins
- Department of Biochemistry, Cell, and Development Biology, Emory University School of Medicine, Atlanta, Georgia 30322
- Graduate Program in Biochemistry, Cell, and Development Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Xing Zhang
- Department of Biochemistry, Cell, and Development Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Xiaodong Cheng
- Department of Biochemistry, Cell, and Development Biology, Emory University School of Medicine, Atlanta, Georgia 30322
- To whom correspondence should be addressed. Tel.: 404-727-8491; Fax: 404-727-3746; E-mail:
| |
Collapse
|
917
|
Nishio H, Walsh MJ. CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc Natl Acad Sci U S A 2004; 101:11257-62. [PMID: 15269344 PMCID: PMC509191 DOI: 10.1073/pnas.0401343101] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CCAAT displacement protein/cut homolog (CDP/cut) is a highly conserved homeodomain protein that contains three cut repeat sequences. CDP/cut is a transcriptional factor for many diverse cellular and viral genes that are involved in most cellular processes, including differentiation, development, and proliferation. Here, we report that CDP/cut interacts with a histone lysine methyltransferase (HKMT), G9a, in vivo and in vitro. The deletion of the cut repeats within CDP/cut abrogates the interaction with G9a. The transcriptional repressor function of CDP/cut is mediated through HKMT activity of G9a associated with CDP/cut. We show that the recruitment of G9a to the human p21(waf1/cdi1) promoter is contingent on the interaction with CDP/cut, and CDP/cut is directly associated with an increase in the methylation in vivo of Lys-9 in histone H3 within the CDP/cut-regulatory region of the p21(waf1/cdi1) promoter. The endogenous level of p21(waf1/cdi1) expression is repressed through CDP/cut and mediated by HKMT activity of G9a. Furthermore, we report the identification of G9a as a component of CDP/cut complex. G9a colocalizes with CDP/cut in the nucleus. These results indicate that G9a functions as a transcriptional corepressor in association with a CDP/cut complex. These studies now reveal the interaction of G9a with a sequence-specific transcription factor that regulates gene repression through CDP/cut.
Collapse
Affiliation(s)
- Hitomi Nishio
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
918
|
Abstract
Posttranslational modifications of histones have been strongly correlated with transcriptional regulation. In this issue of Cell, comprehensively examined the nature of arginine methyltransferases and histone modifications in p53-mediated transcription.
Collapse
Affiliation(s)
- Ian M Fingerman
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
919
|
Hung MS, Shen CKJ. Eukaryotic methyl-CpG-binding domain proteins and chromatin modification. EUKARYOTIC CELL 2004; 2:841-6. [PMID: 14555466 PMCID: PMC219356 DOI: 10.1128/ec.2.5.841-846.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ming-Shiu Hung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
920
|
Abstract
The plant life cycle involves a series of developmental phase transitions. These transitions require the regulation and highly co-ordinated expression of many genes. Epigenetic controls have now been shown to be a key element of this mechanism of regulation. In the model plant Arabidopsis, recent genetic and molecular studies on chromatin have begun to dissect the molecular basis of these epigenetic controls. Chromatin dynamics represent the emerging and exciting field of gene regulation notably involved in plant developmental transitions. By comparing plant and animal systems, new insights into the molecular complexes and mechanisms governing development can be delineated. We are now beginning to identify the components of chromatin complexes and their functions.
Collapse
Affiliation(s)
- Frédéric Berger
- Laboratoire RDP, UMR 5667, ENS-Lyon, 46 allée d'Italie, F-69364 Lyon cedex 07, France
| | | |
Collapse
|
921
|
Schübeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O'Neill LP, Turner BM, Delrow J, Bell SP, Groudine M. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 2004; 18:1263-71. [PMID: 15175259 PMCID: PMC420352 DOI: 10.1101/gad.1198204] [Citation(s) in RCA: 620] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The covalent modification of nucleosomal histones has emerged as a major determinant of chromatin structure and gene activity. To understand the interplay between various histone modifications, including acetylation and methylation, we performed a genome-wide chromatin structure analysis in a higher eukaryote. We found a binary pattern of histone modifications among euchromatic genes, with active genes being hyperacetylated for H3 and H4 and hypermethylated at Lys 4 and Lys 79 of H3, and inactive genes being hypomethylated and deacetylated at the same residues. Furthermore, the degree of modification correlates with the level of transcription, and modifications are largely restricted to transcribed regions, suggesting that their regulation is tightly linked to polymerase activity.
Collapse
Affiliation(s)
- Dirk Schübeler
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
922
|
Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 2004; 6:731-40. [PMID: 15235609 DOI: 10.1038/ncb1151] [Citation(s) in RCA: 565] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 06/11/2004] [Indexed: 12/20/2022]
Abstract
Colorectal and hepatocellular carcinomas are some of the leading causes of cancer deaths worldwide, but the mechanisms that underly these malignancies are not fully understood. Here we report the identification of SMYD3, a gene that is over-expressed in the majority of colorectal carcinomas and hepatocellular carcinomas. Introduction of SMYD3 into NIH3T3 cells enhanced cell growth, whereas genetic knockdown with small-interfering RNAs (siRNAs) in cancer cells resulted in significant growth suppression. SMYD3 formed a complex with RNA polymerase II through an interaction with the RNA helicase HELZ and transactivated a set of genes that included oncogenes, homeobox genes and genes associated with cell-cycle regulation. SMYD3 bound to a motif, 5'-CCCTCC-3', present in the promoter region of downstream genes such as Nkx2.8. The SET domain of SMYD3 showed histone H3-lysine 4 (H3-K4)-specific methyltransferase activity, which was enhanced in the presence of the heat-shock protein HSP90A. Our findings suggest that SMYD3 has histone methyltransferase activity and plays an important role in transcriptional regulation as a member of an RNA polymerase complex. Furthermore, activation of SMYD3 may be a key factor in human carcinogenesis.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
923
|
Kim J, Jia L, Tilley WD, Coetzee GA. Dynamic methylation of histone H3 at lysine 4 in transcriptional regulation by the androgen receptor. Nucleic Acids Res 2004; 31:6741-7. [PMID: 14627807 PMCID: PMC290276 DOI: 10.1093/nar/gkg909] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The methylation of histone H3 correlates with either gene expression or silencing depending on the residues modified. Methylated lysine 4 (H3-K4) is associated with transcription at active gene loci. Furthermore, it was reported that trimethylated but not dimethylated H3-K4 is exclusively associated with active chromatin in Saccharomyces cerevisiae. In the present study, we investigated the H3-K4 methylation at the human prostate specific antigen (PSA) locus following gene activation and repression via androgen receptor (AR). We show that ligand-induced, AR-mediated transcription was accompanied by rapid decreases in di- and trimethylated H3-K4 at the PSA enhancer and promoter. Moreover, the observed decreases in H3-K4 methylation were reversed when AR was inhibited by a specific AR antagonist, bicalutamide. In contrast to the decreases in methylation at the 5' transcriptional control regions of the PSA gene, H3-K4 methylation in the coding region steadily increased after a lag period of approximately 4 h. The results suggest a novel role of methylated H3-K4 in transcriptional regulation.
Collapse
Affiliation(s)
- Joshua Kim
- Department of Urology, Norris Cancer Center, USC Keck School of Medicine, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
924
|
Chambeyron S, Bickmore WA. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 2004; 18:1119-30. [PMID: 15155579 PMCID: PMC415637 DOI: 10.1101/gad.292104] [Citation(s) in RCA: 499] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The colinearity of genes in Hox clusters suggests a role for chromosome structure in gene regulation. We reveal programmed changes in chromatin structure and nuclear organization upon induction of Hoxb expression by retinoic acid. There is an early increase in the histone modifications that are marks of active chromatin at both the early expressed gene Hoxb1, and also at Hoxb9 that is not expressed until much later. There is also a visible decondensation of the chromatin between Hoxb1 and Hoxb9 at this early stage. However, a further change in higher-order chromatin structure, looping out of genes from the chromosome territory, occurs in synchrony with the execution of the gene expression program. We suggest that higher-order chromatin structure regulates the expression of the HoxB cluster at several levels. Locus-wide changes in chromatin structure (histone modification and chromatin decondensation) may establish a transcriptionally poised state but are not sufficient for the temporal program of gene expression. The choreographed looping out of decondensed chromatin from chromosome territories may then allow for activation of high levels of transcription from the sequence of genes along the cluster.
Collapse
|
925
|
An W, Kim J, Roeder RG. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 2004; 117:735-48. [PMID: 15186775 DOI: 10.1016/j.cell.2004.05.009] [Citation(s) in RCA: 408] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 04/19/2004] [Accepted: 04/20/2004] [Indexed: 12/31/2022]
Abstract
Transcriptional coactivators that modify histones represent an increasingly important group of regulatory factors, although their ability to modify other factors as well precludes common assumptions that they necessarily act by histone modification. In an extension of previous studies showing a role for acetyltransferase p300/CBP in p53 function, we have used systems reconstituted with recombinant chromatin templates and (co)activators to demonstrate (1) the additional involvement of protein arginine methyltransferases PRMT1 and CARM1 in p53 function; (2) both independent and ordered cooperative functions of p300, PRMT1, and CARM1; and (3) mechanisms that involve direct interactions with p53 and, most importantly, obligatory modifications of corresponding histone substrates. ChIP analyses have confirmed the ordered accumulation of these (and other) coactivators and cognate histone modifications on the GADD45 gene following ectopic p53 expression and/or UV irradiation. These studies thus define diverse cofactor functions, as well as underlying mechanisms involving distinct histone modifications, in p53-dependent gene activation.
Collapse
Affiliation(s)
- Woojin An
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
926
|
Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 2004; 328:1-16. [PMID: 15019979 DOI: 10.1016/j.gene.2003.12.005] [Citation(s) in RCA: 577] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 12/02/2003] [Indexed: 11/18/2022]
Abstract
The pleiotropic effects of retinoids are mediated by nuclear retinoid receptors (RARs and RXRs) which are ligand-activated transcription factors. In response to retinoid binding, RAR/RXR heterodimers undergo major conformational changes and orchestrate the transcription of specific gene networks, through binding to specific DNA response elements and recruiting cofactor complexes that act to modify local chromatin structure and/or engage the basal transcription machinery. Then the degradation of RARs and RXRs by the ubiquitin-proteasome controls the magnitude and the duration of the retinoid response. RARs and RXRs also integrate a variety of signaling pathways through phosphorylation events which cooperate with the ligand for the control of retinoid-target genes transcription. These different modes of regulation reveal unexpected levels of complexity in the dynamics of retinoid-dependent transcription.
Collapse
Affiliation(s)
- Julie Bastien
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch Cedex 67404, France
| | | |
Collapse
|
927
|
Abstract
Heterochromatin mediates various nuclear processes including centromere function, gene silencing and nuclear organization. Although it was discovered nearly 75 years ago, the pathways involved in heterochromatin establishment, assembly and epigenetic maintenance have been elusive. Recent reports have demonstrated that distinct and novel chromatin-associated factors, including DNA, RNA and histone modifications, are involved in each of these events. These new findings define a novel conserved mechanism of heterochromatin formation that is likely to have an impact on all eukaryotic silencing pathways.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
928
|
Kuzmichev A, Jenuwein T, Tempst P, Reinberg D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 2004; 14:183-93. [PMID: 15099518 DOI: 10.1016/s1097-2765(04)00185-6] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 02/26/2004] [Accepted: 03/01/2004] [Indexed: 12/14/2022]
Abstract
Human Enhancer of Zeste homolog (Ezh2) is a histone lysine methyltransferase (HKMT) associated with transcriptional repression. Ezh2 is present in several distinct complexes, one of which, PRC2, we characterized previously. Here we report an additional Ezh2 complex, PRC3. We show that the Ezh2 complexes exhibit differential targeting of specific histones for lysine methylation dependent upon the context of the histone substrates. This differential targeting is a function of the associated Eed protein within each complex. We found that Eed protein is present in four isoforms, which represent alternate translation start site usage from the same mRNA. These Eed isoforms selectively associate with distinct Ezh2-containing complexes with resultant differential targeting of their associated HKMT activity toward histone H3-K27 or histone H1-K26. Our data provide evidence for a novel mechanism regulating the substrate specificity of a chromatin-modifying enzyme through disparate translational products of a regulatory subunit.
Collapse
Affiliation(s)
- Andrei Kuzmichev
- Robert Wood Johnson Medical School, Howard Hughes Medical Institute and Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
929
|
Grafi G. How cells dedifferentiate: a lesson from plants. Dev Biol 2004; 268:1-6. [PMID: 15031100 DOI: 10.1016/j.ydbio.2003.12.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 11/09/2003] [Accepted: 12/19/2003] [Indexed: 12/15/2022]
Abstract
The remarkable regenerative capacity displayed by plants and various vertebrates, such as amphibians, is largely based on the capability of somatic cells to undergo dedifferentiation. In this process, mature cells reverse their state of differentiation and acquire pluripotentiality--a process preceding not only reentry into the cell cycle but also a commitment for cell death or trans- or redifferentiation. Recent studies provide a new perspective on cellular dedifferentiation, establishing chromatin reorganization as its fundamental theme.
Collapse
Affiliation(s)
- Gideon Grafi
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
930
|
Anest V, Cogswell PC, Baldwin AS. IkappaB kinase alpha and p65/RelA contribute to optimal epidermal growth factor-induced c-fos gene expression independent of IkappaBalpha degradation. J Biol Chem 2004; 279:31183-9. [PMID: 15155743 DOI: 10.1074/jbc.m404380200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogenic activation of expression of immediate-early genes, such as c-fos, is controlled through signal-induced phosphorylation of constitutively bound transcription factors that is correlated with a nucleosomal response that involves inducible chromatin modifications, such as histone phosphorylation and acetylation. Here we have explored a potential role for the transcription factor NF-kappaB and its associated signaling components in mediating induction of c-fos gene expression downstream of epidermal growth factor (EGF)-dependent signaling. Here we show that EGF treatment of quiescent fibroblast does not induce the classical pathway of NF-kappaB activation through IkappaB kinase (IKK)-directed IkappaBalpha phosphorylation. Interestingly, efficient induction of c-fos transcription requires IKKalpha, one of the subunits of the IkappaB kinase complex. The NF-kappaB subunit, p65/RelA, is found constitutively associated with the c-fos promoter, and knock-out of this transcription factor significantly reduces c-fos gene expression. Importantly, EGF induces the recruitment of IKKalpha to the c-fos promoter to regulate promoter-specific histone H3 Ser(10) phosphorylation in a manner that is independent of p65/RelA. Collectively, our data demonstrate that IKKalpha and p65/RelA contribute significantly to EGF-induced c-fos gene expression in a manner independent of the classical, IkappaBalpha degradation, p65/RelA nuclear accumulation response pathway.
Collapse
Affiliation(s)
- Vasiliki Anest
- Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295, USA
| | | | | |
Collapse
|
931
|
Allard S, Masson JY, Côté J. Chromatin remodeling and the maintenance of genome integrity. ACTA ACUST UNITED AC 2004; 1677:158-64. [PMID: 15020056 DOI: 10.1016/j.bbaexp.2003.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 10/06/2003] [Accepted: 10/06/2003] [Indexed: 12/18/2022]
Abstract
DNA damage of any type is threatening for a cell. If lesions are left unrepaired, genomic instability can arise, faithful transmission of genetic information is greatly compromised eventually leading the cell to undergo apoptosis or carcinogenesis. In order to access/detect and repair these damages, repair factors must circumvent the natural repressive barrier of chromatin. This review will present recent progress showing the intricate link between chromatin, its remodeling and the DNA repair process. Several studies demonstrated that one of the first events following specific types of DNA damage is the phosphorylation of histone H2A. This mark or the damage itself are responsible for the association of chromatin-modifying complexes near damaged DNA. These complexes are able to change the chromatin structure around the wounded DNA in order to allow the repair machinery to gain access and repair the lesion. Chromatin modifiers include ATP-dependent remodelers such as SWI/SNF and Rad54 as well as histone acetyltransferases (HATs) like SAGA/NuA4-related complexes and p300/CBP, which have been shown to facilitate DNA accessibility and repair in different pathways leading to the maintenance of genome integrity.
Collapse
Affiliation(s)
- Stéphane Allard
- Centre de Recherche en Cancérologie de l'Université Laval, Hôtel-Dieu de Québec (CHUQ), 9 rue McMahon, Québec, Canada G1R 2J6
| | | | | |
Collapse
|
932
|
Loyola A, Almouzni G. Histone chaperones, a supporting role in the limelight. ACTA ACUST UNITED AC 2004; 1677:3-11. [PMID: 15020040 DOI: 10.1016/j.bbaexp.2003.09.012] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 09/25/2003] [Accepted: 09/25/2003] [Indexed: 10/26/2022]
Abstract
In eukaryotic cells, highly basic histone proteins are associated with the DNA to form the nucleosome, the fundamental unit of chromatin. Histones are closely escorted by histone chaperones from their point of synthesis up to their delivery site. We will present an overview of the histone chaperones identified to date with their various roles, in an attempt to highlight their importance in cellular metabolism. Nucleoplasmin will illustrate a role in histone storage and Nap-1, a histone translocator. CAF-1 and Hira will provide examples of distinct histone deposition factors coupled to and uncoupled from DNA synthesis, respectively, while Asf1 could act as a histone donor. We then will illustrate with two examples how histone chaperones can be associated with chromatin remodeling activities. Finally, we will discuss how the RbAp46/48 proteins, as escort factors, are part of multiple complexes with various functions. Based on these examples, we will propose a scheme in which the diverse roles of histone chaperones are integrated within an assembly line for chromatin formation and regulation. Finally, we discuss how these chaperones may have more than a supporting role in a histone metabolic pathway.
Collapse
Affiliation(s)
- Alejandra Loyola
- Institut Curie/Section de Recherche, UMR 21826, rue d'Ulm, 75231 Paris Cedex 05, France
| | | |
Collapse
|
933
|
Benson LJ, Annunziato AT. In vitro analysis of histone acetyltransferase activity. Methods 2004; 33:45-52. [PMID: 15039086 DOI: 10.1016/j.ymeth.2003.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2003] [Indexed: 11/27/2022] Open
Abstract
Interest in histone acetylation has risen dramatically in recent years. In the following report, we present methods for the analysis of histone acetyltransferase activity in vitro. Protocols are described for radiolabeling histone proteins and N-terminal "tail" peptides, and for the analysis of acetylation by immunoblotting. Techniques for acetylating immobilized histone peptides are also described.
Collapse
Affiliation(s)
- Laura J Benson
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
934
|
Alexiadis V, Lusser A, Kadonaga JT. A conserved N-terminal motif in Rad54 is important for chromatin remodeling and homologous strand pairing. J Biol Chem 2004; 279:27824-9. [PMID: 15105430 DOI: 10.1074/jbc.m402648200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Swi2/Snf2-related protein Rad54 is a chromatin remodeling enzyme that is important for homologous strand pairing catalyzed by the eukaryotic recombinase Rad51. The chromatin remodeling and DNA-stimulated ATPase activities of Rad54 are significantly enhanced by Rad51. To investigate the functions of Rad54, we generated and analyzed a series of mutant Rad54 proteins. Notably, the deletion of an N-terminal motif (amino acid residues 2-9), which is identical in Rad54 in Drosophila, mice, and humans, results in a complete loss of chromatin remodeling and strand pairing activities, and partial inhibition of the ATPase activity. In contrast, this conserved N-terminal motif has no apparent effect on the ability of DNA to stimulate the ATPase activity or of Rad51 to enhance the DNA-stimulated ATPase activity. Unexpectedly, as the N terminus of Rad54 is progressively truncated, the mutant proteins regain partial chromatin remodeling activity as well as essentially complete DNA-stimulated ATPase activity, both of which are no longer responsive to Rad51. These findings suggest that the N-terminal region of Rad54 contains an autoinhibitory activity that is relieved by Rad51.
Collapse
Affiliation(s)
- Vassilios Alexiadis
- Section of Molecular Biology, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | | | |
Collapse
|
935
|
Dodge JE, Kang YK, Beppu H, Lei H, Li E. Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 2004; 24:2478-86. [PMID: 14993285 PMCID: PMC355869 DOI: 10.1128/mcb.24.6.2478-2486.2004] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylation of histone H3 at lysine 9 (H3-K9) mediates heterochromatin formation by forming a binding site for HP1 and also participates in silencing gene expression at euchromatic sites. ESET, G9a, SUV39-h1, SUV39-h2, and Eu-HMTase are histone methyltransferases that catalyze H3-K9 methylation in mammalian cells. Previous studies demonstrate that the SUV39-h proteins are preferentially targeted to the pericentric heterochromatin, and mice lacking both Suv39-h genes show cytogenetic abnormalities and an increased incidence of lymphoma. G9a methylates H3-K9 in euchromatin, and G9a null embryos die at 8.5 days postcoitum (dpc). G9a null embryo stem (ES) cells show altered DNA methylation in the Prader-Willi imprinted region and ectopic expression of the Mage genes. So far, an Eu-HMTase mouse knockout has not been reported. ESET catalyzes methylation of H3-K9 and localizes mainly in euchromatin. To investigate the in vivo function of Eset, we have generated an allele that lacks the entire pre- and post-SET domains and that expresses lacZ under the endogenous regulation of the Eset gene. We found that zygotic Eset expression begins at the blastocyst stage and is ubiquitous during postimplantation mouse development, while the maternal Eset transcripts are present in oocytes and persist throughout preimplantation development. The homozygous mutations of Eset resulted in peri-implantation lethality between 3.5 and 5.5 dpc. Blastocysts null for Eset were recovered but in less than Mendelian ratios. Upon culturing, 18 of 24 Eset(-/-) blastocysts showed defective growth of the inner cell mass and, in contrast to the approximately 65% recovery of wild-type and Eset(+/-) ES cells, no Eset(-/-) ES cell lines were obtained. Global H3-K9 trimethylation and DNA methylation at IAP repeats in Eset(-/-) blastocyst outgrowths were not dramatically altered. Together, these results suggest that Eset is required for peri-implantation development and the survival of ES cells.
Collapse
Affiliation(s)
- Jonathan E Dodge
- Cutaneous Biology Research Center and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
936
|
Aihara H, Nakagawa T, Yasui K, Ohta T, Hirose S, Dhomae N, Takio K, Kaneko M, Takeshima Y, Muramatsu M, Ito T. Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. Genes Dev 2004; 18:877-88. [PMID: 15078818 PMCID: PMC395847 DOI: 10.1101/gad.1184604] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Posttranslational histone modifications are important for the regulation of many biological phenomena. Here, we show the purification and characterization of nucleosomal histone kinase-1 (NHK-1). NHK-1 has a high affinity for chromatin and phosphorylates a novel site, Thr 119, at the C terminus of H2A. Notably, NHK-1 specifically phosphorylates nucleosomal H2A, but not free H2A in solution. In Drosophila embryos, phosphorylated H2A Thr 119 is found in chromatin, but not in the soluble core histone pool. Immunostaining of NHK-1 revealed that it goes to chromatin during mitosis and is excluded from chromatin during S phase. Consistent with the shuttling of NHK-1 between chromatin and cytoplasm, H2A Thr 119 is phosphorylated during mitosis but not in S phase. These studies reveal that NHK-1-catalyzed phosphorylation of a conserved serine/threonine residue in H2A is a new component of the histone code that might be related to cell cycle progression.
Collapse
Affiliation(s)
- Hitoshi Aihara
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
937
|
Chalkley GE, Verrijzer CP. Immuno-depletion and purification strategies to study chromatin-remodeling factors in vitro. Methods Enzymol 2004; 377:421-42. [PMID: 14979043 DOI: 10.1016/s0076-6879(03)77028-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Gillian E Chalkley
- Gene Regulation Laboratory, Center for Biomedical Genetics, Department of Molecular and Cell Biology, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
938
|
Hoyer-Fender S. Molecular aspects of XY body formation. Cytogenet Genome Res 2004; 103:245-55. [PMID: 15051945 DOI: 10.1159/000076810] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 09/26/2003] [Indexed: 11/19/2022] Open
Abstract
More than a century ago, a densely stained area inside the nucleus of male meiotic cells was described. It was later shown to harbor the sex chromosomes which undergo transcriptional inactivation in conjunction with heterochromatinisation and synapsis to form the XY body. Formation of the XY body is conserved throughout the mammalian phylogenetic tree and is thought to be essential for successful spermatogenesis. However, its biological role as well as the molecular mechanisms underlying XY body formation are still far from being understood. A lot of effort has already been undertaken to characterize components of the XY body and to investigate their functional implications in sex chromatin heterochromatinisation and meiotic sex chromosome inactivation (MSCI). This review gives an overview of those components and their possible implications in XY body formation and function.
Collapse
Affiliation(s)
- S Hoyer-Fender
- Georg-August-Universität Göttingen, Göttinger Zentrum für Molekulare Biowissenschaften, Abteilung Entwicklungsbiologie, Göttingen, Germany.
| |
Collapse
|
939
|
Abstract
Covalent modifications of histones, such as acetylation, methylation, and phosphorylation, and other epigenetic modulations of the chromatin, such as methylation of DNA and ATP-dependent chromatin reorganisation, can play a major part in the multistep process of carcinogenesis, with far-reaching implications for human biology and human health. This review focuses on how aberrant covalent histone modifications may contribute to the development of a variety of human cancers, and discusses the recent findings with regard to potential therapies.
Collapse
Affiliation(s)
- S B Hake
- Laboratory of Chromatin Biology, The Rockefeller University, Box 78, 1230 York Avenue, New York, NY 10021, USA
| | - A Xiao
- Laboratory of Chromatin Biology, The Rockefeller University, Box 78, 1230 York Avenue, New York, NY 10021, USA
| | - C D Allis
- Laboratory of Chromatin Biology, The Rockefeller University, Box 78, 1230 York Avenue, New York, NY 10021, USA
- Laboratory of Chromatin Biology, The Rockefeller University, Box 78, 1230 York Avenue, New York, NY 10021, USA. E-mail:
| |
Collapse
|
940
|
Xing W, Krishnamurthy H, Sairam MR. Role of follitropin receptor signaling in nuclear protein transitions and chromatin condensation during spermatogenesis. Biochem Biophys Res Commun 2004; 312:697-701. [PMID: 14680821 DOI: 10.1016/j.bbrc.2003.10.177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Indexed: 11/16/2022]
Abstract
Follitropin receptor (FSHR) in testicular Sertoli cells mediates signaling by pituitary follitropin (FSH) promoting intercellular communication with germ cells for normal spermatogenesis. Using receptor knockout mice we examined changes in sperm nucleoproteins and chromatin architecture. The expressions of transition proteins 1/2 (TP1/2) and protamine-2 (PRM-2) were greatly diminished at 21 days, but returned to normal at 35 days and 3 months after birth. However, protein components in chromatin were quite different. Western blots detected a reduction in PRM1/2 and prolonged retention of mono-ubiquitinated histone 2A (uH2A) in the epididymal sperm from adult mutants. Two forms of mono- and poly-uH2A were present in sonication-resistant testicular spermatids in normal mice, whereas only an elevated mono-uH2A was detectable in mutants. Decrease in PRM1/2 and retention of mono-uH2A was coincident with reduction in TP1/2 in premature spermatids. Thus lack of FSHR signaling impairs expression of TP1/2 and PRM-2 at an early stage of post-natal development causing delayed spermatogenesis. In the adult, absence of FSHR signaling prolongs retention of mono-uH2A, leading to impair transition of basic nucleoproteins and chromatin remodeling during mouse spermatogenesis.
Collapse
Affiliation(s)
- Weirong Xing
- Molecular Reproduction Research Laboratory, Clinical Research Institute of Montreal 110 Pine Avenue West, Montreal, Que., Canada H2W 1R7
| | | | | |
Collapse
|
941
|
Kalitsis P, Fowler KJ, Earle E, Griffiths B, Howman E, Newson AJ, Choo KHA. Partially functional Cenpa-GFP fusion protein causes increased chromosome missegregation and apoptosis during mouse embryogenesis. Chromosome Res 2004; 11:345-57. [PMID: 12906131 DOI: 10.1023/a:1024044008009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CENP-A is an essential histone H3-like protein that localizes to the centromeric region of eukaryotic chromosomes. Heterozygous and homozygous Cenpa-GFP fusion-protein mouse mutants, generated through targeted insertion of the green fluorescent protein (GFP) gene into the mouse Cenpa gene locus, show specific localized fluorescence at all the centromeres. Heterozygous mice are healthy and fertile. Cenpa-GFP homozygotes (Cenpag/g) undergo many cell divisions, giving rise to up to one million cells that show relatively accurate differentiation into distinct mouse embryonic tissues until day 10.5 when significant levels of chromosome missegregation, aneuploidy and apoptosis result in death. Cenpag/g embryos assemble functional kinetochores that bind to a host of centromere-specific structural and mitotic spindle checkpoint proteins (Cenpc, BubR1, Mad2 and Zw10). Examination of the nucleosomal phasing of centromeric minor and pericentromeric major satellite sequences indicates that the formation of Cenpag/g homotypic nucleosomes is not accompanied by any overt alteration to the overall size of the monomeric nucleosomal structure or the spacing of these structures. This study provides the first example of an essential centromeric protein gene variant in which subtle perturbation at the centromeric nucleosomal/chromatin level manifests in a significantly delayed lethality when compared with Cenpa null mice.
Collapse
Affiliation(s)
- Paul Kalitsis
- Murdoch Childrenś Research Institute, Royal Children's Hospital, Flemington Road, Parkville 3052, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
942
|
Dokmanovic M, Marks PA. Comparison of tumor marker CA 242 with CA 19-9 and carcinoembryonic antigen (CEA) in pancreatic cancer. J Cell Biochem 2004; 96:293-304. [PMID: 16088937 DOI: 10.1002/jcb.20532] [Citation(s) in RCA: 371] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND/AIMS Although there are a variety of tumor markers used for diagnosis of pancreatic carcinoma, the sensitivity and specificity of those markers have not yet reached an ideal level. The aim of this study was to compare the diagnostic value of CA 242 with CA 19-9 and CEA in the patients with pancreatic cancer. METHODOLOGY Serum CA 242, CA 19-9 and CEA levels were determined in 135 subjects in the following groups: Pancreatic cancer (n = 40), cholangiocellular carcinoma (n = 15), hepatocellular carcinoma (n = 10), cirrhosis (n = 7), chronic active hepatitis (n = 7), choledochal stone (n = 12), chronic pancreatitis (n = 9), acute pancreatitis (n = 6), and healthy controls (n = 29). RESULTS An elevated serum CA 242 concentration (> 20 U/mL) was found in 30 out of 40 (70%) (mean; 2163 +/- 838 U/mL) patients with pancreas cancer, in 11 out of 15 patients with cholangiocellular carcinoma (93.3%) (mean 916 +/- 529 U/mL), in none of patients with hepatocellular carcinoma and healthy controls. Slightly elevated CA 242 concentration was found in 6 out of 41 patients with benign hepatobiliary and pancreatic disease (range 0.4-97.8 U/mL) (1 acute pancreatitis, 2 chronic pancreatitis, 1 cirrhosis, 2 choledochal stone). Mean serum CA 242, CA 19-9 and CEA levels of the pancreas cancer group were significantly higher than those of the other groups except the cholangiocellular carcinoma group. There was no significant difference between the stage of pancreas cancer regarding mean serum CA 242, CA 19-9 and CEA level. There was positive correlation between serum CA 242 and CA 19-9 level. In the pancreas cancer, the sensitivity of CA 242, CA 19-9 and CEA was 75%, 80%, 40%, respectively and the specificity of those markers was 85.5%, 67.5% and 73%, respectively. CONCLUSIONS In conclusion, the advantage of CA 242 compared to CA 19-9 is that its specificity is higher than that of CA 19-9 in the diagnosis of pancreas cancer.
Collapse
Affiliation(s)
- Milos Dokmanovic
- Memorial Sloan-Kettering Cancer Center, Cell Biology Program, Sloan Kettering Institute for Cancer Research New York City, New York 10021, USA
| | | |
Collapse
|
943
|
Abstract
Electron micrographs first confirmed that the eukaryotic genome is organized into repeating disk-shaped nucleosomal units composed of histones and their associated DNA. Those images made clear the function of the nucleosome in packaging and condensing the genome. Today, nucleosomes are recognized as highly dynamic units through which the eukaryotic genome can be regulated with epigenetically heritable consequences. This review focuses on the conserved protein structures that mobilize and remodel nucleosomes and specifically mark and recognize their histone and DNA components. These events directly impact DNA transcription, replication, recombination, and repair.
Collapse
Affiliation(s)
- Sepideh Khorasanizadeh
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.
| |
Collapse
|
944
|
Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 2004; 12:1591-8. [PMID: 14690610 DOI: 10.1016/s1097-2765(03)00479-9] [Citation(s) in RCA: 609] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The functional significance of mono-, di-, and trimethylation of lysine residues within histone proteins remains unclear. Antibodies developed to selectively recognize each of these methylated states at histone H3 lysine 9 (H3 Lys9) demonstrated that mono- and dimethylation localized specifically to silent domains within euchromatin. In contrast, trimethylated H3 Lys9 was enriched at pericentric heterochromatin. Enzymes known to methylate H3 Lys9 displayed remarkably different enzymatic properties in vivo. G9a was responsible for all detectable H3 Lys9 dimethylation and a significant amount of monomethylation within silent euchromatin. In contrast, Suv39h1 and Suv39h2 directed H3 Lys9 trimethylation specifically at pericentric heterochromatin. Thus, different methylated states of H3 Lys9 are directed by specific histone methyltransferases to "mark" distinct domains of silent chromatin.
Collapse
Affiliation(s)
- Judd C Rice
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
945
|
Peters AHFM, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AAHA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JHA, Jenuwein T. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 2004; 12:1577-89. [PMID: 14690609 DOI: 10.1016/s1097-2765(03)00477-5] [Citation(s) in RCA: 872] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Methylation of position-specific lysine residues in histone N termini is a central modification for regulating epigenetic transitions in chromatin. Each methylatable lysine residue can exist in a mono-, di-, or trimethylated state, thereby extending the indexing potential of this particular modification. Here, we examine all possible methylation states for histone H3 lysine 9 (H3-K9) and lysine 27 (H3-K27) in mammalian chromatin. Using highly specific antibodies together with quantitative mass spectrometry, we demonstrate that pericentric heterochromatin is selectively enriched for H3-K27 monomethylation and H3-K9 trimethylation. This heterochromatic methylation profile is dependent on the Suv39h histone methyltransferases (HMTases) but independent of the euchromatic G9a HMTase. In Suv39h double null cells, pericentric heterochromatin is converted to alternative methylation imprints and accumulates H3-K27 trimethylation and H3-K9 monomethylation. Our data underscore the selective presence of distinct histone lysine methylation states in partitioning chromosomal subdomains but also reveal a surprising plasticity in propagating methylation patterns in eukaryotic chromatin.
Collapse
Affiliation(s)
- Antoine H F M Peters
- Research Institute of Molecular Pathology, The Vienna Biocenter, Dr. Bohrgasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
946
|
Dobreva G, Dambacher J, Grosschedl R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev 2004; 17:3048-61. [PMID: 14701874 PMCID: PMC305257 DOI: 10.1101/gad.1153003] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nuclear matrix attachment regions (MARs) are regulatory DNA sequences that are important for higher-order chromatin organization, long-range enhancer function, and extension of chromatin modifications. Here we characterize a novel cell type-specific MAR-binding protein, SATB2, which binds to the MARs of the endogenous immunoglobulin micro locus in pre-B cells and enhances gene expression. We found that SATB2 differs from the closely related thymocyte-specific protein SATB1 by modifications of two lysines with the small ubiquitive related modifier (SUMO), which are augmented specifically by the SUMO E3 ligase PIAS1. Mutations of the SUMO conjugation sites of SATB2 enhance its activation potential and association with endogenous MARs in vivo, whereas N-terminal fusions with SUMO1 or SUMO3 decrease SATB2-mediated gene activation. Sumoylation is also involved in targeting SATB2 to the nuclear periphery, raising the possibility that this reversible modification of a MAR-binding protein may contribute to the modulation of subnuclear DNA localization.
Collapse
Affiliation(s)
- Gergana Dobreva
- Gene Center and Institute of Biochemistry, University of Munich, Munich 81377, Germany
| | | | | |
Collapse
|
947
|
Chaumeil J, Okamoto I, Guggiari M, Heard E. Integrated kinetics of X chromosome inactivation in differentiating embryonic stem cells. Cytogenet Genome Res 2004; 99:75-84. [PMID: 12900548 DOI: 10.1159/000071577] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Indexed: 11/19/2022] Open
Abstract
Inactivation of the X chromosome during early female development and the subsequent maintenance of this transcriptionally inert state through countless cell divisions remain a paradigm for epigenetic regulation in mammals. Nevertheless, the exact mechanisms underlying this chromosome-wide silencing process remain unclear. Using differentiating female embryonic stem (ES) cells as a model system, we recently found that histone H3 tail modifications are among the earliest known chromatin changes in the X inactivation process, appearing as soon as Xist RNA accumulates on the X chromosome, but prior to transcriptional silencing of X-linked genes (Heard et al., 2001). In this report we present an integrated analysis of the sequence of early events and chromatin modifications underlying X inactivation in differentiating female ES cells. We have extended our previous analysis concerning changes in histone tail modification states. We find that the hypomethylation of Arg-17 and that of Lys-36 on histone H3 also characterize the inactive X chromosome, and that these profiles show a similarly early onset during the initiation of X inactivation. In addition, we have investigated the kinetics of the shift in replication timing of the X chromosome undergoing inactivation. This event occurs slightly later than Xist RNA coating and the chromatin modifications. Finally, from an early stage in the X inactivation process, characteristic histone modification patterns can be found on the X chromosome at mitosis, suggesting that they represent true epigenetic marks of the inactive state.
Collapse
Affiliation(s)
- J Chaumeil
- Mammalian Developmental Epigenetics Group, CNRS UMR 218, Curie Institute, Paris, France
| | | | | | | |
Collapse
|
948
|
Sims RJ, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function. Trends Genet 2004; 19:629-39. [PMID: 14585615 DOI: 10.1016/j.tig.2003.09.007] [Citation(s) in RCA: 502] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
949
|
Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A 2004; 101:1241-6. [PMID: 14734806 PMCID: PMC337037 DOI: 10.1073/pnas.0307708100] [Citation(s) in RCA: 449] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors (HDACi) cause cancer cell growth arrest and/or apoptosis in vivo and in vitro. The HDACi suberoylanilide hydroxamic acid (SAHA) is in phase I/II clinical trials showing significant anticancer activity. Despite wide distribution of HDACs in chromatin, SAHA alters the expression of few genes in transformed cells. p21(WAF1) is one of the most commonly induced. SAHA does not alter the expression of p27(KIPI), an actively transcribed gene, or globin, a silent gene, in ARP-1 cells. Here we studied SAHA-induced changes in the p21(WAF1) promoter of ARP-1 cells to better understand the mechanism of HDACi gene activation. Within 1 h, SAHA caused modifications in acetylation and methylation of core histones and increased DNase I sensitivity and restriction enzyme accessibility in the p21(WAF1) promoter. These changes did not occur in the p27(KIPI) or epsilon-globin gene-related histones. The HDACi caused a marked decrease in HDAC1 and Myc and an increase in RNA polymerase II in proteins bound to the p21(WAF1) promoter. Thus, this study identifies effects of SAHA on p21(WAF1)-associated proteins that explain, at least in part, the selective effect of HDACi in altering gene expression.
Collapse
Affiliation(s)
- C-Y Gui
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
950
|
Hoyer-Fender S, Czirr E, Radde R, Turner JMA, Mahadevaiah SK, Pehrson JR, Burgoyne PS. Localisation of histone macroH2A1.2 to the XY-body is not a response to the presence of asynapsed chromosome axes. J Cell Sci 2004; 117:189-98. [PMID: 14676273 DOI: 10.1242/jcs.00851] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histone macroH2A1.2 and the murine heterochromatin protein 1, HP1β, have both been implicated in meiotic sex chromosome inactivation (MSCI) and the formation of the XY-body in male meiosis. In order to get a closer insight into the function of histone macroH2A1.2 we have investigated the localisation of macroH2A1.2 in surface spread spermatocytes from normal male mice and in oocytes of XX and XYTdym1 mice. Oocytes of XYTdym1 mice have no XY-body or MSCI despite having an XY chromosome constitution, so the presence or absence of `XY-body' proteins in association with the X and/or Y chromosome of these oocytes enables some discrimination between potential functions of XY-body located proteins. We demonstrate here that macroH2A1.2 localises to the X and Y chromatin of spermatocytes as they condense to form the XY-body but is not associated with the X and Y chromatin of XYTdym1 early pachytene oocytes. MacroH2A1.2 and HP1β co-localise to autosomal pericentromeric heterochromatin in spermatocytes. However, the two proteins show temporally and spatially distinct patterns of association to X and Y chromatin.
Collapse
Affiliation(s)
- Sigrid Hoyer-Fender
- III. Department of Zoology-Developmental Biology, University of Göttingen, Humboldtallee 34A, 37073 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|