901
|
Wade M, Blake MC, Jambou RC, Helin K, Harlow E, Azizkhan JC. An inverted repeat motif stabilizes binding of E2F and enhances transcription of the dihydrofolate reductase gene. J Biol Chem 1995; 270:9783-91. [PMID: 7730357 DOI: 10.1074/jbc.270.17.9783] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An overlapping inverted repeat sequence that binds the eukaryotic transcription factor E2F is 100% conserved near the major transcription start sites in the promoters of three mammalian genes encoding dihydrofolate reductase, and is also found in the promoters of several other important cellular and viral genes. This element, 5'-TTTCGCGCCAAA-3', is comprised of two overlapping, oppositely oriented sites which match the consensus E2F site (5'-TTT(C/G)(C/G)CGC-3'). Recent work has shown that E2F binding activity is composed of at least six related cellular polypeptides which are capable of forming DNA-binding homo- and heterodimers. We have investigated the binding of cellular E2F activity and of homo- and heterodimers of cloned E2F proteins to the inverted repeat E2F element. We have demonstrated that mutations in this element that abolish its inverted repeat nature, while preserving a single consensus E2F site, significantly decrease the binding stability of all of the forms of E2F tested. The rate of association of E2F-1/DP-1 heterodimers with the inverted repeat wild type site was not significantly different from those with the two single site mutated probes. Furthermore, the mutations decrease in vitro transcription and transient reporter gene expression 2-5-fold, an effect equivalent to that of abolishing E2F binding altogether. These data suggest a functional role that may explain the conservation of inverted repeat E2F elements among the DHFR promoters and several other cellular and viral promoters.
Collapse
Affiliation(s)
- M Wade
- Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | |
Collapse
|
902
|
Li HO, Tang X, Kitabayashi I, Gachelin G, Chiu R, Yokoyama K. Induction by adenovirus-5 E1A of the differentiation phenotype of F9 teratocarcinoma cells involves a conserved region (CR1) of E1A. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1266:148-56. [PMID: 7742380 DOI: 10.1016/0167-4889(95)00010-p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of the E1A protein of adenovirus-5 on the differentiation program of F9 teratocarcinoma cells were examined by the stable introduction of plasmids that expressed wild-type or mutated forms of E1A. Constitutive expression of plasmids for most of the mutant E1As induced loss of expression of the cell-surface antigen SSEA-1 and the enhanced expression of genes specific for the differentiated phenotype of F9 cells, such as genes for laminin B1, tissue-type plasminogen activator (tPA) and type IV collagen, as well as the altered cell morphology that is associated with the differentiated state. However, such changes were not observed in the case of genes for mutant proteins from which a conserved region (CR1) of E1A had been deleted. Furthermore, no significant induction of expression of the c-jun gene or transactivation of the c-jun-CAT reporter gene were observed when the sequence that encodes CR1 of E1A had been deleted. A palindromic sequence element (DRE) of the c-jun promoter was essential for the E1A-mediated up-regulation of the c-jun gene. These results imply that CR1 is required for activation of the c-jun gene and that it is implicated in the growth arrest, expression of parietal endoderm-specific functions and the orderly differentiation of F9 cells.
Collapse
Affiliation(s)
- H O Li
- Tsukuba Life Science Center, RIKEN (Institute of Physical and Chemical Research), Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
903
|
Iwahana H, Honda S, Tsujisawa T, Takahashi Y, Adzuma K, Katashima R, Yamaoka T, Moritani M, Yoshimoto K, Itakura M. Rat genomic structure of amidophosphoribosyltransferase, cDNA sequence of aminoimidazole ribonucleotide carboxylase, and cell cycle-dependent expression of these two physically linked genes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:369-80. [PMID: 7742366 DOI: 10.1016/0167-4781(95)00036-g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Genomic structure of rat amidophosphoribosyltransferase (ATase; EC 2.4.2.14), which catalyzes the first committed step in de novo purine nucleotide synthesis, was determined by polymerase chain reaction (PCR)-based methods. There are 11 exons and all exon-intron boundaries were conserved among rat, human, and chicken ATase genes. A rat aminoimidazole ribonucleotide carboxylase (AIRC) cDNA encoding a bifunctional enzyme of AIRC (EC 4.1.1.21) at step 6 and SAICAR synthetase (EC 6.3.2.6) at step 7 in de novo purine nucleotide synthesis was cloned and sequenced. The size of the cloned rat AIRC cDNA was 1329 bp, and amino acid identity with human and chicken AIRC was 96 and 85%, respectively. The intergenic sequence using a phage clone and the PCR product disclosed that ATase and AIRC genes are physically linked with the 736 bp sequence between the translation start sites, and the determination of the transcriptional start sites by the primer extension assay for these genes disclosed that distance between the two major transcriptional start sites is 585 bp. The amount of mRNAs of both genes showed approx. 5-6-fold increase in G1/S phase of the cell cycle over those in G0 phase in synchronized rat 3Y1 fibroblasts.
Collapse
Affiliation(s)
- H Iwahana
- Otsuka Department of Clinical and Molecular Nutrition, School of Medicine, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
904
|
Udvadia AJ, Templeton DJ, Horowitz JM. Functional interactions between the retinoblastoma (Rb) protein and Sp-family members: superactivation by Rb requires amino acids necessary for growth suppression. Proc Natl Acad Sci U S A 1995; 92:3953-7. [PMID: 7732011 PMCID: PMC42080 DOI: 10.1073/pnas.92.9.3953] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The transient expression of the retinoblastoma protein (Rb) regulates the transcription of a variety of growth-control genes, including c-fos, c-myc, and the gene for transforming growth factor beta 1 via discrete promoter sequences termed retinoblastoma control elements (RCE). Previous analyses have shown that Sp1 is one of three RCE-binding proteins identified in nuclear extracts and that Rb functionally interacts with Sp1 in vivo, resulting in the "superactivation" of Sp1-mediated transcription. By immunochemical and biochemical criteria, we report that an Sp1-related transcription factor, Sp3, is a second RCE-binding protein. Furthermore, in transient cotransfection assays, we report that Rb "superactivates" Sp3-mediated RCE-dependent transcription in vivo and that levels of superactivation are dependent on the trans-activator (Sp1 or Sp3) studied. Using expression vectors carrying mutated Rb cDNAs, we have identified two portions of Rb required for superactivation: (i) a portion of the Rb "pocket" (amino acids 614-839) previously determined to be required for physical interactions between Rb and transcription factors such as E2F-1 and (ii) a novel amino-terminal region (amino acids 140-202). Since both of these regions of Rb are targets of mutation in human tumors, our data suggest that superactivation of Sp1/Sp3 may play a role in Rb-mediated growth suppression and/or the induction of differentiation.
Collapse
Affiliation(s)
- A J Udvadia
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
905
|
Sterner JM, Murata Y, Kim HG, Kennett SB, Templeton DJ, Horowitz JM. Detection of a novel cell cycle-regulated kinase activity that associates with the amino terminus of the retinoblastoma protein in G2/M phases. J Biol Chem 1995; 270:9281-8. [PMID: 7721848 DOI: 10.1074/jbc.270.16.9281] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent genetic and functional evidence suggests that the amino terminus of the retinoblastoma (Rb) protein plays an important role in Rb-mediated growth suppression. To explore the mechanism(s) by which this portion of Rb may regulate cell growth, we have sought to characterize cellular proteins that associate with the Rb amino terminus using an in vitro protein-binding assay. Here we report that at least one such protein is a cell cycle-regulated Rb/histone H1 kinase (RbK) whose enzymatic and/or Rb association activity is most prevalent in G2/M phases of cells. In contrast to previously characterized cyclin-dependent and Rb-associated kinases, such as cdk1 (cdc2) and cdk2, G2/M RbK 1) is not depleted by incubation with p13suc-beads, 2) is not detected with antisera against several Rb-associated cyclins-cdks, and 3) associated with Rb via the Rb amino terminus, a region that is dispensable for interaction with other Rb-associated kinases. RbK is clearly distinct from previously characterized mitotic cdks since cyclin A-cdc2, cyclin A-cdk2, cyclin B-cdc2, and cyclin B-cdk2 did not associate with the Rb amino terminus. Coprecipitation experiments with Rb antisera confirmed the association of Rb with a RbK-like kinase in metaphase-arrested cells in vivo. Interestingly, G2/M RbK did not appreciably associate with an analogous portion of p107, a Rb-related protein. Taken together, these data indicate that the Rb amino terminus specifically associates with a novel cell cycle-regulated kinase in late cell cycle stages.
Collapse
Affiliation(s)
- J M Sterner
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
906
|
Kirshenbaum LA, Schneider MD. Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein- and p300-binding domains. J Biol Chem 1995; 270:7791-4. [PMID: 7713869 DOI: 10.1074/jbc.270.14.7791] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To examine the potential impact of disrupting "pocket" protein function on cardiac differentiation and growth, we introduced 12 S E1A genes into neonatal ventricular myocytes, by adenoviral gene transfer. In the absence of E1B, E1A was cytotoxic, with features typical of apoptosis. In the presence of E1B, E1A preferentially inhibited transcription of cardiac-restricted alpha-actin promoters, and reactivated DNA synthesis in cardiac myocytes, without cell death. Mutations that abrogate known activities of the amino terminus of E1A, versus conserved region 2, demonstrate that the "pocket" protein- and p300-binding domains each suffice, in the absence of the other, for transcriptional repression and re-entry into S phase.
Collapse
Affiliation(s)
- L A Kirshenbaum
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
907
|
Chen EH, Johnson EE, Vetter SM, Mitchell BS. Characterization of the deoxycytidine kinase promoter in human lymphoblast cell lines. J Clin Invest 1995; 95:1660-8. [PMID: 7706474 PMCID: PMC295671 DOI: 10.1172/jci117841] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Deoxycytidine kinase (dCK) phosphorylates 2'-deoxycytidine, as well as the purine deoxyribonucleosides and a number of nucleoside analogues that are important in the chemotherapy of leukemias. The enzyme is highly expressed in the thymus relative to other tissues and may play an important role in the T cell depletion associated with adenosine deaminase and purine nucleoside phosphorylase deficiencies. To characterize the dCK promoter region and to determine whether it mediates higher levels of gene expression in T lymphoblasts, we have analyzed a 700-bp genomic fragment encompassing 548 bp of 5' flanking region for functional activity and for transcription factor binding using T and B lymphoblast cell lines and nuclear extracts. The regions of the promoter that were defined as important to its function include a 5' GC box, and E box, a 3' GC box, and an E2F site. The transcription factor Sp1 binds to both GC boxes, activating at the 5' site but repressing at the 3' site. MLTF/USF activates transcription through the E box, whereas E2F activates through the E2F site, but binds weakly to this site in vitro and does not appear to mediate cell cycle-specific expression of dCK in vivo. No significant differences in promoter activity or transcription factor binding were observed between Jurkat T and Raji B lymphoblasts. The promoter of the dCK gene is thus regulated by a number of ubiquitously expressed transcription factors. DCK expression in cultured lymphoblast cell lines is not solely a function of the T or B lineage derivation.
Collapse
Affiliation(s)
- E H Chen
- Department of Pharmacology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
908
|
Franch HA, Shay JW, Alpern RJ, Preisig PA. Involvement of pRB family in TGF beta-dependent epithelial cell hypertrophy. J Cell Biol 1995; 129:245-54. [PMID: 7698989 PMCID: PMC2120382 DOI: 10.1083/jcb.129.1.245] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although renal hypertrophy is often associated with the progressive loss of renal function, the mechanism of hypertrophy is poorly understood. In both primary cultures of rabbit proximal tubules and NRK-52E cells (a renal epithelial cell line), transforming growth factor beta 1 (TGF beta) converted epidermal growth factor (EGF)-induced hyperplasia into hypertrophy. TGF beta did not affect EGF-induced increases in c-fos mRNA abundance or cyclin E protein abundance, but inhibited EGF-induced entry into S, G2, and M phases. EGF alone increased the amount of hyperphosphorylated (inactive) pRB; TGF beta blocked EGF-induced pRB phosphorylation, maintaining pRB in the active form. To determine the importance of active pRB in TGF beta-induced hypertrophy, NRK-52E cells were infected with SV40 large T antigen (which inactivates pRB and related proteins and p53), HPV16 E6 (which degrades p53), HPV16 E7 (which binds and inactivates pRB and related proteins), or both HPV16 E6 and E7. In SV40 large T antigen expressing clones, the magnitude of EGF + TGF beta-induced hypertrophy was inhibited and was inversely related to the magnitude of SV40 large T antigen expression. In the HPV16-infected cells, EGF + TGF beta-induced hypertrophy was inhibited in E7- and E6E7-expressing, but not E6-expressing cells. These results suggest a requirement for active pRB in the development of EGF + TGF beta-induced renal epithelial cell hypertrophy. We suggest a model of renal cell hypertrophy mediated by EGF-induced entry into the cell cycle with TGF beta-induced blockade at G1/S, the latter due to maintained activity of pRB or a related protein.
Collapse
Affiliation(s)
- H A Franch
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8856
| | | | | | | |
Collapse
|
909
|
Kowalik TF, DeGregori J, Schwarz JK, Nevins JR. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virol 1995; 69:2491-500. [PMID: 7884898 PMCID: PMC188925 DOI: 10.1128/jvi.69.4.2491-2500.1995] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Various experiments have demonstrated a role for the E2F transcription factor in the regulation of cell growth during the G0/G1/S phase transition. Indeed, overexpression of the E2F1 product, a component of the cellular E2F activity, induces DNA synthesis in quiescent fibroblasts. To provide an approach to a more detailed biochemical analysis of these events, we have made use of a recombinant adenovirus containing the E2F1 cDNA in order to efficiently express the E2F1 product in an entire population of cells. We demonstrate an induction of DNA synthesis when quiescent cells are infected with the E2F1 recombinant virus. However, we also find that the induction does not lead to a complete replication of the cellular genome, as revealed by flow cytometry. The incomplete nature of cellular DNA replication is due, at least in part, to the fact that E2F1 overexpression leads to massive cell death that is characteristic of apoptosis. This E2F1-mediated induction of apoptosis is largely dependent on endogenous wild-type p53 activity and can be subverted by introducing mutant forms of p53 into these cells or by overexpressing E2F1 in fibroblasts derived from p53-null mouse embryos. We conclude that E2F1 can induce events leading to S phase but that the process is not normal and appears to result from the activation of a cell death pathway.
Collapse
Affiliation(s)
- T F Kowalik
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
910
|
Vairo G, Livingston DM, Ginsberg D. Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev 1995; 9:869-81. [PMID: 7705662 DOI: 10.1101/gad.9.7.869] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Little is known of the mechanisms controlling the G0/G1 transition of the cell cycle. The induction of immediate early gene expression, thought to be important for this process, suggests that the key factors controlling this transition preexist in quiescent cells. The E2F family of transcription factors likely play an important role in this process, because E2F DNA-binding activity exists in quiescent cells, and the induction of at least some immediate early genes requires intact E2F regulatory promoter sites. Here, we show that the major G0 E2F activity of primary human T cells, E2F-4, is stably bound to the p130 pocket protein in association with a DP heterodimerization partner. p130-E2F-4 binding has functional implications because p130 effectively suppressed E2F-4-mediated trans-activation, and coexpression of E2F4 overcame p130-mediated G1 arrest more efficiently than RB-induced G1 blockade. Conversely, E2F-1 overrode an RB-induced G1 block more efficiently than E2F-4. Thus, p130 and RB appear to induce cell cycle arrest via biochemically distinct mechanisms that involve different E2F family members.
Collapse
Affiliation(s)
- G Vairo
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
911
|
Shin EK, Shin A, Paulding C, Schaffhausen B, Yee AS. Multiple change in E2F function and regulation occur upon muscle differentiation. Mol Cell Biol 1995; 15:2252-62. [PMID: 7891719 PMCID: PMC230453 DOI: 10.1128/mcb.15.4.2252] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have examined regulation of the E2F transcription factor during differentiation of muscle cells. E2F regulates many genes involved in growth control and is also the target of regulation by diverse cellular signals, including the RB family of growth suppressors (e.g., the retinoblastoma protein [RB], p107, and p130). The following aspects of E2F function and regulation during muscle differentiation were investigated: (i) protein-protein interactions, (ii) protein levels, (iii) phosphorylation of the E2F protein, and (iv) transcriptional activity. A distinct E2F complex was present in differentiated cells but not in undifferentiated cells. The p130 protein was a prominent component of the E2F complex associated with differentiation. In contrast, in undifferentiated cells, the p107 protein was the prominent component in one of three E2F complexes. In addition, use of a differentiation-defective muscle line provided genetic and biochemical evidence that quiescence and differentiation are separable events. Exclusive formation of the E2F-p130 complex did not occur in this differentiation-defective line; however, E2F complexes diagnostic of quiescence were readily apparent. Thus, sole formation of the E2F-p130 complex is a necessary event in terminal differentiation. Other changes in E2F function and regulation upon differentiation include decreased phosphorylation and increased repression by E2F. These observations suggest that the regulation of E2F function during terminal differentiation may proceed through differential interaction within the RB family and/or phosphorylation.
Collapse
Affiliation(s)
- E K Shin
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | | | |
Collapse
|
912
|
Abstract
Transcriptional activation of the c-fos gene in mouse S49 cells by the adenovirus 243-amino-acid E1A protein depends on domains of E1A that are also required for transformation and that bind the cellular protein p300. Activation additionally depends on stimulation of endogenous cyclic AMP (cAMP)-dependent protein kinase by analogs or inducers of cAMP. Transient transfection assays were used to analyze the c-fos promoter for sequences that confer responsiveness to E1A. Linker substitution and point mutants revealed that transcriptional activation by E1A depended on a cAMP response element (CRE) located at -67 relative to the start site of transcription and a neighboring binding site for transcription factor YY1 located at -54. A 22-bp sequence containing the -67 CRE and the -54 YY1 site was sufficient to confer responsiveness to a minimal E1B promoter and was termed the c-fos E1A response element (ERE). Function of the c-fos ERE depended on both the CRE and the YY1 site, since mutation of either site resulted in a loss of responsiveness to E1A. These results imply a specific functional interaction between CRE-binding proteins, transcription factor YY1, and E1A in the regulation of the c-fos gene.
Collapse
Affiliation(s)
- R W Gedrich
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22901
| | | |
Collapse
|
913
|
Abstract
Studies of the retinoblastoma (RB) gene product suggest that it may work as a fundamental regulator to coordinate pathways of cellular growth and differentiation. One known function of retinoblastoma (Rb) protein is its ability to suppress tumorigenesis. In many different cultured tumor cells, replacement of a normal RB gene and expression of normal Rb protein results in suppression of neoplastic properties. Moreover, in humans or experimental mice, germ line mutation of the RB gene leads particularly to retinoblastomas or pituitary tumors, respectively, which demonstrates that the role of RB in tumor predisposition is specific to certain tissues. In addition to suppressing tumor formation, Rb apparently also has roles in normal development and cellular differentiation. Recent characterizations of Rb-associated proteins and proteins within the Rb family may provide some clues to exploring the complex networks in which Rb is involved.
Collapse
Affiliation(s)
- W H Lee
- Center for Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio 78245, USA
| | | | | |
Collapse
|
914
|
Tam SK, Gu W, Mahdavi V, Nadal-Ginard B. Cardiac myocyte terminal differentiation. Potential for cardiac regeneration. Ann N Y Acad Sci 1995; 752:72-9. [PMID: 7755297 DOI: 10.1111/j.1749-6632.1995.tb17407.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The exact mechanism of terminal differentiation in cardiac myocytes is currently unknown. Studies in the skeletal muscle system provided a model where muscle lineage termination gene directly interacts with Rb to produce and maintain the terminally differentiated state. This interaction provided the critical components for the lock in cell cycle arrest in skeletal muscle cell. Cardiac muscle appears on the surface very similar to skeletal muscle especially since they share large numbers of structural and contractile proteins. However, it is clear that cardiac muscle cells are distinct biologically at the regulatory level. First and foremost, differentiation and capacity for hyperplasia (mitosis) is not mutually exclusive, in that the heart being the first functional organ embryologically is able to grow via cell division until shortly after birth. Thereafter further growth is provided by hypertrophy. In skeletal muscle, these two processes, differentiation and ability to undergo mitosis, appear to be mutually exclusive. Second, cardiac muscles have not been shown to express any of the skeletal muscle determination basic helix loop helix factors like myoD or any proteins that are functionally similar. Third, heterokaryons of cardiac myocytes and fibroblasts reveal a lack of dominance of the cardiac muscle phenotype. This is distinctly different in skeletal muscle, whose phenotype is dominant which provided a platform to identify the skeletal muscle determination gene, myoD. Although various basic helix loop helix proteins and homeobox genes have been identified in cardiac myocytes, their function remains to be elucidated. At this time no cardiac determination gene has been identified. Despite these differences, we have shown that the biology of pocket proteins Rb and P107 is similar in skeletal and cardiac myocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S K Tam
- Cardiac Surgical Unit, Massachusetts General Hospital, Cambridge 02138, USA
| | | | | | | |
Collapse
|
915
|
Rempel RE, Sleight SB, Maller JL. Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J Biol Chem 1995; 270:6843-55. [PMID: 7896832 DOI: 10.1074/jbc.270.12.6843] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Earlier work demonstrated that cyclins A1, B1, and B2 are not associated with Cdk2 from unfertilized Xenopus eggs. As a potential Cdk2 partner during meiosis, a cyclin E homolog was cloned from a Xenopus oocyte cDNA library and found to be 60% identical at the amino acid level to human cyclin E. Cyclin E1 protein was detected in resting oocytes, and the level increased severalfold in meiosis II, concomitant with the appearance of forms with decreased electrophoretic mobility. During oocyte maturation, the patterns of cyclin E1-associated kinase activity and Cdk2 activity were identical, with activity low until after germinal vesicle breakdown, peaking during meiosis II. Cyclin E1 complexes immunoprecipitated from unfertilized Xenopus eggs contained Cdk2 but not Cdc2. In cycling egg extracts Cdk2-cyclin E1-associated kinase activity oscillated, but the level of cyclin E1 protein and its association with Cdk2 did not vary appreciably; complex activity appeared to be regulated neither by the synthesis and destruction of the cyclin subunit nor by association/disassociation of the two subunits. During the early cleavage divisions in embryos, cyclin E1 and Cdk2 remained associated. The data indicate that the Cdk2-cyclin E complex functions during meiotic and embryonic cell cycles in addition to performing its established role during G1 in somatic cells.
Collapse
Affiliation(s)
- R E Rempel
- Howard Hughes Medical Institute, University of Colorado School of Medicine, Denver 80262
| | | | | |
Collapse
|
916
|
Sardet C, Vidal M, Cobrinik D, Geng Y, Onufryk C, Chen A, Weinberg RA. E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci U S A 1995; 92:2403-7. [PMID: 7892279 PMCID: PMC42492 DOI: 10.1073/pnas.92.6.2403] [Citation(s) in RCA: 254] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The E2F transcription factors play a role in regulating the expression of genes required for cell proliferation. Their activity appears to be regulated by association with the retinoblastoma protein (pRb) and the pRb-related proteins p107 and p130. In vivo, pRb is found in complex with a subset of E2F components--namely, E2F-1, E2F-2, and E2F-3. Here we describe the characterization of cDNAs encoding two unusual E2Fs, E2F-4 and E2F-5, each identified by the ability of their gene product to interact with p130 in a yeast two-hybrid system. E2F-4 and -5 share common sequences with E2F-1, E2F-2, and E2F-3 and, like these other E2Fs, the ability to heterodimerize with DP-1, thereby acquiring the ability to bind an E2F DNA recognition sequence with high affinity. However, in contrast to E2F-1, E2F-4 and E2F-5 fail to bind pRb in a two-hybrid assay. Moreover, they show a unique pattern of expression in synchronized human keratinocytes: E2F-4 and E2F-5 mRNA expression is maximal in mid-G1 phase before E2F-1 expression is detectable. These findings suggest that E2F-4 and E2F-5 may contribute to the regulation of early G1 events including the G0/G1 transition.
Collapse
Affiliation(s)
- C Sardet
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | | | | | | | | | | |
Collapse
|
917
|
Walsh MJ, Shue G, Spidoni K, Kapoor A. E2F-1 and a cyclin-like DNA repair enzyme, uracil-DNA glycosylase, provide evidence for an autoregulatory mechanism for transcription. J Biol Chem 1995; 270:5289-98. [PMID: 7534293 DOI: 10.1074/jbc.270.10.5289] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cell cycle-dependent transcription factor, E2F-1, regulates the cyclin-like species of the DNA repair enzyme uracil-DNA glycosylase (UDG) gene in human osteosarcoma (Saos-2) cells. We demonstrate, through the deletion of the human UDG promoter sequences, that expression of E2F-1 activates the UDG promoter through several E2F sites. The major putative downstream site for E2F, located in the first exon, serves as a target for E2F-1/DP1 complex binding in vitro. We also provide evidence for the functional relationship between the cyclin-like UDG gene product and E2F. High levels of UDG expression in a transient transfection assay result in the down-regulation of transcriptional activity through elements specific for E2F-mediated transcription. Overexpression of UDG in Saos 2 cells was observed to delay growth late in G1 phase and transiently arrest these cells from progressing into the S phase. This hypothetical model integrates one mechanism of DNA repair with the cell cycle control of gene transcription, likely through E2F. This implicates E2F as a multifunctional target for proteins and enzymes, possibly, responsive to DNA damage through the negative effect of UDG on E2F-mediated transcriptional activity.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD19
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- B-Lymphocytes/immunology
- Base Sequence
- Bone Neoplasms
- Carrier Proteins
- Cell Cycle
- Cell Cycle Proteins
- Cell Division
- Cell Line
- Chloramphenicol O-Acetyltransferase/biosynthesis
- DNA Glycosylases
- DNA Primers
- DNA-Binding Proteins
- E2F Transcription Factors
- E2F1 Transcription Factor
- Flow Cytometry
- G1 Phase
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Homeostasis
- Humans
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- N-Glycosyl Hydrolases/biosynthesis
- Osteosarcoma
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Recombinant Proteins/biosynthesis
- Restriction Mapping
- Retinoblastoma-Binding Protein 1
- S Phase
- Transcription Factor DP1
- Transcription Factors/biosynthesis
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Uracil-DNA Glycosidase
Collapse
Affiliation(s)
- M J Walsh
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029
| | | | | | | |
Collapse
|
918
|
Cavanaugh AH, Hempel WM, Taylor LJ, Rogalsky V, Todorov G, Rothblum LI. Activity of RNA polymerase I transcription factor UBF blocked by Rb gene product. Nature 1995; 374:177-80. [PMID: 7877691 DOI: 10.1038/374177a0] [Citation(s) in RCA: 272] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The protein encoded by the retinoblastoma susceptibility gene (Rb) functions as a tumour suppressor and negative growth regulator. As actively growing cells require the ongoing synthesis of ribosomal RNA, we considered that Rb might interact with the ribosomal DNA transcription apparatus. Here we report that (1) there is an accumulation of Rb protein in the nucleoli of differentiated U937 cells which correlates with inhibition of rDNA transcription; (2) addition of Rb to an in vitro transcription system inhibits transcription by RNA polymerase I; (3) this inhibition requires a functional Rb pocket; and (4) Rb specifically inhibits the activity of the RNA polymerase I transcription factor UBF (upstream binding factor) in vitro. This last observation was confirmed by affinity chromatography and immunoprecipitation, which demonstrated an interaction between Rb and UBF. These results indicate that there is an additional mechanism by which Rb suppresses cell growth, namely that Rb directly represses transcription of the rRNA genes.
Collapse
Affiliation(s)
- A H Cavanaugh
- Sigfried and Janet Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2618
| | | | | | | | | | | |
Collapse
|
919
|
Lewis BA, Tullis G, Seto E, Horikoshi N, Weinmann R, Shenk T. Adenovirus E1A proteins interact with the cellular YY1 transcription factor. J Virol 1995; 69:1628-36. [PMID: 7853498 PMCID: PMC188760 DOI: 10.1128/jvi.69.3.1628-1636.1995] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The adenovirus 12S and 13S E1A proteins have been shown to relieve repression mediated by the cellular transcription factor YY1. The 13S E1A protein not only relieves repression but also activates transcription through YY1 binding sites. In this study, using a variety of in vivo and in vitro assays, we demonstrate that both E1A proteins can bind to YY1, although the 13S E1A protein binds more efficiently than the 12S E1A protein. Two domains on the E1A proteins interact with YY1: an amino-terminal sequence (residues 15 to 35) that is present in both E1A proteins and a domain that includes at least a portion of conserved region 3 (residues 140 to 188) that is present in the 13S but not the 12S E1A protein. Two domains on YY1 interact with E1A proteins: one is contained within residues 54 to 260, and the other is contained within the carboxy-terminal domain of YY1 (residues 332 to 414). Cotransfection of a plasmid expressing carboxy-terminal amino acids 332 to 414 of YY1 fused to the GAL4 DNA-binding domain can inhibit expression from a reporter construct with GAL4 DNA binding sites in its promoter, and inclusion of a third plasmid expressing E1A proteins can relieve the repression. Thus, we find a correlation between the ability of E1A to interact with the carboxy-terminal domain of YY1 and its ability to relieve repression caused by the carboxy-terminal domain of YY1. We propose that E1A proteins normally relieve YY1-mediated transcriptional repression by binding directly to the cellular transcription factor.
Collapse
Affiliation(s)
- B A Lewis
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, New Jersey 08544-1014
| | | | | | | | | | | |
Collapse
|
920
|
Abstract
Pathogenicity is a complex process with stringent requirements of both the host cell and the infecting virion. Among these requirements are a port of entry into host cells, a means of replication for the virus, and a means by which infection damages host cells. Damage to the host can result from multiple mechanisms including transformation, suppression of cellular metabolism, apoptosis, autoimmune responses directed against infected or uninfected tissues, or by molecular mimicry. In the attempt to identify new associations between viral infection and disease, investigators should be mindful that variable host factors as well as viral infection may be required for pathogenesis. Efforts to associate specific viral infections with specific diseases may be obscured by final common pathways through which multiple agents damage host cells in similar ways.
Collapse
Affiliation(s)
- J Hibbs
- Department of Internal Medicine, University of Minnesota Hospitals, Minneapolis 55455, USA
| | | |
Collapse
|
921
|
Almasan A, Linke SP, Paulson TG, Huang LC, Wahl GM. Genetic instability as a consequence of inappropriate entry into and progression through S-phase. Cancer Metastasis Rev 1995; 14:59-73. [PMID: 7606822 DOI: 10.1007/bf00690212] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The stability of the mammalian genome depends on the proper function of G1 and G2 cell cycle control mechanisms. Two tumor suppressors, p53 and retinoblastoma (Rb), play key roles in progression from G1 into S-phase. We address the mechanisms by which these proteins mediate a G1 arrest in response to DNA damage and limiting metabolic conditions. Gamma-irradiation induced a prolonged, p53-dependent G1 arrest associated with a long-term increase in the levels of the cdk-inhibitor p21WAFl/Cipl (p21). Microinjection of linear plasmid DNA also caused a G1 arrest. The p53-dependent arrest induced by inhibitors of UMP biosynthesis was reversible and occurred in the absence of detectable DNA damage. Both arrest mechanisms contribute to limiting the formation and propagation of damaged genomes. Cells containing mutant p53 but wild-type Rb do not generate methotrexate (Mtx) resistant variants. However, pre-treatment with DNA damaging agents prior to drug selection resulted in resistant clones containing amplified dihydrofolate reductase (DHFR) genes, suggesting that DNA breakage is a rate limiting step for gene amplification. The Mtx-induced arrest did not occur in cells with non-functional Rb. Rb acts as a negative regulator of the E2F transcription factors, and Rb-deficient primary mouse embryo fibroblasts (MEFs) produced elevated levels of mRNA and protein for key E2F target genes. Failure to prevent entry into S-phase in Rb-/- MEFs exposed to DNA-damaging or nutrient limiting conditions caused apoptosis and correlated with p53 induction. Taken together, these findings indicate a link between p53 and Rb function and suggest that their coordination insures correct entry into S-phase, minimizing the emergence of genetic variants.
Collapse
Affiliation(s)
- A Almasan
- Gene Expression Lab, Salk Institute, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
922
|
Abstract
Cellular proliferation depends on the rates of both cell division and cell death. Tumors frequently have decreased cell death as a primary mode of increased cell proliferation. Genetic changes resulting in loss of programmed cell death (apoptosis) are likely to be critical components of tumorigenesis. Many of the gene products which appear to control apoptotic tendencies are regulators of cell cycle progression; thus, cell cycle control and cell death appear to be tightly linked processes. P53 protein is an example of a gene product which affects both cell cycle progression and apoptosis. The ability of p53 overexpression to induce apoptosis may be a major reason why tumor cells frequently disable p53 during the transformation process. Unfortunately, the same genetic changes which cause loss of apoptosis during tumor development, may also result in tumor cell resistance to anti-neoplastic therapies which kill tumor cells by apoptosis. Elucidation of the genetic and biochemical controls of these cellular responses may provide insights into ways to induce cell death and thus hopefully suggest new targets for improving therapeutic index in the treatment of malignancies.
Collapse
Affiliation(s)
- M B Kastan
- Johns Hopkins Oncology Center, Baltimore, Maryland, USA
| | | | | |
Collapse
|
923
|
Brough DE, Hofmann TJ, Ellwood KB, Townley RA, Cole MD. An essential domain of the c-myc protein interacts with a nuclear factor that is also required for E1A-mediated transformation. Mol Cell Biol 1995; 15:1536-44. [PMID: 7862146 PMCID: PMC230377 DOI: 10.1128/mcb.15.3.1536] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cell transformation by nuclear oncogenes such as c-myc presumably involves the transcriptional activation of a set of target genes that participate in the control of cell division. The function of a small evolutionarily conserved domain of the c-myc gene encompassing amino acids 129 to 145 was analyzed to explore the relationship between cell transformation and transcriptional activation. Deletion of this domain inactivated the c-myc oncogene for cell transformation while retaining the ability to activate transcription of either myc consensus binding sites or a GAL4-dependent promoter when the c-myc N-terminus was fused to the GAL4 DNA-binding domain. Point mutations that altered a conserved tryptophan (amino acid 136) within this domain had similar effects. Expression of the wt c-Myc N terminus (amino acids 1 to 262) as a GAL4 fusion was a dominant inhibitor of cell transformation by the c-myc oncogene, and this same domain also inhibited transformation by the adenovirus E1A gene. Surprisingly, deletion of amino acids 129 to 145 eliminated the dominant negative activity of GAL4-Myc on both c-myc and E1A transformation. Expression of the GAL4-Myc protein in Cos cells led to the formation of a specific complex between the Myc N terminus and a nuclear factor, and this complex was absent with the dl129-145 mutant. These results suggest that an essential domain of the c-Myc protein interacts with a specific nuclear factor that is also required for E1A transformation.
Collapse
Affiliation(s)
- D E Brough
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | | | | | | | |
Collapse
|
924
|
Wu BY, Woffendin C, Duckett CS, Ohno T, Nabel GJ. Regulation of human retroviral latency by the NF-kappa B/I kappa B family: inhibition of human immunodeficiency virus replication by I kappa B through a Rev-dependent mechanism. Proc Natl Acad Sci U S A 1995; 92:1480-4. [PMID: 7878004 PMCID: PMC42543 DOI: 10.1073/pnas.92.5.1480] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cellular transcription factor NF-kappa B stimulates human immunodeficiency virus type 1 (HIV-1) transcriptional initiation, but its role in the retroviral life cycle has not been fully defined. In this report, we show that I kappa B alpha acts as a cellular inhibitor of human retroviral replication through a discrete mechanism, independent of its effect on HIV transcription. I kappa B alpha inhibited HIV replication and gp160 expression by negatively regulating Rev function, most likely acting through a cellular factor involved in Rev transactivation. A similar effect was observed with human T leukemia virus I, in which I kappa B alpha inhibited Rex function. In contrast, no effect was observed on the replication of a DNA virus, adenovirus type 5. The NF-kappa B/I kappa B regulatory pathway therefore modulates human retroviral replication by regulating a program of cellular gene expression required for several steps in the viral life cycle, including not only viral transcription but also RNA export. This interaction between cellular and viral gene products suggests that NF-kappa B plays a broader role in the regulation of human retroviral replication, providing a previously unrecognized link between two important regulators of HIV gene expression and common NF-kappa B-dependent programs of gene expression used by human retroviruses.
Collapse
Affiliation(s)
- B Y Wu
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109-0650
| | | | | | | | | |
Collapse
|
925
|
Xu G, Livingston DM, Krek W. Multiple members of the E2F transcription factor family are the products of oncogenes. Proc Natl Acad Sci U S A 1995; 92:1357-61. [PMID: 7877982 PMCID: PMC42518 DOI: 10.1073/pnas.92.5.1357] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The retinoblastoma gene product (pRB) is a known tumor suppressor, capable of arresting growth in mid-to-late G1. Part of its growth suppression action arises from interaction(s) with one or more members of the E2F family of transcription factors. These proteins most likely contribute to progression from G0 to S phase in mammalian cells, and pRB binding most likely inhibits aspects of their suspected growth-promoting function. Given their growth-stimulating potential, we asked whether one or more E2F alleles can function as oncogenes. Uncloned pools of NIH 3T3 cells producing the pRB binding target E2F-1, E2F-2, or E2F-3 grew in semisolid medium. In addition, they grew to much higher saturation density than controls. From the study of cells producing selected E2F-1 mutant species, it appears that E2F DNA-binding function contributes to, and pRB/E2F binding suppresses, soft-agar growth. Thus, three E2F family members can act as oncogene products, suggesting that part of the normal role of pRB is to down-modulate this potential activity.
Collapse
Affiliation(s)
- G Xu
- Dana-Farber Cancer Institute, Boston, MA
| | | | | |
Collapse
|
926
|
Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 1995; 267:1018-21. [PMID: 7863327 DOI: 10.1126/science.7863327] [Citation(s) in RCA: 903] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Skeletal muscle differentiation entails the coordination of muscle-specific gene expression and terminal withdrawal from the cell cycle. This cell cycle arrest in the G0 phase requires the retinoblastoma tumor suppressor protein (Rb). The function of Rb is negatively regulated by cyclin-dependent kinases (Cdks), which are controlled by Cdk inhibitors. Expression of MyoD, a skeletal muscle-specific transcriptional regulator, activated the expression of the Cdk inhibitor p21 during differentiation of murine myocytes and in nonmyogenic cells. MyoD-mediated induction of p21 did not require the tumor suppressor protein p53 and correlated with cell cycle withdrawal. Thus, MyoD may induce terminal cell cycle arrest during skeletal muscle differentiation by increasing the expression of p21.
Collapse
Affiliation(s)
- O Halevy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | |
Collapse
|
927
|
Abstract
Proliferation of mammalian cells both in vivo and in vitro is dependent upon physiological concentrations of extracellular Ca2+. Growth factor stimulation of quiescent cells at the G0/G1 border usually results in a rapid mobilization of Ca2+ from both intra- and extracellular pools. However, Ca2+ influx is also required for later phases of cell cycle transition, especially in the late G1 phase for initiation of DNA synthesis. Available evidence indicates that calmodulin plays the major and essential roles in the Ca(2+)-dependent regulation of cell proliferation. Ca2+ and calmodulin act at multiple points in the cell cycle, including the initiation of the S phase and both initiation and completion of the M phase. Ca2+ and calmodulin stimulate the expression of genes involved in the cell cycle progression, leading to activation of cyclin-dependent kinases p33cdk2 and p34cdc2. Ca2+ and calmodulin are also involved in activation of enzymes participating in nucleotide metabolism and DNA replication, as well as nuclear envelope breakdown and cytokinesis. Ca2+/calmodulin-dependent protein kinase II and protein phosphatase calcineurin are both involved in the Ca2+ and calmodulin-mediated signalling of growth regulation. As compared to normal cells, growth of transformed cells is independent of extracellular Ca2+ and much less sensitive to calmodulin antagonists, suggesting the existence of derangements in the Ca2+ and calmodulin-mediated growth regulation mechanisms.
Collapse
Affiliation(s)
- N Takuwa
- Department of Physiology, Faculty of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|
928
|
Abstract
It has recently become clear that cyclin-dependent kinase (cdk) complex regulates the cell cycle by phosphorylating Rb protein, a tumor suppressor protein. It is likely that this complex is a target of various growth factors and anti-growth factors (UV, TGF-beta etc.) in keratinocyte (KC). It has also been suggested that abnormalities in the cell cycle regulating mechanism such as increased activity of cyclin-cdk due to mutation of p53, a tumor suppressor gene, and overexpression of cyclin D may be concerned with carcinogenesis of KC. Thus, recent studies indicate that the cyclin-cdk complex is a common target of proliferation and carcinogenesis in KC.
Collapse
Affiliation(s)
- S Inohara
- Department of Dermatology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | |
Collapse
|
929
|
Qin XQ, Livingston DM, Ewen M, Sellers WR, Arany Z, Kaelin WG. The transcription factor E2F-1 is a downstream target of RB action. Mol Cell Biol 1995; 15:742-55. [PMID: 7823942 PMCID: PMC231942 DOI: 10.1128/mcb.15.2.742] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Reintroduction of RB into SAOS2 (RB-/-) cells causes a G1 arrest and characteristic cellular swelling. Coexpression of the cellular transcription factor E2F-1 could overcome these effects. The ability of E2F-1 to bind to RB was neither necessary nor sufficient for this effect, and S-phase entry was not accompanied by RB hyperphosphorylation under these conditions. Furthermore, E2F-1 could overcome the actions of a nonphosphorylatable but otherwise intact RB mutant. These data, together with the fact that RB binds to E2F-1 in vivo, suggest that E2F-1 is a downstream target of RB action. Mutational analysis showed that the ability of E2F-1 to bind to DNA was necessary and sufficient to block the formation of large cells by RB, whereas the ability to induce S-phase entry required a functional transactivation domain as well. Thus, the induction of a G1 arrest and the formation of large cells by RB in these cells can be genetically dissociated. Furthermore, the ability of the E2F-1 DNA-binding domain alone to block one manifestation of RB action is consistent with the notion that RB-E2F complexes actively repress transcription upon binding to certain E2F-responsive promoters. In keeping with this view, we show here that coproduction of an E2F1 mutant capable of binding to DNA, yet unable to transactivate, is sufficient to block RB-mediated transcriptional repression.
Collapse
Affiliation(s)
- X Q Qin
- Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
930
|
Abstract
Apoptosis is an active process of cell death that serves diverse functions in multicellular organisms, and under physiological conditions, it is tightly controlled. Many virus genomes encode gene products that modulate apoptosis, either positively or negatively, and induction of apoptosis often contributes directly to the cytopathogenic effects of the viruses. Inhibition of apoptosis by viruses, on the other hand, may prevent premature death of infected cells, thereby facilitating viral replication, spread, or persistence.
Collapse
Affiliation(s)
- Y Shen
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | |
Collapse
|
931
|
Cotten M. Adenovirus-augmented, receptor-mediated gene delivery and some solutions to the common toxicity problems. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):283-95. [PMID: 7555081 DOI: 10.1007/978-3-642-79586-2_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M Cotten
- research Institute of Molecular Pathology, Vienna, Austria
| |
Collapse
|
932
|
Molecular Mechanisms of Transformation by Epstein-Barr Virus. INFECTIOUS AGENTS AND PATHOGENESIS 1995. [DOI: 10.1007/978-1-4899-1100-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
933
|
Münger K. The molecular biology of cervical cancer. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 1995; 23:55-60. [PMID: 8747378 DOI: 10.1002/jcb.240590908] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Infections with specific high-risk of human papillomavirus constitute a major risk factor in the development of precancerous and cancerous lesions of the uterine cervix. Laboratory studies suggest that the human papillomavirus has a mechanistic role in development of these lesions. The two viral proteins consistently expressed in cervical carcinomas functionally abrogate critical cell cycle regulatory pathways, including those governed by the p53 tumor suppressor protein and the product of the retinoblastoma susceptibility gene, pRB. Subversion of these pathways by viral proteins causes genomic instability, resulting in the accumulation of chromosomal abnormalities followed by clonal expansion of malignant cells. Since continued expression of the papillomavirus proteins is critical for maintenance of the transformed state, they are attractive targets for prevention and therapy of precursor as well as cancerous lesions of the cervix.
Collapse
Affiliation(s)
- K Münger
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
934
|
Smith EJ, Nevins JR. The Rb-related p107 protein can suppress E2F function independently of binding to cyclin A/cdk2. Mol Cell Biol 1995; 15:338-44. [PMID: 7799940 PMCID: PMC231964 DOI: 10.1128/mcb.15.1.338] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The interaction of the retinoblastoma susceptibility gene product (Rb)-related p107 protein with the E2F transcription factor in S-phase cells facilitates the formation of a multicomponent complex also containing cyclin A and the p33cdk2 kinase. We have created a series of p107 mutants to assess the ability of p107 to inhibit E2F function and the role of the cyclin A/cdk2 complex in this process. We find that p107 mutants that do not bind to E2F also fail to repress E2F-dependent transcription. Moreover, we find that the ability of p107 to suppress E2F-dependent transcription is not dependent on the ability of p107 to associate with cyclin A/cdk2. Finally, an analysis of the ability of the p107 mutant proteins to suppress cell growth suggests that both E2F-dependent and E2F-independent events correlate with this activity.
Collapse
Affiliation(s)
- E J Smith
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
935
|
Saito M, Helin K, Valentine MB, Griffith BB, Willman CL, Harlow E, Look AT. Amplification of the E2F1 transcription factor gene in the HEL erythroleukemia cell line. Genomics 1995; 25:130-8. [PMID: 7774910 DOI: 10.1016/0888-7543(95)80118-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The E2F transcription factor plays an important regulatory role in cell proliferation, mediating the expression of genes whose products are essential for inducing resting cells to enter the cell cycle and synthesize DNA. To investigate the possible involvement of E2F in hematopoietic malignancies, we isolated genomic clones encompassing the human E2F1 gene. We then used fluorescence in situ hybridization to localize E2F1 to human chromosome 20q11, telomeric to the p107 locus, a gene whose product is related to the retinoblastoma gene product (pRb). This finding contrasts with the 1p36 and 6q22 chromosomal locations previously assigned E2F2 and E2F3, two additional members of the E2F family. Although deletions or structural rearrangements of E2F1 were not detected in 14 primary acute leukemia or myelodysplasia samples with structural abnormalities of chromosome 20q11, the gene was amplified and overexpressed in HEL erythroleukemia cells and translocated to other chromosomes in several established human leukemia cell lines. This study provides the first evidence of gene amplification involving a member of the E2F family of transcription factors. We propose that E2F1 overexpression in erythroid progenitors may stimulate abnormal cell proliferation by overriding negative regulatory signals mediated by tumor suppressor proteins such as pRb.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Carrier Proteins
- Cell Cycle Proteins
- Cell Division
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 20
- Cloning, Molecular
- Cricetinae
- DNA-Binding Proteins
- E2F Transcription Factors
- E2F1 Transcription Factor
- E2F2 Transcription Factor
- E2F3 Transcription Factor
- Gene Amplification
- Gene Expression
- Genes, Tumor Suppressor
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Hybrid Cells
- In Situ Hybridization, Fluorescence
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/metabolism
- Molecular Sequence Data
- Multigene Family
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Retinoblastoma-Binding Protein 1
- Telomere
- Transcription Factor DP1
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Saito
- Department of Experimental Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
936
|
Affiliation(s)
- J Pines
- Wellcome/CRC Institute, Cambridge, United Kingdom
| |
Collapse
|
937
|
Affiliation(s)
- N Jones
- Laboratory of Gene Regulation, Imperial Cancer Research Fund, London, UK
| |
Collapse
|
938
|
Williams J, Williams M, Liu C, Telling G. Assessing the role of E1A in the differential oncogenicity of group A and group C human adenoviruses. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):149-75. [PMID: 7555075 DOI: 10.1007/978-3-642-79586-2_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J Williams
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
939
|
|
940
|
Yoshida K, Higashino F, Fujinaga K. Transcriptional regulation of the adenovirus E1A gene. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):113-30. [PMID: 7555073 DOI: 10.1007/978-3-642-79586-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K Yoshida
- Department of Molecular Biology, Sapporo Medical University, School of Medicine, Japan
| | | | | |
Collapse
|
941
|
Nevins JR. Adenovirus E1A: transcription regulation and alteration of cell growth control. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):25-32. [PMID: 7555080 DOI: 10.1007/978-3-642-79586-2_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J R Nevins
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
942
|
Affiliation(s)
- E S Razvi
- Department of Pathology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | |
Collapse
|
943
|
Horikoshi N, Usheva A, Chen J, Levine AJ, Weinmann R, Shenk T. Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53-mediated transcriptional repression. Mol Cell Biol 1995; 15:227-34. [PMID: 7799929 PMCID: PMC231940 DOI: 10.1128/mcb.15.1.227] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The tumor suppressor gene product p53 can activate and repress transcription. Both transcriptional activation and repression are thought to involve the direct interaction of p53 with the basal transcriptional machinery. Previous work has demonstrated an in vitro interaction between p53 and the TATA-binding protein that requires amino acids 20 to 57 of p53 and amino acids 220 to 271 of the TATA-binding protein. The present results show that a 75-amino-acid segment from the carboxy terminus of p53 also can bind to the TATA-binding protein in vitro, and this interaction requires amino acids 217 to 268 of the TATA-binding protein, essentially the same domain that is required for interaction with the amino-terminal domain of p53. A carboxy-terminal segment of p53 can mediate repression when bound to DNA as a GAL4-p53 fusion protein. The amino- and carboxy-terminal p53 interactions occur within the domain on the TATA-binding protein to which the adenovirus 13S E1A oncoprotein has previously been shown to bind. The 13S E1A oncoprotein can dissociate the complex formed between the carboxy-terminal domain of p53 and the TATA-binding protein and relieve p53-mediated transcriptional repression. These results demonstrate that two independent domains of p53 can potentially interact with the TATA-binding protein, and they define a mechanism--relief of repression--by which the 13S E1A oncoprotein can activate transcription through the TATA motif.
Collapse
Affiliation(s)
- N Horikoshi
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, New Jersey 08544-1014
| | | | | | | | | | | |
Collapse
|
944
|
Transformation and Tumorigenesis Mediated by the Adenovirus E1A and E1B Oncogenes. INFECTIOUS AGENTS AND PATHOGENESIS 1995. [DOI: 10.1007/978-1-4899-1100-1_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
945
|
|
946
|
Swaminathan S, Thimmapaya B. Regulation of adenovirus E2 transcription unit. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):177-94. [PMID: 7555076 DOI: 10.1007/978-3-642-79586-2_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- S Swaminathan
- Lurie Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
947
|
|
948
|
Affiliation(s)
- W S Wold
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, MO 63104, USA
| | | | | |
Collapse
|
949
|
Yamaguchi M, Hirose F, Nishimoto Y, Naruge T, Ikeda M, Hachiya T, Tamai K, Kuroda K, Matsukage A. Expression patterns of DNA replication enzymes and the regulatory factor DREF during Drosophila development analyzed with specific antibodies. Biol Cell 1995; 85:147-55. [PMID: 8785516 DOI: 10.1016/0248-4900(96)85275-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Specific antibodies were prepared against Drosophila DNA polymerase epsilon and DREF, a regulatory factor for DNA replication-related genes. Using these antibodies together with those for DNA polymerase alpha and proliferating cell nuclear antigen (PCNA), we examined expression patterns and sub-cellular distributions of these proteins during Drosophila development. DNA polymerase alpha, epsilon and PCNA proteins were maternally stored in unfertilized eggs and maintained at high levels during embryogenesis. With distinct nuclear localization, proteins were observed in embryos at interphase stages throughout the 13 nuclear division cycles, suggesting that they all participate in rapid nuclear DNA replication during these cycles. In contrast, maternal storage of a DREF protein was relatively low and its level increased throughout embryogenesis. Strong nuclear staining with the anti-DREF antibody was not observed until the nuclear division cycle 8. Immunostaining of various larval tissues from transgenic flies carrying the PCNA gene promoter-lacZ fusion gene revealed co-expression of DREF, PCNA and lacZ, suggesting that DREF regulates the expression of PCNA gene in these tissues. In addition, we detected a relatively high level of DREF in adult males as well as females. Since DNA polymerase alpha, epsilon and PCNA are hardly detectable in adult males, DREF very likely regulates genes other than those closely linked to DNA replication in adult males.
Collapse
Affiliation(s)
- M Yamaguchi
- Laboratory of Cell Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
950
|
Gold MR, Matsuuchi L. Signal transduction by the antigen receptors of B and T lymphocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1995; 157:181-276. [PMID: 7706020 DOI: 10.1016/s0074-7696(08)62159-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
B and T lymphocytes of the immune system recognize and destroy invading microorganisms but are tolerant to the cells and tissues of one's own body. The basis for this self/non-self-discrimination is the clonal nature of the B and T cell antigen receptors. Each lymphocyte has antigen receptors with a single unique antigen specificity. Multiple mechanisms ensure that self-reactive lymphocytes are eliminated or silenced whereas lymphocytes directed against foreign antigens are activated only when the appropriate antigen is present. The key element in these processes is the ability of the antigen receptors to transmit signals to the interior of the lymphocyte when they bind the antigen for which they are specific. Whether these signals lead to activation, tolerance, or cell death is dependent on the maturation state of the lymphocytes as well as on signals from other receptors. We review the role of antigen receptor signaling in the development and activation of B and T lymphocytes and also describe the biochemical signaling mechanisms employed by these receptors. In addition, we discuss how signal transduction pathways activated by the antigen receptors may alter gene expression, regulate the cell cycle, and induce or prevent programmed cell death.
Collapse
Affiliation(s)
- M R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|