901
|
Ishii I, Friedman B, Ye X, Kawamura S, McGiffert C, Contos JJ, Kingsbury MA, Zhang G, Brown JH, Chun J. Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J Biol Chem 2001; 276:33697-704. [PMID: 11443127 DOI: 10.1074/jbc.m104441200] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) exerts diverse physiological actions by activating its cognate G protein-coupled receptors. Five S1P receptors have been identified in mammals: LP(B1)/EDG-1, LP(B2)/H218/AGR16/EDG-5, LP(B3)/EDG-3, LP(B4)/NRG-1/EDG-8, and LP(C1)/EDG-6. One of these receptors, LP(B1), has recently been shown to be essential for mouse embryonic development. Here we disrupted the lp(B3) gene in mice, resulting in the complete absence of lp(B3) gene, transcript, and LP(B3) protein. LP(B3)-null mice were viable and fertile and developed normally with no obvious phenotypic abnormality. We prepared mouse embryonic fibroblast (MEF) cells to examine effects of LP(B3) deletion on S1P-induced signal transduction pathways. Wild-type MEF cells expressed lp(B1), lp(B2), and lp(B3) but neither lp(B4) nor lp(C1), and they were highly responsive to S1P in phospholipase C (PLC) activation, adenylyl cyclase inhibition, and Rho activation. Identically prepared LP(B3)-null MEF cells showed significant decreases in PLC activation, slight decreases in adenylyl cyclase inhibition, and no change in Rho activation. Retrovirus-mediated rescue of the LP(B3) receptor in LP(B3)-null MEF cells restored S1P-dependent PLC activation and adenylyl cyclase inhibition. These results indicate a nonessential role for LP(B3) in normal development of mouse but show nonredundant cellular signaling mediated by a single type of S1P receptor.
Collapse
Affiliation(s)
- I Ishii
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
902
|
Marletta MA. Another activation switch for endothelial nitric oxide synthase: why does it have to be so complicated? Trends Biochem Sci 2001; 26:519-21. [PMID: 11551775 DOI: 10.1016/s0968-0004(01)01937-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of the endothelial isoform of nitric oxide synthase (eNOS) appears to be much more complex in comparison to that of other NOS isoforms. A recent paper has expanded the regulation of the enzyme to the realm of sphingolipid signaling, specifically implicating that sphingosine 1-phosphate, endothelial differentiation gene (Edg) receptors and Akt kinase induce a signal transduction pathway via phosphorylation of a serine residue in eNOS. Bradykinin, a nonapeptide formed by enzymatic cleavage of a plasma protein precursor, activates eNOS by an independent pathway that does not require serine phosphorylation, suggesting a complex interplay of signals in the control of endothelial formation of nitric oxide.
Collapse
Affiliation(s)
- M A Marletta
- Department of Chemistry, University of California, Berkeley, 94720 1460, USA.
| |
Collapse
|
903
|
Peale FV, Gerritsen ME. Gene profiling techniques and their application in angiogenesis and vascular development. J Pathol 2001; 195:7-19. [PMID: 11568887 DOI: 10.1002/path.888] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The analysis of gene expression in specific tissues and physiological processes has evolved over the last 20 years from the painstaking identification of selected genes to the relatively efficient and open-ended surveying of potentially all genes expressed in a tissue. Current art for gene discovery includes the use of large-scale arrays of cDNA sequences or oligonucleotides, and molecular 'tagging' techniques such as GeneCalling and SAGE. Common to each of these techniques is a reliance on the increasingly comprehensive databases of human and mouse EST and full-length gene sequences. Early efforts to characterize candidate genes were limited by their narrow scope, while current efforts are confounded by the enormous volume of data returned. Sophisticated software tools are an integral part of the analysis, helping to organize information into coherent groups with temporal or functional similarity. These techniques, in conjunction with the continued analysis of human genetic syndromes, transgenic, and knockout mice, have driven genetic analysis of angiogenesis and vascular development from describing which individual genes are involved to defining the outlines of regulatory networks.
Collapse
Affiliation(s)
- F V Peale
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
904
|
Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 2001; 108:689-701. [PMID: 11544274 PMCID: PMC209379 DOI: 10.1172/jci12450] [Citation(s) in RCA: 700] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Substances released by platelets during blood clotting are essential participants in events that link hemostasis and angiogenesis and ensure adequate wound healing and tissue injury repair. We assessed the participation of sphingosine 1-phosphate (Sph-1-P), a biologically active phosphorylated lipid growth factor released from activated platelets, in the regulation of endothelial monolayer barrier integrity, which is key to both angiogenesis and vascular homeostasis. Sph-1-P produced rapid, sustained, and dose-dependent increases in transmonolayer electrical resistance (TER) across both human and bovine pulmonary artery and lung microvascular endothelial cells. This substance also reversed barrier dysfunction elicited by the edemagenic agent thrombin. Sph-1-P-mediated barrier enhancement was dependent upon G(ialpha)-receptor coupling to specific members of the endothelial differentiation gene (Edg) family of receptors (Edg-1 and Edg-3), Rho kinase and tyrosine kinase-dependent activation, and actin filament rearrangement. Sph-1-P-enhanced TER occurred in conjunction with Rac GTPase- and p21-associated kinase-dependent endothelial cortical actin assembly with recruitment of the actin filament regulatory protein, cofilin. Platelet-released Sph-1-P, linked to Rac- and Rho-dependent cytoskeletal rearrangement, may act late in angiogenesis to stabilize newly formed vessels, which often display abnormally increased vascular permeability.
Collapse
Affiliation(s)
- J G Garcia
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
905
|
Lee MJ, Thangada S, Paik JH, Sapkota GP, Ancellin N, Chae SS, Wu M, Morales-Ruiz M, Sessa WC, Alessi DR, Hla T. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell 2001; 8:693-704. [PMID: 11583630 DOI: 10.1016/s1097-2765(01)00324-0] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of the protein kinase Akt in cell migration is incompletely understood. Here we show that sphingosine-1-phosphate (S1P)-induced endothelial cell migration requires the Akt-mediated phosphorylation of the G protein-coupled receptor (GPCR) EDG-1. Activated Akt binds to EDG-1 and phosphorylates the third intracellular loop at the T(236) residue. Transactivation of EDG-1 by Akt is not required for G(i)-dependent signaling but is indispensable for Rac activation, cortical actin assembly, and chemotaxis. Indeed, T236AEDG-1 mutant sequestered Akt and acted as a dominant-negative GPCR to inhibit S1P-induced Rac activation, chemotaxis, and angiogenesis. Transactivation of GPCRs by Akt may constitute a specificity switch to integrate rapid G protein-dependent signals into long-term cellular phenomena such as cell migration.
Collapse
Affiliation(s)
- M J Lee
- Center for Vascular Biology and Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
906
|
Robert P, Tsui P, Laville MP, Livi GP, Sarau HM, Bril A, Berrebi-Bertrand I. EDG1 receptor stimulation leads to cardiac hypertrophy in rat neonatal myocytes. J Mol Cell Cardiol 2001; 33:1589-606. [PMID: 11549339 DOI: 10.1006/jmcc.2001.1433] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingosine 1 phosphate (S1P), an aminophospholipid, acts extracellularly as a ligand via the specific G protein-coupled receptors of the endothelial differentiation gene (EDG) 1, 3, 5, 6 and 8 receptors family and intracellularly as a second messenger in various cellular types. The aim of this work was to investigate biological activity of S1P in cardiomyocytes with respect to related sphingolipids. S1P was applied for 48 h on rat neonatal cardiomyocytes at 10 nM, 100 nM and 1 microM. S1P induced a concentration-dependent cellular hypertrophy evidenced by an increase in cell size, [3H]-phenylalanine incorporation, protein content and Brain Natriuretic Peptide (BNP) secretion. Among the lipids tested S1P exhibits the lower EC50 (67 nM) followed by dihydro-S1P (107 nM) and sphingosylphosphorylcholine (1.6 microM). The effect of S1P could be related to a stimulation of the EDG1 receptor since we showed that the EDG1 receptor is predominantly expressed at the mRNA and protein levels in rat cardiomyocytes and that specific anti-EDG1 antibodies inhibited the hypertrophic effect induced by S1P. Furthermore the expression level of most other EDG receptors for S1P appeared very low in cardiac myocytes. S1P (100 nM) increased the phosphorylation of p42/44MAPK, p38MAPK, JNK, Akt and p70(S6K), this effect being reversed by inhibitors of their respective phosphorylation which also rescue the hypertrophic phenotype. Finally, S1P stimulated actin stress fibre formation reverted by the Rho inhibitor, the C3 exoenzyme. Altogether, our results show that S1P induces cardiomyocyte hypertrophy mainly via the EDG1 receptor and subsequently via Gi through ERKs, p38 MAPK, JNK, PI3K and via Rho pathway.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Animals, Newborn
- Cardiomegaly/chemically induced
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cells, Cultured
- Culture Media, Serum-Free
- Dose-Response Relationship, Drug
- Heart/drug effects
- Humans
- Immediate-Early Proteins/metabolism
- Lysophospholipids
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Myocardium/cytology
- Myocardium/metabolism
- Peptides/immunology
- Peptides/metabolism
- Phenylephrine/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Protein Structure, Tertiary
- Rats
- Rats, Wistar
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Lysophospholipid
- Sphingosine/analogs & derivatives
- Sphingosine/chemistry
- Sphingosine/metabolism
- Sphingosine/pharmacology
- Stress Fibers/metabolism
- Tissue Extracts/chemistry
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- P Robert
- GlaxoSmithKline Laboratoires Pharmaceutiques, 4 rue du Chesnay-Beauregard, 35762 Saint-Grégoire, PA, BP 58, France.
| | | | | | | | | | | | | |
Collapse
|
907
|
Abstract
Recent studies indicate that sphingosine-1-phosphate - known to be an important signalling molecule in animal cells - is involved in Ca(2+)-dependent signalling in yeast and higher plants, raising the likelihood that it is a universal signalling molecule with a diverse range of functions in eukaryotes.
Collapse
Affiliation(s)
- C Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, PL1 2PB, Plymouth, UK.
| |
Collapse
|
908
|
Liau G, Su EJ, Dixon KD. Clinical efforts to modulate angiogenesis in the adult: gene therapy versus conventional approaches. Drug Discov Today 2001; 6:689-697. [PMID: 11427379 DOI: 10.1016/s1359-6446(01)01809-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A gene therapy approach towards the modulation of neovascularization provides important advantages that could be crucial for the success of therapies that target blood vessels. These advantages include sustained local expression and the ability to supply multiple pro- or anti-angiogenic factors. There is potential near-term success in the application of this approach for the treatment of ischemic vascular diseases. Although there is convincing proof of concept in animal models that an anti-angiogenesis gene therapy approach can be used to treat cancer, this is a highly competitive field with small molecules, recombinant proteins and monoclonal antibodies already in clinical trials. The scientific rationale for the use of gene therapy is sound, but realization of its full potential for the treatment of a broad array of diseases will require several challenging technical hurdles to be overcome and safety concerns to be alleviated.
Collapse
Affiliation(s)
- G Liau
- Genetic Therapy A Novartis Company 938 Clopper Road 20878, Gaithersburg, MD, USA
| | | | | |
Collapse
|
909
|
Abstract
Lysophospholipids (LPs), including lysophosphatidic acid and sphingosine 1-phosphate, produce many cellular effects. However, the prolonged absence of any cloned and identified LP receptor has left open the question of how these lipids actually bring about these effects. The cloning and functional identification of the first LP receptor, lp(A1)/vzg-1, has led rapidly to the identification and classification of multiple orphan receptors/expression sequence tags known by many names (e.g. edg, mrec1.3, gpcr26, H218, AGR16, nrg-1) as members of a common cognate G protein-coupled receptor family. We review features of the LP receptor family, including molecular characteristics, genomics, signaling properties, and gene expression. A major question for which only partial answers are available concerns the biological significance of receptor-mediated LP signaling. Recent studies that demonstrate the role of receptor-mediated LP signaling in the nervous system, cardiovascular system, and other organ systems indicate the importance of this signaling in development, function, and pathophysiology and portend an exciting time ahead for this growing field.
Collapse
Affiliation(s)
- N Fukushima
- Neuroscience Program, Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0636, USA.
| | | | | | | | | |
Collapse
|
910
|
Morales-Ruiz M, Lee MJ, Zöllner S, Gratton JP, Scotland R, Shiojima I, Walsh K, Hla T, Sessa WC. Sphingosine 1-phosphate activates Akt, nitric oxide production, and chemotaxis through a Gi protein/phosphoinositide 3-kinase pathway in endothelial cells. J Biol Chem 2001; 276:19672-7. [PMID: 11278592 DOI: 10.1074/jbc.m009993200] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sphingosine 1-phosphate (SPP) binds to members of the endothelial differentiation gene family (EDG) of receptors and leads to diverse signaling events including cell survival, growth, migration and differentiation. However, the mechanisms of how SPP activates these proangiogenic pathways are poorly understood. Here we show that SPP signals through the EDG-1 receptor to the heterotrimeric G protein G(i), leading to activation of the serine/threonine kinase Akt and phosphorylation of the Akt substrate, endothelial nitric-oxide synthase (eNOS). Inhibition of G(i) signaling, and phosphoinositide 3-kinase (PI 3-kinase) activity resulted in a decrease in SPP-induced endothelial cell chemotaxis. SPP also stimulates eNOS phosphorylation and NO release and these effects are also attenuated by inhibition of G(i) signaling, PI 3-kinase, and Akt. However, inhibition of NO production did not influence SPP-induced chemotaxis but effectively blocked the chemotactic actions of vascular endothelial growth factor. Thus, SPP signals through G(i) and PI 3-kinase leading to Akt activation and eNOS phosphorylation.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Cattle
- Cell Movement
- Chemotaxis
- Culture Media, Serum-Free/metabolism
- Dose-Response Relationship, Drug
- Endothelial Growth Factors/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/enzymology
- Enzyme Activation
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Genes, Dominant
- Lung/metabolism
- Lymphokines/pharmacology
- Lysophospholipids
- Neovascularization, Physiologic
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type III
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Binding
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptors, Cell Surface/biosynthesis
- Signal Transduction
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Sphingosine/physiology
- Time Factors
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- M Morales-Ruiz
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
911
|
Abstract
Sphingosine-1-phosphate (SPP) is a bioactive lipid produced from the metabolism of sphingomyelin. It is an important constituent of serum and regulates cell growth, survival, migration, differentiation and gene expression. Its mode of action has been enigmatic; however, recent findings have shown that a family of G-protein-coupled receptors (GPCR) of the endothelial differentiation gene (EDG) family serve as plasma membrane-localized receptors for SPP. Furthermore, the EDG receptors appear to be SPP receptor subtypes with distinct signaling characteristics. In vascular endothelial cells, SPP acts on EDG-1 and EDG-3 subtypes of receptors to induce cell survival and morphogenesis. Such pathways appear to be critical for SPP-induced angiogenic response in vivo. In addition, the EDG-1 gene is essential for vascular maturation in development. Moreover, developmental studies in Zebrafish have indicated that SPP signaling via the EDG-5 like receptor Miles Apart (Mil) is essential for heart development. These data strongly suggest that a physiological role of SPP is in the formation of the cardiovascular system. Despite these recent findings, much needs to be clarified with respect to the physiological role of SPP synthesis and action. This review will focus on the recent findings on SPP receptors and the effects on the cardiovascular system.
Collapse
Affiliation(s)
- T Hla
- Center for Vascular Biology, Department of Physiology, University of Connecticut Health Center, Farmington 06030-3501, USA.
| |
Collapse
|
912
|
Kranenburg O, Moolenaar WH. Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene 2001; 20:1540-6. [PMID: 11313900 DOI: 10.1038/sj.onc.1204187] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are extracellular lipid mediators that signal through distinct members of the Edg/LP subfamily of G protein-coupled receptors (GPCRs). LPA and S1P receptors are expressed in almost every cell type and can couple to multiple G proteins (G(i), G(q) and G(12/13)) to mediate a great variety of responses, ranging from rapid morphological changes to long-term stimulation of cell proliferation. LPA serves as the prototypic GPCR agonist that activates the small GTPases Ras (via G(i)) and RhoA (via G(12/13)), leading to activation of the mitogen-activated protein kinase (MAPK) cascade and reorganization of the actin cytoskeleton, respectively. This review focuses on our current insights into how Ras-MAPK signaling is regulated by GPCR agonists in general, and by LPA in particular.
Collapse
Affiliation(s)
- O Kranenburg
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
913
|
Hobson JP, Rosenfeldt HM, Barak LS, Olivera A, Poulton S, Caron MG, Milstien S, Spiegel S. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 2001; 291:1800-3. [PMID: 11230698 DOI: 10.1126/science.1057559] [Citation(s) in RCA: 335] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
EDG-1 is a heterotrimeric guanine nucleotide binding protein-coupled receptor (GPCR) for sphingosine-1-phosphate (SPP). Cell migration toward platelet-derived growth factor (PDGF), which stimulates sphingosine kinase and increases intracellular SPP, was dependent on expression of EDG-1. Deletion of edg-1 or inhibition of sphingosine kinase suppressed chemotaxis toward PDGF and also activation of the small guanosine triphosphatase Rac, which is essential for protrusion of lamellipodia and forward movement. Moreover, PDGF activated EDG-1, as measured by translocation of beta-arrestin and phosphorylation of EDG-1. Our results reveal a role for receptor cross-communication in which activation of a GPCR by a receptor tyrosine kinase is critical for cell motility.
Collapse
Affiliation(s)
- J P Hobson
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | | |
Collapse
|
914
|
Affiliation(s)
- T N Sato
- The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, NB11.106, Dallas, Texas 75390-8573, USA.
| |
Collapse
|