901
|
Kiruthiga PV, Shafreen RB, Pandian SK, Arun S, Govindu S, Devi KP. Protective effect of silymarin on erythrocyte haemolysate against benzo(a)pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress. CHEMOSPHERE 2007; 68:1511-8. [PMID: 17481694 DOI: 10.1016/j.chemosphere.2007.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 02/27/2007] [Accepted: 03/04/2007] [Indexed: 05/15/2023]
Abstract
The present study was carried out to evaluate the in vitro antioxidant properties and protective effects of silymarin (milk thistle) in human erythrocyte haemolysates against benzo(a)pyrene [B(a)P], a potent carcinogenic chemical. Protective effect of silymarin was assessed in vitro by monitoring the antioxidant enzymes and malondialdehyde in three groups of haemolysates-(I) vehicle control (II) B(a)P incubated group and (III) B(a)P co incubated with silymarin. The effects of silymarin on lipid peroxidation (LPO) and antioxidant enzymes [superoxide dismutase; SOD, catalase; CAT, glutathione peroxidase; GPx, glutathione reductase; GR and glutathione-S-transferases; GST] were assessed on haemolysates. It was observed that specific activity of antioxidant enzymes were significantly decreased and the malondialdehyde levels were elevated when haemolysates were incubated with B(a)P. The protective effect of silymarin is elucidated by the significant reversal of the antioxidant enzymes and reduction in the levels of malondialdehyde. In addition, haemolysates were incubated with B(a)P for 45 min and the B(a)P metabolite, 3-hydroxy benzo(a)pyrene (3-OH-B(a)P) was detected using HPLC. An increased level of the metabolite was detected in group II. Whereas, when haemolysates were co-incubated with silymarin, the reactive metabolite 3-OH-B(a)P was not detectable which further confirms the protective role of silymarin. Generation of 3-OH-B(a)P in group II implicates the possibility of reactive oxygen species (O2- and H2O2) production in haemolysates during cytochrome P4501A1 (CYP1A1) mediated Phase-I-metabolism. Hence, we incubated the haemolysates with exogenous reactive oxygen species H2O2 and assessed the protective role of silymarin against H2O2. From the results of our study, it was suggested that silymarin possess substantial protective effect and free radical scavenging mechanism against environmental contaminants induced oxidative stress damages.
Collapse
Affiliation(s)
- P V Kiruthiga
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
902
|
Gupta S, Agarwal A, Banerjee J, Alvarez JG. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: a systematic review. Obstet Gynecol Surv 2007; 62:335-47; quiz 353-4. [PMID: 17425812 DOI: 10.1097/01.ogx.0000261644.89300.df] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
UNLABELLED Human reproduction is not considered a highly efficient biological process. Before the end of the first trimester, 30%-50% of conceptions end in spontaneous abortion. Most losses occur at the time of implantation. 15%-20% of clinical pregnancies end in spontaneous abortions. Recurrent pregnancy loss is a frustrating clinical problem both for clinicians and patients. Recurrent pregnancy loss affects 0.5%-3% of women in the reproductive age group, and between 50%-60% of recurrent pregnancy losses are idiopathic. Oxidative stress-induced damage has been hypothesized to play a role in spontaneous abortion, idiopathic recurrent pregnancy loss, hydatidiform mole, defective embryogenesis, and drug-induced teratogenicity. Some studies implicate systemic and placental oxidative stress in the pathophysiology of abortion and recurrent pregnancy loss. Oxidant-induced endothelial damage, impaired placental vascularization and immune malfunction have all been proposed to play a role in the pathophysiology of idiopathic recurrent pregnancy loss. Oxidative stress-induced placental dysfunction may be a common cause of the multifactorial and polygenic etiologies of abortion, recurrent pregnancy loss, defective embryogenesis, hydatidiform mole, and drug-induced teratogenic effects. Oxidative stress-induced modification of phospholipids has been linked to the formation of antiphospholipid antibodies in the antiphospholipid syndrome. The objective of this review was to examine the association between oxidative stress, spontaneous abortion and recurrent pregnancy loss, based on the published literature. We conducted an extensive literature search utilizing the databases of Medline, CINAHL, and Cochrane from 1986 to 2005. The following keywords were used: oxidative stress, abortion, recurrent pregnancy loss, reactive oxygen species, antioxidants, fetal development, and embryopathies. We conducted an electronic search, as well as a manual search of cross-references. We have included all studies in the English language found in the literature focusing on oxidative stress and its association with abortions, recurrent pregnancy loss and drug-induced teratogenicity. The role of antioxidant vitamins for primary prevention of oxidative stress-induced pathologies needs to be investigated further. TARGET AUDIENCE Obstetricians & Gynecologists, Family Physicians. LEARNING OBJECTIVES After completion of this article, the reader should be able to state that the causes of spontaneous and recurrent abortion are multifaceted, however, some of the causes may be preventable and also explain that the role of oxidative stress during pregnancy and adverse pregnancy outcomes has a basis in pathophysiology, although the role of oxidative stress and the treatment of oxidative stress during or before pregnancy remains speculative.
Collapse
Affiliation(s)
- Sajal Gupta
- Reproductive Research Center, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
903
|
Kiruthiga PV, Shafreen RB, Pandian SK, Devi KP. Silymarin Protection against Major Reactive Oxygen Species Released by Environmental Toxins: Exogenous H2O2Exposure in Erythrocytes. Basic Clin Pharmacol Toxicol 2007; 100:414-9. [PMID: 17516996 DOI: 10.1111/j.1742-7843.2007.00069.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silymarin is a polyphenolic plant flavonoid (a mixture of flavonoid isomers such as silibinin, isosilibinin, silidianin and silichristin) derived from Silymarin marianum that has anti-inflammatory, hepatoprotective and anticarcinogenic effects. Our earlier studies have shown that silymarin plays a protective role against the oxidative damage induced by environmental contaminants like benzo(a)pyrene in erythrocyte haemolysates. During the detoxification of these environmental contaminants, the major reactive oxygen species generated is hydrogen peroxide (H(2)O(2)). Because H(2)O(2 )can easily penetrate into the cell and cause damage to biomolecules, the protective role of silymarin was further assessed against this cytotoxic agent in vitro in erythrocyte haemolysates. The protective effect was monitored by assessing the levels of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-s-transferase, glutathione peroxidase and malondialdehyde (LPO) in three groups: vehicle control, H(2)O(2)-exposed groups and drug co-incubation group (H(2)O(2) + silymarin). The protective effect of silymarin on the non-enzymic antioxidant glutathione and haemolysis, methaemoglobin content and protein carbonyl content were also assessed. It was observed that the activities of antioxidant enzymes and glutathione were reduced and the malondialdehyde levels were elevated after H(2)O(2 )exposure. There were also alterations in haemolysis, methaemoglobin content and protein carbonyl content, whereas after the administration of silymarin, the antioxidant enzyme activities reversed to near normal with reduced malondialdehyde content and normalized haemolysis, methaemoglobin content and protein carbonyl content. The results suggest that silymarin possesses substantial protective effect and free radical scavenging mechanism against exogenous H(2)O(2)-induced oxidative stress damages, hence, can be used as a protective drug against toxicity induced by environmental contaminants.
Collapse
Affiliation(s)
- P V Kiruthiga
- Department of Biotechnology, Alagappa University, Tamil Nadu, India
| | | | | | | |
Collapse
|
904
|
Wang Q, Sun QY. Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reprod Fertil Dev 2007; 19:1-12. [PMID: 17389130 DOI: 10.1071/rd06103] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mounting evidence that oocyte quality profoundly affects fertilisation an d subsequent embryo development drives the continued search for reliable predictors of oocyte developmental competence. In the present review, we provide an overall summary and analysis of potential criteria that can be used to evaluate oocyte quality. These criteria are specifically classified as morphological and cellular/molecular predictors. Traditional methods for the evaluation of oocyte quality are based on morphological classification of thefollicle, cumulus-oocytecomplex, polar body and/or meiotic spindle. Although the use of morphological characteristics as predictors of oocyte quality is controversial, such a grading system can provide valuable information for the preselection of oocytes with higher developmental competence and, therefore, may maximise embryo developmental outcome. Several intrinsic markers (such as mitochondrial status and glucose-6-phosphate dehydrogenase 1 activity) and extrinsic markers (such as apoptosis of follicular cells and levels of the transforming growth factor-beta superfamily in follicular fluid or serum) have also been reported as useful indicators of oocyte competence and embryo quality. Compared with the morphological parameters, these cellular and molecular predictors of oocyte quality may prove to be more precise and objective, although further studies and refinement of techniques are needed.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|
905
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 4976] [Impact Index Per Article: 276.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
906
|
Forges T, Monnier-Barbarino P, Alberto JM, Guéant-Rodriguez RM, Daval JL, Guéant JL. Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update 2007; 13:225-38. [PMID: 17307774 DOI: 10.1093/humupd/dml063] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Folates belong to the vitamin B group and are involved in a large number of biochemical processes, particularly in the metabolism of homocysteine. Dietary or genetically determined folate deficiency leads to mild hyperhomocysteinemia, which has been associated with various pathologies. Molecular mechanisms of homocysteine-induced cellular dysfunction include increased inflammatory cytokine expression, altered nitric oxide bioavailability, induction of oxidative stress, activation of apoptosis and defective methylation. Whereas the involvement of folate metabolism and homocysteine in ageing-related diseases, in several developmental abnormalities and in pregnancy complications has given rise to a large amount of scientific work, the role of these biochemical factors in the earlier stages of mammalian reproduction and the possible preventive effects of folate supplementation on fertility have, until recently, been much less investigated. In the present article, the possible roles of folates and homocysteine in male and female subfertility and related diseases are systematically reviewed, with regard to the epidemiological, pathological, pharmacological and experimental data of the literature from the last 25 years.
Collapse
Affiliation(s)
- Thierry Forges
- Inserm U724, Laboratory of Cellular and Molecular Pathology in Nutrition, University of Nancy, Vandoeuvre les Nancy, France.
| | | | | | | | | | | |
Collapse
|
907
|
DeJong RJ, Miller LM, Molina-Cruz A, Gupta L, Kumar S, Barillas-Mury C. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 2007; 104:2121-6. [PMID: 17284604 PMCID: PMC1892935 DOI: 10.1073/pnas.0608407104] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage.
Collapse
Affiliation(s)
- Randall J. DeJong
- *Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852-8132; and
| | - Lisa M. Miller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1619 Campus Delivery, Ft. Collins, CO 80523
| | - Alvaro Molina-Cruz
- *Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852-8132; and
| | - Lalita Gupta
- *Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852-8132; and
| | - Sanjeev Kumar
- *Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852-8132; and
| | - Carolina Barillas-Mury
- *Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852-8132; and
- To whom correspondence should be addressed at:
Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases/National Institutes of Health, MSC 8132, Twinbrook III, Room 2E-20, Bethesda, MD 20892-8132. E-mail:
| |
Collapse
|
908
|
Zhao J, Zhao B, Wang W, Huang B, Zhang S, Miao J. Phosphatidylcholine-specific phospholipase C and ROS were involved in chicken blastodisc differentiation to vascular endothelial cells. J Cell Biochem 2007; 102:421-8. [PMID: 17393430 DOI: 10.1002/jcb.21301] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To find the key factors that were involved in the survival and vascular endothelial differentiation of chick blatodisc induced by fibroblast growth factor 2 (FGF-2), we built a chick vasculogenesis model in vitro. Subsequently, the activities of phosphatidylcholine-specific phospholipase C (PC-PLC), including Ca(2+)-dependent and -independent PC-PLC, and the level of reactive oxygen species (ROS) were evaluated during the endothelial differentiation of chick blastodisc. The results showed that Ca(2+)-indepentent PC-PLC underwent a remarkable increase in 24 h (P < 0.01), then it decreased gradually with the cell differentiation, while the Ca(2+)-depentent PC-PLC was nearly not changed in the whole process. At the same time, ROS level dramatically decreased during the cell differentiation. To understand the role of PC-PLC and how it performs its function in the vascular endothelial differentiation induced by FGF-2, we suppressed PC-PLC activity by its specific inhibitor D609 (tricyclodecan-9-yl potassium xanthate) at 24 h during the cell differentiation. As a result, the cell differentiation could not progress and the intracellular level of ROS was elevated. The data suggested that PC-PLC and ROS were involved in chicken blastodisc differentiation to vascular endothelial cells. PC-PLC was an important factor in the blastodisc cell survival and differentiation, and it might perform its function associated with ROS.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, Shangdong 250100, China
| | | | | | | | | | | |
Collapse
|
909
|
Abstract
Reactive oxygen species have been implicated in gametogenesis and embryo development in animals. As peroxiredoxins are now recognized as important protective antioxidant enzymes as well as modulators of hydrogen peroxide-mediated signaling, we addressed here the putative role of this novel family of peroxidases in gamete maturation and during embryogenesis in mammals and insects.
Collapse
Affiliation(s)
- Isabelle Donnay
- Veterinary Unit, Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| | | |
Collapse
|
910
|
Nakagawa K, Ohgi S, Kojima R, Itoh M, Horikawa T, Irahara M, Saito H. Reduction of perifollicular arterial blood flow resistance after hCG administration is a good indicator of the recovery of mature oocytes in ART treatment. J Assist Reprod Genet 2006; 23:433-8. [PMID: 17146737 PMCID: PMC3455098 DOI: 10.1007/s10815-006-9087-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To demonstrate our hypothesis that a correlation exists between oocyte maturity and a decrease in intraovarian blood flow resistance in assisted reproductive technology (ART) treatment cycles, oocyte maturity and total antioxidant status (TAOS) in follicular fluid was examined. METHODS A total of 59 cycles involving 51 infertile patients undergoing ART treatment in our hospital were recruited in this study. The ART cycles were divided into two groups: deeply decreased (DD) group and not-deeply decreased (NDD) group, according to the pulsatility index (PI) values for perifollicular arterial blood flow before and after hCG administration. The PI values that showed a decrease in their PI after hCG administration of 10% or more were defined "deeply decreased" and showed a decrease of less than 10% were considered "not-deeply decreased." The recovery rates of mature and immature oocytes and TAOS in follicular fluid were compared between the two groups. RESULTS Mature and immature oocyte recovery rates in the DD group (62.5% and 17.2%) were significantly higher and lower, respectively, than those in the NDD group (41.7% and 38.3%, p < 0.05). The TAOS (1.55 +/- 0.44 mmol/L) of the DD group was significantly lower than that in the NDD group (1.68 +/- 0.47 mmol/L, p < 0.05). CONCLUSIONS The decrease in intraovarian arterial blood flow resistance measured after hCG administration may be a good indicator of retrieving mature oocyte.
Collapse
Affiliation(s)
- Koji Nakagawa
- Division of Reproductive Medicine, Department of Perinatal Medicine and Maternal Care, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | | | | | | | | | | | | |
Collapse
|
911
|
Guo SW. Nuclear factor-kappab (NF-kappaB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecol Obstet Invest 2006; 63:71-97. [PMID: 17028437 DOI: 10.1159/000096047] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endometriosis, defined as the ectopic presence of endometrial glandular and stromal cells outside the uterine cavity, is a common benign gynecological disorder with an enigmatic pathogenesis. Many genes and gene products have been reported to be altered in endometriosis, yet some of them may not be major culprits but merely unwitting accomplices or even innocent bystanders. Therefore, the identification and apprehension of major culprits in the pathogenesis of endometriosis are crucial to the understanding of the pathogenesis and would help to develop better therapeutics for endometriosis. Although so far NF-kappaB only has left few traces of incriminating fingerprints, several lines of investigation suggest that NF-kappaB, a pivotal pro-inflammatory transcription factor, could promote and maintain endometriosis. Various inflammatory agents, growth factors, and oxidative stress activate NF-kappaB. NF-kappaB proteins themselves and proteins regulated by them have been linked to cellular transformation, proliferation, apoptosis, angiogenesis, and invasion. Interestingly, all existing and nearly all investigational medications for endometriosis appear to act through suppression of NF-kappaB activation. In endometriotic cells, NF-kappaB appears to be constitutively activated, and suppression of NF-kappaB activity by NF-kappaB inhibitors or proteasome inhibitors suppresses proliferation in vitro. Viewing NF-kappaB as a major culprit, an autoregulatory loop model can be postulated, which is consistent with existing data and, more importantly, can explain several puzzling phenomena that are otherwise difficult to interpret based on prevailing theories. This view has immediate and important implications for novel ways to treat endometriosis. Further research is warranted to precisely delineate the roles of NF-kappaB in the pathogenesis of endometriosis and to indict and convict its aiders and abettors.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA.
| |
Collapse
|
912
|
Hassan GI, Onu AB. Total serum vitamin C concentration in pregnant women: implications for a healthy pregnancy. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2006. [DOI: 10.1590/s1519-38292006000300005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES: total serum vitamin C (L-ascorbic acid) concentration was measured in 90 pregnant women, 30 in each trimester (age range 18-35 years) and a control group of age-matched non-pregnant women. METHODS: total serum vitamin C concentration was measured using the 2.4-dinitrophenylhydrazine method which involves the conversion of vitamin C to dehydroascorbic acid in the presence of copper (II) ions and subsequent measurement of the resulting bis-hydrazone at 540nm. RESULTS: the total vitamin C concentration in the first trimester was 2.55 ± 0.82 mg/dl and 2.32 ± 0.40 mg/dl and 0.77 ± 0.10 mg/dl in the second and third trimesters respectively. Relative to serum total vitamin C concentration in the controls (3.15 ± 0.13 mg/dl) these values are significantly lower (p < 0.05). CONCLUSIONS: low serum vitamin C in pregnancy may indicate utilization of this vitamin to mop up the excess reactive oxygen species and maintain its normal homeostasis. Therefore, Vitamin C supplementation during pregnancy is recommended in order to boost the body's low vitamin C level and prevent the predisposition to low birth weight babies, premature delivery and pre-eclamsia all of which are known to be associated with sub-optimal vitamin C levels during pregnancy.
Collapse
|
913
|
Agarwal A, Prabakaran S, Allamaneni SSSR. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod Biomed Online 2006; 12:630-3. [PMID: 16790111 DOI: 10.1016/s1472-6483(10)61190-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Varicocele is one of the leading causes of male infertility, and is present in almost 40% of infertile males. Recent understanding of the role of oxidative stress in male reproduction has led some researchers to postulate oxidative stress as the possible cause of sperm dysfunction in varicocele patients. The objective of the present study was to examine the published literature on the role of oxidative stress in patients with varicocele as the aetiology of their infertility. Twenty-three human studies were identified after an extensive search dealing with the role of oxidative stress in varicocele-associated infertility. Out of these studies, four were selected that measured similar types of reactive oxygen species (ROS) by a similar method of measurement. The data were then entered in the RevMan software for analysis. The overall estimate showed that patients have significantly higher concentrations of ROS than controls, with the mean difference being 0.73 (95% CI 0.40, 1.06, P < 0.0001). This translated to an ROS concentration of 4.37 x 10(4) cpm/20 x 10(6) spermatozoa/ml on the linear scale. Total antioxidant capacity levels were found to be significantly lower in the infertile varicocele patients, with 386 fewer trolox equivalents than the controls (95% CI -556.56-216.96, P < 0.00001). From the results, it can be concluded that there is increased oxidative stress in varicocele patients; however, more studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Ashok Agarwal
- Centre for Advanced Research in Human Reproduction, Infertility, and Sexual Function, Glickman Urological Institute, USA.
| | | | | |
Collapse
|
914
|
Abstract
PURPOSE OF REVIEW This review summarizes the role of free radicals and oxidative stress in the pathophysiology of human reproduction. RECENT FINDINGS An extensive review of the literature on the role of oxidative stress in influencing assisted reproduction and its outcome is described in this article. Free radicals or reactive oxygen species mediate their action through many of the proinflammatory cytokines and this mechanism has been proposed as a common underlying factor for endometriosis, ovarian cancer, polycystic ovary disease, and various other pathologies affecting the female reproductive process, as highlighted in this review. Oxidative stress, sperm DNA damage, and apoptosis have been implicated in male infertility. Elevated reactive oxygen species levels correlate with the poor fertility outcomes seen in the assisted reproductive technology setting. SUMMARY Oxidative stress has been implicated in male and female infertility, including fetal dysmorphogenesis, abortions, and intrauterine growth restriction. Accurate evaluation of seminal oxidative stress by standardized assays may help in the diagnosis and management of male infertility. There is evidence in the literature on the beneficial effects of oral antioxidant supplementation in male infertility. Current ongoing trials will provide answers on the safety and effectiveness of antioxidants in improving maternal and fetal outcomes. Further studies need to be conducted to determine if antioxidant supplementation will prevent fetal developmental defects in high-risk pregnancy with diabetes.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Advanced Research in Human Reproduction, Infertility and Sexual Function, Glickman Urological Institute and the Department of Obstetrics-Gynecology, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
915
|
Bibliography. Current world literature. Fertility. Curr Opin Obstet Gynecol 2006; 18:344-53. [PMID: 16735837 DOI: 10.1097/01.gco.0000193023.28556.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
916
|
Blackburn S. Free radicals in perinatal and neonatal care, part 2: oxidative stress during the perinatal and neonatal period. J Perinat Neonatal Nurs 2006; 20:125-7. [PMID: 16714911 DOI: 10.1097/00005237-200604000-00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Susan Blackburn
- Department of Family and Child Nursing University of Washington, Seattle, WA, USA
| |
Collapse
|