99851
|
Time and phenotype-dependent transcriptome analysis in AAV-TGFβ1 and Bleomycin-induced lung fibrosis models. Sci Rep 2022; 12:12190. [PMID: 35842487 PMCID: PMC9288451 DOI: 10.1038/s41598-022-16344-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
We have previously established a novel mouse model of lung fibrosis based on Adeno-associated virus (AAV)-mediated pulmonary overexpression of TGFβ1. Here, we provide an in-depth characterization of phenotypic and transcriptomic changes (mRNA and miRNA) in a head-to-head comparison with Bleomycin-induced lung injury over a 4-week disease course. The analyses delineate the temporal state of model-specific and commonly altered pathways, thereby providing detailed insights into the processes underlying disease development. They further guide appropriate model selection as well as interventional study design. Overall, Bleomycin-induced fibrosis resembles a biphasic process of acute inflammation and subsequent transition into fibrosis (with partial resolution), whereas the TGFβ1-driven model is characterized by pronounced and persistent fibrosis with concomitant inflammation and an equally complex disease phenotype as observed upon Bleomycin instillation. Finally, based on an integrative approach combining lung function data, mRNA/miRNA profiles, their correlation and miRNA target predictions, we identify putative drug targets and miRNAs to be explored as therapeutic candidates for fibrotic diseases. Taken together, we provide a comprehensive analysis and rich data resource based on RNA-sequencing, along with a strategy for transcriptome-phenotype coupling. The results will be of value for TGFβ research, drug discovery and biomarker identification in progressive fibrosing interstitial lung diseases.
Collapse
|
99852
|
Biliary Atresia Animal Models: Is the Needle in a Haystack? Int J Mol Sci 2022; 23:ijms23147838. [PMID: 35887185 PMCID: PMC9324346 DOI: 10.3390/ijms23147838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Biliary atresia (BA) is a progressive fibro-obliterative process with a variable degree of inflammation involving the hepatobiliary system. Its consequences are incalculable for the patients, the affected families, relatives, and the healthcare system. Scientific communities have identified a rate of about 1 case per 10,000-20,000 live births, but the percentage may be higher, considering the late diagnoses. The etiology is heterogeneous. BA, which is considered in half of the causes leading to orthotopic liver transplantation, occurs in primates and non-primates. To consolidate any model, (1) more transport and cell membrane studies are needed to identify the exact mechanism of noxa-related hepatotoxicity; (2) an online platform may be key to share data from pilot projects and new techniques; and (3) the introduction of differentially expressed genes may be useful in investigating the liver metabolism to target the most intricate bilio-toxic effects of pharmaceutical drugs and toxins. As a challenge, such methodologies are still limited to very few centers, making the identification of highly functional animal models like finding a "needle in a haystack". This review compiles models from the haystack and hopes that a combinatorial search will eventually be the root for a successful pathway.
Collapse
|
99853
|
Prelle LR, Schmidt I, Schimani K, Zimmermann J, Abarca N, Skibbe O, Juchem D, Karsten U. Photosynthetic, Respirational, and Growth Responses of Six Benthic Diatoms from the Antarctic Peninsula as Functions of Salinity and Temperature Variations. Genes (Basel) 2022; 13:genes13071264. [PMID: 35886047 PMCID: PMC9324188 DOI: 10.3390/genes13071264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Temperature and salinity are some of the most influential abiotic parameters shaping biota in aquatic ecosystems. In recent decades, climate change has had a crucial impact on both factors—especially around the Antarctic Peninsula—with increasing air and water temperature leading to glacial melting and the accompanying freshwater increase in coastal areas. Antarctic soft and hard bottoms are typically inhabited by microphytobenthic communities, which are often dominated by benthic diatoms. Their physiology and primary production are assumed to be negatively affected by increased temperatures and lower salinity. In this study, six representative benthic diatom strains were isolated from different aquatic habitats at King George Island, Antarctic Peninsula, and comprehensively identified based on molecular markers and morphological traits. Photosynthesis, respiration, and growth response patterns were investigated as functions of varying light availability, temperature, and salinity. Photosynthesis−irradiance curve measurements pointed to low light requirements, as light-saturated photosynthesis was reached at <70 µmol photons m−2 s−1. The marine isolates exhibited the highest effective quantum yield between 25 and 45 SA (absolute salinity), but also tolerance to lower and higher salinities at 1 SA and 55 SA, respectively, and in a few cases even <100 SA. In contrast, the limnic isolates showed the highest effective quantum yield at salinities ranging from 1 SA to 20 SA. Almost all isolates exhibited high effective quantum yields between 1.5 °C and 25 °C, pointing to a broad temperature tolerance, which was supported by measurements of the short-term temperature-dependent photosynthesis. All studied Antarctic benthic diatoms showed activity patterns over a broader environmental range than they usually experience in situ. Therefore, it is likely that their high ecophysiological plasticity represents an important trait to cope with climate change in the Antarctic Peninsula.
Collapse
Affiliation(s)
- Lara R. Prelle
- Applied Ecology and Phycology, Institute of Biological Sciences, Albert-Einstein-Strasse 3, University of Rostock, 18057 Rostock, Germany; (L.R.P.); (I.S.); (D.J.)
| | - Ina Schmidt
- Applied Ecology and Phycology, Institute of Biological Sciences, Albert-Einstein-Strasse 3, University of Rostock, 18057 Rostock, Germany; (L.R.P.); (I.S.); (D.J.)
| | - Katherina Schimani
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, 14163 Berlin, Germany; (K.S.); (J.Z.); (N.A.); (O.S.)
| | - Jonas Zimmermann
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, 14163 Berlin, Germany; (K.S.); (J.Z.); (N.A.); (O.S.)
| | - Nelida Abarca
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, 14163 Berlin, Germany; (K.S.); (J.Z.); (N.A.); (O.S.)
| | - Oliver Skibbe
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, 14163 Berlin, Germany; (K.S.); (J.Z.); (N.A.); (O.S.)
| | - Desiree Juchem
- Applied Ecology and Phycology, Institute of Biological Sciences, Albert-Einstein-Strasse 3, University of Rostock, 18057 Rostock, Germany; (L.R.P.); (I.S.); (D.J.)
| | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, Albert-Einstein-Strasse 3, University of Rostock, 18057 Rostock, Germany; (L.R.P.); (I.S.); (D.J.)
- Correspondence:
| |
Collapse
|
99854
|
Dai Y, Jia P, Zhao Z, Gottlieb A. A Method for Bridging Population-Specific Genotypes to Detect Gene Modules Associated with Alzheimer's Disease. Cells 2022; 11:2219. [PMID: 35883662 PMCID: PMC9319087 DOI: 10.3390/cells11142219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Genome-wide association studies have successfully identified variants associated with multiple conditions. However, generalizing discoveries across diverse populations remains challenging due to large variations in genetic composition. Methods that perform gene expression imputation have attempted to address the transferability of gene discoveries across populations, but with limited success. METHODS Here, we introduce a pipeline that combines gene expression imputation with gene module discovery, including a dense gene module search and a gene set variation analysis, to address the transferability issue. Our method feeds association probabilities of imputed gene expression with a selected phenotype into tissue-specific gene-module discovery over protein interaction networks to create higher-level gene modules. RESULTS We demonstrate our method's utility in three case-control studies of Alzheimer's disease (AD) for three different race/ethnic populations (Whites, African descent and Hispanics). We discovered 182 AD-associated genes from gene modules shared between these populations, highlighting new gene modules associated with AD. CONCLUSIONS Our innovative framework has the potential to identify robust discoveries across populations based on gene modules, as demonstrated in AD.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
99855
|
Rooney K, Sadikovic B. DNA Methylation Episignatures in Neurodevelopmental Disorders Associated with Large Structural Copy Number Variants: Clinical Implications. Int J Mol Sci 2022; 23:ijms23147862. [PMID: 35887210 PMCID: PMC9324454 DOI: 10.3390/ijms23147862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Large structural chromosomal deletions and duplications, referred to as copy number variants (CNVs), play a role in the pathogenesis of neurodevelopmental disorders (NDDs) through effects on gene dosage. This review focuses on our current understanding of genomic disorders that arise from large structural chromosome rearrangements in patients with NDDs, as well as difficulties in overlap of clinical presentation and molecular diagnosis. We discuss the implications of epigenetics, specifically DNA methylation (DNAm), in NDDs and genomic disorders, and consider the implications and clinical impact of copy number and genomic DNAm testing in patients with suspected genetic NDDs. We summarize evidence of global methylation episignatures in CNV-associated disorders that can be used in the diagnostic pathway and may provide insights into the molecular pathogenesis of genomic disorders. Finally, we discuss the potential for combining CNV and DNAm assessment into a single diagnostic assay.
Collapse
Affiliation(s)
- Kathleen Rooney
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada;
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada;
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +1-519-685-8500 (ext. 53074)
| |
Collapse
|
99856
|
Wang Y, Sha H, Li X, Zhou T, Luo X, Zou G, Chai Y, Liang H. Microsatellite Characteristics of Silver Carp ( Hypophthalmichthysmolitrix) Genome and Genetic Diversity Analysis in Four Cultured Populations. Genes (Basel) 2022; 13:genes13071267. [PMID: 35886050 PMCID: PMC9320178 DOI: 10.3390/genes13071267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Hypophthalmichthys molitrix is one of the four most important fish in China and has high breeding potential. However, simple sequence repeat (SSR) markers developed on H. molitrix genome level for genetic diversity analysis are limited. In this study, the distribution characteristics of SSRs in the assembled H. molitrix genome were analyzed, and new markers were developed to preliminarily evaluate the genetic diversity of the four breeding populations. A total of 368,572 SSRs were identified from the H. molitrix genome. The total length of SSRs was 6,492,076 bp, accounting for 0.77% of the total length of the genome sequence. The total frequency and total density were 437.73 loci/Mb and 7713.16 bp/Mb, respectively. Among the 2–6 different nucleotide repeat types, SSRs were dominated by di-nucleotide repeats (204,873, 55.59%), and AC/GT was the most abundant motif. The number of SSRs on each chromosome was positively correlated with the length. The 13 pairs of markers developed were used to analyze the genetic diversity of four cultivated populations in Hubei Province. The results showed that the genetic diversity of the four populations was low, and the ranges of alleles (Na), effective alleles (Ne), observed heterozygosity (Ho), and Shannon’s index information (I) were 3.538–4.462, 2.045–2.461, 0.392–0.450, and 0.879–0.954, respectively. Genetic variation occurs mainly among individuals within populations (95.35%). UPGMA tree and Bayesian analysis showed that four populations could be divided into two different branches. Therefore, the genome-wide SSRs were effectively in genetic diversity analysis on H. molitrix.
Collapse
Affiliation(s)
- Yajun Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, College of Animal Science, Yangtze University, Jingzhou 434025, China;
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (H.S.); (X.L.); (T.Z.); (X.L.); (G.Z.)
| | - Hang Sha
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (H.S.); (X.L.); (T.Z.); (X.L.); (G.Z.)
| | - Xiaohui Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (H.S.); (X.L.); (T.Z.); (X.L.); (G.Z.)
| | - Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (H.S.); (X.L.); (T.Z.); (X.L.); (G.Z.)
| | - Xiangzhong Luo
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (H.S.); (X.L.); (T.Z.); (X.L.); (G.Z.)
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (H.S.); (X.L.); (T.Z.); (X.L.); (G.Z.)
| | - Yi Chai
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, College of Agriculture, College of Animal Science, Yangtze University, Jingzhou 434025, China;
- Correspondence: (Y.C.); (H.L.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (H.S.); (X.L.); (T.Z.); (X.L.); (G.Z.)
- Correspondence: (Y.C.); (H.L.)
| |
Collapse
|
99857
|
Hadizadeh M, AminJafari A, Parvizpour S, Ghasemi S. Novel targets to overcome antiangiogenesis therapy resistance in glioblastoma multiforme: Systems biology approach and suggestion of therapy by galunisertib. Cell Biol Int 2022; 46:1649-1660. [PMID: 35842773 DOI: 10.1002/cbin.11859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Glioblastoma multiforme (GBM) is a tumor with high microvessel density. Antiangiogenesis therapy (AAT) resistance occurs due to the complex mechanisms involved in angiogenesis, with increased chances of recurrence. The vascular endothelial growth factor (VEGF) pathway is the main pathway of angiogenesis, and anti-VEGF drugs have been ineffective in controlling it. New oncogenes in the VEGF signaling pathway may be new candidates for angiogenesis targeting. Oncogene candidates were chosen using gene expression profiles and databases. Then oncogenes were subjected to gene set enrichment analysis (GSEA) and survival analysis (SA). Molecular docking was conducted to evaluate the interaction of the oncogenes with galunisertib. NRAS, AKT1, and HSPB1 were the most effective oncogenes upregulating genes that play a role in GBM expression in the VEGF signaling pathway. The VEGF and MAPK signaling pathways were found to be effective using GSEA and Kyoto Encyclopedia Gene and Genome pathway analysis. Survival analyses revealed that patients with high HSPB1 expression had poorer overall survival rates than those with low HSPB1 expression. Galunisertib exhibits intermolecular interactions with 6DV5, 5UHV, and 3O96 (binding energy -8.0, -8.6, and -10.3 kcal/mol, respectively). The current AAT should be restrategized to suppress the numerous angiogenic elements to manage angiogenesis and combat AAT resistance in GBM. In silico analysis indicated that NRAS, AKT1, and HSPB1 genes can be the main oncogenes in the VEGF signaling pathway and galunisertib strongly interacts with these genes. Consequently, the use of galunisertib to overcome AAT in GBM in combination therapy can be assessed.
Collapse
Affiliation(s)
- Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Akram AminJafari
- Cellular and Molecular Research Center, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
99858
|
Whalen MR, Chang KJ, Jones AB, Rivera G, Worthington AM. Fluctuating Asymmetry in the Polymorphic Sand Cricket ( Gryllus firmus): Are More Functionally Important Structures Always More Symmetric? INSECTS 2022; 13:insects13070640. [PMID: 35886816 PMCID: PMC9319220 DOI: 10.3390/insects13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Asymmetry in bilateral structures occurs when animals experience perturbations during development. This fluctuating asymmetry (FA) may serve as a reliable indicator of the functional importance of a structure. For example, locomotor structures often display lower levels of FA than other paired structures, highlighting that selection can maintain symmetry in traits important for survival or reproduction. Species that have multiple distinct morphs with unique behaviors and morphologies represent an attractive model for studying the relationship between symmetry and function. The sand field cricket (Gryllus firmus) has two separate morphs that allow us to directly test whether individuals maintain higher levels of symmetry in the structures most vital for maximizing fitness based on their specific life strategy. Longwing (LW) individuals can fly but postpone reproduction until after a dispersal event, whereas shortwing (SW) individuals cannot fly but begin reproducing in early adulthood. We quantified FA across a suite of key morphological structures indicative of investment in growth, reproduction, and flight capability for males and females across the morphs. Although we did not find significant differences in FA across traits, as predicted, locomotor compensation strategies may reduce selective pressures on symmetry or developmental patterns may limit the optimization between trait form and function. Abstract Fluctuating asymmetry (FA) may serve as a reliable indicator of the functional importance of structures within an organism. Primary locomotor structures often display lower levels of FA than other paired structures, highlighting that selection can maintain symmetry in fitness-enhancing traits. Polyphenic species represent an attractive model for studying the fine-scale relationship between trait form and function, because multiple morphs exhibit unique life history adaptations that rely on different traits to maximize fitness. Here, we investigated whether individuals of the wing polyphenic sand field cricket (Gryllus firmus) maintain higher levels of symmetry in the bilateral structures most vital for maximizing fitness based on their specific life history strategy. We quantified FA and directional asymmetry (DA) across a suite of key morphological structures indicative of investment in somatic growth, reproduction, and flight capability for males and females across the flight-capable longwing (LW) and flight-incapable shortwing (SW) morphs. Although we did not find significant differences in FA across traits, hindwings lacked DA that was found in all other structures. We predicted that functionally important traits should maintain a higher level of symmetry; however, locomotor compensation strategies may reduce the selective pressures on symmetry or developmental constraints may limit the optimization between trait form and function.
Collapse
|
99859
|
de Figueiredo MLG, Williams EP, Jonsson CB, Khan MJ, Nunes MRT, de Lima CPS, Figueiredo LTM, Costa MRF, Mourão MPG, Lacerda MVG, Aquino VH. Screening of febrile patients with suspected malaria from the Brazilian Amazon for virus infection. Arch Virol 2022; 167:2151-2162. [PMID: 35841448 DOI: 10.1007/s00705-022-05514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Arthropod-borne viruses (arboviruses) are a significant public health threat, especially in tropical and subtropical regions. More than 150 arboviruses can cause febrile illness following infection in humans. The Brazilian Amazon region has the highest number of arboviruses detected worldwide. In addition to arboviruses, malaria, caused by Plasmodium vivax, is endemic in the Amazon. Patients with malaria and arboviral disease frequently show similar clinical presentation and laboratory findings, making the diagnosis of the cause of the infection challenging. The aim of this study was to evaluate the potential for viral infections in patients with suspected malaria but without Plasmodium infection in the Brazilian Amazon. We recruited 200 subjects with suspected malaria in Manaus, Brazil. First, we tested for arboviruses in serum samples from 124 of the 200 participants using an arbovirus DNA microarray platform, which did not detect any virus. Then, we mixed the serum samples of the other 76 participants in 10 pools and subjected them to next-generation sequencing. Analysis of the sequencing data revealed the presence of only one arbovirus (Zika virus) in one sample pool. This analysis also detected the presence of primate erythroparvovirus 1 and pegivirus C. These results suggest that arboviruses are not the most frequent viral infections in patients with suspected malaria but without Plasmodium infection in the metropolitan region of Manaus. Implementation of specific viral surveillance tests will help in the early detection of viruses with epidemic potential.
Collapse
Affiliation(s)
- Mario Luis Garcia de Figueiredo
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Evan P Williams
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mohd Jaseem Khan
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | | | - Luiz Tadeu Moraes Figueiredo
- Ribeirao Preto Medical School, Virology Research Center, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | | | - Maria Paula Gomes Mourão
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil.
- Instituto Leônidas and Maria Deane (FIOCRUZ-Amazonas), Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil.
| | - Victor Hugo Aquino
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
99860
|
Prune homolog 2 with BCH domain (PRUNE2) gene expression is associated with feed efficiency-related traits in Nelore steers. Mamm Genome 2022; 33:629-641. [PMID: 35840822 DOI: 10.1007/s00335-022-09960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Animal feeding is a critical factor in increasing producer profitability. Improving feed efficiency can help reduce feeding costs and reduce the environmental impact of beef production. Candidate genes previously identified for this trait in differential gene expression studies (e.g., case-control studies) have not examined continuous gene-phenotype variation, which is a limitation. The aim of this study was to investigate the association between the expression of five candidate genes in the liver, measured by quantitative real-time PCR and feed-related traits. We adopted a linear mixed model to associate liver gene expression from 52 Nelore steers with the following production traits: average daily gain (ADG), body weight (BW), dry matter intake (DMI), feed conversion ratio (FCR), feed efficiency (FE), Kleiber index (KI), metabolic body weight (MBW), residual feed intake (RFI), and relative growth ratio (RGR). The total expression of the prune homolog 2 (PRUNE2) gene was significantly associated with DMI, FCR, FE, and RFI (P < 0.05). Furthermore, we have identified a new transcript of PRUNE2 (TCONS_00027692, GenBank MZ041267) that was inversely correlated with FCR and FE (P < 0.05), in contrast to the originally identified PRUNE2 transcript. The cytochrome P450 subfamily 2B (CYP2B6), early growth response protein 1 (EGR1), collagen type I alpha 1 chain (COL1A1), and connective tissue growth factor (CTGF) genes were not associated with any feed efficiency-related traits (P > 0.05). The findings reported herein suggest that PRUNE2 expression levels affects feed efficiency-related traits variation in Nelore steers.
Collapse
|
99861
|
Jedrzejczyk DJ, Poulsen LD, Mohr M, Damas ND, Schoffelen S, Barghetti A, Baumgartner R, Weinert BT, Warnecke T, Gill RT. CRISPR-Cas12a nucleases function with structurally engineered crRNAs: SynThetic trAcrRNA. Sci Rep 2022; 12:12193. [PMID: 35842430 PMCID: PMC9288538 DOI: 10.1038/s41598-022-15388-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
CRISPR-Cas12a systems are becoming an attractive genome editing tool for cell engineering due to their broader editing capabilities compared to CRISPR-Cas9 counterparts. As opposed to Cas9, the Cas12a endonucleases are characterized by a lack of trans-activating crRNA (tracrRNA), which reduces the complexity of the editing system and simultaneously makes CRISPR RNA (crRNA) engineering a promising approach toward further improving and modulating editing activity of the CRISPR-Cas12a systems. Here, we design and validate sixteen types of structurally engineered Cas12a crRNAs targeting various immunologically relevant loci in-vitro and in-cellulo. We show that all our structural modifications in the loop region, ranging from engineered breaks (STAR-crRNAs) to large gaps (Gap-crRNAs), as well as nucleotide substitutions, enable gene-cutting in the presence of various Cas12a nucleases. Moreover, we observe similar insertion rates of short HDR templates using the engineered crRNAs compared to the wild-type crRNAs, further demonstrating that the introduced modifications in the loop region led to comparable genome editing efficiencies. In conclusion, we show that Cas12a nucleases can broadly utilize structurally engineered crRNAs with breaks or gaps in the otherwise highly-conserved loop region, which could further facilitate a wide range of genome editing applications.
Collapse
Affiliation(s)
- D J Jedrzejczyk
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark
| | - L D Poulsen
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO, 80027, USA
| | - M Mohr
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark
| | - N D Damas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark
| | - S Schoffelen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark
| | - A Barghetti
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO, 80027, USA
| | - R Baumgartner
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO, 80027, USA
| | - B T Weinert
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark
| | - T Warnecke
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO, 80027, USA.
| | - R T Gill
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kongens Lyngby, Denmark.
- Artisan Bio, 363 Centennial Parkway, Suite 310, Louisville, CO, 80027, USA.
| |
Collapse
|
99862
|
Chukamnerd A, Pomwised R, Jeenkeawpiam K, Sakunrang C, Chusri S, Surachat K. Genomic insights into bla NDM-carrying carbapenem-resistant Klebsiella pneumoniae clinical isolates from a university hospital in Thailand. Microbiol Res 2022; 263:127136. [PMID: 35870342 DOI: 10.1016/j.micres.2022.127136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates is a serious threat to global health. Here, we elucidate the genetic features of blaNDM-carrying CRKP clinical isolates from a university hospital in Thailand. The entire genomes of 19 CRKP isolates were extracted and then sequenced using the MGISEQ200 platform. Using various bioinformatics tools, we analyzed the antimicrobial resistance (AMR), virulence factors, gene transfer, bacterial defense mechanisms, and genomic diversity of the CRKP isolates. The sequence type (ST) 16 was found in most of the isolates, along with carriages of the blaNDM-1, blaOXA-232, and blaCTX-M-15 genes. The IncFIB(pQil), Col440II, and ColKP3 plasmids were identified with high frequency. The CRKP isolates harbored genes encoding for virulence factors such as adherence, biofilm formation, immune evasion, and iron uptake. The CRISPR-Cas region in the CRKP9 isolate consisted of 28 distinct spacer sequences. The genomes of the CRKP isolates presented restriction-modification (R-M) sites (M.Kpn34618Dcm and M.Kpn928I) and integrated bacteriophage genomes (Klebsiella phage ST16-OXA48phi5.4 and Enterobacteria phage mEp390). Bottromycin and sactipeptides were also identified. The isolates could be separated into three clades according to STs and pairwise single nucleotide polymorphism (SNP) distance. Pairwise average nucleotide identity (ANI) values revealed intra-species. These findings support the importance of whole-genome sequencing (WGS) to the rapid and accurate genomic analysis of clinical isolates of CRKP.
Collapse
Affiliation(s)
- Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
99863
|
Pietrykowska H, Sierocka I, Zielezinski A, Alisha A, Carrasco-Sanchez JC, Jarmolowski A, Karlowski WM, Szweykowska-Kulinska Z. Biogenesis, conservation, and function of miRNA in liverworts. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4528-4545. [PMID: 35275209 PMCID: PMC9291395 DOI: 10.1093/jxb/erac098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/07/2022] [Indexed: 06/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding endogenous RNA molecules, 18-24 nucleotides long, that control multiple gene regulatory pathways via post-transcriptional gene silencing in eukaryotes. To develop a comprehensive picture of the evolutionary history of miRNA biogenesis and action in land plants, studies on bryophyte representatives are needed. Here, we review current understanding of liverwort MIR gene structure, miRNA biogenesis, and function, focusing on the simple thalloid Pellia endiviifolia and the complex thalloid Marchantia polymorpha. We review what is known about conserved and non-conserved miRNAs, their targets, and the functional implications of miRNA action in M. polymorpha and P. endiviifolia. We note that most M. polymorpha miRNAs are encoded within protein-coding genes and provide data for 23 MIR gene structures recognized as independent transcriptional units. We identify M. polymorpha genes involved in miRNA biogenesis that are homologous to those identified in higher plants, including those encoding core microprocessor components and other auxiliary and regulatory proteins that influence the stability, folding, and processing of pri-miRNAs. We analyzed miRNA biogenesis proteins and found similar domain architecture in most cases. Our data support the hypothesis that almost all miRNA biogenesis factors in higher plants are also present in liverworts, suggesting that they emerged early during land plant evolution.
Collapse
Affiliation(s)
| | | | - Andrzej Zielezinski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Alisha Alisha
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Juan Carlo Carrasco-Sanchez
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
| | | | | |
Collapse
|
99864
|
PAI-1 is a potential transcriptional silencer that supports bladder cancer cell activity. Sci Rep 2022; 12:12186. [PMID: 35842542 PMCID: PMC9288475 DOI: 10.1038/s41598-022-16518-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular activity of Plasminogen activator inhibitor-1 (PAI-1) is well described, acting as an inhibitor of tissue plasminogen activator and urokinase-type plasminogen activator, impacting fibrinolysis. Recent studies have revealed a pro-tumorigenic role of PAI-1 in human cancers, via the regulation of angiogenesis and tumor cell survival. In this study, immunohistochemical staining of 939 human bladder cancer specimens showed that PAI-1 expression levels correlated with tumor grade, tumor stage and overall survival. The typical subcellular localization of PAI-1 is cytoplasmic, but in approximately a quarter of the cases, PAI-1 was observed to be localized to both the tumor cell cytoplasm and the nucleus. To investigate the potential function of nuclear PAI-1 in tumor biology we applied chromatin immunoprecipitation (ChIP)-sequencing, gene expression profiling, and rapid immunoprecipitation mass spectrometry to a pair of bladder cancer cell lines. ChIP-sequencing revealed that PAI-1 can bind DNA at distal intergenic regions, suggesting a role as a transcriptional coregulator. The downregulation of PAI-1 in bladder cancer cell lines caused the upregulation of numerous genes, and the integration of ChIP-sequence and RNA-sequence data identified 57 candidate genes subject to PAI-1 regulation. Taken together, the data suggest that nuclear PAI-1 can influence gene expression programs and support malignancy.
Collapse
|
99865
|
Anier K, Somelar K, Jaako K, Alttoa M, Sikk K, Kokassaar R, Kisand K, Kalda A. Psychostimulant-induced aberrant DNA methylation in an in vitro model of human peripheral blood mononuclear cells. Clin Epigenetics 2022; 14:89. [PMID: 35842682 PMCID: PMC9288712 DOI: 10.1186/s13148-022-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
Background Several reports have provided crucial evidence in animal models that epigenetic modifications, such as DNA methylation, may be involved in psychostimulant-induced stable changes at the cellular level in the brain. Epigenetic editors DNA methyltransferases (DNMTs) and ten-eleven translocation enzymes (TETs) coordinate expression of gene networks, which then manifest as long-term behavioural changes. However, the extent to which aberrant DNA methylation is involved in the mechanisms of substance use disorder in humans is unclear. We previously demonstrated that cocaine modifies gene transcription, via DNA methylation, throughout the brain and in peripheral blood cells in mice. Results We treated human peripheral blood mononuclear cells (PBMCs) from healthy male donors (n = 18) in vitro with psychostimulants (amphetamine, cocaine). After treatment, we assessed mRNA levels and enzymatic activities of TETs and DNMTs, conducted genome-wide DNA methylation assays and next-generation sequencing. We found that repeated exposure to psychostimulants decreased mRNA levels and enzymatic activity of TETs and 5-hydroxymethylation levels in PBMCs. These data were in line with observed hyper- and hypomethylation and mRNA expression of marker genes (IL-10, ATP2B4). Additionally, we evaluated whether the effects of cocaine on epigenetic editors (DNMTs and TETs) and cytokines interleukin-6 (IL-6) and IL-10 could be reversed by the DNMT inhibitor decitabine. Indeed, decitabine eliminated cocaine’s effect on the activity of TETs and DNMTs and decreased cytokine levels, whereas cocaine increased IL-6 and decreased IL-10. Conclusions Our data suggest that repeated psychostimulant exposure decreases TETs’ enzymatic activity in PBMCs. Co-treatment with decitabine reversed TETs’ levels and modulated immune response after repeated cocaine exposure. Further investigation is needed to clarify if TET could represent a putative biomarker of psychostimulant use and if DNMT inhibition could have therapeutic potential. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01303-w.
Collapse
Affiliation(s)
- Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kelli Somelar
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| | - Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Margret Alttoa
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kerli Sikk
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Raul Kokassaar
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Kai Kisand
- Department of Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Anti Kalda
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| |
Collapse
|
99866
|
Shi D, Mu S, Pu F, Zhong B, Hu B, Muhtar M, Tong W, Shao Z, Zhang Z, Liu J. Pan-sarcoma characterization of lncRNAs in the crosstalk of EMT and tumour immunity identifies distinct clinical outcomes and potential implications for immunotherapy. Cell Mol Life Sci 2022; 79:427. [PMID: 35842562 PMCID: PMC11071722 DOI: 10.1007/s00018-022-04462-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is a reversible process that may interact with tumour immunity through multiple approaches. There is increasing evidence demonstrating the interconnections among EMT-related processes, the tumour microenvironment, and immune activity, as well as its potential influence on the immunotherapy response. Long non-coding RNAs (lncRNAs) are emerging as critical modulators of gene expression. They play fundamental roles in tumour immunity and act as promising biomarkers of immunotherapy response. However, the potential roles of lncRNA in the crosstalk of EMT and tumour immunity are still unclear in sarcoma. We obtained multi-omics profiling of 1440 pan-sarcoma patients from 19 datasets. Through an unsupervised consensus clustering approach, we categorised EMT molecular subtypes. We subsequently identified 26 EMT molecular subtype and tumour immune-related lncRNAs (EILncRNA) across pan-sarcoma types and developed an EILncRNA signature-based weighted scoring model (EILncSig). The EILncSig exhibited favourable performance in predicting the prognosis of sarcoma, and a high-EILncSig was associated with exclusive tumour microenvironment (TME) characteristics with desert-like infiltration of immune cells. Multiple altered pathways, somatically-mutated genes and recurrent CNV regions associated with EILncSig were identified. Notably, the EILncSig was associated with the efficacy of immune checkpoint inhibition (ICI) therapy. Using a computational drug-genomic approach, we identified compounds, such as Irinotecan that may have the potential to convert the EILncSig phenotype. By integrative analysis on multi-omics profiling, our findings provide a comprehensive resource for understanding the functional role of lncRNA-mediated immune regulation in sarcomas, which may advance the understanding of tumour immune response and the development of lncRNA-based immunotherapeutic strategies for sarcoma.
Collapse
Affiliation(s)
- Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Shidai Mu
- Institute of Haematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Binwu Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Muradil Muhtar
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jianxiang Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
99867
|
Pollet L, Lambourne L, Xia Y. Structural Determinants of Yeast Protein-Protein Interaction Interface Evolution at the Residue Level. J Mol Biol 2022; 434:167750. [PMID: 35850298 DOI: 10.1016/j.jmb.2022.167750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022]
Abstract
Interfaces of contact between proteins play important roles in determining the proper structure and function of protein-protein interactions (PPIs). Therefore, to fully understand PPIs, we need to better understand the evolutionary design principles of PPI interfaces. Previous studies have uncovered that interfacial sites are more evolutionarily conserved than other surface protein sites. Yet, little is known about the nature and relative importance of evolutionary constraints in PPI interfaces. Here, we explore constraints imposed by the structure of the microenvironment surrounding interfacial residues on residue evolutionary rate using a large dataset of over 700 structural models of baker's yeast PPIs. We find that interfacial residues are, on average, systematically more conserved than all other residues with a similar degree of total burial as measured by relative solvent accessibility (RSA). Besides, we find that RSA of the residue when the PPI is formed is a better predictor of interfacial residue evolutionary rate than RSA in the monomer state. Furthermore, we investigate four structure-based measures of residue interfacial involvement, including change in RSA upon binding (ΔRSA), number of residue-residue contacts across the interface, and distance from the center or the periphery of the interface. Integrated modeling for evolutionary rate prediction in interfaces shows that ΔRSA plays a dominant role among the four measures of interfacial involvement, with minor, but independent contributions from other measures. These results yield insight into the evolutionary design of interfaces, improving our understanding of the role that structure plays in the molecular evolution of PPIs at the residue level.
Collapse
Affiliation(s)
- Léah Pollet
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada
| | - Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Yu Xia
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
99868
|
Tarakcioglu E, Tastan B, Arioz BI, Tufekci KU, Genc S. Melatonin Alters the miRNA Transcriptome of Inflammasome Activation in Murine Microglial Cells. Neurochem Res 2022; 47:3202-3211. [PMID: 35842554 DOI: 10.1007/s11064-022-03674-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 12/01/2022]
Abstract
Systemic inflammation can have devastating effects on the central nervous system via its resident immune cells, the microglia. One of the primary mediators of this inflammation is inflammasomes, multiprotein complexes that trigger a release of inflammatory proteins when activated. Melatonin, a hormone with anti-inflammatory effects, is an attractive candidate for suppressing such inflammation. In this study, we have investigated how melatonin alters the microRNA (miRNA) transcriptome of microglial cells. For that purpose, we have performed RNA sequencing on a lipopolysaccharide and adenosine triphosphate (LPS + ATP) induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation model in the N9 mouse microglial cell line, with and without melatonin pre-treatment. We have identified 136 differentially expressed miRNAs in cells exposed to LPS + ATP compared to controls and 10 differentially expressed miRNAs in melatonin pre-treated cells compared to the inflammasome group. We have identified miR-155-3p as a miRNA that is upregulated with inflammasome activation and downregulated with melatonin treatment. We further confirmed this pattern of miR-155-3p expression in the brains of mice injected intraperitoneally with LPS. Moreover, an overexpression study with miRNA-155-3p mimic supported the idea that the protective effects of melatonin in NLRP3 inflammasome activation are partly associated with miRNA-155-3p inhibition.
Collapse
Affiliation(s)
- Emre Tarakcioglu
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Bora Tastan
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Burak I Arioz
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Department of Health Care Services, Vocational School of Health Services, Izmir Democracy University, 35290, Izmir, Turkey.,Center for Brain and Neuroscience Research, Izmir Democracy University, 35290, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey. .,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, 35340, Izmir, Turkey.
| |
Collapse
|
99869
|
Shakya B, Kilili GK, Wang L, Nakayasu ES, LaCount DJ. Identification of Exported Plasmodium falciparum Proteins That Bind to the Erythrocyte Cytoskeleton. Microorganisms 2022; 10:1438. [PMID: 35889157 PMCID: PMC9320996 DOI: 10.3390/microorganisms10071438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
Plasmodium proteins are exported to the erythrocyte cytoplasm to create an environment that supports parasite replication. Although hundreds of proteins are predicted to be exported through Plasmodium export element (PEXEL)-dependent and -independent mechanisms, the functions of exported proteins are largely uncharacterized. In this study, we used a biochemical screening approach to identify putative exported P. falciparum proteins that bound to inside-out vesicles prepared from erythrocytes. Out of 69 P. falciparum PEXEL-motif proteins tested, 18 bound to inside-out vesicles (IOVs) in two or more independent assays. Using co-affinity purifications followed by mass spectrometry, pairwise co-purification experiments, and the split-luciferase assay, we identified 31 putative protein-protein interactions between erythrocyte cytoskeletal proteins and predicted exported P. falciparum proteins. We further showed that PF3D7_1401600 binds to the spectrin-binding domain of erythrocyte ankyrin via its MESA erythrocyte cytoskeleton binding (MEC) motif and to the N-terminal domains of ankyrin and 4.1R through a fragment that required an intact Plasmodium helical interspersed sub-telomeric (PHIST) domain. Introduction of PF3D7_1401600 into erythrocyte ghosts increased retention in the microsphiltration assay, consistent with previous data that reported a reduction of rigidity in red blood cells infected with PF3D7_1401600-deficient parasites.
Collapse
Affiliation(s)
- Bikash Shakya
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (B.S.); (G.K.K.); (L.W.)
| | - Geoffrey Kimiti Kilili
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (B.S.); (G.K.K.); (L.W.)
| | - Ling Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (B.S.); (G.K.K.); (L.W.)
| | - Ernesto S. Nakayasu
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA;
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| | - Douglas J. LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; (B.S.); (G.K.K.); (L.W.)
| |
Collapse
|
99870
|
Sommer N, Theine FF, Pak O, Tello K, Richter M, Gall H, Wilhelm J, Savai R, Weissmann N, Seeger W, Ghofrani HA, Hecker M. Mitochondrial Respiration in Peripheral Blood Mononuclear Cells Negatively Correlates with Disease Severity in Pulmonary Arterial Hypertension. J Clin Med 2022; 11:jcm11144132. [PMID: 35887896 PMCID: PMC9319555 DOI: 10.3390/jcm11144132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial and immune cell dysfunction contributes to the development of pulmonary arterial hypertension (PAH). We thus aimed to investigate mitochondrial respiration and mitochondrial gene expression patterns in the peripheral blood mononuclear cells (PBMC) of patients with idiopathic and hereditary PAH and their correlation to disease parameters. Mitochondrial respiration determined using high-resolution respirometry was not significantly different in PBMC when comparing an outpatient cohort of PAH patients with healthy controls. However, when directly comparing mitochondrial respiration to the hemodynamic parameters of an inpatient PAH cohort, mitochondrial respiration negatively correlated with pulmonary vascular resistance (PVR) and positively correlated with the cardiac index (CI). Furthermore, microarray analysis shows upregulation of mitochondrial erythroid-specific 5-aminolevulinate synthase 2 (ALAS2), as well as the regulation of genes involved in iron and heme metabolism, in the PBMC of patients with PAH, with ALAS2 upregulation in PAH patients being confirmed on the protein level. Multiple regression analysis with age and gender as confounders showed that both PVR and hemoglobin content negatively correlated with maximal respiration. Therefore, we conclude that mitochondrial function in the PBMC of PAH patients is affected by disease severity. However, further studies to investigate cell-type-specific alterations and functional consequences are necessary.
Collapse
Affiliation(s)
- Natascha Sommer
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Correspondence:
| | - Finn Fabian Theine
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Oleg Pak
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Khodr Tello
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Manuel Richter
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Henning Gall
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Rajkumar Savai
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hossein A. Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthias Hecker
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary Institute (CPI), Justus-Liebig University, 35392 Giessen, Germany; (F.F.T.); (O.P.); (K.T.); (M.R.); (H.G.); (J.W.); (R.S.); (N.W.); (W.S.); (H.A.G.); (M.H.)
| |
Collapse
|
99871
|
Feng Y, Xiao M, Cao G, Liu H, Li Y, Wang S, Zijtveld S, Delvoux B, Xanthoulea S, Romano A, Liu C, Zhang Z. Human monocytes differentiate into tumor-associated macrophages upon SKOV3 cells coculture and/or lysophosphatidic acid stimulation. J Inflamm (Lond) 2022; 19:11. [PMID: 35842650 PMCID: PMC9288080 DOI: 10.1186/s12950-022-00307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Serous ovarian carcinoma is the most common type of ovarian carcinoma. Tumor-associated macrophages (TAMs) promote ovarian cancer progression. Most macrophages are generated by monocyte differentiation. Lysophosphatidic acid (LPA) levels are high in blood, tissues and ascites of patients with ovarian cancer. This study investigated whether human monocytes can directly differentiate into TAMs in the serous ovarian carcinoma microenvironment. METHODS Human monocytes were isolated and purified from umbilical cord blood. A serous ovarian carcinoma-like microenvironment was generated by coculturing monocytes and SKOV3 cells in 0.4-μm-pore-size Transwell chambers. Additionally, the effect of LPA was assessed. The two cultured cell types and supernatants were evaluated. RESULTS The morphology and function of monocytes cocultured with SKOV3 cells and/or stimulated with LPA were significantly changed compared with those of non-stimulated monocytes. The CD14 + CD163 + and CD206 + phenotype indicated that stimulated cells were TAMs. The induced cells promoted SKOV3 cell proliferation and invasion, further proving that they were TAMs. The level of the cytokine interleukin-6R in the supernatant was significantly elevated in the treatment groups compared to the control monocyte group. Pathway enrichment analysis of ELISA results showed a strong influence of interleukin-6 family signaling, especially the JAK-STAT signaling pathway, further confirming the importance of IL-6R. CONCLUSION Monocytes can differentiate into TAMs under coculture with SKOV3 cells and/or LPA stimulation. The induced TAMs promote SKOV3 cell proliferation and invasion. The cytokine receptor IL-6sR and the JAK-STAT signaling pathway play an important role in the differentiation of monocytes into TAMs.
Collapse
Affiliation(s)
- Ying Feng
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Meizhu Xiao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Hao Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Yanfang Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China
| | - Stan Zijtveld
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bert Delvoux
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sofia Xanthoulea
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China.
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, North Road of Workers Stadium, No. 8Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
99872
|
A Regulatory Axis between Epithelial Splicing Regulatory Proteins and Estrogen Receptor α Modulates the Alternative Transcriptome of Luminal Breast Cancer. Int J Mol Sci 2022; 23:ijms23147835. [PMID: 35887187 PMCID: PMC9319905 DOI: 10.3390/ijms23147835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial splicing regulatory proteins 1 and 2 (ESRP1/2) control the splicing pattern during epithelial to mesenchymal transition (EMT) in a physiological context and in cancer, including breast cancer (BC). Here, we report that ESRP1, but not ESRP2, is overexpressed in luminal BCs of patients with poor prognosis and correlates with estrogen receptor α (ERα) levels. Analysis of ERα genome-binding profiles in cell lines and primary breast tumors showed its binding in the proximity of ESRP1 and ESRP2 genes, whose expression is strongly decreased by ERα silencing in hormone-deprived conditions. The combined knock-down of ESRP1/2 in MCF-7 cells followed by RNA-Seq, revealed the dysregulation of 754 genes, with a widespread alteration of alternative splicing events (ASEs) of genes involved in cell signaling, metabolism, cell growth, and EMT. Functional network analysis of ASEs correlated with ESRP1/2 expression in ERα+ BCs showed RAC1 as the hub node in the protein-protein interactions altered by ESRP1/2 silencing. The comparison of ERα- and ESRP-modulated ASEs revealed 63 commonly regulated events, including 27 detected in primary BCs and endocrine-resistant cell lines. Our data support a functional implication of the ERα-ESRP1/2 axis in the onset and progression of BC by controlling the splicing patterns of related genes.
Collapse
|
99873
|
Utsunomiya K, Maruyama T, Shimizu S, Matsumoto T, Endo M, Kobayashi H, Kano K, Abe M, Fukuda N. Implantation of dedifferentiated fat cells ameliorated antineutrophil cytoplasmic antibody glomerulonephritis by immunosuppression and increases in tumor necrosis factor-stimulated gene-6. Stem Cell Res Ther 2022; 13:319. [PMID: 35842674 PMCID: PMC9288725 DOI: 10.1186/s13287-022-03014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The implantation of dedifferentiated fat (DFAT) cells has been shown to exert immunosuppressive effects. To develop DFAT cell therapy for antineutrophil cytoplasmic antibody (ANCA) glomerulonephritis, the effects of the implantation of DFAT cells on ANCA glomerulonephritis were investigated in mice. METHODS PKH26-labeled DFAT cells (105) were infused through the posterior orbital venous plexus to investigate delivery of DFAT cells in ICR mice. DFAT cells (105) were also implanted in SCG mice as a model for ANCA glomerulonephritis. Expression of tumor necrosis factor-stimulated gene-6 (TSG-6) mRNA and protein in kidney was evaluated, and the expression of microRNAs associated with TSG-6 in plasma, lung and kidney was analyzed. Expressions of CD44, prostaglandin (PG) E2, interleukin (IL)-10, IL-1β, tumor necrosis factor (TNF)-α mRNAs, C-C motif chemokine ligand 17 (CCL-17) and monocyte chemoattractant protein (MCP)-1 proteins were measured in kidney from SCG mice implanted with DFAT cells. RESULTS After their intravenous infusion, almost all DFAT cells were trapped in the lung and not delivered into the kidney. Implantation of DFAT cells in SCG mice suppressed glomerular crescent formation, decreased urinary protein excretions and increased expression of TSG-6 mRNA, protein and immunostaining in kidney from these mice. Increased expression of microRNA 23b-3p in plasma, kidney and lung; decreased expression of CD44 mRNA; and increased expression of PGE2 and IL-10 mRNAs were also observed in kidney from these mice. Implantation of DFAT cells also decreased the expression of TNF-α and MCP-1 proteins and increased that of CCL-17 protein in kidney from the SCG mice. Survival rates were higher in SCG mice implanted with DFAT cells than in SCG mice without implantation. CONCLUSION Mechanisms underlying the effects of improvement of ANCA glomerulonephritis are associated with immunosuppressive effects by TSG-6 and the transition of M1-M2 macrophages, suggesting that implantation of DFAT cells may become a cell therapy for ANCA glomerulonephritis.
Collapse
Affiliation(s)
- Kei Utsunomiya
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Maruyama
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Shimizu
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Morito Endo
- Faculty of Human Health Science, Hachinohe Gakuin University, Hachinohe, Aomori, Japan
| | - Hiroki Kobayashi
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Masanori Abe
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Noboru Fukuda
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan. .,Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
99874
|
Mo P, Zhou J, Zhou F, Chen Y, Huang K. The complete chloroplast genome sequence of Gomesa flexuosa. Mitochondrial DNA B Resour 2022; 7:1237-1239. [PMID: 35837502 PMCID: PMC9275493 DOI: 10.1080/23802359.2022.2093670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Gomesa flexuosa (Lodd) M.W.Chase & N.H.Williams is a new species of orchid revised in 2009. In this study, the chloroplast genome of G. flexuosa was sequenced to determine its genomic characteristics and phylogenetic relationship with other related species. G. flexuosa has a chloroplast genome size of 147,764 bp, comprising 25,757 bp of two inverted repeat (IR) regions, 83,579 bp of large single-copy (LSC) region, and 12,671 bp of small single-copy (SSC) region. Moreover, the whole genome contains 73 protein-coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analysis showed that G. flexuosa is closely related to Oncidium sphacelatum.
Collapse
Affiliation(s)
- Ping Mo
- College of Life and Environmental Sciences, Zoology Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde innovation team of Wetland Biology and Environmental Ecology, Hunan University of Arts and Science, Changde, China
| | - Jinhua Zhou
- College of Life and Environmental Sciences, Zoology Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde innovation team of Wetland Biology and Environmental Ecology, Hunan University of Arts and Science, Changde, China
| | - Fumin Zhou
- College of Life and Environmental Sciences, Zoology Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde innovation team of Wetland Biology and Environmental Ecology, Hunan University of Arts and Science, Changde, China
| | - Yazhi Chen
- College of Life and Environmental Sciences, Zoology Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde innovation team of Wetland Biology and Environmental Ecology, Hunan University of Arts and Science, Changde, China
| | - Kerui Huang
- College of Life and Environmental Sciences, Zoology Key Laboratory of Hunan Higher Education, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Changde innovation team of Wetland Biology and Environmental Ecology, Hunan University of Arts and Science, Changde, China
| |
Collapse
|
99875
|
Zheng Y, Ma G, Wang T, Hofmann A, Song J, Gasser RB, Young ND. Ubiquitination pathway model for the barber's pole worm - Haemonchus contortus. Int J Parasitol 2022; 52:581-590. [PMID: 35853501 DOI: 10.1016/j.ijpara.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
The ubiquitin-mediated pathway has been comprehensively explored in the free-living nematode Caenorhabditis elegans, but very little is known about this pathway in parasitic nematodes. Here, we inferred the ubiquitination pathway for an economically significant and pathogenic nematode - Haemonchus contortus - using abundant resources available for C. elegans. We identified 215 genes encoding ubiquitin (Ub; n = 3 genes), ubiquitin-activating enzyme (E1; one), -conjugating enzymes (E2s; 21), ligases (E3s; 157) and deubiquitinating enzymes (DUBs; 33). With reference to C. elegans, Ub, E1 and E2 were relatively conserved in sequence and structure, and E3s and DUBs were divergent, likely reflecting functional and biological uniqueness in H. contortus. Most genes encoding ubiquitination pathway components exhibit high transcription in the egg compared with other stages, indicating marked protein homeostasis in this early developmental stage. The ubiquitination pathway model constructed for H. contortus provides a foundation to explore the ubiquitin-proteasome system, crosstalk between autophagy and the proteasome system, and the parasite-host interactions. Selected E3 and DUB proteins which are very divergent in sequence and structure from host homologues or entirely unique to H. contortus and related parasitic nematodes may represent possible anthelmintic targets.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia; College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia; Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Germany
| | - Jiangning Song
- Department of Data Science and AI, Faculty of IT, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
99876
|
Tissink E, de Lange SC, Savage JE, Wightman DP, de Leeuw CA, Kelly KM, Nagel M, van den Heuvel MP, Posthuma D. Genome-wide association study of cerebellar volume provides insights into heritable mechanisms underlying brain development and mental health. Commun Biol 2022; 5:710. [PMID: 35842455 PMCID: PMC9288439 DOI: 10.1038/s42003-022-03672-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cerebellar volume is highly heritable and associated with neurodevelopmental and neurodegenerative disorders. Understanding the genetic architecture of cerebellar volume may improve our insight into these disorders. This study aims to investigate the convergence of cerebellar volume genetic associations in close detail. A genome-wide associations study for cerebellar volume was performed in a discovery sample of 27,486 individuals from UK Biobank, resulting in 30 genome-wide significant loci and a SNP heritability of 39.82%. We pinpoint the likely causal variants and those that have effects on amino acid sequence or cerebellar gene-expression. Additionally, 85 genome-wide significant genes were detected and tested for convergence onto biological pathways, cerebellar cell types, human evolutionary genes or developmental stages. Local genetic correlations between cerebellar volume and neurodevelopmental and neurodegenerative disorders reveal shared loci with Parkinson's disease, Alzheimer's disease and schizophrenia. These results provide insights into the heritable mechanisms that contribute to developing a brain structure important for cognitive functioning and mental health.
Collapse
Affiliation(s)
- Elleke Tissink
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Siemon C de Lange
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands.,Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Douglas P Wightman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Christiaan A de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Kristen M Kelly
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Mats Nagel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands.,Department of Child and Adolescent Psychiatry, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands. .,Department of Child and Adolescent Psychiatry, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
99877
|
Adamov A, Serina Secanechia YN, Lancrin C. Single-cell transcriptome analysis of embryonic and adult endothelial cells allows to rank the hemogenic potential of post-natal endothelium. Sci Rep 2022; 12:12177. [PMID: 35842474 PMCID: PMC9288434 DOI: 10.1038/s41598-022-16127-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/05/2022] [Indexed: 01/02/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are crucial for the continuous production of blood cells during life. The transplantation of these cells is one of the most common treatments to cure patient suffering of blood diseases. However, the lack of suitable donors is a major limitation. One option to get HSCs matching perfectly a patient is cellular reprogramming. HSCs emerge from endothelial cells in blood vessels during embryogenesis through the endothelial to hematopoietic transition. Here, we used single-cell transcriptomics analysis to compare embryonic and post-natal endothelial cells to investigate the potential of adult vasculature to be reprogrammed in hematopoietic stem cells. Although transcriptional similarities have been found between embryonic and adult endothelial cells, we found some key differences in term of transcription factors expression. There is a deficit of expression of Runx1, Tal1, Lyl1 and Cbfb in adult endothelial cells compared to their embryonic counterparts. Using a combination of gene expression profiling and gene regulatory network analysis, we found that endothelial cells from the pancreas, brain, kidney and liver appear to be the most suitable targets for cellular reprogramming into HSCs. Overall, our work provides an important resource for the rational design of a reprogramming strategy for the generation of HSCs.
Collapse
Affiliation(s)
- Artem Adamov
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
- Moscow Institute of Physics and Technology, Institutskii Per. 9, Moscow Region, Dolgoprudny, Russia, 141700
- Institut de la Vision, INSERM, Paris, France
| | - Yasmin Natalia Serina Secanechia
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Christophe Lancrin
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.
| |
Collapse
|
99878
|
Xia Y, Wang J, Guo C, Xu H, Wang W, Yang M, Shen Q, Zhang R, Miao Y. Exploring the multi-level regulation of lignocellulases in the filamentous fungus Trichoderma guizhouense NJAU4742 from an omics perspective. Microb Cell Fact 2022; 21:144. [PMID: 35842666 PMCID: PMC9288086 DOI: 10.1186/s12934-022-01869-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Filamentous fungi are highly efficient at deconstructing plant biomass by secreting a variety of enzymes, but the complex enzymatic regulation underlying this process is not conserved and remains unclear. RESULTS In this study, cellulases and xylanases could specifically respond to Avicel- and xylan-induction, respectively, in lignocellulose-degrading strain Trichoderma guizhouense NJAU4742, however, the differentially regulated cellulases and xylanases were both under the absolute control of the same TgXyr1-mediated pathway. Further analysis showed that Avicel could specifically induce cellulase expression, which supported the existence of an unknown specific regulator of cellulases in strain NJAU4742. The xylanase secretion is very complex, GH10 endoxylanases could only be induced by Avicel, while, other major xylanases were significantly induced by both Avicel and xylan. For GH10 xylanases, an unknown specific regulator was also deduced to exist. Meanwhile, the post-transcriptional inhibition was subsequently suggested to stop the Avicel-induced xylanases secretion, which explained the specifically high xylanase activities when induced by xylan in strain NJAU4742. Additionally, an economical strategy used by strain NJAU4742 was proposed to sense the environmental lignocellulose under the carbon starvation condition, that only slightly activating 4 lignocellulose-degrading genes before largely secreting all 33 TgXyr1-controlled lignocellulases if confirming the existence of lignocellulose components. CONCLUSIONS This study, aiming to explore the unknown mechanisms of plant biomass-degrading enzymes regulation through the combined omics analysis, will open directions for in-depth understanding the complex carbon utilization in filamentous fungi.
Collapse
Affiliation(s)
- Yanwei Xia
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Jingfan Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Chuanxu Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Huanhuan Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Wei Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Mingzhu Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
| |
Collapse
|
99879
|
Ginzberg I, Faigenboim A. Ripening of Pomegranate Skin as Revealed by Developmental Transcriptomics. Cells 2022; 11:cells11142215. [PMID: 35883658 PMCID: PMC9320897 DOI: 10.3390/cells11142215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
The appearance of pomegranate (Punica granatum L.) fruit is highly important for its marketing. The primary concerns are obtaining sufficient red pigment accumulation and minimal cracking of the fruit skin (the outer red layer of the peel). We analyzed the skin transcriptome of pomegranate cv. Wonderful at distinct time points of fruit development to characterize the processes that occur in the skin during fruit ripening and which may reflect on processes in the whole fruit, such as the non-climacteric nature of pomegranate. The data suggested a ripening mechanism in pomegranate skin that differs from that in strawberry—the model plant for non-climacteric fruit where abscisic acid is the growth regulator that drives ripening—involving ethylene, polyamine, and jasmonic acid pathways. The biosynthetic pathways of important metabolites in pomegranate—hydrolyzable tannins and anthocyanins—were co-upregulated at the ripening stage, in line with the visual enhancement of red coloration. Interestingly, cuticle- and cell-wall-related genes that showed differential expression between the developmental stages were mainly upregulated in the skin of early fruit, with lower expression at mid-growth and ripening stages. Nevertheless, lignification may be involved in skin hardening in the mature fruit.
Collapse
|
99880
|
Autophagy-Related Gene Signature Highlights Metabolic and Immunogenic Status of Malignant Cells in Non-Small Cell Lung Cancer Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14143462. [PMID: 35884522 PMCID: PMC9317787 DOI: 10.3390/cancers14143462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The role of autophagy in lung cancers is still controversial, mainly because the visualization of autophagy levels in patients remains challenging. One interesting approach consists of studying autophagy at the transcriptomic level. In this line, many transcriptomics analyses performed on autophagy genes focused on the discovery of new biomarkers to predict the efficiency of antitumor therapies. However, the majority of these studies were based on global transcriptomic analysis of the whole tumor microenvironment, and few investigations have been performed on malignant cells themselves. The goal of this study was not to determine another new predictive signature based on autophagy-related genes. Instead, we investigated the expression of autophagy genes to understand the involvement of this process in lung cancer homeostasis. Specifically, we discovered a new autophagy signature that correlates with the metabolic and immunogenic status of malignant cells, supporting the relationship between autophagy and tumor growth in lung cancer patients. Abstract Autophagy is a self-degradative mechanism involved in many biological processes, including cell death, survival, proliferation or migration. In tumors, autophagy plays an important role in tumorigenesis as well as cancer progression and resistance to therapies. Usually, a high level of autophagy in malignant cells has been associated with tumor progression and poor prognostic for patients. However, the investigation of autophagy levels in patients remains difficult, especially because quantification of autophagy proteins is challenging in the tumor microenvironment. In this study, we analyzed the expression of autophagy genes in non-small cell lung (NSCLC) cancer patients using public datasets and revealed an autophagy gene signature for proliferative and immune-checkpoint-expressed malignant cells in lung adenocarcinoma (LUAD). Analysis of autophagy-related gene expression profiles in tumor and adjacent tissues revealed differential signatures, namely signature A (23 genes) and signature B (12 genes). Signature B correlated with a bad prognosis and poor overall and disease-specific survival. Univariate and multivariate analyses revealed that this signature was an independent factor for prognosis. Moreover, patients with high expression of signature B exhibited more genes related to proliferation and fewer genes related to immune cells or immune response. The analysis of datasets from sorted fresh tumor cells or single cells revealed that signature B is predominantly represented in malignant cells, with poor expression in pan-immune population or in fibroblast or endothelial cells. Interestingly, autophagy was increased in malignant cells exhibiting high levels of signature B, which correlated with an elevated expression of genes involved in cell proliferation and immune checkpoint signaling. Taken together, our analysis reveals a novel autophagy-based signature to define the metabolic and immunogenic status of malignant cells in LUAD.
Collapse
|
99881
|
Comprehensive assessment of actionable genomic alterations in primary colorectal carcinoma using targeted next-generation sequencing. Br J Cancer 2022; 127:1304-1311. [PMID: 35842545 PMCID: PMC9519871 DOI: 10.1038/s41416-022-01913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background The clinical utility of comprehensive genomic profiling (CGP) for guiding treatment has gradually become the standard-of-care procedure for colorectal carcinoma (CRC). Here, we comprehensively assess emerging targeted therapy biomarkers using CGP in primary CRC. Methods A total of 575 primary CRCs were sequenced by ACTOnco® assay for genomic alterations, tumour mutational burden (TMB), and microsatellite instability (MSI). Results Eighteen percent of patients were detected as MSI-High (MSI-H), and the remaining cases were classified as microsatellite stable (MSS). Driver mutation prevalence in MSS CRCs were APC (74%), TP53 (67%), KRAS (47%), PIK3CA (21%) and BRAF (13%). The median TMBs for MSI-H and MSS patients were 37.8 mutations per mega base (mut/Mb) and 3.9 mut/Mb, respectively. Forty-seven percent of MSI-H CRC harboured at least one loss-of-function mutations in genes that may hamper immune checkpoint blockade. Among MSS RAS/RAF wild-type CRCs, 59% had at least one actionable mutation that may compromise the efficacy of anti-EGFR therapy. For late-stage CRC, 51% of patients are eligible for standard care actionability and the remaining 49% could be enrolled in clinical trials with investigational drugs. Conclusions This study highlights the essential role of CGP for identifying rational targeted therapy options in CRC.
Collapse
|
99882
|
Lobanov V, Gobet A, Joyce A. Ecosystem-specific microbiota and microbiome databases in the era of big data. ENVIRONMENTAL MICROBIOME 2022; 17:37. [PMID: 35842686 PMCID: PMC9287977 DOI: 10.1186/s40793-022-00433-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/29/2022] [Indexed: 05/05/2023]
Abstract
The rapid development of sequencing methods over the past decades has accelerated both the potential scope and depth of microbiota and microbiome studies. Recent developments in the field have been marked by an expansion away from purely categorical studies towards a greater investigation of community functionality. As in-depth genomic and environmental coverage is often distributed unequally across major taxa and ecosystems, it can be difficult to identify or substantiate relationships within microbial communities. Generic databases containing datasets from diverse ecosystems have opened a new era of data accessibility despite costs in terms of data quality and heterogeneity. This challenge is readily embodied in the integration of meta-omics data alongside habitat-specific standards which help contextualise datasets both in terms of sample processing and background within the ecosystem. A special case of large genomic repositories, ecosystem-specific databases (ES-DB's), have emerged to consolidate and better standardise sample processing and analysis protocols around individual ecosystems under study, allowing independent studies to produce comparable datasets. Here, we provide a comprehensive review of this emerging tool for microbial community analysis in relation to current trends in the field. We focus on the factors leading to the formation of ES-DB's, their comparison to traditional microbial databases, the potential for ES-DB integration with meta-omics platforms, as well as inherent limitations in the applicability of ES-DB's.
Collapse
Affiliation(s)
- Victor Lobanov
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | | | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.
| |
Collapse
|
99883
|
Ma W, Liao Y, Gao Z, Zhu W, Liu J, She W. Overexpression of LIMA1 Indicates Poor Prognosis and Promotes Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549221109493. [PMID: 35837368 PMCID: PMC9274436 DOI: 10.1177/11795549221109493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background: LIMA1 encodes LIM domain and actin binding 1, a
cytoskeleton-associated protein whose loss has been linked to migration and
invasion behavior of cancer cells. However, the roles of LIMA1 underlying
the malignant behavior of tumors in head and neck squamous cell carcinoma
(HNSC) are not fully understood. Methods: We conducted a multi-omics study on the role of LIMA1 in HNSC based on The
Cancer Genome Atlas data. Subsequent in vitro experiments were performed to
validate the results of bioinformatic analysis. We first identified the
correlation between LIMA1 and tumor cell functional states
according to single-cell sequencing data in HNSC. The potential downstream
effects of LIMA1 were explored for gene ontology and Kyoto Encyclopedia of
Genes and Genomes pathways through functional enrichment analysis of the
gene sets that correlated with LIMA1 in HNSC. The
prognostic role of LIMA1 was assessed using the log rank test to compare
difference in survival between LIMA1High and LIMA1Low
patients. Univariate Cox regression and multivariate Cox regression were
further carried out to identify the prognostic value of LIMA1 in HNSC. Results: LIMA1 was identified as a prognostic biomarker and is associated with
epithelial-mesenchymal transition (EMT) progress in HNSC. In vitro silencing
of LIMA1 suppressed EMT and related pathways in HNSC. Conclusions: LIMA1 promotes EMT and further leads to tumor invasion and metastasis.
Increased expression of LIMA1 indicates poor survival,
identifying it as a prognostic biomarker in HNSC.
Collapse
Affiliation(s)
- Wei Ma
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China.,Department of Otolaryngology-Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Ziwen Gao
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Wenyan Zhu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, China
| | - Jianbing Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Yancheng City Dafeng People's Hospital, Yancheng, China
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
99884
|
Zhdanov AV, Golubeva AV, Yordanova MM, Andreev DE, Ventura-Silva AP, Schellekens H, Baranov PV, Cryan JF, Papkovsky DB. Ghrelin rapidly elevates protein synthesis in vitro by employing the rpS6K-eEF2K-eEF2 signalling axis. Cell Mol Life Sci 2022; 79:426. [PMID: 35841486 PMCID: PMC9288388 DOI: 10.1007/s00018-022-04446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
Activated ghrelin receptor GHS-R1α triggers cell signalling pathways that modulate energy homeostasis and biosynthetic processes. However, the effects of ghrelin on mRNA translation are unknown. Using various reporter assays, here we demonstrate a rapid elevation of protein synthesis in cells within 15–30 min upon stimulation of GHS-R1α by ghrelin. We further show that ghrelin-induced activation of translation is mediated, at least in part, through the de-phosphorylation (de-suppression) of elongation factor 2 (eEF2). The levels of eEF2 phosphorylation at Thr56 decrease due to the reduced activity of eEF2 kinase, which is inhibited via Ser366 phosphorylation by rpS6 kinases. Being stress-susceptible, the ghrelin-mediated decrease in eEF2 phosphorylation can be abolished by glucose deprivation and mitochondrial uncoupling. We believe that the observed burst of translation benefits rapid restocking of neuropeptides, which are released upon GHS-R1α activation, and represents the most time- and energy-efficient way of prompt recharging the orexigenic neuronal circuitry.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
| | - Anna V Golubeva
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Martina M Yordanova
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - Dmitry E Andreev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ana Paula Ventura-Silva
- APC Microbiome Institute, University College Cork, Cork, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Harriet Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| | - John F Cryan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry & Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland
| |
Collapse
|
99885
|
Velasco BR, Izquierdo JM. T-Cell Intracellular Antigen 1-Like Protein in Physiology and Pathology. Int J Mol Sci 2022; 23:ijms23147836. [PMID: 35887183 PMCID: PMC9318959 DOI: 10.3390/ijms23147836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
T-cell intracellular antigen 1 (TIA1)-related/like (TIAR/TIAL1) protein is a multifunctional RNA-binding protein (RBP) involved in regulating many aspects of gene expression, independently or in combination with its paralog TIA1. TIAR was first described in 1992 by Paul Anderson’s lab in relation to the development of a cell death phenotype in immune system cells, as it possesses nucleolytic activity against cytotoxic lymphocyte target cells. Similar to TIA1, it is characterized by a subcellular nucleo-cytoplasmic localization and ubiquitous expression in the cells of different tissues of higher organisms. In this paper, we review the relevant structural and functional information available about TIAR from a triple perspective (molecular, cellular and pathophysiological), paying special attention to its expression and regulation in cellular events and processes linked to human pathophysiology.
Collapse
|
99886
|
Orozco-Mosqueda MDC, Fadiji AE, Babalola OO, Glick BR, Santoyo G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 2022; 263:127137. [PMID: 35905581 DOI: 10.1016/j.micres.2022.127137] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Crop plants are affected by a series of inhibitory environmental and biotic factors that decrease their growth and production. To counteract these adverse effects, plants work together with the microorganisms that inhabit their rhizosphere, which is part of the soil influenced by root exudates. The rhizosphere is a microecosystem where a series of complex interactions takes place between the resident microorganisms (rhizobiome) and plant roots. Therefore, this study analyzes the dynamics of plant-rhizobiome communication, the role of exudates (diffusible and volatile) as a factor in stimulating a diverse rhizobiome, and the differences between rhizobiomes of domesticated crops and wild plants. The study also analyzes different strategies to decipher the rhizobiome through both classical cultivation techniques and the so-called "omics" sciences. In addition, the rhizosphere engineering concept and the two general strategies to manipulate the rhizobiome, i.e., top down and bottom up engineering have been revisited. In addition, recent studies on the effects on the indigenous rhizobiome of inoculating plants with foreign strains, the impact on the endobiome, and the collateral effects on plant crops are discussed. Finally, understanding of the complex rhizosphere interactions and the biological repercussions of rhizobiome engineering as essential steps for improving plant growth and health is proposed, including under adverse conditions.
Collapse
Affiliation(s)
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, Mexico.
| |
Collapse
|
99887
|
Sun Y, Zeng X, Liu Y, Zhan S, Wu Z, Zheng X, Zhang X. Dendrobium officinale polysaccharide attenuates cognitive impairment in circadian rhythm disruption mice model by modulating gut microbiota. Int J Biol Macromol 2022; 217:677-688. [PMID: 35853505 DOI: 10.1016/j.ijbiomac.2022.07.090] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
Dendrobium officinale polysaccharide (DOP) has received an increasing amount of attention as it could alleviate AD-related cognitive impairment via the regulation of microglial activation. However, the modulatory mechanism of DOP on circadian rhythm disruption (CRD) and related cognitive impairment needs further investigation. In our study, the circadian rhythm disruption mice showed a deficit in recognition and spatial memory. DOP treatment reshaped the perturbation of gut microbiota caused by CRD, including up-regulated the abundance of Akkermansia and Alistipes, down-regulated the abundance of Clostridia. In addition, DOP restored histopathological changes, reduced inflammatory cells infiltration and strengthened mucosal integrity. Mechanistically, DOP ameliorated intestinal barrier dysfunction by up-regulating tight junction protein expression, which in turn improved the invasion of lipopolysaccharide to blood and brain. The change of these contributes to inhibiting the NF-κB activation and neuroinflammation, and thus attenuating hippocampus neuronal damage and the deposition of Aβ. Meanwhile, our results revealed that DOP could reverse the levels of metabolites derived related to cognitive function improvement, and these metabolites were closely associated with the key microbiota. Therefore, we speculated that DOP has the potential to provide neuroprotection against cognitive impairment by modulating the gut microbiota.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaoxiong Zeng
- Department of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, PR China.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
99888
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
99889
|
Zhang J, Wang L, Chen W, Duan J, Meng Y, Yang H, Guo Q. Whole exome sequencing facilitated the diagnosis in four Chinese pediatric cases of Joubert syndrome related disorders. Am J Transl Res 2022; 14:5088-5097. [PMID: 35958498 PMCID: PMC9360900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Joubert syndrome is a spectrum of rare genetic disorders, mainly characterized by a distinctive cerebellar and brain stem malformation called the "molar tooth sign" (MTS), hypotonia, and intellectual disability/developmental delay. METHODS In this study, 4 pediatric cases with developmental delay and oculomotor abnormities were recruited, and submitted to a clinical evaluation and magnetic resonance imaging (MRI) examination. Afterwards, genetic detection with whole exome sequencing (WES) was conducted on the 4 patients. RESULTS Imaging results demonstrated cerebellar dysplasia in all probands, yet the MTS findings varied in severity. WES detected diagnostic variations in all four probands, which were distributed in four genes, namely CC2D2A, NPHP1, AHI1, and C5orf42. Two variants were novelly identified, which were the CC2D2A: c.2444delC (p.P815fs*2) and the AIH1: exon (15-17) del. In silico analysis supported the pathogenicity of the variations in this study. CONCLUSIONS Our findings expanded the mutation spectrum of Joubert syndrome related disorders, and provided solid evidence to the affected families for further genetic counseling and pregnancy guidance.
Collapse
Affiliation(s)
- Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Lihui Wang
- Neurology Department, Children’s Hospital of Hebei Province, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Wenqi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Jun Duan
- Radiology Department, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Yanxin Meng
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| | - Huafang Yang
- Neurology Department, Children’s Hospital of Hebei Province, Hebei Medical UniversityShijiazhuang, Hebei, China
| | - Qing Guo
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University (Key Laboratory of Maternal and Fetal Medicine of Hebei Province)Shijiazhuang, Hebei, China
| |
Collapse
|
99890
|
Lamichhane S, Mo JS, Sharma G, Joung SM, Chae SC. MIR133A regulates cell proliferation, migration, and apoptosis by targeting SOX9 in human colorectal cancer cells. Am J Cancer Res 2022; 12:3223-3241. [PMID: 35968353 PMCID: PMC9360235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023] Open
Abstract
The human microRNA 133A (MIR133A) was identified as a CRC-associated miRNA. It was down-regulated in human CRC tissues. We identified the putative MIR133A1 and A2 target genes by comparing the transcriptome analysis data of MIR133A1 and A2 knock-in cells with the candidate MIR133A target genes predicted by bioinformatics tools. We identified 29 and 33 putative MIR133A and A2 direct target genes, respectively. Among them, we focused on the master transcription regulator gene SRY-box transcription factor 9 (SOX9), which exhibits a pleiotropic role in cancer. We confirmed that SOX9 is a direct target gene of MIR133A by luciferase reporter assay, quantitative RT-PCR, and western blot analysis. Overexpression of MIR133A in CRC cell lines significantly decreased SOX9 and its downstream PIK3CA-AKT1-GSK3B-CTNNB1 and KRAS-BRAF-MAP2K1-MAPK1/3 pathways and increased apoptosis. Furthermore, functional studies reveal that cell proliferation, colony formation, and migration ability were significantly decreased by MIR133A-overexpressed CRC cell lines. Knockdown of SOX9 in CRC cell lines by SOX9 gene silencing showed similar results. We also used a xenograft model to show that MIR133A overexpression suppresses tumor growth and proliferation. Our results suggest that MIR133A regulates cell proliferation, migration, and apoptosis by targeting SOX9 in human colorectal cancer.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Ji-Su Mo
- Digestive Disease Research Institute, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Grinsun Sharma
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Sun-Myoung Joung
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
- Digestive Disease Research Institute, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| |
Collapse
|
99891
|
Somta P, Laosatit K, Yuan X, Chen X. Thirty Years of Mungbean Genome Research: Where Do We Stand and What Have We Learned? FRONTIERS IN PLANT SCIENCE 2022; 13:944721. [PMID: 35909762 PMCID: PMC9335052 DOI: 10.3389/fpls.2022.944721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Mungbean is a socioeconomically important legume crop in Asia that is currently in high demand by consumers and industries both as dried beans and in plant-based protein foods. Marker-assisted and genomics-assisted breeding are promising approaches to efficiently and rapidly develop new cultivars with improved yield, quality, and resistance to biotic and abiotic stresses. Although mungbean was at the forefront of research at the dawn of the plant genomics era 30 years ago, the crop is a "slow runner" in genome research due to limited genomic resources, especially DNA markers. Significant progress in mungbean genome research was achieved only within the last 10 years, notably after the release of the VC1973A draft reference genome constructed using next-generation sequencing technology, which enabled fast and efficient DNA marker development, gene mapping, and identification of candidate genes for complex traits. Resistance to biotic stresses has dominated mungbean genome research to date; however, research is on the rise. In this study, we provide an overview of the past progress and current status of mungbean genomics research. We also discuss and evaluate some research results to provide a better understanding of mungbean genomics.
Collapse
Affiliation(s)
- Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
99892
|
Long Noncoding XLOC_006390 Regulates the Proliferation and Metastasis of Human Colorectal Cancer via miR-296/ONECUT2 Axis. JOURNAL OF ONCOLOGY 2022; 2022:4897201. [PMID: 35874630 PMCID: PMC9307412 DOI: 10.1155/2022/4897201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022]
Abstract
Long noncoding RNA (LncRNA) XLOC_006390 has been shown to be dysregulated in cancer tissues and regulates cancer growth and development. Nonetheless, the molecular role of lncRNA-XLOC_006390 in colorectal cancer via modulation of miR-296/ONECUT2 axis is still unclear. Against this backdrop, the current study was designed to explore the role of lncRNA-XLOC_006390 in colorectal cancer proliferation and metastasis. The results revealed significant (
) overexpression of lncRNA-XLOC_006390 in colorectal cancer tissues and cell lines, and the transcript levels increased with the advancement of the disease. Moreover, its high expression was shown to be associated with poor patient survival. Silencing of lncRNA-XLOC_006390 in colorectal cancer cells significantly (
) suppressed their viability via onset of apoptosis and restricted cancer cell migration and invasion. In vivo tumor growth was significantly (
) inhibited under lncRNA-XLOC_006390 repression. LncRNA-XLOC_006390 was shown to sponge the expression of miR-296-3p which in turn acted via post-transcriptional suppression of ONECUT 2 transcription factor to regulate the growth of colorectal cancer. Taken together, the results revealed the oncogenic role of lncRNA-XLOC_006390 in colorectal cancer via modulation of miR-296/ONECUT2 axis. The results also point towards its prognostic and therapeutic potential in the treatment of colorectal cancer.
Collapse
|
99893
|
Nunes C, Depestel L, Mus L, Keller KM, Delhaye L, Louwagie A, Rishfi M, Whale A, Kara N, Andrews SR, Dela Cruz F, You D, Siddiquee A, Cologna CT, De Craemer S, Dolman E, Bartenhagen C, De Vloed F, Sanders E, Eggermont A, Bekaert SL, Van Loocke W, Bek JW, Dewyn G, Loontiens S, Van Isterdael G, Decaesteker B, Tilleman L, Van Nieuwerburgh F, Vermeirssen V, Van Neste C, Ghesquiere B, Goossens S, Eyckerman S, De Preter K, Fischer M, Houseley J, Molenaar J, De Wilde B, Roberts SS, Durinck K, Speleman F. RRM2 enhances MYCN-driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition. SCIENCE ADVANCES 2022; 8:eabn1382. [PMID: 35857500 PMCID: PMC9278860 DOI: 10.1126/sciadv.abn1382] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/26/2022] [Indexed: 05/06/2023]
Abstract
High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential.
Collapse
Affiliation(s)
- Carolina Nunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lisa Depestel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Liselot Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Louis Delhaye
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Amber Louwagie
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Muhammad Rishfi
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alex Whale
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Neesha Kara
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daoqi You
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Armaan Siddiquee
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Camila Takeno Cologna
- Metabolomics Expertise Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sam De Craemer
- Metabolomics Expertise Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Emmy Dolman
- Princess Maxima Center, Utrecht, Netherlands
| | - Christoph Bartenhagen
- Center for Molecular Medicine Cologne, Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Cologne, Germany
| | - Fanny De Vloed
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ellen Sanders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Aline Eggermont
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Givani Dewyn
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Siebe Loontiens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | - Bieke Decaesteker
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Laurentijn Tilleman
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Van Neste
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bart Ghesquiere
- Metabolomics Expertise Center, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Matthias Fischer
- Center for Molecular Medicine Cologne, Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany
- Department of Experimental Pediatric Oncology, University Children’s Hospital of Cologne, Cologne, Germany
| | - Jon Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Stephen S. Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kaat Durinck
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
99894
|
Darp R, Vittoria MA, Ganem NJ, Ceol CJ. Oncogenic BRAF induces whole-genome doubling through suppression of cytokinesis. Nat Commun 2022; 13:4109. [PMID: 35840569 PMCID: PMC9287415 DOI: 10.1038/s41467-022-31899-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Melanomas and other solid tumors commonly have increased ploidy, with near-tetraploid karyotypes being most frequently observed. Such karyotypes have been shown to arise through whole-genome doubling events that occur during early stages of tumor progression. The generation of tetraploid cells via whole-genome doubling is proposed to allow nascent tumor cells the ability to sample various pro-tumorigenic genomic configurations while avoiding the negative consequences that chromosomal gains or losses have in diploid cells. Whereas a high prevalence of whole-genome doubling events has been established, the means by which whole-genome doubling arises is unclear. Here, we find that BRAFV600E, the most common mutation in melanomas, can induce whole-genome doubling via cytokinesis failure in vitro and in a zebrafish melanoma model. Mechanistically, BRAFV600E causes decreased activation and localization of RhoA, a critical cytokinesis regulator. BRAFV600E activity during G1/S phases of the cell cycle is required to suppress cytokinesis. During G1/S, BRAFV600E activity causes inappropriate centriole amplification, which is linked in part to inhibition of RhoA and suppression of cytokinesis. Together these data suggest that common abnormalities of melanomas linked to tumorigenesis - amplified centrosomes and whole-genome doubling events - can be induced by oncogenic BRAF and other mutations that increase RAS/MAPK pathway activity.
Collapse
Affiliation(s)
- Revati Darp
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
- University of Massachusetts Chan Medical School, Department of Molecular, Cellular and Cancer Biology, Worcester, MA, USA
| | - Marc A Vittoria
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Division of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Neil J Ganem
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Division of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Craig J Ceol
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA.
- University of Massachusetts Chan Medical School, Department of Molecular, Cellular and Cancer Biology, Worcester, MA, USA.
| |
Collapse
|
99895
|
Degenhardt F, Ellinghaus D, Juzenas S, Lerga-Jaso J, Wendorff M, Maya-Miles D, Uellendahl-Werth F, ElAbd H, Rühlemann MC, Arora J, Özer O, Lenning OB, Myhre R, Vadla MS, Wacker EM, Wienbrandt L, Blandino Ortiz A, de Salazar A, Garrido Chercoles A, Palom A, Ruiz A, Garcia-Fernandez AE, Blanco-Grau A, Mantovani A, Zanella A, Holten AR, Mayer A, Bandera A, Cherubini A, Protti A, Aghemo A, Gerussi A, Ramirez A, Braun A, Nebel A, Barreira A, Lleo A, Teles A, Kildal AB, Biondi A, Caballero-Garralda A, Ganna A, Gori A, Glück A, Lind A, Tanck A, Hinney A, Carreras Nolla A, Fracanzani AL, Peschuck A, Cavallero A, Dyrhol-Riise AM, Ruello A, Julià A, Muscatello A, Pesenti A, Voza A, Rando-Segura A, Solier A, Schmidt A, Cortes B, Mateos B, Nafria-Jimenez B, Schaefer B, Jensen B, Bellinghausen C, Maj C, Ferrando C, de la Horra C, Quereda C, Skurk C, Thibeault C, Scollo C, Herr C, Spinner CD, Gassner C, Lange C, Hu C, Paccapelo C, Lehmann C, Angelini C, Cappadona C, Azuure C, Bianco C, Cea C, Sancho C, Hoff DAL, Galimberti D, Prati D, Haschka D, Jiménez D, Pestaña D, Toapanta D, Muñiz-Diaz E, Azzolini E, Sandoval E, Binatti E, Scarpini E, Helbig ET, Casalone E, Urrechaga E, Paraboschi EM, Pontali E, Reverter E, Calderón EJ, Navas E, Solligård E, Contro E, Arana-Arri E, Aziz F, Garcia F, García Sánchez F, Ceriotti F, Martinelli-Boneschi F, Peyvandi F, Kurth F, Blasi F, Malvestiti F, Medrano FJ, Mesonero F, Rodriguez-Frias F, Hanses F, Müller F, Hemmrich-Stanisak G, Bellani G, Grasselli G, Pezzoli G, Costantino G, Albano G, Cardamone G, Bellelli G, Citerio G, Foti G, Lamorte G, Matullo G, Baselli G, Kurihara H, Neb H, My I, Kurth I, Hernández I, Pink I, de Rojas I, Galván-Femenia I, Holter JC, Afset JE, Heyckendorf J, Kässens J, Damås JK, Rybniker J, Altmüller J, Ampuero J, Martín J, Erdmann J, Banales JM, Badia JR, Dopazo J, Schneider J, Bergan J, Barretina J, Walter J, Hernández Quero J, Goikoetxea J, Delgado J, Guerrero JM, Fazaal J, Kraft J, Schröder J, Risnes K, Banasik K, Müller KE, Gaede KI, Garcia-Etxebarria K, Tonby K, Heggelund L, Izquierdo-Sanchez L, Bettini LR, Sumoy L, Sander LE, Lippert LJ, Terranova L, Nkambule L, Knopp L, Gustad LT, Garbarino L, Santoro L, Téllez L, Roade L, Ostadreza M, Intxausti M, Kogevinas M, Riveiro-Barciela M, Berger MM, Schaefer M, Niemi MEK, Gutiérrez-Stampa MA, Carrabba M, Figuera Basso ME, Valsecchi MG, Hernandez-Tejero M, Vehreschild MJGT, Manunta M, Acosta-Herrera M, D'Angiò M, Baldini M, Cazzaniga M, Grimsrud MM, Cornberg M, Nöthen MM, Marquié M, Castoldi M, Cordioli M, Cecconi M, D'Amato M, Augustin M, Tomasi M, Boada M, Dreher M, Seilmaier MJ, Joannidis M, Wittig M, Mazzocco M, Ciccarelli M, Rodríguez-Gandía M, Bocciolone M, Miozzo M, Imaz Ayo N, Blay N, Chueca N, Montano N, Braun N, Ludwig N, Marx N, Martínez N, Cornely OA, Witzke O, Palmieri O, Faverio P, Preatoni P, Bonfanti P, Omodei P, Tentorio P, Castro P, Rodrigues PM, España PP, Hoffmann P, Rosenstiel P, Schommers P, Suwalski P, de Pablo R, Ferrer R, Bals R, Gualtierotti R, Gallego-Durán R, Nieto R, Carpani R, Morilla R, Badalamenti S, Haider S, Ciesek S, May S, Bombace S, Marsal S, Pigazzini S, Klein S, Pelusi S, Wilfling S, Bosari S, Volland S, Brunak S, Raychaudhuri S, Schreiber S, Heilmann-Heimbach S, Aliberti S, Ripke S, Dudman S, Wesse T, Zheng T, Bahmer T, Eggermann T, Illig T, Brenner T, Pumarola T, Feldt T, Folseraas T, Gonzalez Cejudo T, Landmesser U, Protzer U, Hehr U, Rimoldi V, Monzani V, Skogen V, Keitel V, Kopfnagel V, Friaza V, Andrade V, Moreno V, Albrecht W, Peter W, Poller W, Farre X, Yi X, Wang X, Khodamoradi Y, Karadeniz Z, Latiano A, Goerg S, Bacher P, Koehler P, Tran F, Zoller H, Schulte EC, Heidecker B, Ludwig KU, Fernández J, Romero-Gómez M, Albillos A, Invernizzi P, Buti M, Duga S, Bujanda L, Hov JR, Lenz TL, Asselta R, de Cid R, Valenti L, Karlsen TH, Cáceres M, Franke A. Detailed stratified GWAS analysis for severe COVID-19 in four European populations. Hum Mol Genet 2022; 31:3945-3966. [PMID: 35848942 PMCID: PMC9703941 DOI: 10.1093/hmg/ddac158] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/11/2022] [Accepted: 07/26/2022] [Indexed: 12/11/2022] Open
Abstract
Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.
Collapse
Affiliation(s)
- Frauke Degenhardt
- To whom correspondence should be addressed. (Frauke Degenhardt) and (Andre Franke)
| | | | | | | | | | | | | | - Hesham ElAbd
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Malte C Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany,Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Jatin Arora
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA,Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
| | - Onur Özer
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany,Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Ole Bernt Lenning
- Research Department, Stavanger University Hospital, Stavanger, Norway,Randaberg Municipality, Stavanger, Norway
| | - Ronny Myhre
- Division of Health Data and Digitalization, Department of Genetics and Bioinformatics (HDGB), Norwegian Institute of Public Health, Oslo, Norway
| | - May Sissel Vadla
- Randaberg Municipality, Stavanger, Norway,Department of Quality and Health Technology, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| | - Eike M Wacker
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Lars Wienbrandt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Aaron Blandino Ortiz
- Department of Intensive Care, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Adolfo de Salazar
- Ibs.Granada Instituto de Investigación Biosanitaria, Granada, Spain,Microbiology Unit. Hospital Universitario Clinico San Cecilio, Granada, Spain
| | - Adolfo Garrido Chercoles
- Clinical Biochemistry Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, San Sebastian, Spain
| | - Adriana Palom
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain,Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Albert Blanco-Grau
- Department of Biochemistry, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alberto Zanella
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Aleksander Rygh Holten
- Department of Acute Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alena Mayer
- Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Alessandra Bandera
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Alessandro Protti
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alessio Aghemo
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alessio Gerussi
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy,Division of Gastroenterology, School of Medicine and Surgery, Center for Autoimmune Liver Diseases, University of Milano-Bicocca, Milan, Italy
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany,Department of Psychiatry, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Alice Braun
- Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Ana Barreira
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Lleo
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ana Teles
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany,Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Anders Benjamin Kildal
- Department of Anesthesiology and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Andrea Biondi
- Pediatric Departement, Centro Tettamanti-European Reference Network (ERN) PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM/Ospedale, San Gerardo, Italy
| | | | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Andrea Gori
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Andreas Glück
- Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Andreas Lind
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Anja Tanck
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Carreras Nolla
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Anna Ludovica Fracanzani
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Peschuck
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Infectious diseases, Oslo University Hospital, Oslo, Norway
| | | | - Antonio Julià
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | | | - Antonio Pesenti
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Voza
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ariadna Rando-Segura
- Microbiology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain,Universitat Autònoma de Barcelona, Bellatera, Spain
| | - Aurora Solier
- Department of Respiratory Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), University of Alcalá, Madrid, Spain
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Beatriz Cortes
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Beatriz Mateos
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Beatriz Nafria-Jimenez
- Clinical Biochemistry Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, San Sebastian, Spain
| | - Benedikt Schaefer
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria,Christian Doppler Laboratory of Iron and Phosphate Biology at the Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Björn Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty Heinrich Heine University, Duesseldorf, Germany
| | - Carla Bellinghausen
- Department of Respiratory Medicine and Allergology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Carlo Maj
- Institute of Genomic Statistics and Bioinformatics, University Hospital Bonn, Medical Faculty University of Bonn, Bonn, Germany
| | - Carlos Ferrando
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain,Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain
| | - Carmen de la Horra
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain,Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain,University of Sevilla, Sevilla, Spain,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Carmen Quereda
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | | | | | - Chiara Scollo
- Department of Transfusion Medicine and Haematology Laboratory, San Gerardo Hospital, Monza, Italy
| | - Christian Herr
- Department of Internal Medicine V—Pneumology, Allergology and Intensive Care Medicine, University Hospital Saarland, Homburg, Germany
| | - Christoph D Spinner
- Department of Internal Medicine II, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christoph Gassner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany,Institute of Translational Medicine, Private University in the Principality of Liechtenstein (UFL), Triesen, Liechtenstein
| | - Christoph Lange
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany,Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany,Clinical Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
| | - Cinzia Hu
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cinzia Paccapelo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany,German Center for Infection Research (DZIF), Cologne, Germany
| | | | - Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Clinton Azuure
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany,Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | | | - Cristiana Bianco
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Cea
- Department of Biochemistry, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Cristina Sancho
- Osakidetza Basque Health Service, Basurto University Hospital, Respiratory Service, Bilbao, Spain
| | - Dag Arne Lihaug Hoff
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway,Department of Medicine, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | - Daniela Galimberti
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Prati
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David Haschka
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - David Jiménez
- Department of Respiratory Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), University of Alcalá, Madrid, Spain
| | - David Pestaña
- Department of Anesthesiology and Critical Care, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - David Toapanta
- Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain
| | - Eduardo Muñiz-Diaz
- Immunohematology Department, Banc de Sang i Teixits, Autonomous University of Barcelona, Barcelona, Spain
| | - Elena Azzolini
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Sandoval
- Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain
| | - Eleonora Binatti
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy,Division of Gastroenterology, School of Medicine and Surgery, Center for Autoimmune Liver Diseases, University of Milano-Bicocca, Milan, Italy
| | - Elio Scarpini
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elisabetta Casalone
- Department of Medical Sciences, Università degli Studi di Torino, Turin, Italy
| | - Eloisa Urrechaga
- Osakidetza Basque Health Service, Galdakao Hospital, Respiratory Service, Galdakao, Spain,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Elvezia Maria Paraboschi
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Emanuele Pontali
- Department of Infectious Diseases, E.O. Ospedali Galliera, Genova, Italy
| | - Enric Reverter
- Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain
| | - Enrique J Calderón
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain,Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain,University of Sevilla, Sevilla, Spain,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Enrique Navas
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Erik Solligård
- Geminicenter for Sepsis Research, Institute of Circulation and Medical Imaging (ISB), NTNU, Trondheim, Norway,Clinic of Anesthesia and Intensive Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ernesto Contro
- Accident and Emergency and Emergency Medicine Unit, San Gerardo Hospital, Monza, Italy
| | | | - Fátima Aziz
- Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain
| | - Federico Garcia
- Ibs.Granada Instituto de Investigación Biosanitaria, Granada, Spain,Microbiology Unit. Hospital Universitario Clinico San Cecilio, Granada, Spain,Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Félix García Sánchez
- Histocompatibilidad y Biologia Molecular, Centro de Transfusion de Madrid, Madrid, Spain
| | | | - Filippo Martinelli-Boneschi
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy,Neurology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Flora Peyvandi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Florian Kurth
- Charite Universitätsmedizin Berlin, Berlin, Germany,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Francesco Blasi
- Respiratory Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | | | - Francisco J Medrano
- Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain,University of Sevilla, Sevilla, Spain,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,Consejo Superior de Investigaciones Científicas, Sevilla, Spain,Internal Medicine Department, Virgen del Rocio University Hospital, Sevilla, Spain
| | - Francisco Mesonero
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Francisco Rodriguez-Frias
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain,Department of Biochemistry, University Hospital Vall d’Hebron, Barcelona, Spain,Microbiology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain,Universitat Autònoma de Barcelona, Bellatera, Spain,Biochemistry Department, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Frank Hanses
- Emergency Department, University Hospital Regensburg, Regensburg, Germany,Department for Infectious Diseases and Infection Control, University Hospital Regensburg, Regensburg, Germany
| | - Fredrik Müller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | - Giacomo Bellani
- Department Emergency, Anesthesia and Intensive Care, San Gerardo Hospital, Monza, Italy,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giacomo Grasselli
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson and Parkinson Institute, ASST Gaetano Pini-CTO, Milan, Italy
| | - Giorgio Costantino
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giuseppe Bellelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Acute Geriatric Unit, San Gerardo Hospital, Monza, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Neurointensive Care Unit, San Gerardo Hospital, Monza, Italy
| | - Giuseppe Foti
- Department Emergency, Anesthesia and Intensive Care, San Gerardo Hospital, Monza, Italy,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giuseppe Lamorte
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, Università degli Studi di Torino, Turin, Italy
| | - Guido Baselli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Holger Neb
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ilaria My
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Isabel Hernández
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Isabell Pink
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Itziar de Rojas
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Iván Galván-Femenia
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Jan Cato Holter
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jan Egil Afset
- Osakidetza Basque Health Service, Basurto University Hospital, Respiratory Service, Bilbao, Spain,Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs hospital, Trondheim, Norway
| | - Jan Heyckendorf
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany,Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany,Clinical Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
| | - Jan Kässens
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Jan Kristian Damås
- Department of Infectious Diseases, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway,Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany,German Centre for Infection Research (DZIF), Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Javier Ampuero
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain,Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain,University of Sevilla, Sevilla, Spain,Digestive Diseases Unit, Virgen del Rocio University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany,German Research Center for Cardiovascular Research, Lübeck, Germany,University Heart Center Lübeck, Lübeck, Germany
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Joan Ramon Badia
- Respiratory ICU, Institut Clínic Respiratory, Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain
| | - Joaquin Dopazo
- Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain,Bioinformatics Area, Fundación Progreso y Salud, and Institute of Biomedicine of Sevilla (IBIS), Sevilla, Spain
| | - Jochen Schneider
- Department of Internal Medicine V—Pneumology, Allergology and Intensive Care Medicine, University Hospital Saarland, Homburg, Germany
| | - Jonas Bergan
- Department of Research, Ostfold Hospital Trust, Gralum, Norway
| | - Jordi Barretina
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Jörn Walter
- Department of Genetics & Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jose Hernández Quero
- Ibs.Granada Instituto de Investigación Biosanitaria, Granada, Spain,Department of Infectious Diseases, Hospital Universitario Clinico San Cecilio, Granada, Spain
| | - Josune Goikoetxea
- Infectious Diseases Service, Osakidetza, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Juan Delgado
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain,Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain,University of Sevilla, Sevilla, Spain,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Juan M Guerrero
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain,Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain,University of Sevilla, Sevilla, Spain
| | - Julia Fazaal
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Julia Kraft
- Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Schröder
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Kari Risnes
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway,Department of Research, St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karl Erik Müller
- Medical Department, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Karoline I Gaede
- Research Center Borstel, BioMaterialBank Nord, Borstel, Germany,German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany,Popgen 2.0 Network (P2N), Kiel, Germany
| | - Koldo Garcia-Etxebarria
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | - Kristian Tonby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Infectious diseases, Oslo University Hospital, Oslo, Norway
| | - Lars Heggelund
- Medical Department, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Izquierdo-Sanchez
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain,Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Laura Rachele Bettini
- Pediatric Departement, Centro Tettamanti-European Reference Network (ERN) PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM/Ospedale, San Gerardo, Italy
| | - Lauro Sumoy
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | | | | | - Lindokuhle Nkambule
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA,Stanley Center for Psychiatric Research & Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lisa Knopp
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty Heinrich Heine University, Duesseldorf, Germany
| | - Lise Tuset Gustad
- Geminicenter for Sepsis Research, Institute of Circulation and Medical Imaging (ISB), NTNU, Trondheim, Norway,Clinic of Medicine and Rehabilitation, Levanger Hospital, Nord-Trondelag Hospital Trust, Levanger, Norway
| | | | - Luigi Santoro
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luis Téllez
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Luisa Roade
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain,Department of Respiratory Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | | | - Maider Intxausti
- Osakidetza Basque Health Service, Basurto University Hospital, Respiratory Service, Bilbao, Spain
| | - Manolis Kogevinas
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra (UPF), Barcelona, Spain,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain,Universitat Autònoma de Barcelona, Bellatera, Spain
| | - Marc M Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Mari E K Niemi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - María A Gutiérrez-Stampa
- Osakidetza, OSI Donostialdea, Altza Primary Care, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Maria Carrabba
- Internal Medicine Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria E Figuera Basso
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Maria Grazia Valsecchi
- Center of Bioinformatics, Biostatistics and Bioimaging, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria Manunta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Mariella D'Angiò
- Pediatric Departement, Centro Tettamanti-European Reference Network (ERN) PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM/Ospedale, San Gerardo, Italy
| | - Marina Baldini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Cazzaniga
- Phase 1 Research Centre, ASST Monza, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marit M Grimsrud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Surgery, Inflammatory Diseases and Transplantation, Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway,Division of Surgery, Inflammatory Diseases and Transplantation, Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marta Marquié
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Mattia Cordioli
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Maurizio Cecconi
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Mauro D'Amato
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain,Gastrointestinal Genetics Lab, CIC bioGUNE—BRTA, Derio, Spain,Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Max Augustin
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany,German Center for Infection Research (DZIF), Cologne, Germany
| | - Melissa Tomasi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mercè Boada
- Research Center and Memory Clinic, Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital Aachen, Aachen, Germany
| | - Michael J Seilmaier
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | | | | | - Miguel Rodríguez-Gandía
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | | | - Monica Miozzo
- University of Milan, Milan, Italy,Internal Medicine Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Natale Imaz Ayo
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Natalia Blay
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Natalia Chueca
- Microbiology Unit. Hospital Universitario Clinico San Cecilio, Granada, Spain
| | - Nicola Montano
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicole Braun
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany,University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Center of Human and Molecular Biology, University Hospital Saarland, Homburg/Saar, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, RWTH Aachen University Hospital, Aachen, Germany
| | - Nilda Martínez
- Department of Anesthesiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,German Center for Infection Research (DZIF), Cologne, Germany,Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Orazio Palmieri
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Paola Faverio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Pulmonary Unit, San Gerardo Hospital, Monza, Italy
| | | | - Paolo Bonfanti
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Infectious Diseases Unit, San Gerardo Hospital, Monza, Italy
| | - Paolo Omodei
- Humanitas Clinical and Research Center, IRCCS, Milan, Italy
| | | | - Pedro Castro
- Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain
| | - Pedro M Rodrigues
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain,Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Pedro Pablo España
- Osakidetza Basque Health Service, Galdakao Hospital, Respiratory Service, Galdakao, Spain
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Philipp Schommers
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany,German Center for Infection Research (DZIF), Cologne, Germany
| | | | - Raúl de Pablo
- Department of Intensive Care, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, SODIR-VHIR research group, Barcelona, Spain
| | - Robert Bals
- Department of Internal Medicine V—Pneumology, Allergology and Intensive Care Medicine, University Hospital Saarland, Homburg, Germany
| | - Roberta Gualtierotti
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rocío Gallego-Durán
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain,Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain
| | - Rosa Nieto
- Department of Respiratory Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain,Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), University of Alcalá, Madrid, Spain
| | - Rossana Carpani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rubén Morilla
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain,Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain,University of Sevilla, Sevilla, Spain,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | | | - Sammra Haider
- Department of Medicine, Møre & Romsdal Hospital Trust, Molde, Norway
| | - Sandra Ciesek
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany,German Centre for Infection Research (DZIF), Frankfurt am Main, Germany
| | - Sandra May
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Sara Bombace
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sara Marsal
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Sara Pigazzini
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Sebastian Klein
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Serena Pelusi
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sibylle Wilfling
- Department for Infectious Diseases and Infection Control, University Hospital Regensburg, Regensburg, Germany,Zentrum für Humangenetik Regensburg, Regensburg, Germany,Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg, Regensburg, Germany
| | - Silvano Bosari
- University of Milan, Milan, Italy,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonja Volland
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Soumya Raychaudhuri
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA,Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA,Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA,Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany,Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefano Aliberti
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Susanne Dudman
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tanja Wesse
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Tenghao Zheng
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | | | - Thomas Bahmer
- Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tomas Pumarola
- Department of Microbiology, University Hospital Vall d’Hebron, Barcelona, Spain,Autonoma University of Barcelona, Barcelona, Spain
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty Heinrich Heine University, Duesseldorf, Germany
| | - Trine Folseraas
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Surgery, Inflammatory Diseases and Transplantation, Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway,Division of Surgery, Inflammatory Diseases and Transplantation, Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital Rikshospitalet, Oslo, Norway,Division for Cancer Medicine, Surgery and Transplantation, Section for Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Ulf Landmesser
- Berlin Institute of Health, Charite Universitätsmedizin Berlin, Berlin Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University Munich/Helmholtz Zentrum München, Munich, Germany,German Center for Infection Research (DZIF), Munich, Germany
| | - Ute Hehr
- Zentrum für Humangenetik Regensburg, Regensburg, Germany
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Valter Monzani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vegard Skogen
- Department of Infectious Diseases, University Hospital of North Norway, Tromsø, Norway,Faculty of Health Sciences, UIT The Arctic University of Norway, Norway
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty Heinrich Heine University, Duesseldorf, Germany
| | - Verena Kopfnagel
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Vicente Friaza
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain,Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain,University of Sevilla, Sevilla, Spain,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Victor Andrade
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Victor Moreno
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain,Catalan Institute of Oncology (ICO), Barcelona, Spain,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain,Universitat de Barcelona (UB), Barcelona, Spain
| | - Wolfgang Albrecht
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Wolfgang Peter
- Stefan-Morsch-Stiftung, Birkenfeld, Germany,Faculty of Medicine and University Hospital Cologne, Institute for Transfusion Medicine, University of Cologne, Cologne, Germany
| | | | - Xavier Farre
- Genomes for Life-GCAT Lab, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Xiaoli Yi
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Xiaomin Wang
- Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Anna Latiano
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Siegfried Goerg
- Institute of Transfusionsmedicine, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany,Institute of Immunology, Christian-Albrechts-University of Kiel and UKSH Schleswig-Holstein, Kiel, Germany
| | - Philipp Koehler
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany,Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Heinz Zoller
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria,Christian Doppler Laboratory of Iron and Phosphate Biology at the Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Eva C Schulte
- Institute of Virology, Technical University Munich/Helmholtz Zentrum München, Munich, Germany,Institute of Psychiatric Phenomics and Genomics, University Medical Center, University of Munich, Munich, Germany,Department of Psychiatry, University Medical Center, University of Munich, Munich, Germany
| | | | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Javier Fernández
- Hospital Clinic, University of Barcelona, and IDIBAPS, Barcelona, Spain,European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain
| | - Manuel Romero-Gómez
- Hospital Universitario Virgen del Rocío de Sevilla, Sevilla, Spain,Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Instituto de Biomedicina de Sevilla (IBIS), Sevilla, Spain,University of Sevilla, Sevilla, Spain,Digestive Diseases Unit, Virgen del Rocio University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain
| | - Agustín Albillos
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Pietro Invernizzi
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy,Division of Gastroenterology, School of Medicine and Surgery, Center for Autoimmune Liver Diseases, University of Milano-Bicocca, Milan, Italy
| | - Maria Buti
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain,Universitat Autònoma de Barcelona, Bellatera, Spain
| | - Stefano Duga
- IRCCS Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastian, Spain
| | | | | | | | | | | | | | | | - Andre Franke
- To whom correspondence should be addressed. (Frauke Degenhardt) and (Andre Franke)
| |
Collapse
|
99896
|
Yuan S, Guo S, Huang X, Meng F. Time-lagged interspecies interactions prevail during biofilm development in moving bed biofilm reactor. Biotechnol Bioeng 2022; 119:2770-2783. [PMID: 35837838 DOI: 10.1002/bit.28177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 11/09/2022]
Abstract
Clarifying the essential succession dynamics of interspecies interactions during biofilm development is crucial for the regulation and application of biofilm-based processes. In this study, regular and time-series phylogenetic molecular ecological networks (pMENs) were constructed to investigate ordinary and time-lagged interspecies interactions during biofilm development in a moving bed biofilm reactor (MBBR). Positive interactions dominated both regular (89.78%) and time-series (77.04%) ecological networks, suggesting that extensive cooperative behaviors facilitated biofilm development. The pronounced directional interactions (72.52%) in the time-series network further indicated that time-lagged interspecies interactions prevailed in the biofilm development process. Specifically, the proportion of directional negative interactions was higher than that of positive interactions, implying that interspecific competition preferred to be time-lagged. The time-series network revealed that module hubs exhibited extensive time-lagged positive interactions with their neighbors, and most of them exhibited altruistic behaviors. Keystone species possessing more positive interactions were positively correlated with biofilm biomass, NO3 - -N concentrations, and the removal efficiencies of NH4 + -N and COD. However, keystone species and peripherals that were negatively targeted by their neighbors showed positive correlations with the concentrations of NO2 - -N, polysaccharides, and proteins in the soluble microbial products. The data highlight that the time-series network can provide directional microbial interactions along with the biofilm development process, which would help to predict the tendency of community shifts and propose efficient strategies for the regulation of biofilm-based processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Sixian Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Xihao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, (Sun Yat-sen University), Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, (Sun Yat-sen University), Guangzhou, 510275, PR China
| |
Collapse
|
99897
|
Baess SC, Burkhart AK, Cappello S, Graband A, Seré K, Zenke M, Niemann C, Iden S. Lrig1- and Wnt-dependent niches dictate segregation of resident immune cells and melanocytes in murine tail epidermis. Development 2022; 149:275959. [PMID: 35815643 PMCID: PMC9382897 DOI: 10.1242/dev.200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
The barrier-forming, self-renewing mammalian epidermis comprises keratinocytes, pigment-producing melanocytes and resident immune cells as first-line host defense. In murine tail skin, interfollicular epidermis patterns into pigmented ‘scale’ and hypopigmented ‘interscale’ epidermis. Why and how mature melanocytes accumulate in scale epidermis is unresolved. Here, we delineate a cellular hierarchy among epidermal cell types that determines skin patterning. Already during postnatal development, melanocytes co-segregate with newly forming scale compartments. Intriguingly, this process coincides with partitioning of both Langerhans cells and dendritic epidermal T cells to interscale epidermis, suggesting functional segregation of pigmentation and immune surveillance. Analysis of non-pigmented mice and of mice lacking melanocytes or resident immune cells revealed that immunocyte patterning is melanocyte and melanin independent and, vice versa, immune cells do not control melanocyte localization. Instead, genetically enforced progressive scale fusion upon Lrig1 deletion showed that melanocytes and immune cells dynamically follow epithelial scale:interscale patterns. Importantly, disrupting Wnt-Lef1 function in keratinocytes caused melanocyte mislocalization to interscale epidermis, implicating canonical Wnt signaling in organizing the pigmentation pattern. Together, this work uncovers cellular and molecular principles underlying the compartmentalization of tissue functions in skin. Summary: Pigmentation and immune surveillance functions in murine tail skin are spatially segregated by Lrig1- and Wnt-Lef1-dependent keratinocyte lineages that control the partitioning of melanocytes and tissue-resident immune cells into distinct epidermal niches.
Collapse
Affiliation(s)
- Susanne C. Baess
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Ann-Kathrin Burkhart
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Sabrina Cappello
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Annika Graband
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Kristin Seré
- Institute for Biomedical Engineering 4 , Department of Cell Biology , , 52074 Aachen , Germany
- RWTH Aachen University Medical School 4 , Department of Cell Biology , , 52074 Aachen , Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University 5 , 52074 Aachen , Germany
| | - Martin Zenke
- Institute for Biomedical Engineering 4 , Department of Cell Biology , , 52074 Aachen , Germany
- RWTH Aachen University Medical School 4 , Department of Cell Biology , , 52074 Aachen , Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University 5 , 52074 Aachen , Germany
| | - Catherin Niemann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Center of Biochemistry 6 , Faculty of Medicine , , 50931 Cologne , Germany
- University Hospital Cologne 6 , Faculty of Medicine , , 50931 Cologne , Germany
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| |
Collapse
|
99898
|
Guo W, Cui X, Wang Q, Wei Y, Guo Y, Zhang T, Zhan J. Clinical evaluation of metagenomic next-generation sequencing for detecting pathogens in bronchoalveolar lavage fluid collected from children with community-acquired pneumonia. Front Med (Lausanne) 2022; 9:952636. [PMID: 35911412 PMCID: PMC9334703 DOI: 10.3389/fmed.2022.952636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023] Open
Abstract
This study is to evaluate the usefulness of pathogen detection using metagenomic next-generation sequencing (mNGS) on bronchoalveolar lavage fluid (BALF) specimens from children with community-acquired pneumonia (CAP). We retrospectively collected BALF specimens from 121 children with CAP at Tianjin Children's Hospital from February 2021 to December 2021. The diagnostic performances of mNGS and conventional tests (CT) (culture and targeted polymerase chain reaction tests) were compared, using composite diagnosis as the reference standard. The results of mNGS and CT were compared based on pathogenic and non-pathogenic organisms. Pathogen profiles and co-infections between the mild CAP and severe CAP groups were also analyzed. The overall positive coincidence rate was 86.78% (105/121) for mNGS and 66.94% (81/121) for CT. The proportion of patients diagnosed using mNGS plus CT increased to 99.18%. Among the patients, 17.36% were confirmed only by mNGS; Streptococcus pneumoniae accounted for 52.38% and 23.8% of the patients were co-infected. Moreover, Bordetella pertussis and Human bocavirus (HBoV) were detected only using mNGS. Mycoplasma pneumoniae, which was identified in 89 (73.55%) of 121 children with CAP, was the most frequent pathogen detected using mNGS. The infection rate of M. pneumoniae in the severe CAP group was significantly higher than that in the mild CAP group (P = 0.007). The symptoms of single bacterial infections (except for mycoplasma) were milder than those of mycoplasma infections. mNGS identified more bacterial infections when compared to the CT methods and was able to identify co-infections which were initially missed on CT. Additionally, it was able to identify pathogens that were beyond the scope of the CT methods. The mNGS method is a powerful supplement to clinical diagnostic tools in respiratory infections, as it can increase the precision of diagnosis and guide the use of antibiotics.
Collapse
Affiliation(s)
- Wei Guo
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Xiaojian Cui
- Department of Clinical Lab, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Qiushi Wang
- Infection Business Unit, Tianjin Novogene Med LAB Co., Ltd., Tianjin, China
| | - Yupeng Wei
- Department of Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Yanqing Guo
- Infection Business Unit, Tianjin Novogene Med LAB Co., Ltd., Tianjin, China
- *Correspondence: Yanqing Guo
| | - Tongqiang Zhang
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
- Tongqiang Zhang
| | - Jianghua Zhan
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of Pediatric Surgery, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
- Jianghua Zhan
| |
Collapse
|
99899
|
Zhou GL, Li Y, Pei F, Gong T, Chen TJ, Chen JJ, Yang JL, Li QH, Yu SS, Zhu P. Chromosome-scale genome assembly of Rhododendron molle provides insights into its evolution and terpenoid biosynthesis. BMC PLANT BIOLOGY 2022; 22:342. [PMID: 35836128 PMCID: PMC9284817 DOI: 10.1186/s12870-022-03720-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/28/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Rhododendron molle (Ericaceae) is a traditional Chinese medicine, which has been used to treat rheumatism and relieve pain since ancient times. The characteristic grayanoids of this plant have been demonstrated to be the chemical basis for the analgesic activity. Moreover, unlike morphine, these diterpenoids are non-addictive. Grayanoids mainly distribute in the leaves, flowers, roots, and fruits of R. molle, with low content. Currently the research on the biosynthesis of grayanoids is hindered, partially due to lack of the genomic information. RESULTS In the present study, a total of 744 Mb sequences were generated and assembled into 13 chromosomes. An ancient whole-genome duplication event (Ad-β) was discovered that occurred around 70 million years ago. Tandem and segmental gene duplications led to specific gene expansions in the terpene synthase and cytochrome P450 (CYP450) gene families. Two diterpene synthases were demonstrated to be responsible for the biosynthesis of 16α-hydroxy-ent-kaurane, the key precursor for grayanoids. Phylogenetic analysis revealed a species-specific bloom of the CYP71AU subfamily, which may involve the candidate CYP450s responsible for the biosynthesis of grayanoids. Additionally, three putative terpene biosynthetic gene clusters were found. CONCLUSIONS We reported the first genome assembly of R. molle and investigated the molecular basis underpinning terpenoids biosynthesis. Our work provides a foundation for elucidating the complete biosynthetic pathway of grayanoids and studying the terpenoids diversity in R. molle.
Collapse
Affiliation(s)
- Guo-Lin Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Fei Pei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Tian-Jiao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jing-Jing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Qi-Han Li
- Institute of medical biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 935 Jiaoling Street, Kunming, 650118, Yunnan Province, China.
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
99900
|
Comparative transcriptome analysis on the mangrove Acanthus ilicifolius and its two terrestrial relatives provides insights into adaptation to intertidal habitats. Gene 2022; 839:146730. [PMID: 35840004 DOI: 10.1016/j.gene.2022.146730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
Acanthus is a unique genus covering both mangroves and terrestrial species, and thus is an ideal system to comparatively analyze the mechanisms of mangrove adaptation to intertidal habitats. We performed RNA sequencing of the mangrove plant Acanthus ilicifolius and its two terrestrial relatives, Acanthus leucostachyus and Acanthus mollis. A total of 91,125, 118,290, and 141,640 unigenes were obtained. Simple sequence repeats (SSR) analysis showed that A. ilicifolius had more SSRs, the highest frequency of distribution, and higher in polymorphism potential compared to the two terrestrial relatives. Phylogenetic analyses suggested a relatively recent split between A. ilicifolius and A. leucostachyus, i.e., about 16.76 million years ago (Mya), after their ancestor divergence with A. mollis (32.11 Mya), indicating that speciation of three Acanthus species occurred in the Early to Middle Miocene. Gene Ontology (GO) enrichment revealed that the unique unigenes in A. ilicifolius are predominantly related to rhythmic process, reproductive process and response to stimuli. The accelerated evolution and positive selection analyses indicated that the genus Acanthus migrated from terrestrial to intertidal habitats, where 311 pairs may be under positive selection. Functional enrichment analysis revealed that these genes associated with essential metabolism and biosynthetic pathways such as oxidative phosphorylation, plant hormone signal transduction, photosynthetic carbon fixation and arginine and proline metabolism, are related to the adaptation of A. ilicifolius to intertidal habitats, which are characterized by high salinity and hypoxia. Our results indicate the evolutionary processes and the mechanisms underlying the adaptability of Acanthus to various harsh environments from the arid terrestrial to intertidal habitats.
Collapse
|