51
|
Son SH, Kim MY, Lim YS, Jin HC, Shin JH, Yi JK, Choi S, Park MA, Chae JH, Kang HC, Lee YJ, Uversky VN, Kim CG. SUMOylation-mediated PSME3-20 S proteasomal degradation of transcription factor CP2c is crucial for cell cycle progression. SCIENCE ADVANCES 2023; 9:eadd4969. [PMID: 36706181 PMCID: PMC9882985 DOI: 10.1126/sciadv.add4969] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Transcription factor CP2c (also known as TFCP2, α-CP2, LSF, and LBP-1c) is involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies such as cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover an unprecedented mechanism of CP2c degradation via a previously unidentified SUMO1/PSME3/20S proteasome pathway and its biological meaning. CP2c is SUMOylated in a SUMO1-dependent way, and SUMOylated CP2c is degraded through the ubiquitin-independent PSME3 (also known as REGγ or PA28)/20S proteasome system. SUMOylated PSME3 could also interact with CP2c to degrade CP2c via the 20S proteasomal pathway. Moreover, precisely timed degradation of CP2c via the SUMO1/PSME3/20S proteasome axis is required for accurate progression of the cell cycle. Therefore, we reveal a unique SUMO1-mediated uncanonical 20S proteasome degradation mechanism via the SUMO1/PSME3 axis involving mutual SUMO-SIM interaction of CP2c and PSME3, providing previously unidentified mechanistic insights into the roles of dynamic degradation of CP2c in cell cycle progression.
Collapse
Affiliation(s)
- Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Su Lim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hyeon Cheol Jin
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - June Ho Shin
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jae Kyu Yi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Mi Ae Park
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ji Hyung Chae
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ho Chul Kang
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Jin Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- CGK Biopharma Co. Ltd., Seoul 04763, Korea
| |
Collapse
|
52
|
Liu J, Fu N, Yang Z, Li A, Wu H, Jin Y, Song Q, Ji S, Xu H, Zhang Z, Zhang X. The genetic and epigenetic regulation of CD55 and its pathway analysis in colon cancer. Front Immunol 2023; 13:947136. [PMID: 36741376 PMCID: PMC9889927 DOI: 10.3389/fimmu.2022.947136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background CD55 plays an important role in the development of colon cancer. This study aims to evaluate the expression of CD55 in colon cancer and discover how it is regulated by transcriptional factors and miRNA. Methods The expression of CD55 was explored by TIMER2.0, UALCAN, and Human Protein Atlas (HPA) databases. TRANSFAC and Contra v3 were used to predict the potential binding sites of transcription factors in the CD55 promoter. TargetScan and starBase v2.0 were used to predict the potential binding ability of miRNAs to the 3' untranslated region (3'UTR) of CD55. SurvivalMeth was used to explore the differentially methylated sites in the CD55 promoter. Western blotting was used to detect the expression of TFCP2 and CD55. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were performed to determine the targeting relationship of TFCP2, NF-κB, or miR-27a-3p with CD55. CD55-related genes were explored by constructing a protein-protein interaction (PPI) network and performing pathway analysis by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Results CD55 was highly expressed in colon cancer tissues. The mRNA and protein expression levels of TFCP2 were reduced by si-TFCP2. NF-κB mRNA was obviously reduced by NF-κB inhibitor and increased by NF-κB activator. CD55 protein was also inhibited by miR-27a-3p. Dual-luciferase reporter assays showed that after knocking down TFCP2 or inhibiting NF-κB, the promoter activity of CD55 was decreased by 21% and 70%, respectively; after activating NF-κB, the promoter activity of CD55 increased by 2.3 times. As TFCP2 or NF-κB binding site was mutated, the transcriptional activity of CD55 was significantly decreased. ChIP assay showed that TFCP2 and NF-κB combined to the promoter of CD55. The luciferase activity of CD55 3'UTR decreased after being co-transfected with miR-27a-3p mimics and increased by miR-27a-3p antagomir. As the miR-27a-3p binding site was mutated, we did not find any significant effect of miR-27a-3p on reporter activity. PPI network assay revealed a set of CD55-related genes, which included CFP, CFB, C4A, and C4B. GO and KEGG analyses revealed that the target genes occur more frequently in immune-related pathways. Conclusion Our results indicated that CD55 is regulated by TFCP2, NF-κB, miR-27a-3p, and several immune-related genes, which in turn affects colon cancer.
Collapse
Affiliation(s)
- Jiawei Liu
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Ning Fu
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Zhenbang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ang Li
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ye Jin
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Qinqin Song
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Shanshan Ji
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Hongxue Xu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhi Zhang
- Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
53
|
Hasanzadeh Kafshgari M, Hayden O. Advances in analytical microfluidic workflows for differential cancer diagnosis. NANO SELECT 2023. [DOI: 10.1002/nano.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| | - Oliver Hayden
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| |
Collapse
|
54
|
Guzmán-Jiménez A, González-Muñoz S, Cerván-Martín M, Rivera-Egea R, Garrido N, Luján S, Santos-Ribeiro S, Castilla JA, Gonzalvo MC, Clavero A, Vicente FJ, Maldonado V, Villegas-Salmerón J, Burgos M, Jiménez R, Pinto MG, Pereira I, Nunes J, Sánchez-Curbelo J, López-Rodrigo O, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Lopes AM, Larriba S, Palomino-Morales RJ, Carmona FD, Bossini-Castillo L, IVIRMA Group, Lisbon Clinical Group. Contribution of TEX15 genetic variants to the risk of developing severe non-obstructive oligozoospermia. Front Cell Dev Biol 2022; 10:1089782. [PMID: 36589743 PMCID: PMC9797780 DOI: 10.3389/fcell.2022.1089782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Severe spermatogenic failure (SPGF) represents one of the most relevant causes of male infertility. This pathological condition can lead to extreme abnormalities in the seminal sperm count, such as severe oligozoospermia (SO) or non-obstructive azoospermia (NOA). Most cases of SPGF have an unknown aetiology, and it is known that this idiopathic form of male infertility represents a complex condition. In this study, we aimed to evaluate whether common genetic variation in TEX15, which encodes a key player in spermatogenesis, is involved in the susceptibility to idiopathic SPGF. Materials and Methods: We designed a genetic association study comprising a total of 727 SPGF cases (including 527 NOA and 200 SO) and 1,058 unaffected men from the Iberian Peninsula. Following a tagging strategy, three tag single-nucleotide polymorphisms (SNPs) of TEX15 (rs1362912, rs323342, and rs323346) were selected for genotyping using TaqMan probes. Case-control association tests were then performed by logistic regression models. In silico analyses were also carried out to shed light into the putative functional implications of the studied variants. Results: A significant increase in TEX15-rs1362912 minor allele frequency (MAF) was observed in the group of SO patients (MAF = 0.0842) compared to either the control cohort (MAF = 0.0468, OR = 1.90, p = 7.47E-03) or the NOA group (MAF = 0.0472, OR = 1.83, p = 1.23E-02). The genotype distribution of the SO population was also different from those of both control (p = 1.14E-02) and NOA groups (p = 4.33-02). The analysis of functional annotations of the human genome suggested that the effect of the SO-associated TEX15 variants is likely exerted by alteration of the binding affinity of crucial transcription factors for spermatogenesis. Conclusion: Our results suggest that common variation in TEX15 is involved in the genetic predisposition to SO, thus supporting the notion of idiopathic SPGF as a complex trait.
Collapse
Affiliation(s)
- Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Sara González-Muñoz
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain,IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain,Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología. Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain,CEIFER Biobanco—GAMETIA, Granada, Spain
| | - M. Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain
| | - F. Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Vicente Maldonado
- UGC de Obstetricia y Ginecología, Complejo Hospitalario de Jaén, Jaén, Spain
| | - Javier Villegas-Salmerón
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
| | - Maria Graça Pinto
- Centro de Medicina Reprodutiva, Maternidade Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - Isabel Pereira
- Departamento de Obstetrícia, Ginecologia e Medicina da Reprodução, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Joaquim Nunes
- Departamento de Obstetrícia, Ginecologia e Medicina da Reprodução, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patricia Isabel Marques
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, Lisbon, Portugal
| | - Alexandra M. Lopes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,CGPP-IBMC—Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,*Correspondence: F. David Carmona, ; Lara Bossini-Castillo,
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain,*Correspondence: F. David Carmona, ; Lara Bossini-Castillo,
| | | | | |
Collapse
|
55
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
56
|
Çalışkaner ZO. Computational discovery of novel inhibitory candidates targeting versatile transcriptional repressor MBD2. J Mol Model 2022; 28:296. [PMID: 36066769 DOI: 10.1007/s00894-022-05297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Genome methylation is a key epigenetic mechanism in various biological events such as development, cellular differentiation, cancer progression, aging, and iPSC reprogramming. Crosstalk between DNA methylation and gene expression is mediated by MBD2, known as the reader of DNA methylation and suggested as a drug target. Despite its magnitude of significance, a scarcely limited number of small molecules to be used as inhibitors have been detected so far. Therefore, we screened a comprehensive compound library to elicit MBD2 inhibitor candidates. Promising molecules were subjected to computational docking analysis by targeting the methylated DNA-binding domain of human MBD2. We could detect reasonable binding energies and docking residues, presumably located in druggable pockets. Docking results were also validated via MD simulation and per-residue energy decomposition calculation. Drug-likeness of these small molecules was assessed through ADMET prediction to foresee off-target side effects for future studies. All computational approaches notably highlighted two compounds named CID3100583 and 8,8-ethylenebistheophylline. These compounds have become prominent as novel candidates, possibly disrupting MBD2MBD-DNA interaction. Consequently, these compounds have been considered prospective inhibitors with the usage potential in a wide range of applications from cancer treatment to somatic cell reprogramming protocols.
Collapse
Affiliation(s)
- Zihni Onur Çalışkaner
- Faculty of Engineering and Natural Sciences, Molecular Biology and Genetics Department, Biruni University, 34010, Istanbul, Turkey.
| |
Collapse
|
57
|
Lee S, Osmanbeyoglu HU. Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas. BREAST CANCER RESEARCH : BCR 2022; 24:54. [PMID: 35906698 PMCID: PMC9338552 DOI: 10.1186/s13058-022-01550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Invasive lobular breast carcinoma (ILC), the second most prevalent histological subtype of breast cancer, exhibits unique molecular features compared with the more common invasive ductal carcinoma (IDC). While genomic and transcriptomic features of ILC and IDC have been characterized, genome-wide chromatin accessibility pattern differences between ILC and IDC remain largely unexplored. METHODS Here, we characterized tumor-intrinsic chromatin accessibility differences between ILC and IDC using primary tumors from The Cancer Genome Atlas (TCGA) breast cancer assay for transposase-accessible chromatin with sequencing (ATAC-seq) dataset. RESULTS We identified distinct patterns of genome-wide chromatin accessibility in ILC and IDC. Inferred patient-specific transcription factor (TF) motif activities revealed regulatory differences between and within ILC and IDC tumors. EGR1, RUNX3, TP63, STAT6, SOX family, and TEAD family TFs were higher in ILC, while ATF4, PBX3, SPDEF, PITX family, and FOX family TFs were higher in IDC. CONCLUSIONS This study reveals the distinct epigenomic features of ILC and IDC and the active TFs driving cancer progression that may provide valuable information on patient prognosis.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA
| | - Hatice Ulku Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA. .,Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA. .,Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
58
|
Wu M, Huang Y, Zhou Y, Zhao H, Lan Y, Yu Z, Jia C, Cong H, Zhao J. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection. SMALL METHODS 2022; 6:e2200226. [PMID: 35595707 DOI: 10.1002/smtd.202200226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Circulating tumor cells (CTCs) enumeration has been widely used as a surrogate predictive marker for early diagnoses, the evaluation of chemotherapy efficacy, and cancer prognosis. Microfluidic technologies for CTCs enrichment and detection have been developed and commercialized as automation platforms. Currently, in addition to CTCs, some new types of circulating cancer-related cells (e.g., CCSCs, CTECs, CAMLs, and heterotypic CTC clusters) in circulation are also reported to be correlated to cancer diagnosis, metastasis, or prognosis. And they widely differ from the conventional CTCs in positive markers, cellular morphology, or size, which presents a new technological challenge to microfluidic devices that use affinity-based capture methods or size-based filtration methods for CTCs detection. This review focuses on the biological and physical properties as well as clinical significance of the novel circulating cancer-related cells, and discusses the challenges of their discovery to microfluidic chip for enrichment. Finally, the current challenges of CTCs detection in clinical application and future opportunities are also discussed.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Huang
- Shanghai Normal University, Shanghai, 200030, China
| | - Yang Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Lan
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
59
|
Tran Thi YV, Hoang BA, Thanh HT, Nguyen TH, Ngoc TP, Thu HB, Hoang NN, Bui TT, Duc TC, Do Quang L. Design and Numerical Study on a Microfluidic System for Circulating Tumor Cells Separation From Whole Blood Using Magnetophoresis and Dielectrophoresis Techniques. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
60
|
Structural and Functional Insights into CP2c Transcription Factor Complexes. Int J Mol Sci 2022; 23:ijms23126369. [PMID: 35742810 PMCID: PMC9223585 DOI: 10.3390/ijms23126369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
CP2c, also known as TFCP2, α-CP2, LSF, and LBP-1c, is a prototypic member of the transcription factor (TF) CP2 subfamily involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies including cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover unprecedented structural and functional aspects of CP2c using DSP crosslinking and Western blot in addition to conventional methods. We found that a monomeric form of a CP2c homotetramer (tCP2c; [C4]) binds to the known CP2c-binding DNA motif (CNRG-N(5~6)-CNRG), whereas a dimeric form of a CP2c, CP2b, and PIAS1 heterohexamer ([C2B2P2]2) binds to the three consecutive CP2c half-sites or two staggered CP2c binding motifs, where the [C4] exerts a pioneering function for recruiting the [C2B2P2]2 to the target. All CP2c exists as a [C4], or as a [C2B2P2]2 or [C2B2P2]4 in the nucleus. Importantly, one additional cytosolic heterotetrameric CP2c and CP2a complex, ([C2A2]), exerts some homeostatic regulation of the nuclear complexes. These data indicate that these findings are essential for the transcriptional regulation of CP2c in cells within relevant timescales, providing clues not only for the transcriptional regulation mechanism by CP2c but also for future therapeutics targeting CP2c function.
Collapse
|
61
|
Lv N, Zhang L, Yang Z, Wang H, Yang N, Li H. Label-free biological sample detection and non-contact separation system based on microfluidic chip. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:063104. [PMID: 35778042 DOI: 10.1063/5.0086109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The detection and separation of biological samples are of great significance for achieving accurate diagnoses and state assessments. Currently, the detection and separation of cells mostly adopt labeling methods, which will undoubtedly affect the original physiological state and functions of cells. Therefore, in this study, a label-free cell detection method based on microfluidic chips is proposed. By measuring the scattering of cells to identify cells and then using optical tweezers to separate the target cells, the whole process without any labeling and physical contact could realize automatic cell identification and separation. Different concentrations of 15 µm polystyrene microspheres and yeast mixed solution are used as samples for detection and separation. The detection accuracy is over 90%, and the separation accuracy is over 73%.
Collapse
Affiliation(s)
- Ning Lv
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Lu Zhang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Zewen Yang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Huijun Wang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Nan Yang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Hao Li
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| |
Collapse
|
62
|
Bhat MP, Thendral V, Uthappa UT, Lee KH, Kigga M, Altalhi T, Kurkuri MD, Kant K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. BIOSENSORS 2022; 12:220. [PMID: 35448280 PMCID: PMC9025399 DOI: 10.3390/bios12040220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 05/05/2023]
Abstract
CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.
Collapse
Affiliation(s)
- Mahesh Padmalaya Bhat
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Venkatachalam Thendral
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | | | - Kyeong-Hwan Lee
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Krishna Kant
- Departamento de Química Física, Campus Universitario, CINBIO Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
63
|
Liu Y, Song Y, Cao M, Fan W, Cui Y, Cui Y, Zhan Y, Gu R, Tian F, Zhang S, Cai L, Xing Y. A novel EHD1/CD44/Hippo/SP1 positive feedback loop potentiates stemness and metastasis in lung adenocarcinoma. Clin Transl Med 2022; 12:e836. [PMID: 35485206 PMCID: PMC9786223 DOI: 10.1002/ctm2.836] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is growing evidence that endocytosis plays a pivotal role in cancer metastasis. In this study, we first identified endocytic and metastasis-associated genes (EMGs) and then investigated the biological functions and mechanisms of EMGs. METHODS Cancer stem cells (CSCs)-like characteristics were evaluated by tumour limiting dilution assays, three-dimensional (3D) spheroid cancer models. Microarray analysis was used to identify the pathways significantly regulated by mammalian Eps15 homology domain protein 1 (EHD1) knockdown. Mass spectrometry (MS) was performed to identify EHD1-interacting proteins. The function of EHD1 as a regulator of cluster of differentiation 44 (CD44) endocytic recycling and lysosomal degradation was determined by CD44 biotinylation and recycling assays. RESULTS EHD1 was identified as a significant EMG. Knockdown of EHD1 suppressed CSCs-like characteristics, epithelial-mesenchymal transition (EMT), migration and invasion of lung adenocarcinoma (LUAD) cells by increasing Hippo kinase cascade activation. Conversely, EHD1 overexpression inhibited the Hippo pathway to promote cancer stemness and metastasis. Notably, utilising MS analysis, the CD44 protein was identified as a potential binding partner of EHD1. Furthermore, EHD1 enhanced CD44 recycling and stability. Indeed, silencing of CD44 or disruption of the EHD1/CD44 interaction enhanced Hippo pathway activity and reduced CSCs-like traits, EMT and metastasis. Interestingly, specificity protein 1 (SP1), a known downstream target gene of the Hippo-TEA-domain family members 1 (TEAD1) pathway, was found to directly bind to the EHD1 promoter region and induce its expression. Among clinical specimens, the EHD1 expression level in LUAD tissues of metastatic patients was higher than that of non-metastatic patients. CONCLUSIONS Our findings emphasise that EHD1 might be a potent anti-metastatic target and present a novel regulatory mechanism by which the EHD1/CD44/Hippo/SP1 positive feedback circuit plays pivotal roles in coupling modules of CSCs-like properties and EMT in LUAD. Targeting this loop may serve as a remedy for patients with advanced metastatic LUAD.
Collapse
Affiliation(s)
- Yuechao Liu
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yang Song
- The First Department of Orthopedic SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Mengru Cao
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Weina Fan
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yaowen Cui
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yimeng Cui
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Yuning Zhan
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ruixue Gu
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Fanglin Tian
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Shuai Zhang
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Li Cai
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Ying Xing
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
64
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
65
|
Dual Role of YY1 in HPV Life Cycle and Cervical Cancer Development. Int J Mol Sci 2022; 23:ijms23073453. [PMID: 35408813 PMCID: PMC8998550 DOI: 10.3390/ijms23073453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Human papillomaviruses (HPVs) are considered to be key etiological agents responsible for the induction and development of cervical cancer. However, it has been suggested that HPV infection alone may not be sufficient to promote cervical carcinogenesis, and other unknown factors might be required to establish the disease. One of the suggested proteins whose deregulation has been linked with oncogenesis is transcription factor Yin Yang 1 (YY1). YY1 is a multifunctional protein that is involved not only in the regulation of gene transcription and protein modification, but can also control important cell signaling pathways, such as cell growth, development, differentiation, and apoptosis. Vital functions of YY1 also indicate that the protein could be involved in tumorigenesis. The overexpression of this protein has been observed in different tumors, and its level has been correlated with poor prognoses of many types of cancers. YY1 can also regulate the transcription of viral genes. It has been documented that YY1 can bind to the HPV long control region and regulate the expression of viral oncogenes E6 and E7; however, its role in the HPV life cycle and cervical cancer development is different. In this review, we explore the role of YY1 in regulating the expression of cellular and viral genes and subsequently investigate how these changes inadvertently contribute toward the development of cervical malignancy.
Collapse
|
66
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
67
|
Yeh PY, Snijders AM, Wang D. ViaChip for Size-based Enrichment of Viable Cells. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 353:131159. [PMID: 34975229 PMCID: PMC8716015 DOI: 10.1016/j.snb.2021.131159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Live cells acquire different fates including apoptosis, necrosis, and senescence in response to stress and stimuli. Rapid and label-free enrichment of live cells from a mixture of cells adopting various cell fates remains a challenge. We developed a ViaChip for high-throughput enrichment of Viable cells via size-based separation on a multi-stage microfluidic Chip. Our chip takes advantage of the characteristic increase in cell size during cellular senescence and decreases during apoptosis and necrosis, in comparison to their viable and healthy counterparts. The core component of our ViaChip is a slanted and tunable 3D filter array in the vertical direction (z-gap) for rapid and continuous cell sieving. The shape of the 3D filter array is optimized for target cells to prevent clogging during continuous separation. We demonstrated enrichment of live human and mouse mesenchymal stem cells in culture and from live animals, as well as the removal of senescent and necrotic MSCs, respectively, achieving an enrichment efficiency of ~67% with the continuous flow at 1.5 mL/hour. With further improvements in throughput and separation efficiency, our ViaChip could find applications in cell-based drug screening for anti-cancer and anti-aging cell therapies.
Collapse
|
68
|
A FRET-Based Biosensor for the Src N-Terminal Regulatory Element. BIOSENSORS 2022; 12:bios12020096. [PMID: 35200356 PMCID: PMC8870054 DOI: 10.3390/bios12020096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
Abstract
In signaling proteins, intrinsically disordered regions often represent regulatory elements, which are sensitive to environmental effects, ligand binding, and post-translational modifications. The conformational space sampled by disordered regions can be affected by environmental stimuli and these changes trigger, vis a vis effector domain, downstream processes. The disordered nature of these regulatory elements enables signal integration and graded responses but prevents the application of classical approaches for drug screening based on the existence of a fixed three-dimensional structure. We have designed a genetically encodable biosensor for the N-terminal regulatory element of the c-Src kinase, the first discovered protooncogene and lead representative of the Src family of kinases. The biosensor is formed by two fluorescent proteins forming a FRET pair fused at the two extremes of a construct including the SH4, unique and SH3 domains of Src. An internal control is provided by an engineered proteolytic site allowing the generation of an identical mixture of the disconnected fluorophores. We show FRET variations induced by ligand binding. The biosensor has been used for a high-throughput screening of a library of 1669 compounds with seven hits confirmed by NMR.
Collapse
|
69
|
The Origins and the Current Applications of Microfluidics-Based Magnetic Cell Separation Technologies. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The magnetic separation of cells based on certain traits has a wide range of applications in microbiology, immunology, oncology, and hematology. Compared to bulk separation, performing magnetophoresis at micro scale presents advantages such as precise control of the environment, larger magnetic gradients in miniaturized dimensions, operational simplicity, system portability, high-throughput analysis, and lower costs. Since the first integration of magnetophoresis and microfluidics, many different approaches have been proposed to magnetically separate cells from suspensions at the micro scale. This review paper aims to provide an overview of the origins of microfluidic devices for magnetic cell separation and the recent technologies and applications grouped by the targeted cell types. For each application, exemplary experimental methods and results are discussed.
Collapse
|
70
|
Abdulla A, Zhang T, Li S, Guo W, Warden AR, Xin Y, Maboyi N, Lou J, Xie H, Ding X. Integrated microfluidic single-cell immunoblotting chip enables high-throughput isolation, enrichment and direct protein analysis of circulating tumor cells. MICROSYSTEMS & NANOENGINEERING 2022; 8:13. [PMID: 35136652 PMCID: PMC8807661 DOI: 10.1038/s41378-021-00342-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 05/14/2023]
Abstract
Effective capture and analysis of a single circulating tumor cell (CTC) is instrumental for early diagnosis and personalized therapy of tumors. However, due to their extremely low abundance and susceptibility to interference from other cells, high-throughput isolation, enrichment, and single-cell-level functional protein analysis of CTCs within one integrated system remains a major challenge. Herein, we present an integrated multifunctional microfluidic system for highly efficient and label-free CTC isolation, CTC enrichment, and single-cell immunoblotting (ieSCI). The ieSCI-chip is a multilayer microfluidic system that combines an inertia force-based cell sorter with a membrane filter for label-free CTC separation and enrichment and a thin layer of a photoactive polyacrylamide gel with microwell arrays at the bottom of the chamber for single-cell immunoblotting. The ieSCI-chip successfully identified a subgroup of apoptosis-negative (Bax-negative) cells, which traditional bulk analysis did not detect, from cisplatin-treated cells. Furthermore, we demonstrated the clinical application of the ieSCI-chip with blood samples from breast cancer patients for personalized CTC epithelial-to-mesenchymal transition (EMT) analysis. The expression level of a tumor cell marker (EpCAM) can be directly determined in isolated CTCs at the single-cell level, and the therapeutic response to anticancer drugs can be simultaneously monitored. Therefore, the ieSCI-chip provides a promising clinical translational tool for clinical drug response monitoring and personalized regimen development.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- Project by National Innovation Special Zone, Project 2017SHZDZX01, 17DZ2203400, and 18430760500 by Shanghai Municipal Science and Technology, Project G20180101 by Shanghai Agriculture Applied Technology Development Program, Project ZXWF082101 by Shanghai Municipal Education Commission, Project 2017ZX10203205-006-002 by National Key Research and Development Program of China, Project 19X190020154, ZH2018ZDA01, YG2016QN24 and YG2016MS60 by Shanghai Jiao Tong University Biomedical Interdisciplinary Program, Project ZH2018QNA54 and ZH2018QNA49 by the Medical-Engineering Cross Foundation of Shanghai Jiao Tong University, Project 2019CXJQ03 by Innovation Group Project of Shanghai Municipal Health Comission, Project 19MC1910800 by Shanghai Clinical Medical Research Center, Project SD0820016 by the third batch of industrialization project of Innovation Incubation Fund of Nantong and Shanghai Jiao Tong University, Project SL2020MS026 by the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University, Project Agri-X20200101 by Shanghai Jiao Tong University, SJTU Global Strategic Partnership Fund (2020 SJTU-HUJI).
Collapse
Affiliation(s)
- Aynur Abdulla
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Ting Zhang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Shanhe Li
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Wenke Guo
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Antony R. Warden
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Yufang Xin
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Nokuzola Maboyi
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Jiatao Lou
- Shanghai General Hospital, Shanghai Jiao Tong University, No.85 Wujing Road, Shanghai, 200080 China
| | - Haiyang Xie
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China
| |
Collapse
|
71
|
Inhibitors of DNA Methylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:471-513. [DOI: 10.1007/978-3-031-11454-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
72
|
Chen L, Qiao L, Guo Y, Huang Y, Luo W, Feng Y. Localization and regulatory function of Yin Yang 1 (YY1) in chicken testis. Mol Genet Genomics 2021; 297:113-123. [PMID: 34854981 DOI: 10.1007/s00438-021-01840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
In mammals, Yin Yang 1 (YY1), a pervasively expressed transcription factor related to many biological processes as an activator or inhibitor of the transcription of various genes, plays a critical role in the development of male gonads and spermatogenesis. Although the role of YY1 on the development of male gonads and spermatogenesis in mammals has been reported, its function on chicken testis are yet to be clarified. In this study, we used immunofluorescence analysis to investigate the location of YY1 in chicken testis. In embryo testis, YY1 was detected in spermatogonia and Sertoli cells, while in adult testis, YY1 was shown to be expressed in spermatogenic cells and Sertoli cells, but not in spermatozoa. Furthermore, we investigated the regulatory functions of YY1 in chicken testicular Sertoli cells by combining overexpression with RNA-sequencing. Overexpression of YY1 in Sertoli cells revealed a total of 2955 differentially expressed genes involved in various biological processes, such as male gonad development and seminiferous tubule development. Overexpression of YY1 also caused significant differences in the expression of the androgen receptor gene and the inhibin βA gene, two major genes involved in the regulation of spermatogonia in Sertoli cells. These observations indicate that YY1 may regulate the development and function of the gonads by affecting the secretion of cytokines and hormones in Sertoli cells to mediate the production and differentiation of spermatogonia.
Collapse
Affiliation(s)
- Ligen Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lingyun Qiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ying Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
73
|
Liang X, Jiao Y, Gong X, Gu H, Nuermaimaiti N, Meng X, Liu D, Guan Y. Staufen1 unwinds the secondary structure and facilitates the translation of fatty acid binding protein 4 mRNA during adipogenesis. Adipocyte 2021; 10:350-360. [PMID: 34224297 PMCID: PMC8259723 DOI: 10.1080/21623945.2021.1948165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Adipogenesis is regulated by genetic interactions, in which post-transcriptional regulation plays an important role. Staufen double-stranded RNA binding protein 1 (Staufen1 or STAU1) plays diverse roles in RNA processing and adipogenesis. Previously, we found that the downregulation of STAU1 affects the expression of fatty acid-binding protein 4 (FABP4) at the protein level but not at the mRNA level. This study aimed to determine the mechanism underlying the regulation of FABP4 expression by STAU1, explaining the inconsistency between FABP4 mRNA and protein levels. We used RNA interference, photoactivatable ribonucleoside enhanced cross-linking and immunoprecipitation, and an adeno-associated virus to examine the functions of STAU1 in adipogenesis. Our results indicate that STAU1 binds to the coding sequences of FABP4, thereby regulating the translation of FABP4 mRNA by unwinding the double-stranded structure. Furthermore, STAU1 mediates adipogenesis by regulating the secretion of free fatty acids. However, STAU1 knockdown decreases the fat weight/body weight ratio but does not affect the plasma triglyceride levels. These findings describe the mechanisms involved in STAU1-mediated regulation of FABP4 expression at the translational level during adipogenesis.
Collapse
Affiliation(s)
- Xiaodi Liang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi Jiao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xueli Gong
- Department of Pathophysiology, Preclinical Medicine College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Gu
- Department of Laparoscopic Surgery, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Nuerbiye Nuermaimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xuanyu Meng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dihui Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yaqun Guan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
74
|
Hakim M, Khorasheh F, Alemzadeh I, Vossoughi M. A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip. Anal Chim Acta 2021; 1186:339115. [PMID: 34756251 DOI: 10.1016/j.aca.2021.339115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022]
Abstract
Isolation and characterization of circulating tumor cells (CTCs) found in blood samples of cancer patients have been considered as a reliable source for cancer prognosis and diagnosis. A new continuous microfluidic platform has been designed in this investigation for simultaneous capture and characterization of CTCs based on their deformability. The deformability-based chip (D-Chip) consists of two sections of separation and characterization where slanted weirs with a gap of 7 μm were considered. Although sometimes CTCs and leukocytes have the same size, the deformability differs in such a way that can be exploited for enrichment purposes. MCF7 and MDA-MB-231 cell lines were used for the initial evaluation of the D-Chip performance. In the separation section, cancer cells were isolated based on deformability differences with an efficiency of higher than 93% (∼average capturing capacity of 2085 out of 2200 cancer cells ml-1) and with significantly high purity (15-40 WBCs ml-1; ∼5 log depletion of WBCs). Cancer cells were categorized based on the deformability difference in the characterization section. Subsequently, 15 clinical blood samples from breast cancer patients were analyzed by the D-Chip. Suggest 'The chip detected CTCs in all patient samples, processed the blood sample at a high throughput of 5.3 ml/h, and properly categorized CTCs based on deformability differences. Further characterization showed that the highly deformable breast cancer CTCs in our patient samples also showed higher potential of metastasis in support of a broader correlation between deformability of CTCs and metastatic behavior.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
75
|
Mathis CL, Barrios AM. Histidine phosphorylation in metalloprotein binding sites. J Inorg Biochem 2021; 225:111606. [PMID: 34555600 DOI: 10.1016/j.jinorgbio.2021.111606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Post-translational modifications (PTMs) are invaluable regulatory tools for the control of catalytic functionality, protein-protein interactions, and signaling pathways. Historically, the study of phosphorylation as a PTM has been focused on serine, threonine, and tyrosine residues. In contrast, the significance of mammalian histidine phosphorylation remains largely unexplored. This gap in knowledge regarding the molecular basis for histidine phosphorylation as a regulatory agent exists in part because of the relative instability of phosphorylated histidine as compared with phosphorylated serine, threonine and tyrosine. However, the unique metal binding abilities of histidine make it one of the most common metal coordinating ligands in nature, and it is interesting to consider how phosphorylation would change the metal coordinating ability of histidine, and consequently, the properties of the phosphorylated metalloprotein. In this review, we examine eleven metalloproteins that have been shown to undergo reversible histidine phosphorylation at or near their metal binding sites. These proteins are described with respect to their biological activity and structure, with a particular emphasis on how phosphohistidine may tune the primary coordination sphere and protein conformation. Furthermore, several common methods, challenges, and limitations of studying sensitive, high affinity metalloproteins are discussed.
Collapse
Affiliation(s)
- Cheryl L Mathis
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States
| | - Amy M Barrios
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
76
|
Narayana Iyengar S, Kumar T, Mårtensson G, Russom A. High resolution and rapid separation of bacteria from blood using elasto-inertial microfluidics. Electrophoresis 2021; 42:2538-2551. [PMID: 34510466 DOI: 10.1002/elps.202100140] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Improved sample preparation has the potential to address unmet needs for fast turnaround sepsis tests. In this work, we report elasto-inertial based rapid bacteria separation from diluted blood at high separation efficiency. In viscoelastic flows, we demonstrate novel findings where blood cells prepositioned at the outer wall entering a spiral device remain fully focused throughout the channel length while smaller bacteria migrate to the opposite wall. Initially, using microparticles, we show that particles above a certain size cut-off remain fully focused at the outer wall while smaller particles differentially migrate toward the inner wall. We demonstrate particle separation at 1 μm resolution at a total throughput of 1 mL/min. For blood-based experiments, a minimum of 1:2 dilution was necessary to fully focus blood cells at the outer wall. Finally, Escherichia coli spiked in diluted blood were continuously separated at a total flow rate of 1 mL/min, with efficiencies between 82 and 90% depending on the blood dilution. Using a single spiral, it takes 40 min to process 1 mL of blood at a separation efficiency of 82%. The label-free, passive, and rapid bacteria isolation method has a great potential for speeding up downstream phenotypic and genotypic analysis.
Collapse
Affiliation(s)
- Sharath Narayana Iyengar
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tharagan Kumar
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Gustaf Mårtensson
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden
| | - Aman Russom
- KTH Royal Institute of Technology, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, Solna, Sweden.,AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
77
|
A Novel Approach for Tuning of Fluidic Resistance in Deterministic Lateral Displacement Array for Enhanced Separation of Circulating Tumor Cells. Cognit Comput 2021. [DOI: 10.1007/s12559-021-09904-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
78
|
Sharifi Tabar M, Giardina C, Feng Y, Francis H, Moghaddas Sani H, Low JKK, Mackay JP, Bailey CG, Rasko JEJ. Unique protein interaction networks define the chromatin remodelling module of the NuRD complex. FEBS J 2021; 289:199-214. [PMID: 34231305 PMCID: PMC9545347 DOI: 10.1111/febs.16112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 01/13/2023]
Abstract
The combination of four proteins and their paralogues including MBD2/3, GATAD2A/B, CDK2AP1 and CHD3/4/5, which we refer to as the MGCC module, form the chromatin remodelling module of the nucleosome remodelling and deacetylase (NuRD) complex. To date, mechanisms by which the MGCC module acquires paralogue-specific function and specificity have not been addressed. Understanding the protein-protein interaction (PPI) network of the MGCC subunits is essential for defining underlying mechanisms of gene regulation. Therefore, using pulldown followed by mass spectrometry analysis (PD-MS), we report a proteome-wide interaction network of the MGCC module in a paralogue-specific manner. Our data also demonstrate that the disordered C-terminal region of CHD3/4/5 is a gateway to incorporate remodelling activity into both ChAHP (CHD4, ADNP, HP1γ) and NuRD complexes in a mutually exclusive manner. We define a short aggregation-prone region (APR) within the C-terminal segment of GATAD2B that is essential for the interaction of CHD4 and CDK2AP1 with the NuRD complex. Finally, we also report an association of CDK2AP1 with the nuclear receptor co-repressor (NCOR) complex. Overall, this study provides insight into the possible mechanisms through which the MGCC module can achieve specificity and diverse biological functions.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, NSW, Australia
| | - Caroline Giardina
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Yue Feng
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Habib Francis
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | | | - Jason K K Low
- School of Life & Environmental Sciences, The University of Sydney, NSW, Australia
| | - Joel P Mackay
- School of Life & Environmental Sciences, The University of Sydney, NSW, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
79
|
Wang Y, Nunna BB, Talukder N, Etienne EE, Lee ES. Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms. Bioengineering (Basel) 2021; 8:94. [PMID: 34356201 PMCID: PMC8301051 DOI: 10.3390/bioengineering8070094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Blood plasma is the most commonly used biofluid in disease diagnostic and biomedical analysis due to it contains various biomarkers. The majority of the blood plasma separation is still handled with centrifugation, which is off-chip and time-consuming. Therefore, in the Lab-on-a-chip (LOC) field, an effective microfluidic blood plasma separation platform attracts researchers' attention globally. Blood plasma self-separation technologies are usually divided into two categories: active self-separation and passive self-separation. Passive self-separation technologies, in contrast with active self-separation, only rely on microchannel geometry, microfluidic phenomena and hydrodynamic forces. Passive self-separation devices are driven by the capillary flow, which is generated due to the characteristics of the surface of the channel and its interaction with the fluid. Comparing to the active plasma separation techniques, passive plasma separation methods are more considered in the microfluidic platform, owing to their ease of fabrication, portable, user-friendly features. We propose an extensive review of mechanisms of passive self-separation technologies and enumerate some experimental details and devices to exploit these effects. The performances, limitations and challenges of these technologies and devices are also compared and discussed.
Collapse
Affiliation(s)
- Yudong Wang
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Bharath Babu Nunna
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA
| | - Niladri Talukder
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Ernst Emmanuel Etienne
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Eon Soo Lee
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| |
Collapse
|
80
|
Zhao L, Jiang L, Zhang M, Zhang Q, Guan Q, Li Y, He M, Zhang J, Wei M. NF-κB-activated SPRY4-IT1 promotes cancer cell metastasis by downregulating TCEB1 mRNA via Staufen1-mediated mRNA decay. Oncogene 2021; 40:4919-4929. [PMID: 34163032 PMCID: PMC8321898 DOI: 10.1038/s41388-021-01900-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023]
Abstract
Previous study demonstrated that most long non-coding RNAs (lncRNAs) function as competing endogenous RNAs or molecular sponges to negatively modulate miRNA and regulate tumor development. However, the molecular mechanisms of lncRNAs in cancer are not fully understood. Our study describes the role of the lncRNA SPRY4 intronic transcript 1 (SPRY4-IT1) in cancer metastasis by mechanisms related to Staufen1 (STAU1)-mediated mRNA decay (SMD). Briefly, we found that, high SPRY4-IT1 expression was associated with aggressiveness and poor outcome in human colorectal, breast and ovarian cancer tissues. In addition, functional assays revealed that SPRY4-IT1 significantly promoted colorectal, breast and ovarian cancer metastasis in vitro and in vivo. Mechanistically, microarray analyses identified several differentially-expressed genes upon SPRY4-IT1 overexpression in HCT 116 colorectal cancer cells. Among them, the 3'-UTR of transcription elongation factor B subunit 1 (TCEB1) mRNA can base-pair with the Alu element in the 3'-UTR of SPRY4-IT1. Moreover, SPRY4-IT1 was found to bind STAU1, promote STAU1 recruitment to the 3'-UTR of TCEB1 mRNA, and affect TCEB1 mRNA stability and expression, resulting in hypoxia-inducible factor 1α (HIF-1α) upregulation, and thereby affecting cancer cell metastasis. In addition, STAU1 depletion abrogated TCEB1 SMD and alleviated the pro-metastatic effect of SPRY4-IT1 overexpression. Significantly, we revealed that SPRY4-IT1 is also transactivated by NF-κB/p65, which activates SPRY4-IT1 to inhibit TCEB1 expression, and subsequently upregulate HIF-1α. In conclusion, our results highlight a novel mechanism of cytoplasmic lncRNA SPRY4-IT1 in which SPRY4-IT1 affecting TCEB1 mRNA stability via STAU1-mediated degradation during cancer metastasis.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Qiang Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Yalun Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| |
Collapse
|
81
|
Alacid Y, Martínez-Tomé MJ, Mateo CR. Reusable Fluorescent Nanobiosensor Integrated in a Multiwell Plate for Screening and Quantification of Antidiabetic Drugs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25624-25634. [PMID: 34043318 DOI: 10.1021/acsami.1c02505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A highly stable and reusable fluorescent multisample nanobiosensor for the detection of α-glucosidase inhibitors has been developed by coupling fluorescent liposomal nanoparticles based on conjugated polymers (L-CPNs) to the enzyme α-glucosidase, one of the main target enzymes in the treatment of type 2 diabetes. The mechanism of sensing is based on the fluorescence "turn-on" of L-CPNs by p-nitrophenol (PNP), the end product of the enzymatic hydrolysis of p-nitrophenyl-α-d-glucopyranoside. L-CPNs, composed of lipid vesicles coated with a blue-emitting cationic polyfluorene, were designed and characterized to obtain a good response to PNP. Two nanobiosensor configurations were developed in this study. In the first step, a single-sample nanobiosensor composed of L-CPNs and α-glucosidase entrapped in a sol-gel glass was developed in order to characterize and optimize the device. In the second part, the nanobiosensor was integrated and adapted to a multiwell microplate and the possibility of reusing it and performing multiple measurements simultaneously with samples containing different α-glucosidase inhibitors was investigated. Using super-resolution confocal microscopy, L-CPNs could be visualized within the sol-gel matrix, and the quenching of their fluorescence, induced by the substrate, was directly observed in situ. The device was also shown to be useful not only as a platform for screening of antidiabetic drugs but also for quantifying their presence. The latter application was successfully tested with the currently available drug, acarbose.
Collapse
Affiliation(s)
- Yolanda Alacid
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - C Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| |
Collapse
|
82
|
Roles for growth factors and mutations in metastatic dissemination. Biochem Soc Trans 2021; 49:1409-1423. [PMID: 34100888 PMCID: PMC8286841 DOI: 10.1042/bst20210048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Cancer is initiated largely by specific cohorts of genetic aberrations, which are generated by mutagens and often mimic active growth factor receptors, or downstream effectors. Once initiated cells outgrow and attract blood vessels, a multi-step process, called metastasis, disseminates cancer cells primarily through vascular routes. The major steps of the metastatic cascade comprise intravasation into blood vessels, circulation as single or collectives of cells, and eventual colonization of distant organs. Herein, we consider metastasis as a multi-step process that seized principles and molecular players employed by physiological processes, such as tissue regeneration and migration of neural crest progenitors. Our discussion contrasts the irreversible nature of mutagenesis, which establishes primary tumors, and the reversible epigenetic processes (e.g. epithelial-mesenchymal transition) underlying the establishment of micro-metastases and secondary tumors. Interestingly, analyses of sequencing data from untreated metastases inferred depletion of putative driver mutations among metastases, in line with the pivotal role played by growth factors and epigenetic processes in metastasis. Conceivably, driver mutations may not confer the same advantage in the microenvironment of the primary tumor and of the colonization site, hence phenotypic plasticity rather than rigid cellular states hardwired by mutations becomes advantageous during metastasis. We review the latest reported examples of growth factors harnessed by the metastatic cascade, with the goal of identifying opportunities for anti-metastasis interventions. In summary, because the overwhelming majority of cancer-associated deaths are caused by metastatic disease, understanding the complexity of metastasis, especially the roles played by growth factors, is vital for preventing, diagnosing and treating metastasis.
Collapse
|
83
|
Biesaga M, Frigolé-Vivas M, Salvatella X. Intrinsically disordered proteins and biomolecular condensates as drug targets. Curr Opin Chem Biol 2021; 62:90-100. [PMID: 33812316 PMCID: PMC7616887 DOI: 10.1016/j.cbpa.2021.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Intrinsically disordered domains represent attractive therapeutic targets because they play key roles in cancer, as well as in neurodegenerative and infectious diseases. They are, however, considered undruggable because they do not form stable binding pockets for small molecules and, therefore, have not been prioritized in drug discovery. Under physiological solution conditions many biomedically relevant intrinsically disordered proteins undergo phase separation processes leading to the formation of mesoscopic highly dynamic assemblies, generally known as biomolecular condensates that define environments that can be quite different from the solutions surrounding them. In what follows, we review key recent findings in this area and show how biomolecular condensation can offer opportunities for modulating the activities of intrinsically disordered targets.
Collapse
Affiliation(s)
- Mateusz Biesaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Marta Frigolé-Vivas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Joint BSC-IRB Research Programme in Computational Biology, Baldiri Reixac 10, 08028, Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
84
|
Public-Health-Driven Microfluidic Technologies: From Separation to Detection. MICROMACHINES 2021; 12:mi12040391. [PMID: 33918189 PMCID: PMC8066776 DOI: 10.3390/mi12040391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Separation and detection are ubiquitous in our daily life and they are two of the most important steps toward practical biomedical diagnostics and industrial applications. A deep understanding of working principles and examples of separation and detection enables a plethora of applications from blood test and air/water quality monitoring to food safety and biosecurity; none of which are irrelevant to public health. Microfluidics can separate and detect various particles/aerosols as well as cells/viruses in a cost-effective and easy-to-operate manner. There are a number of papers reviewing microfluidic separation and detection, but to the best of our knowledge, the two topics are normally reviewed separately. In fact, these two themes are closely related with each other from the perspectives of public health: understanding separation or sorting technique will lead to the development of new detection methods, thereby providing new paths to guide the separation routes. Therefore, the purpose of this review paper is two-fold: reporting the latest developments in the application of microfluidics for separation and outlining the emerging research in microfluidic detection. The dominating microfluidics-based passive separation methods and detection methods are discussed, along with the future perspectives and challenges being discussed. Our work inspires novel development of separation and detection methods for the benefits of public health.
Collapse
|
85
|
Li Y, Wang Y, Wan K, Wu M, Guo L, Liu X, Wei G. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. NANOSCALE 2021; 13:4330-4358. [PMID: 33620368 DOI: 10.1039/d0nr08892g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an efficient, rapid and label-free micro-/nanoparticle separation technique, dielectrophoresis (DEP) has attracted widespread attention in recent years, especially in the field of biomedicine, which exhibits huge potential in biomedically relevant applications such as disease diagnosis, cancer cell screening, biosensing, and others. DEP technology has been greatly developed recently from the low-flux laboratory level to high-throughput practical applications. In this review, we summarize the recent progress of DEP technology in biomedical applications, including firstly the design of various types and materials of DEP electrode and flow channel, design of input signals, and other improved designs. Then, functional tailoring of DEP systems with endowed specific functions including separation, purification, capture, enrichment and connection of biosamples, as well as the integration of multifunctions, are demonstrated. After that, representative DEP biomedical application examples in aspects of disease detection, drug synthesis and screening, biosensing and cell positioning are presented. Finally, limitations of existing DEP platforms on biomedical application are discussed, in which emphasis is given to the impact of other electrodynamic effects such as electrophoresis (EP), electroosmosis (EO) and electrothermal (ET) effects on DEP efficiency. This article aims to provide new ideas for the design of novel DEP micro-/nanoplatforms with desirable high throughput toward application in the biomedical community.
Collapse
Affiliation(s)
- Yalin Li
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Mingxue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Lei Guo
- Research Center for High-Value Utilization of Waste Biomass, College of Life Science, College of Life Science, Qingdao University, 266071 Qingdao, PR China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|
86
|
Brym P, Wasilewska-Sakowska K, Mogielnicka-Brzozowska M, Mańkowska A, Paukszto Ł, Pareek CS, Kordan W, Kondracki S, Fraser L. Gene promoter polymorphisms in boar spermatozoa differing in freezability. Theriogenology 2021; 166:112-123. [PMID: 33735665 DOI: 10.1016/j.theriogenology.2021.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/23/2021] [Accepted: 02/22/2021] [Indexed: 01/13/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in the 5'-flanking regulatory regions of genes could affect their expression levels. This is a follow-up study aimed to identify polymorphic variants in the 5'-flanking regulatory regions of genes expressed in boar spermatozoa, and to predict the interactions of such variants with transcription factors (TFs) on the gene promoter activity, using bioinformatics. Five and six boars were classified as having good and poor semen freezability (GSF and PSF, respectively) according to post-thaw (PT) assessment of sperm motility and membrane integrity characteristics. The 5'-flanking region sequences of the 14 genes (FOS, NFATC3, EAF2, FGF-14, BAMBI, RAB33B, CKS2, LARS2, SLC25A16, ACADM, CPT2, CCT3, DTD2 and CCDC85A) were PCR amplified and analyzed by Sanger sequencing method. A total of 32 polymorphic variants were identified in the 5'-flanking regions of the genes, including 4 insertion/deletion (indel) polymorphisms, and 8 unknown (novel) SNPs. Multiple sequence alignment analysis revealed a 26-bp indel variant in the 5'-flanking region of the LARS2 gene, which showed greater protein expression in spermatozoa from boars of the PSF group. It was found that 17 polymorphic variants, observed in the differentially expressed (DE) genes, showed significant allele frequency differences between the GSF and PSF groups. Polymorphic variants in the 5'-flanking regulatory regions of the genes contributed to the decrease or increase in the binding affinity for different testis-specific TFs, such as SMAD1, NF-1, FOXMI, RXRA, STAT4 and C/EBPβ. This study provides more insights into the mechanisms responsible for variations in transcriptional activity in promoters of genes expressed in boar spermatozoa. The allelic variants are promising genetic markers for predicting the freezability of boar spermatozoa.
Collapse
Affiliation(s)
- Paweł Brym
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | | | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Anna Mańkowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Chandra S Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - Władysław Kordan
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Stanisław Kondracki
- Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, 08-110, Siedlce, Poland
| | - Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland.
| |
Collapse
|
87
|
Schnoell J, Jank BJ, Kadletz-Wanke L, Stoiber S, Spielvogel CP, Gurnhofer E, Kenner L, Heiduschka G. Transcription factors CP2 and YY1 as prognostic markers in head and neck squamous cell carcinoma: analysis of The Cancer Genome Atlas and a second independent cohort. J Cancer Res Clin Oncol 2021; 147:755-765. [PMID: 33315124 PMCID: PMC7872999 DOI: 10.1007/s00432-020-03482-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/22/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE The transcription factors YY1 and CP2 have been associated with tumor promotion and suppression in various cancers. Recently, simultaneous expression of both markers was correlated with negative prognosis in cancer. The aim of this study was to explore the expression of YY1 and CP2 in head and neck squamous cell carcinoma (HNSCC) patients and their association with survival. METHODS First, we analyzed mRNA expression and copy number variations (CNVs) of YY1 and CP2 using "The Cancer Genome Atlas" (TCGA) with 510 HNSCC patients. Secondly, protein expression was investigated via immunohistochemistry in 102 patients, who were treated in the Vienna General Hospital, utilizing a tissue microarray. RESULTS The median follow-up was 2.9 years (1.8-4.6) for the TCGA cohort and 10.3 years (6.5-12.8) for the inhouse tissue micro-array (TMA) cohort. The median overall survival of the TCGA cohort was decreased for patients with a high YY1 mRNA expression (4.0 vs. 5.7 years, p = 0.030, corr. p = 0.180) and high YY1-CNV (3.53 vs. 5.4 years, p = 0.0355, corr. p = 0.213). Furthermore, patients with a combined high expression of YY1 and CP2 mRNA showed a worse survival (3.5 vs. 5.4 years, p = 0.003, corr. p = 0.018). The mortality rate of patients with co-expression of YY1 and CP2 mRNA was twice as high compared to patients with low expression of one or both (HR 1.99, 95% CI 1.11-3.58, p = 0.021). Protein expression of nuclear YY1 and CP2 showed no association with disease outcome in our inhouse cohort. CONCLUSION Our data indicate that simultaneous expression of YY1 and CP2 mRNA is associated with shorter overall survival. Thus, combined high mRNA expression might be a suitable prognostic marker for risk stratification in HNSCC patients. However, since we could not validate this finding at genomic or protein level, we hypothesize that unknown underlying mechanisms which regulate mRNA transcription of YY1 and CP2 are the actual culprits leading to a worse survival.
Collapse
Affiliation(s)
- Julia Schnoell
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard J Jank
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Stoiber
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Clemens P Spielvogel
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Gurnhofer
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria.
- Department of Pathology, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria.
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria.
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Styria, Austria.
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
88
|
Cryoimmunology: Opportunities and challenges in biomedical science and practice. Cryobiology 2021; 100:1-11. [PMID: 33639110 DOI: 10.1016/j.cryobiol.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
Autologous and allogeneic cryoimmunological medicine is a brand new branch of biomedical science and clinical practice that examines the features and formation of the immune response to immunogenic properties of normal and malignant biological structures altered by ultralow temperature, as well as specific changes in the structural and functional characteristics of immune cells and tissues after cryopreservation. Cryogenic protein denaturation phenomenon provides important insights into the mechanisms underlying the damage to cryogenic lesions immediately after freeze-thawing sessions in bioscience and medicine applications. The newly formed cryocoagulated protein components (cryomodified protein components) are crucial in cryoimmunology from the perspective of the formation of immunological substances at ultralow temperatures. Dendritic cells and cryocell detritus (cryocell debris) formed in living biological tissue after exposure to ultralow temperature in vivo may be an indication of one of the essential mechanisms involved in the cryoimmunological response of living structures to the impact of ultralow temperature exposure. Hence, the formation of new autologous and allogeneic cryoinduced immunogenic substances is a novel concept in biomedical research globally. Accordingly, this review focuses on issues concerning the peculiarities of the interaction of the immune system with a dominant malignant neoplasm tissue after exposure to subzero temperatures, considering the original cryogenic technical approaches. We present an overview of the state-of-the-art methods of cryoimmunology, and their major developments, past and present. The need for the delineation of structural and functional characteristics of the biological substrates of the immune system after cryopreservation that can be used in adoptive cell therapy, especially in cancer patients, is emphasized.
Collapse
|
89
|
Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, Suzuki K, Yanagisawa K, Suzuki M, Fujishita T, Yamaguchi T, Takahashi M, Takahashi T. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci 2021; 112:1614-1623. [PMID: 33506575 PMCID: PMC8019194 DOI: 10.1111/cas.14825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported that ROR1 is a crucial downstream gene for the TTF‐1/NKX2‐1 lineage‐survival oncogene in lung adenocarcinoma, while others have found altered expression of ROR1 in multiple cancer types. Accumulated evidence therefore indicates ROR1 as an attractive molecular target, though it has yet to be determined whether targeting Ror1 can inhibit tumor development and growth in vivo. To this end, genetically engineered mice carrying homozygously floxed Ror1 alleles and an SP‐C promoter–driven human mutant EGFR transgene were generated. Ror1 ablation resulted in marked retardation of tumor development and progression in association with reduced malignant characteristics and significantly better survival. Interestingly, gene set enrichment analysis identified a hypoxia‐induced gene set (HALLMARK_HYPOXIA) as most significantly downregulated by Ror1 ablation in vivo, which led to findings showing that ROR1 knockdown diminished HIF‐1α expression under normoxia and clearly hampered HIF‐1α induction in response to hypoxia in human lung adenocarcinoma cell lines. The present results directly demonstrate the importance of Ror1 for in vivo development and progression of lung adenocarcinoma, and also identify Ror1 as a novel regulator of Hif‐1α. Thus, a future study aimed at the development of a novel therapeutic targeting ROR1 for treatment of solid tumors such as seen in lung cancer, which are frequently accompanied with a hypoxic tumor microenvironment, is warranted.
Collapse
Affiliation(s)
- Hisanori Isomura
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Kajino
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Pathology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Keiko Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Yanagisawa
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Molecular Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Teruaki Fujishita
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tomoya Yamaguchi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Cancer Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
90
|
Cheon YP, Choi D, Lee SH, Kim CG. YY1 and CP2c in Unidirectional Spermatogenesis and Stemness. Dev Reprod 2021; 24:249-262. [PMID: 33537512 PMCID: PMC7837418 DOI: 10.12717/dr.2020.24.4.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/21/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022]
Abstract
Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Institute for Basic Sciences, Sungshin University, Seoul 02844, Korea
| | - Donchan Choi
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
91
|
Uversky VN. Recent Developments in the Field of Intrinsically Disordered Proteins: Intrinsic Disorder-Based Emergence in Cellular Biology in Light of the Physiological and Pathological Liquid-Liquid Phase Transitions. Annu Rev Biophys 2021; 50:135-156. [PMID: 33503380 DOI: 10.1146/annurev-biophys-062920-063704] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review deals with two important concepts-protein intrinsic disorder and proteinaceous membrane-less organelles (PMLOs). The past 20 years have seen an upsurge of scientific interest in these phenomena. However, neither are new discoveries made in this century, but instead are timely reincarnations of old ideas that were mostly ignored by the scientific community for a long time. Merging these concepts in the form of the intrinsic disorder-based biological liquid-liquid phase separation provides a basis for understanding the molecular mechanisms of PMLO biogenesis.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA; .,Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
92
|
Cerván-Martín M, Bossini-Castillo L, Rivera-Egea R, Garrido N, Luján S, Romeu G, Santos-Ribeiro S, IVIRMA Group, Lisbon Clinical Group, Castilla JA, Gonzalvo MC, Clavero A, Vicente FJ, Guzmán-Jiménez A, Costa C, Llinares-Burguet I, Khantham C, Burgos M, Barrionuevo FJ, Jiménez R, Sánchez-Curbelo J, López-Rodrigo O, Peraza MF, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Palomino-Morales RJ, Carmona FD. Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic Impairment. J Pers Med 2020; 11:22. [PMID: 33383876 PMCID: PMC7823507 DOI: 10.3390/jpm11010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Infertility is a growing concern in developed societies. Two extreme phenotypes of male infertility are non-obstructive azoospermia (NOA) and severe oligospermia (SO), which are characterized by severe spermatogenic failure (SpF). We designed a genetic association study comprising 725 Iberian infertile men as a consequence of SpF and 1058 unaffected controls to evaluate whether five single-nucleotide polymorphisms (SNPs), previously associated with reduced fertility in Hutterites, are also involved in the genetic susceptibility to idiopathic SpF and specific clinical entities. A significant difference in the allele frequencies of USP8-rs7174015 was observed under the recessive model between the NOA group and both the control group (p = 0.0226, OR = 1.33) and the SO group (p = 0.0048, OR = 1.78). Other genetic associations for EPSTI1-rs12870438 and PSAT1-rs7867029 with SO and between TUSC1-rs10966811 and testicular sperm extraction (TESE) success in the context of NOA were observed. In silico analysis of functional annotations demonstrated cis-eQTL effects of such SNPs likely due to the modification of binding motif sites for relevant transcription factors of the spermatogenic process. The findings reported here shed light on the molecular mechanisms leading to severe phenotypes of idiopathic male infertility, and may help to better understand the contribution of the common genetic variation to the development of these conditions.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, 46015 Valencia, Spain;
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain;
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain;
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (S.L.); (G.R.)
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (S.L.); (G.R.)
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (S.L.); (G.R.)
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, 1800-282 Lisbon, Portugal;
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | | | | | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, 18014 Granada, Spain
- CEIFER Biobanco—NextClinics, 18004 Granada, Spain
| | - M. Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, 18014 Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, 18014 Granada, Spain
| | - F. Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- UGC de Urología, HU Virgen de las Nieves, 18014 Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Cláudia Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Inés Llinares-Burguet
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Francisco J. Barrionuevo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - M. Fernanda Peraza
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (I.P.-C.); (J.G.)
| | - Patricia I. Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, 08025 Barcelona, Spain; (J.S.-C.); (O.L.-R.); (M.F.P.); (L.B.)
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (I.P.-C.); (J.G.)
- ToxOmics—Centro de Toxicogenómica e Saúde Humana, Nova Medical School, 1169-056 Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| | - Alexandra M. Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), 4200-135 Porto, Portugal; (C.C.); (P.I.M.); (F.C.); (A.B.); (S.S.); (A.M.L.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, 18071 Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, 18016 Granada, Spain; (M.C.-M.); (L.B.-C.); (A.G.-J.); (I.L.-B.); (M.B.); (F.J.B.); (R.J.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.A.C.); (M.C.G.); (A.C.); (F.J.V.)
| |
Collapse
|
93
|
Ruan H, Yu C, Niu X, Zhang W, Liu H, Chen L, Xiong R, Sun Q, Jin C, Liu Y, Lai L. Computational strategy for intrinsically disordered protein ligand design leads to the discovery of p53 transactivation domain I binding compounds that activate the p53 pathway. Chem Sci 2020; 12:3004-3016. [PMID: 34164069 PMCID: PMC8179352 DOI: 10.1039/d0sc04670a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intrinsically disordered proteins or intrinsically disordered regions (IDPs) have gained much attention in recent years due to their vital roles in biology and prevalence in various human diseases. Although IDPs are perceived as attractive therapeutic targets, rational drug design targeting IDPs remains challenging because of their conformational heterogeneity. Here, we propose a hierarchical computational strategy for IDP drug virtual screening (IDPDVS) and applied it in the discovery of p53 transactivation domain I (TAD1) binding compounds. IDPDVS starts from conformation sampling of the IDP target, then it combines stepwise conformational clustering with druggability evaluation to identify potential ligand binding pockets, followed by multiple docking screening runs and selection of compounds that can bind multi-conformations. p53 is an important tumor suppressor and restoration of its function provides an opportunity to inhibit cancer cell growth. TAD1 locates at the N-terminus of p53 and plays key roles in regulating p53 function. No compounds that directly bind to TAD1 have been reported due to its highly disordered structure. We successfully used IDPDVS to identify two compounds that bind p53 TAD1 and restore wild-type p53 function in cancer cells. Our study demonstrates that IDPDVS is an efficient strategy for IDP drug discovery and p53 TAD1 can be directly targeted by small molecules. A hierarchical computational strategy for IDP drug virtual screening (IDPDVS) was proposed and successfully applied to identify compounds that bind p53 TAD1 and restore wild-type p53 function in cancer cells.![]()
Collapse
Affiliation(s)
- Hao Ruan
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486
| | - Chen Yu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China.,Beijing Nuclear Magnetic Resonance Center, Peking University Beijing 100871 China
| | - Weilin Zhang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486
| | - Hanzhong Liu
- Center for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China +861062751490
| | - Limin Chen
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
| | - Ruoyao Xiong
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486
| | - Qi Sun
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486
| | - Changwen Jin
- College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China.,Beijing Nuclear Magnetic Resonance Center, Peking University Beijing 100871 China
| | - Ying Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486.,Center for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China +861062751490
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486.,Center for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China +861062751490.,Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
| |
Collapse
|
94
|
Lermyte F. Roles, Characteristics, and Analysis of Intrinsically Disordered Proteins: A Minireview. Life (Basel) 2020; 10:E320. [PMID: 33266184 PMCID: PMC7761095 DOI: 10.3390/life10120320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a growing understanding that a significant fraction of the eukaryotic proteome is intrinsically disordered, and that these conformationally dynamic proteins play a myriad of vital biological roles in both normal and pathological states. In this review, selected examples of intrinsically disordered proteins are highlighted, with particular attention for a few which are relevant in neurological disorders and in viral infection. Next, the underlying causes for the intrinsic disorder are discussed, along with computational methods used to predict whether a given amino acid sequence is likely to adopt a folded or unfolded state in the solution. Finally, biophysical methods for the analysis of intrinsically disordered proteins will be discussed, as well as the unique challenges they pose in this context due to their highly dynamic nature.
Collapse
Affiliation(s)
- Frederik Lermyte
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
95
|
Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020; 21:E9045. [PMID: 33260713 PMCID: PMC7730420 DOI: 10.3390/ijms21239045] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unable to adopt a unique 3D structure under physiological conditions and thus exist as highly dynamic conformational ensembles. IDPs are ubiquitous and widely spread in the protein realm. In the last decade, compelling experimental evidence has been gathered, pointing to the ability of IDPs and intrinsically disordered regions (IDRs) to undergo liquid-liquid phase separation (LLPS), a phenomenon driving the formation of membrane-less organelles (MLOs). These biological condensates play a critical role in the spatio-temporal organization of the cell, where they exert a multitude of key biological functions, ranging from transcriptional regulation and silencing to control of signal transduction networks. After introducing IDPs and LLPS, we herein survey available data on LLPS by IDPs/IDRs of viral origin and discuss their functional implications. We distinguish LLPS associated with viral replication and trafficking of viral components, from the LLPS-mediated interference of viruses with host cell functions. We discuss emerging evidence on the ability of plant virus proteins to interfere with the regulation of MLOs of the host and propose that bacteriophages can interfere with bacterial LLPS, as well. We conclude by discussing how LLPS could be targeted to treat phase separation-associated diseases, including viral infections.
Collapse
Affiliation(s)
- Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille University and CNRS, 13288 Marseille, France
| | - Vladimir Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33601, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
96
|
Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). Eur J Med Chem 2020; 207:112764. [PMID: 32871340 DOI: 10.1016/j.ejmech.2020.112764] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) play a pivotal role in extensive biological processes and are thus crucial to human health and the development of disease states. Due to their critical implications, PPIs have been spotlighted as promising drug targets of broad-spectrum therapeutic interests. However, owing to the general properties of PPIs, such as flat surfaces, featureless conformations, difficult topologies, and shallow pockets, previous attempts were faced with serious obstacles when targeting PPIs and almost portrayed them as "intractable" for decades. To date, rapid progress in computational chemistry and structural biology methods has promoted the exploitation of PPIs in drug discovery. These techniques boost their cost-effective and high-throughput traits, and enable the study of dynamic PPI interfaces. Thus, computational methods represent an alternative strategy to target "undruggable" PPI interfaces and have attracted intense pharmaceutical interest in recent years, as exemplified by the accumulating number of successful cases. In this review, we first introduce a diverse set of computational methods used to design PPI modulators. Herein, we focus on the recent progress in computational strategies and provide a comprehensive overview covering various methodologies. Importantly, a list of recently-reported successful examples is highlighted to verify the feasibility of these computational approaches. Finally, we conclude the general role of computational methods in targeting PPIs, and also discuss future perspectives on the development of such aids.
Collapse
|
97
|
Mayer G, Shpilt Z, Bressler S, Marcu O, Schueler-Furman O, Tshuva EY, Friedler A. Targeting an Interaction Between Two Disordered Domains by Using a Designed Peptide. Chemistry 2020; 26:10240-10249. [PMID: 32181542 DOI: 10.1002/chem.202000465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/14/2020] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered regions in proteins (IDRs) mediate many disease-related protein-protein interactions. However, the unfolded character and continuous conformational changes of IDRs make them difficult to target for therapeutic purposes. Here, we show that a designed peptide based on the disordered p53 linker domain can be used to target a partner IDR from the anti-apoptotic iASPP protein, promoting apoptosis of cancer cells. The p53 linker forms a hairpin-like structure with its two termini in close proximity. We designed a peptide derived from the disordered termini without the hairpin, designated as p53 LinkTer. The LinkTer peptide binds the disordered RT loop of iASPP with the same affinity as the parent p53 linker peptide, and inhibits the p53-iASPP interaction in vitro. The LinkTer peptide shows increased stability to proteolysis, penetrates cancer cells, causes nuclei shrinkage, and compromises the viability of cells. We conclude that a designed peptide comprising only the IDR from a peptide sequence can serve as an improved inhibitor since it binds its target protein without the need for pre-folding, paving the way for therapeutic targeting of IDRs.
Collapse
Affiliation(s)
- Guy Mayer
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Zohar Shpilt
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Shachar Bressler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Orly Marcu
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| |
Collapse
|
98
|
Chan HT, Nagayama S, Chin YM, Otaki M, Hayashi R, Kiyotani K, Fukunaga Y, Ueno M, Nakamura Y, Low S. Clinical significance of clonal hematopoiesis in the interpretation of blood liquid biopsy. Mol Oncol 2020; 14:1719-1730. [PMID: 32449983 PMCID: PMC7400786 DOI: 10.1002/1878-0261.12727] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
As the use of next-generation sequencing (NGS) for plasma cell-free DNA (cfDNA) continues to expand in clinical settings, accurate identification of circulating tumor DNA mutations is important to validate its use in the clinical management for cancer patients. Here, we aimed to characterize mutations including clonal hematopoiesis (CH)-related mutations in plasma cfDNA and tumor tissues using the same ultradeep NGS assay and evaluate the clinical significance of CH-related mutations on the interpretation of liquid biopsy results. Ultradeep targeted NGS using Oncomine Pan-Cancer Panel was performed on matched surgically resected tumor tissues, peripheral blood cells (PBCs), and 120 plasma cfDNA samples from 38 colorectal cancer patients. The clinical significance of the CH-related mutations in plasma cfDNA was evaluated by longitudinal monitoring of the postoperative plasma samples. Among the 38 patients, 74 nonsynonymous mutations were identified from tumor tissues and 64 mutations from the preoperative plasma samples. Eleven (17%) of the 64 mutations identified in plasma cfDNA were also detected in PBC DNA and were identified to be CH-related mutations. Overall, 11 of 38 (29%) patients in this cohort harbored at least one CH-related mutation in plasma cfDNA. These CH-related mutations were continuously detected in subsequent postoperative plasma samples from three patients which could be misinterpreted as the presence of residual disease or as lack of treatment response. Our results indicated that it is essential to integrate the mutational information of PBCs to differentiate tumor-derived from CH-related mutations in liquid biopsy analysis. This would prevent the misinterpretation of results to avoid misinformed clinical management for cancer patients.
Collapse
Affiliation(s)
- Hiu Ting Chan
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Satoshi Nagayama
- Department of Gastroenterological and SurgeryCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yoon Ming Chin
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
- Cancer Precision Medicine, IncKawasakiJapan
| | - Masumi Otaki
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Rie Hayashi
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
- Cancer Precision Medicine, IncKawasakiJapan
| | - Kazuma Kiyotani
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yosuke Fukunaga
- Department of Gastroenterological and SurgeryCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Masashi Ueno
- Department of Gastroenterological and SurgeryCancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yusuke Nakamura
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Siew‐Kee Low
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
99
|
Na I, Choi S, Son SH, Uversky VN, Kim CG. Drug Discovery Targeting the Disorder-To-Order Transition Regions through the Conformational Diversity Mimicking and Statistical Analysis. Int J Mol Sci 2020; 21:5248. [PMID: 32722024 PMCID: PMC7432763 DOI: 10.3390/ijms21155248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered proteins exist as highly dynamic conformational ensembles of diverse forms. However, the majority of virtual screening only focuses on proteins with defined structures. This means that computer-aided drug discovery is restricted. As a breakthrough, understanding the structural characteristics of intrinsically disordered proteins and its application can open the gate for unrestricted drug discovery. First, we segmented the target disorder-to-order transition region into a series of overlapping 20-amino-acid-long peptides. Folding prediction generated diverse conformations of these peptides. Next, we applied molecular docking, new evaluation score function, and statistical analysis. This approach successfully distinguished known compounds and their corresponding binding regions. Especially, Myc proto-oncogene protein (MYC) inhibitor 10058F4 was well distinguished from others of the chemical compound library. We also studied differences between the two Methyl-CpG-binding domain protein 2 (MBD2) inhibitors (ABA (2-amino-N-[[(3S)-2,3-dihydro-1,4-benzodioxin-3-yl]methyl]-acetamide) and APC ((R)-(3-(2-Amino-acetylamino)-pyrrolidine-1-carboxylic acid tert-butyl ester))). Both compounds bind MBD2 through electrostatic interaction behind its p66α-binding site. ABA is also able to bind p66α through electrostatic interaction behind its MBD2-binding site while APC-p66α binding was nonspecific. Therefore, structural heterogeneity mimicking of the disorder-to-order transition region at the peptide level and utilization of the new docking score function represent a useful approach that can efficiently discriminate compounds for expanded virtual screening toward intrinsically disordered proteins.
Collapse
Affiliation(s)
- Insung Na
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; (I.N.); (S.C.); (S.H.S.)
| | - Sungwoo Choi
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; (I.N.); (S.C.); (S.H.S.)
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; (I.N.); (S.C.); (S.H.S.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; (I.N.); (S.C.); (S.H.S.)
- CGK Biopharma Co. Ltd., 222 Wangshipri-ro, Sungdong-gu, Seoul 04763, Korea
| |
Collapse
|
100
|
Kuan DH, Huang NT. Recent advancements in microfluidics that integrate electrical sensors for whole blood analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3318-3332. [PMID: 32930218 DOI: 10.1039/d0ay00413h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Whole blood analysis reveals crucial information about various physiological and pathological conditions, including cancer metastasis, infection, and immune status, among others. Despite this rich information, the complex composition of whole blood usually required multiple sample preparation steps to purify targeted analytes. Traditionally, whole blood preparation processes, including centrifugation, lysis, dilution, or staining, are usually manually operated by well-trained technicians using bench-top instruments. This preparation can require a large blood volume and cannot be directly integrated with detection systems. Recently, various studies have integrated microfluidics with electrical sensors for whole blood analysis, with a focus on cell-based analysis, such as cell type, number, morphology, phenotype, and secreted molecules. These miniaturized systems require less sample and shorter reaction times. Besides, the sample processing and analysis can be fully integrated and automated with minimal operations. We believe these systems can transfer the current whole blood analysis from hospitals or laboratories into clinics or home settings to enable real-time and continuous health condition monitoring in point-of-care settings.
Collapse
Affiliation(s)
- Da-Han Kuan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan.
| | - Nien-Tsu Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taiwan
| |
Collapse
|