51
|
Wu Q, Wada M, Shimada A, Yamamoto A, Fujita T. Functional characterization of Zn2(+)-sensitive GABA transporter expressed in primary cultures of astrocytes from rat cerebral cortex. Brain Res 2006; 1075:100-9. [PMID: 16466645 DOI: 10.1016/j.brainres.2005.12.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/26/2005] [Accepted: 12/27/2005] [Indexed: 11/26/2022]
Abstract
The extracellular levels of gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the mammalian cerebral cortex, are regulated by specific high-affinity Na(+)/Cl(-) dependent transporters (GATs). GAT1 mainly expressed in cerebrocortical neurons is thought to play an important role for clearance of GABA in the extracellular fluid, whereas there is a little information available for pharmacological importance for astrocytic GABA transporters. In the present study, we therefore described the functional characterization of GABA transport in primary cultures of astrocytes from rat cerebral cortex and the identification of GABA transporter subtype(s). GABA transport was Na(+) and Cl(-) dependent and saturable with a Michaelis constant (K(t)) of 9.3+/-2.8 microM. Na(+)- and Cl(-)- activation kinetics revealed that the Na(+)-Cl(-)-to-GABA stoichiometry was 2:1:1 and concentrations of Na(+) and Cl(-) necessary for half-maximal transport (K(0.5)(Na) and K(0.5)(Cl)) were 78+/-28 mM and 9.6+/-2.6 mM, respectively. Na(+)-dependent GABA transport was competitively inhibited by various GABA transport inhibitors, especially GAT2- or GAT3-selective inhibitor. In addition, Zn(2+), which has been reported to be a potent inhibitor of GAT3, was found to have a significantly but partially inhibitory effect on the Na(+)-dependent GABA transport in a concentration-dependent manner. Furthermore, reverse transcription-PCR and Western blot analyses revealed that GAT2 and GAT3 are expressed in primary cultures of astrocytes. These results clearly showed that zinc is a useful reagent for separating GAT3 activity from GAT1- and GAT2-activities in CNS. To our knowledge, the present study represents the first report on the inhibitory effect of zinc on the Na(+)-dependent GABA transport in rat cerebrocortical astrocytes.
Collapse
Affiliation(s)
- Qiang Wu
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | | | | | | | | |
Collapse
|
52
|
Clausen RP, Madsen K, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A. Structure–Activity Relationship and Pharmacology of γ‐Aminobutyric Acid (GABA) Transport Inhibitors. GABA 2006; 54:265-84. [PMID: 17175818 DOI: 10.1016/s1054-3589(06)54011-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rasmus Praetorius Clausen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
53
|
Abstract
In the adult central nervous system (CNS), gamma-amino butyric acid (GABA) is a predominant inhibitory neurotransmitter, and is involved in the expression of various higher brain functions. In the cerebellum, formation of GABAergic synapses is crucial for cerebellar functions. However, it is not fully understood how GABAergic synapses and networks are formed. We are morphologically investigating the developmental changes in GABAergic signaling and the mechanisms underlying the assembly of GABAergic synapses using the cerebellum, which provides an ideal system for the investigation of brain development. The anatomy and development of GABAergic synapses and networks in the cerebellar cortex are reviewed, the key factors for the formation of GABAergic synapses are addressed, and the mechanisms underlying the formation of cerebellar GABAergic networks are discussed.
Collapse
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Sapporo, Japan.
| |
Collapse
|
54
|
Kragler A, Höfner G, Wanner KT. Novel parent structures for inhibitors of the murine GABA transporters mGAT3 and mGAT4. Eur J Pharmacol 2005; 519:43-7. [PMID: 16111674 DOI: 10.1016/j.ejphar.2005.06.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Searching for potent and subtype selective parent structures of the murine gamma-aminobutyric acid (GABA) transporter subtypes mGAT3 and mGAT4 a series of amino acids was characterised in a uniform [3H]GABA uptake test system based on transiently expressed mGAT1-4. From several potent inhibitors showing IC50 values at mGAT3 and mGAT4 in the low microM range cis-4-aminocrotonic acid and (RS)-2,3-diaminopropionic acid turned out to be most subtype selective for these transporters. With (RS)-isoserine--a compound unknown as GAT inhibitor until now--one of the most potent amino acids selectively inhibiting mGAT3 and mGAT4 was found. Furthermore, (2-amino-1,3-thiazol-4-yl)acetic acid was identified as the first parent structure exhibiting a clear, though still moderate, selective inhibition of GABA uptake at mGAT3.
Collapse
Affiliation(s)
- Andrea Kragler
- Department Pharmazie-Zentrum für Pharmaforschung-Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 München, Germany
| | | | | |
Collapse
|
55
|
Keros S, Hablitz JJ. Subtype-Specific GABA Transporter Antagonists Synergistically Modulate Phasic and Tonic GABAA Conductances in Rat Neocortex. J Neurophysiol 2005; 94:2073-85. [PMID: 15987761 DOI: 10.1152/jn.00520.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABAergic inhibition in the brain can be classified as either phasic or tonic. γ-Aminobutyric acid (GABA) uptake by GABA transporters (GATs) can limit the time course of phasic currents arising from endogenous and exogenous GABA, as well as decrease a tonically active GABA current. GABA transporter subtypes 1 and 3 (GAT-1 and GAT-3) are the most heavily expressed of the four known GAT subtypes. The role of GATs in shaping GABA currents in the neocortex has not been explored. We obtained patch-clamp recordings from layer II/III pyramidal cells and layer I interneurons in rat sensorimotor cortex. We found that selective GAT-1 inhibition with NO711 decreased the amplitude and increased the decay time of evoked inhibitory postsynaptic currents (IPSCs) but had no effect on the tonic current or spontaneous IPSCs (sIPSCs). GAT-2/3 inhibition with SNAP-5114 had no effect on IPSCs or the tonic current. Coapplication of NO711 and SNAP-5114 substantially increased tonic currents and synergistically decreased IPSC amplitudes and increased IPSC decay times. sIPSCs were not resolvable with coapplication of NO711 and SNAP-5114. The effects of the nonselective GAT antagonist nipecotic acid were similar to those of NO711 and SNAP-5114 together. We conclude that synaptic GABA levels in neocortical neurons are controlled primarily by GAT-1, but that GAT-1 and GAT-2/3 work together extrasynaptically to limit tonic currents. Inhibition of any one GAT subtype does not increase the tonic current, presumably as a result of increased activity of the remaining transporters. Thus neocortical GAT-1 and GAT-2/3 have distinct but overlapping roles in modulating GABA conductances.
Collapse
Affiliation(s)
- Sotirios Keros
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
56
|
Melone M, Barbaresi P, Fattorini G, Conti F. Neuronal localization of the GABA transporter GAT-3 in human cerebral cortex: A procedural artifact? J Chem Neuroanat 2005; 30:45-54. [PMID: 15923108 DOI: 10.1016/j.jchemneu.2005.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/08/2005] [Accepted: 04/08/2005] [Indexed: 12/26/2022]
Abstract
Gamma-amino butyric acid (GABA) plasma membrane transporters (GATs) contribute to the modulation of GABA's actions and are implicated in neuropsychiatric diseases. In this study, the localization of GAT-3, the major glial GAT, was investigated in human cortex using immunocytochemical techniques. In prefrontal and temporal cortices, GAT-3 immunoreactivity (ir) was present throughout the depth of the cortex, both in puncta and in neurons. GAT-3-positive puncta were dispersed in the neuropil or closely related to cell bodies; neuronal staining was in perikarya, especially of pyramidal cells, and proximal dendrites. Electron microscopic studies showed that GAT-3 ir was in astrocytic processes as well as in neuronal elements. All GAT-3-positive neurons co-expressed heat shock protein 70. To test the possibility that the collection procedure of human samples induced the expression of GAT-3 in neurons which normally do not express it, we analyzed rat cortical tissue resected using the same procedure and found that numerous neurons are GAT-3-positive and that they co-express heat shock protein 70. Results show that in human cortex GAT-3 is expressed in astrocytic processes and in neurons and suggest that neuronal expression is related to the procedure used for collecting human samples.
Collapse
Affiliation(s)
- Marcello Melone
- Department of Neurosciences, Section of Physiology, Università Politecnica delle Marche, Via Tronto 10/A, Torrette di Ancona, I-60020 Ancona, Italy
| | | | | | | |
Collapse
|
57
|
Jiang KW, Gao F, Shui QX, Yu ZS, Xia ZZ. Effect of diazoxide on regulation of vesicular and plasma membrane GABA transporter genes and proteins in hippocampus of rats subjected to picrotoxin-induced kindling. Neurosci Res 2005; 50:319-29. [PMID: 15488295 DOI: 10.1016/j.neures.2004.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Accepted: 08/03/2004] [Indexed: 11/15/2022]
Abstract
Epileptiform discharges and behavioral seizures may be the consequences of excess excitation from inadequate inhibitory effects associated with gamma-aminobutyric acid (GABA). GABA is taken up and accumulated in synaptic vesicles by the action of vesicular GABA transporter (VGAT) before its release into the synaptic cleft, and removed from synaptic regions by the action of transporter proteins GABA transporter-1 (GAT-1) and GABA transporter-3 (GAT-3). In this experiment, the effects of diazoxide (DIZ) on the VGAT, GAT-1 and GAT-3 mRNA and protein levels in hippocampus, and on the seizure activities of picrotoxin (PTX)-induced kindling rats were observed. DIZ caused increase in the quantity of VGAT mRNAs and proteins, and down regulation of GABA transporters GAT-1 and GAT-3 mRNAs and proteins after the PTX re-kindling. Furthermore, DIZ produced not only a prompt but also a later suppression of PTX-induced seizures. Although DIZ has effects on ATP-sensitive potassium (K(ATP)) channels when measured in vitro, our study suggests that additional mechanisms of action may involve the regulation of GABA transporters, which may aid in understanding epileptogenesis and inform investigators about future design and development of K(ATP) channel openers to treat epilepsy.
Collapse
Affiliation(s)
- Ke-Wen Jiang
- Department of Neurology, Children's Hospital School of Medicine, Zhejiang University, 57 Zhugan Xiang, Hangzhou 310003, China.
| | | | | | | | | |
Collapse
|
58
|
Jelitai M, Madarasz E. The role of GABA in the early neuronal development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:27-62. [PMID: 16512345 DOI: 10.1016/s0074-7742(05)71002-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marta Jelitai
- Laboratory of Neural Cell and Developmental Biology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
59
|
Takayama C. GABAergic signaling in the developing cerebellum. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:63-94. [PMID: 16512346 DOI: 10.1016/s0074-7742(05)71003-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
60
|
Zhu XM, Ong WY. Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. J Neurosci Res 2004; 77:402-9. [PMID: 15248296 DOI: 10.1002/jnr.20171] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The gamma-aminobutyric acid (GABA) transporters GAT-1, GAT-2, GAT-3, and BGT-1 have been cloned and identified according to their differential amino acid sequences and pharmacologic properties. In contrast to GAT-1, -2, or -3, BGT-1 is capable of utilizing both GABA and betaine as substrates. Betaine has been suggested to be a protective osmolyte in the brain. Because changes in expression of GABA transporters/BGT-1 might result in alterations in levels of GABA/betaine in the extracellular space, with consequent effects on neuronal excitability or osmolarity, the present study was carried out to explore expression of GABA transporters in the rat hippocampus after kainate-induced neuronal injury. A decrease in GAT-1 and GAT-3 immunostaining but no change in GAT-2 staining was observed in the degenerating CA subfields. In contrast, increased BGT-1 immunoreactivity was observed in astrocytes after kainate injection. BGT-1 is a weak transporter of GABA in comparison to other GABA transporters and the increased expression of BGT-1 in astrocytes might be a protective mechanism against increased osmotic stress known to occur after excitotoxic injury. On the other hand, excessive or prolonged BGT-1 expression might be a factor contributing to astrocytic swelling after brain injury.
Collapse
Affiliation(s)
- Xiao-Ming Zhu
- Department of Anatomy, National University of Singapore, Singapore
| | | |
Collapse
|
61
|
Conti F, Minelli A, Melone M. GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. ACTA ACUST UNITED AC 2004; 45:196-212. [PMID: 15210304 DOI: 10.1016/j.brainresrev.2004.03.003] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 12/16/2022]
Abstract
The extracellular levels of gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the mammalian cerebral cortex, are regulated by specific high-affinity, Na+/Cl- dependent transporters. Four distinct genes encoding GABA transporters (GATs), named GAT-1, GAT-2, GAT-3, and BGT-1 have been identified using molecular cloning. Of these, GAT-1 and -3 are expressed in the cerebral cortex. Studies of the cortical distribution, cellular localization, ontogeny and relationships of GATs with GABA-releasing elements using a variety of light and electron microscopic immunocytochemical techniques have shown that: (i) a fraction of GATs is strategically placed to mediate GABA uptake at fast inhibitory synapses, terminating GABA's action and shaping inhibitory postsynaptic responses; (ii) another fraction may participate in functions such as the regulation of GABA's diffusion to neighboring synapses and of GABA levels in cerebrospinal fluid; (iii) GATs may play a role in the complex processes regulating cortical maturation; and (iv) GATs may contribute to the dysregulation of neuronal excitability that accompanies at least two major human diseases: epilepsy and ischemia.
Collapse
Affiliation(s)
- Fiorenzo Conti
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università Politecnica delle Marche, Via Tronto 10/A, Torrette di Ancona, I-60020 Ancona, Italy.
| | | | | |
Collapse
|
62
|
Minelli A, Barbaresi P, Conti F. Postnatal development of high-affinity plasma membrane GABA transporters GAT-2 and GAT-3 in the rat cerebral cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:7-18. [PMID: 12694940 DOI: 10.1016/s0165-3806(03)00007-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the developmental profile of plasma membrane gamma-aminobutyric acid (GABA) transporters (GATs) GAT-2 and GAT-3 expression by immunocytochemistry with affinity-purified polyclonal antibodies in the rat neocortex. At all developmental ages investigated, GAT-2 ir was prominent in the arachnoid and in the trabeculae of the subarachnoid space, whereas it was weak within the cortical parenchyma; the adult pattern was reached during the third week of postnatal life. GAT-3 ir was present at birth and increased rapidly in the first week, when numerous positive cells were present throughout the cortical layers; at P10, GAT-3-positive cells became less numerous and GAT-3 ir switched to the adult pattern, which was expressed at P20. Confocal and electron microscopic investigations showed that GAT-3 positive cells were both neurons and astrocytes. The present evidence indicates that early in development GAT-3 is abundantly expressed in the cerebral cortex, where its expression appears to correlate with developmental variations in GABA levels, and suggests that it accounts for the largest fraction of GABA transport observed in the neonatal cerebral cortex.
Collapse
Affiliation(s)
- Andrea Minelli
- Istituto di Fisiologia Umana, Università di Ancona, Via Tronto 10/A, Torrette di Ancona, I-60020 Ancona, Italy
| | | | | |
Collapse
|
63
|
Cytoarchitectonics of non-neuronal cells in the central nervous system. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
64
|
Abstract
The presence, magnitude, and time course of GABA transporter currents were investigated in electrophysiologically characterized neocortical astrocytes in an in vitro slice preparation. On stimulation with a bipolar-tungsten stimulating electrode placed nearby, the majority of cells tested displayed long-lasting GABA transporter currents using both single and repetitive stimulation protocols. Using subtype-specific GABA transporter antagonists, long-lasting GABA transporter currents were identified in neocortical astrocytes that originated from at least two subtypes of GABA transporters: GAT-1 and GAT-2/3. These transporter currents displayed slow rise times and long decay times, contrasting the time course observed for glutamate transporter currents, and are indicative of a long extracellular time course of GABA as well as a role for glial GABA transporters during synaptic transmission.
Collapse
Affiliation(s)
- Gregory A Kinney
- Veterans Affairs Puget Sound Health Care System, Seattle, 98108, USA.
| | | |
Collapse
|
65
|
Abstract
Although glial GABA uptake and release have been studied in vitro, GABA transporters (GATs) have not been characterized in glia in slices. Whole cell patch-clamp recordings were obtained from Bergmann glia in rat cerebellar slices to characterize carrier-mediated GABA influx and efflux. GABA induced inward currents at -70 mV that could be pharmacologically separated into GABA(A) receptor and GAT currents. In the presence of GABA(A/B/C) receptor blockers, mean GABA-induced currents measured -48 pA at -70 mV, were inwardly rectifying between -70 and +50 mV, were inhibited by external Na(+) removal, and were diminished by reduction of external Cl(-). Nontransportable blockers of GAT-1 (SKF89976-A and NNC-711) and a transportable blocker of all the GAT subtypes (nipecotic acid) reversibly reduced GABA-induced transport currents by 68 and 100%, respectively. A blocker of BGT-1 (betaine) had no effect. SKF89976-A and NNC-711 also suppressed baseline inward currents that likely result from tonic GAT activation by background GABA. The substrate agonists, nipecotic acid and beta-alanine but not betaine, induced voltage- and Na(+)-dependent currents. With Na(+) and GABA inside the patch pipette or intracellular GABA perfusion during the recording, SKF89976-A blocked baseline outward currents that activated at -60 mV and increased with more depolarized potentials. This carrier-mediated GABA efflux induced a local accumulation of extracellular GABA detected by GABA(A) receptor activation on the recorded cell. Overall, these results indicate that Bergmann glia express GAT-1 that are activated by ambient GABA. In addition, GAT-1 in glia can work in reverse and release sufficient GABA to activate nearby GABA receptors.
Collapse
Affiliation(s)
- L Barakat
- Department of Neurosurgery, Yale University, New Haven, Connecticut 06520-8082, USA
| | | |
Collapse
|
66
|
Ng CH, Ong WY. Increased synaptosomal [3H] GABA uptake in the rat brainstem after facial carrageenan injections. Pain 2002; 98:259-268. [PMID: 12127027 DOI: 10.1016/s0304-3959(01)00491-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to quantify synaptosomal [(3)H] gamma aminobutyric acid (GABA) uptake in the rat brainstem after facial carrageenan injections. Synaptosomal preparations from the brainstem of rats that had received one or four facial carrageenan injections showed greater GABA binding on the side of the brainstem ipsilateral to the carrageenan injection than on the contralateral side when compared to saline injected controls. In contrast, no difference in GABA binding between the injected and contralateral sides was observed in the same synaptosomal preparations that had been treated with GABA uptake inhibitors NNC-711, beta-alanine, or nipecotic acid. The difference between GABA binding in the absence of the GABA uptake inhibitor and GABA binding in a portion from the same synaptosomal preparation which had been incubated with the GABA uptake inhibitor was obtained to represent [(3)H] GABA binding to GABA transporters/transporter mediated [(3)H] GABA uptake. A significantly greater GABA uptake was observed on the side of the brainstem ipsilateral to the carrageenan injection(s) than on the contralateral side. A consequence of the observed increase in GABA uptake is that it could reduce the amount of GABA in the synaptic cleft. This could influence the transmission of nociceptive input from primary afferents to secondary neurons in the spinal trigeminal nucleus and could be a contributing factor in the development of hyperalgesia after carrageenan injections or other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Chee-Hon Ng
- Department of Anatomy, National University of Singapore, Singapore, Singapore 119260
| | | |
Collapse
|
67
|
Zahniser NR, Doolen S. Chronic and acute regulation of Na+/Cl- -dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 2001; 92:21-55. [PMID: 11750035 DOI: 10.1016/s0163-7258(01)00158-9] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Na+/Cl- -dependent neurotransmitter transporters, which constitute a gene superfamily, are crucial for limiting neurotransmitter activity. Thus, it is critical to understand their regulation. This review focuses primarily on the norepinephrine transporter, the dopamine transporter, the serotonin transporter, and the gamma-aminobutyric acid transporter GAT1. Chronic administration of drugs that alter neurotransmitter release or inhibit transporter activity can produce persistent compensatory changes in brain transporter number and activity. However, regulation has not been universally observed. Transient alterations in norepinephrine transporter, dopamine transporter, serotonin transporter, and GAT1 function and/or number occur in response to more acute manipulations, including membrane potential changes, substrate exposure, ethanol exposure, and presynaptic receptor activation/inhibition. In many cases, acute regulation has been shown to result from a rapid redistribution of the transporter between the cell surface and intracellular sites. Second messenger systems involved in this rapid regulation include protein kinases and phosphatases, of which protein kinase C has been the best characterized. These signaling systems share the common characteristic of altering maximal transport velocity and/or cell surface expression, consistent with regulation of transporter trafficking. Although less well characterized, arachidonic acid, reactive oxygen species, and nitric oxide also alter transporter function. In addition to post-translational modifications, cytoskeleton interactions and transporter oligomerization regulate transporter activity and trafficking. Furthermore, promoter regions involved in transporter transcriptional regulation have begun to be identified. Together, these findings suggest that Na+/Cl- -dependent neurotransmitter transporters are regulated both long-term and in a more dynamic manner, thereby providing several distinct mechanisms for altering synaptic neurotransmitter concentrations and neurotransmission.
Collapse
Affiliation(s)
- N R Zahniser
- Department of Pharmacology, C-236, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
68
|
Ng CH, Ong WY. Increased expression of gamma-aminobutyric acid transporters GAT-1 and GAT-3 in the spinal trigeminal nucleus after facial carrageenan injections. Pain 2001; 92:29-40. [PMID: 11323124 DOI: 10.1016/s0304-3959(00)00468-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study aimed to elucidate the distribution of gamma-aminobutyric acid (GABA) transporters in the spinal trigeminal nucleus after carrageenan injections. Dense GAT-1 and GAT-3 but very little GAT-2 immunoreactivity was observed in the normal rat spinal trigeminal nucleus. The GAT-1-positive glial cells in the normal rat spinal trigeminal nucleus contained dense bundles of glial filaments and had features of astrocytes. Some GAT-3-positive cells contained dense bundles of glial filaments and had features of astrocytes, whilst others lacked glial filaments, and contained dense marginated heterochromatin, and had features of oligodendrocyte precursor cells. An increase in immunoreactivity to both transporters was observed on the injected but not the contralateral side 3 days after facial carrageenan injections. In rats given three further weekly injections of carrageenan and killed 3 days after the fourth injection, further increases in GAT-1 and GAT-3 immunoreactivities were observed. Electron microscopy showed that transporter immunoreactivity in the spinal trigeminal nucleus of carrageenan-injected rats was predominantly present in glial processes, showing that the increase in the number of processes observed at light microscopy was due to increased immunoreactivity in glial processes. An increased expression of GABA transporters in the carrageenan-injected spinal trigeminal nucleus could therefore result in a faster removal of GABA from the synaptic cleft of GABAergic axon terminals compared to normal rats. This could result in reduced inhibition/increased activity of the trigeminothalamic neurons in the spinal trigeminal nucleus, and could contribute to hyperalgesia after carrageenan injections.
Collapse
Affiliation(s)
- C H Ng
- Department of Anatomy, National University of Singapore, 119260, Singapore, Singapore
| | | |
Collapse
|
69
|
Berger UV, Hediger MA. Differential distribution of the glutamate transporters GLT-1 and GLAST in tanycytes of the third ventricle. J Comp Neurol 2001; 433:101-14. [PMID: 11283952 DOI: 10.1002/cne.1128] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ventral one-third of the ventricular lining in the hypothalamus is formed by specialized ependymal cells called the tanycytes. These cells may serve a neuroendocrine transport function because of their structural specializations, which include apical microvili on the ventricular surface and long basal processes that terminate on blood vessels or on the glia limitans. Here, we describe the expression of mRNA and protein for the glutamate transporters GLT-1 and GLAST in unique tanycyte populations of the third ventricle in rat brain. Using nonisotopic in situ hybridization, we demonstrate GLAST mRNA labeling in tanycytes of the ventral floor and lateral walls in the tuberal and mammillary recess portions of the third ventricle. This GLAST mRNA labeling had a higher intensity than the labeling intensity observed in regular ependymal cells throughout the ventricular system. Furthermore, we have identified strong GLT-1 mRNA labeling in a population of tanycytes situated in the dorsolateral walls of caudal tuberal and mammillary recess portions. Immunocytochemical staining indicates that both GLT-1 and GLAST protein are expressed in the tanycyte populations as well. These data corroborate previous findings that third ventricle tanycytes are functionally heterogeneous. Furthermore, the GLT-1-expressing tanycytes represent a population of tanycytes that, to date, has not been recognized as functionally distinct. The strong GLAST expression by the ventral tanycytes in the hypophysiotropic area suggests a role of tanycyte-mediated glutamate transport in neuroendocrine activity. The functional role of GLT-1 in dorsal wall tanycytes remains to be explored.
Collapse
Affiliation(s)
- U V Berger
- Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
70
|
Gadea A, López-Colomé AM. Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J Neurosci Res 2001; 63:461-8. [PMID: 11241581 DOI: 10.1002/jnr.1040] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The termination of chemical neurotransmission in the central nervous system (CNS) involves the rapid removal of neurotransmitter from synapses. This is fulfilled by specific transport systems in neurons and glia, including those for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. Glial cells express the cloned Na(+)/Cl(-)-dependent, high-affinity GABA transporters (GATs) GAT1, GAT2, and GAT3, as well as the low-affinity transporter BGT1. In situ hybridization and immunocytochemistry have revealed that each transporter shows distinct regional distribution in the brain and the retina. The neuronal vs. glial localization of the different transporters is not clear-cut, and variations according to species, neighboring excitatory synapses, and developmental stage have been reported. The localization, stoichiometry, and regulation of glial GATs are outlined, and the participation of these structures in development, osmoregulation, and neuroprotection are discussed. A decrease in GABAergic neurotransmission has been implicated in the pathophysiology of several CNS disorders, particularly in epilepsy. Since drugs which selectively inhibit glial but not neuronal GABA uptake exert anticonvulsant activity, clearly the establishment of the molecular mechanisms controlling GATs in glial cells will be an aid in the chemical treatment of several CNS-related diseases.
Collapse
Affiliation(s)
- A Gadea
- Instituto de Fisiología Celular, Departamento de Neurociencias, UNAM, México, D.F., México
| | | |
Collapse
|
71
|
Abstract
Although studies in the visual cortex have found gamma-aminobutyric acid B (GABA(B)) receptor-mediated pre- and postsynaptic inhibitory effects on neurons, the subcellular localization of GABA(B) receptors in different types of cortical neurons and synapses has not been shown directly. To provide this information, we have used antibodies against the GABA(B) receptor (R)1a/b and GABA(B)R2 subunits and have studied the localization of immunoreactivities in rat visual cortex. Light microscopic analyses have shown that both subunits are expressed in cell bodies and dendrites of 65-92% of corticocortically projecting pyramidal neurons and in 92-100% of parvalbumin (PV)-, calretinin (CR)-, and somatostatin (SOM)-containing GABAergic neurons. Electron microscopic analyses of immunoperoxidase- and immunogold-labeled tissue revealed staining in the nucleus, cytoplasm and cell surface membranes with both antibodies. Colocalization of both subunits was observed in all of these structures. GABA(B)R1a/b and GABA(B)R2 were concentrated in excitatory and inhibitory synapses and in extrasynaptic membranes. In GABAergic synapses, GABA(B)R1a/b and GABA(B)R2 were more strongly expressed postsynaptically on pyramidal and nonpyramidal cells than presynaptically. In type 1 synapses GABA(B)R1a/b and GABA(B)R2 was found in pre- and postsynaptic membranes. The nuclear localization of GABA(B)R1 and GABA(B)R2 subunits suggests a novel role for neurotransmitter receptors in controlling gene expression. The synaptic colocalization of GABA(B)R1 and GABA(B)R2 indicates that subunits form heteromeric assemblies of the functional receptor in inhibitory and excitatory synapses. Subunit coexpression in GABAergic synapses that include PV-containing and PV-deficient terminals suggests that pre- and postsynaptic GABA(B) receptor activation is provided by several different types of interneurons. The coexpression of both subunits in excitatory synapses suggests a role for GABA(B) receptors in the regulation of glutamate release and raises the question how these receptors are activated in the absence of pre-or postsynaptic GABAergic synaptic inputs to excitatory synapses.
Collapse
Affiliation(s)
- Y Gonchar
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
72
|
Barbaresi P, Gazzanelli G, Malatesta M. gamma-Aminobutyric acid transporters in the cat periaqueductal gray: a light and electron microscopic immunocytochemical study. J Comp Neurol 2001; 429:337-54. [PMID: 11116224 DOI: 10.1002/1096-9861(20000108)429:2<337::aid-cne12>3.0.co;2-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gamma-aminobutyric acid (GABA) plasma membrane transporters (GATs) mediate GABA uptake into presynaptic axon terminals and glial processes, thus contributing to the regulation of the magnitude and duration of the action of GABA at the synaptic cleft. The aim of the present study was to investigate the expression of three high-affinity GABA transporters (GAT-1, GAT-2, and GAT-3) in the periaqueductal gray matter (PAG) of adult cats by using immunocytochemistry with affinity-purified antibodies. Light microscopic observations revealed GAT-1 immunoreactivity in punctate structures, particularly dense in the lateral portion of the dorsolateral PAG column. Weak GAT-2-immunopositive puncta were homogeneously distributed in the PAG. GAT-3 immunoreactivity was detected in each column of the PAG but was more intense in the dorsolateral PAG column and around the aqueduct. Electron microscopic studies showed GAT-1 immunoreactivity in distal astroglial processes, in unmyelinated and small myelinated axons, and in axon terminals making symmetric synapses on both PAG neurons and dendrites. GAT-2 immunoreactivity was present mostly in the form of patches of different sizes in the cytoplasm of neuronal elements like the perikarya and dendrites of PAG neurons, in myelinated and unmyelinated axons, and in the axon terminals forming both symmetric and asymmetric synapses. Labeling was also observed in nonneuronal elements. Astrocytic cell bodies and their distal processes as well as the ependymal cells lining the wall of the aqueduct showed patches of GAT-2 immunoreactivity. Electron microscopic observation revealed GAT-3 immunoreactivity exclusively in distal astrocytic processes adjacent to the somata of PAG neurons and in axon terminals making both symmetric and asymmetric synapses. The present results suggest that three types of termination systems of GABAergic transmission are present in the cat periaqueductal gray matter.
Collapse
Affiliation(s)
- P Barbaresi
- Insitute of Human Physiology, University of Ancona, I-60020 Ancona, Italy.
| | | | | |
Collapse
|
73
|
Berg K. Chapter 8 Basic principles of 5-aminolevulinic acid-based photodynamic therapy. COMPREHENSIVE SERIES IN PHOTOSCIENCES 2001. [DOI: 10.1016/s1568-461x(01)80112-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
74
|
Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 2000; 59:561-74. [PMID: 10901227 DOI: 10.1093/jnen/59.7.561] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Choroid plexuses (CPs) are localized in the ventricular system of the brain and form one of the interfaces between the blood and the central nervous system (CNS). They are composed of a tight epithelium responsible for cerebrospinal fluid secretion, which encloses a loose connective core containing permeable capillaries and cells of the lymphoid lineage. In accordance with its peculiar localization between 2 circulating fluid compartments, the CP epithelium is involved in numerous exchange processes that either supply the brain with nutrients and hormones, or clear deleterious compounds and metabolites from the brain. Choroid plexuses also participate in neurohumoral brain modulation and neuroimmune interactions, thereby contributing greatly in maintaining brain homeostasis. Besides these physiological functions, the implication of choroid plexuses in pathological processes is increasingly documented. In this review, we focus on some of the novel aspects of CP functions in relation to brain development, transfer of neuro-humoral information, brain/immune system interactions, brain aging, and cerebral pharmaco-toxicology.
Collapse
Affiliation(s)
- N Strazielle
- INSERM U433, Faculté de Médecine Laennec, Lyon, France
| | | |
Collapse
|