51
|
Künze G, Huster D, Samsonov SA. Investigation of the structure of regulatory proteins interacting with glycosaminoglycans by combining NMR spectroscopy and molecular modeling - the beginning of a wonderful friendship. Biol Chem 2021; 402:1337-1355. [PMID: 33882203 DOI: 10.1515/hsz-2021-0119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022]
Abstract
The interaction of regulatory proteins with extracellular matrix or cell surface-anchored glycosaminoglycans (GAGs) plays important roles in molecular recognition, wound healing, growth, inflammation and many other processes. In spite of their high biological relevance, protein-GAG complexes are significantly underrepresented in structural databases because standard tools for structure determination experience difficulties in studying these complexes. Co-crystallization with subsequent X-ray analysis is hampered by the high flexibility of GAGs. NMR spectroscopy experiences difficulties related to the periodic nature of the GAGs and the sparse proton network between protein and GAG with distances that typically exceed the detection limit of nuclear Overhauser enhancement spectroscopy. In contrast, computer modeling tools have advanced over the last years delivering specific protein-GAG docking approaches successfully complemented with molecular dynamics (MD)-based analysis. Especially the combination of NMR spectroscopy in solution providing sparse structural constraints with molecular docking and MD simulations represents a useful synergy of forces to describe the structure of protein-GAG complexes. Here we review recent methodological progress in this field and bring up examples where the combination of new NMR methods along with cutting-edge modeling has yielded detailed structural information on complexes of highly relevant cytokines with GAGs.
Collapse
Affiliation(s)
- Georg Künze
- Center for Structural Biology, Vanderbilt University, 465 21st Ave S, 5140 MRB3, Nashville, TN37240, USA.,Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN37235, USA.,Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, D-04103Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107Leipzig, Germany
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308Gdańsk, Poland
| |
Collapse
|
52
|
Kermorgant M, Ben Salem J, Iacovoni JS, Calise D, Dahan L, Guiard BP, Lopez S, Lairez O, Lasbories A, Nasr N, Pavy Le‐Traon A, Beaudry F, Senard J, Arvanitis DN. Cardiac sensory afferents modulate susceptibility to anxio-depressive behaviour in a mouse model of chronic heart failure. Acta Physiol (Oxf) 2021; 231:e13601. [PMID: 33316126 DOI: 10.1111/apha.13601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
AIM Impairments in cerebral structure and cognitive performance in chronic heart failure (CHF) are critical components of its comorbidity spectrum. Autonomic afferents that arise from cardiac sensory fibres show enhanced activity with CHF. Desensitization of these fibres by local application of resiniferatoxin (RTX) during myocardial infarction (MI) is known to prevent cardiac hypertrophy, sympathetic hyperactivity and CHF. Whether these afferents mediate cerebral allostasis is unknown. METHODS CHF was induced by myocardial infarction. To evaluate if cardiac afferents contribute to cerebral allostasis, RTX was acutely applied to the pericardial space in controls (RTX) and in MI treated animals (MI/RTX). Subjects were then evaluated in a series of behavioural tests recapitulating different symptoms of depressive disorders. Proteomics of the frontal cortices (FC) was performed to identify contributing proteins and pathways responsible for behavioural allostasis. RESULTS Desensitization of cardiac afferents relieves hallmarks of an anxio/depressive-like state in mice. Unique protein signatures and regulatory pathways in FCs isolated from each treatment reveal the degree of complexity inherent in the FC response to stresses originating in the heart. While cortices from the combined treatment (MI/RTX) did not retain protein signatures from the individual treatment groups, all three groups suffer dysregulation in circadian entrainment. CONCLUSION CHF is comorbid with an anxio/depressive-like state and ablation of cardiac afferents relieves the despair phenotype. The strikingly different proteomic profiles observed in FCs suggest that MI and RTX lead to unique brain-signalling patterns and that the combined treatment, potentially through destructive interference mechanisms, most closely resembles controls.
Collapse
Affiliation(s)
- Marc Kermorgant
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
| | - Jennifer Ben Salem
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ) Département de Biomédecine Vétérinaire Faculté de Médecine Vétérinaire Université de Montréal Saint Hyacinthe QC Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA) Université de Montréal Montréal QC Canada
| | - Jason S. Iacovoni
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
| | - Denis Calise
- INSERM DR Midi‐Pyrénées LimousinCentre Régional d’Exploration Fonctionnelle et Ressources Expérimentales Service Microchirurgie, (CREFRE‐US06, Rangueil) Toulouse France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale Centre de Biologie Intégrative Université de Toulouse Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| | - Bruno P. Guiard
- Centre de Recherches sur la Cognition Animale Centre de Biologie Intégrative Université de Toulouse Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| | - Sébastien Lopez
- Centre de Recherches sur la Cognition Animale Centre de Biologie Intégrative Université de Toulouse Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| | - Olivier Lairez
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Fédération des services de cardiologie Hôpital RangueilUniversité de Toulouse III Toulouse France
| | - Antoine Lasbories
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
| | - Nathalie Nasr
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Département de Neurologie et Institut des Neurosciences CHU de ToulouseUniversité de Toulouse III Toulouse France
| | - Anne Pavy Le‐Traon
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Département de Neurologie et Institut des Neurosciences CHU de ToulouseUniversité de Toulouse III Toulouse France
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ) Département de Biomédecine Vétérinaire Faculté de Médecine Vétérinaire Université de Montréal Saint Hyacinthe QC Canada
- Centre de recherche sur le cerveau et l’apprentissage (CIRCA) Université de Montréal Montréal QC Canada
| | - Jean‐Michel Senard
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- Département de Neurologie et Institut des Neurosciences CHU de ToulouseUniversité de Toulouse III Toulouse France
- Service de Pharmacologie Clinique CHU de ToulouseUniversité de Toulouse III Toulouse France
| | - Dina N Arvanitis
- INSERM DR Midi‐Pyrénées LimousinInstitut des Maladies Métaboliques et Cardiovasculaires (I2MC) UMR1048Université de Toulouse III Toulouse France
- CNRSUniversité de Toulouse III Toulouse France
| |
Collapse
|
53
|
Dzikowski L, Mirzaei R, Sarkar S, Kumar M, Bose P, Bellail A, Hao C, Yong VW. Fibrinogen in the glioblastoma microenvironment contributes to the invasiveness of brain tumor-initiating cells. Brain Pathol 2021; 31:e12947. [PMID: 33694259 PMCID: PMC8412081 DOI: 10.1111/bpa.12947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, recurrent, and lethal brain tumors that are maintained via brain tumor‐initiating cells (BTICs). The aggressiveness of BTICs may be dependent on the extracellular matrix (ECM) molecules that are highly enriched within the GBM microenvironment. Here, we investigated the expression of ECM molecules in GBM patients by mining the transcriptomic databases and also staining human GBM specimens. RNA levels for fibronectin, brevican, versican, heparan sulfate proteoglycan 2 (HSPG2), and several laminins were high in GBMs compared to normal brain, and this was corroborated by immunohistochemistry. While fibrinogen transcript was at normal level in GBM, its protein immunoreactivity was prominent within GBM tissues. These ECM molecules in tumor specimens were in proximity to, and surrounding BTICs. In culture, fibronectin and pan‐laminin induced the adhesion of BTICs onto the plastic substratum. However, fibrinogen increased the size of the BTIC spheres by facilitating the adhesive property, motility, and invasiveness of BTICs. These features of elevated invasiveness were corroborated in resected GBM specimens by the close proximity of fibrinogen with matrix metalloproteinase (MMP)‐2 and‐9, which are proteases implicated in metastasis. Moreover, the effect of fibrinogen‐induced invasiveness was attenuated in BTICs where MMP‐2 and ‐9 have been inhibited with siRNAs or pharmacological inhibitors. Our results implicate fibrinogen in GBM as a mediator of the invasive properties of BTICs, and as a target for therapy to reduce BTIC tumorigenecity.
Collapse
Affiliation(s)
- Lauren Dzikowski
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Reza Mirzaei
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Susobhan Sarkar
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mehul Kumar
- Department of Biochemistry, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Molecular Biology, University of Calgary, Calgary, AB, Canada.,Department of Surgery, University of Calgary, Calgary, AB, Canada.,the Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Anita Bellail
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chunhai Hao
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
54
|
Wang W, Shi L, Qin Y, Li F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front Cell Dev Biol 2021; 8:560442. [PMID: 33425887 PMCID: PMC7793863 DOI: 10.3389/fcell.2020.560442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/05/2020] [Indexed: 01/11/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are widely distributed on the cell surface and in the extracellular matrix in the form of proteoglycan, where they participate in various biological processes. The diverse functions of CS/DS can be mainly attributed to their high structural variability. However, their structural complexity creates a big challenge for structural and functional studies of CS/DS. CS/DS-degrading enzymes with different specific activities are irreplaceable tools that could be used to solve this problem. Depending on the site of action, CS/DS-degrading enzymes can be classified as glycosidic bond-cleaving enzymes and sulfatases from animals and microorganisms. As discussed in this review, a few of the identified enzymes, particularly those from bacteria, have wildly applied to the basic studies and applications of CS/DS, such as disaccharide composition analysis, the preparation of bioactive oligosaccharides, oligosaccharide sequencing, and potential medical application, but these do not fulfill all of the needs in terms of the structural complexity of CS/DS.
Collapse
Affiliation(s)
- Wenshuang Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Liran Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Yong Qin
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, China
| |
Collapse
|
55
|
Mencio CP, Hussein RK, Yu P, Geller HM. The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development. J Histochem Cytochem 2021; 69:61-80. [PMID: 32936033 PMCID: PMC7780190 DOI: 10.1369/0022155420959147] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
The orderly development of the nervous system is characterized by phases of cell proliferation and differentiation, neural migration, axonal outgrowth and synapse formation, and stabilization. Each of these processes is a result of the modulation of genetic programs by extracellular cues. In particular, chondroitin sulfate proteoglycans (CSPGs) have been found to be involved in almost every aspect of this well-orchestrated yet delicate process. The evidence of their involvement is complex, often contradictory, and lacking in mechanistic clarity; however, it remains obvious that CSPGs are key cogs in building a functional brain. This review focuses on current knowledge of the role of CSPGs in each of the major stages of neural development with emphasis on areas requiring further investigation.
Collapse
Affiliation(s)
- Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| |
Collapse
|
56
|
Amin S, Borrell V. The Extracellular Matrix in the Evolution of Cortical Development and Folding. Front Cell Dev Biol 2020; 8:604448. [PMID: 33344456 PMCID: PMC7744631 DOI: 10.3389/fcell.2020.604448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
The evolution of the mammalian cerebral cortex leading to humans involved a remarkable sophistication of developmental mechanisms. Specific adaptations of progenitor cell proliferation and neuronal migration mechanisms have been proposed to play major roles in this evolution of neocortical development. One of the central elements influencing neocortex development is the extracellular matrix (ECM). The ECM provides both a structural framework during tissue formation and to present signaling molecules to cells, which directly influences cell behavior and movement. Here we review recent advances in the understanding of the role of ECM molecules on progenitor cell proliferation and neuronal migration, and how these contribute to cerebral cortex expansion and folding. We discuss how transcriptomic studies in human, ferret and mouse identify components of ECM as being candidate key players in cortex expansion during development and evolution. Then we focus on recent functional studies showing that ECM components regulate cortical progenitor cell proliferation, neuron migration and the mechanical properties of the developing cortex. Finally, we discuss how these features differ between lissencephalic and gyrencephalic species, and how the molecular evolution of ECM components and their expression profiles may have been fundamental in the emergence and evolution of cortex folding across mammalian phylogeny.
Collapse
Affiliation(s)
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| |
Collapse
|
57
|
Heparan Sulfate Proteoglycan Signaling in Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21186588. [PMID: 32916872 PMCID: PMC7554799 DOI: 10.3390/ijms21186588] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an intriguing subject of study for their complex structural characteristics, their finely regulated biosynthetic machinery, and the wide range of functions they perform in living organisms from development to adulthood. From these studies, key roles of HSPGs in tumor initiation and progression have emerged, so that they are currently being explored as potential biomarkers and therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal expression levels or changes in their structure and functions as a result of the altered activity of their biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on the molecular interactions between cancer cells and their microenvironment, and tumor cell behavior. Here, we overview the structural and functional features of HSPGs and their signaling in the tumor environment which contributes to tumorigenesis and cancer progression.
Collapse
|
58
|
Joffrin AM, Hsieh-Wilson LC. Photoaffinity Probes for the Identification of Sequence-Specific Glycosaminoglycan-Binding Proteins. J Am Chem Soc 2020; 142:13672-13676. [PMID: 32786811 DOI: 10.1021/jacs.0c06046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycosaminoglycan (GAG)-protein interactions mediate critical physiological and pathological processes, such as neuronal plasticity, development, and viral invasion. However, mapping GAG-protein interaction networks is challenging as these interactions often require specific GAG sulfation patterns and involve transmembrane receptors or extracellular matrix-associated proteins. Here, we report the first GAG polysaccharide-based photoaffinity probes for the system-wide identification of GAG-binding proteins in living cells. A general platform for the modular, efficient assembly of various chondroitin sulfate (CS)-based photoaffinity probes was developed. Systematic evaluations led to benzophenone-containing probes that efficiently and selectively captured known CS-E-binding proteins in vitro and in cells. Importantly, the probes also enabled the identification of >50 new proteins from living neurons that interact with the neuroplasticity-relevant CS-E sulfation motif. Several candidates were independently validated and included membrane receptors important for axon guidance, innate immunity, synapse development, and synaptic plasticity. Overall, our studies provide a powerful approach for mapping GAG-protein interaction networks, revealing new potential functions for these polysaccharides and linking them to diseases such as Alzheimer's and autism.
Collapse
Affiliation(s)
- Amélie M Joffrin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
59
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
60
|
Mohamedi Y, Fontanil T, Cobo T, Cal S, Obaya AJ. New Insights into ADAMTS Metalloproteases in the Central Nervous System. Biomolecules 2020; 10:biom10030403. [PMID: 32150898 PMCID: PMC7175268 DOI: 10.3390/biom10030403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Components of the extracellular matrix (ECM) are key players in regulating cellular functions throughout the whole organism. In fact, ECM components not only participate in tissue organization but also contribute to processes such as cellular maintenance, proliferation, and migration, as well as to support for various signaling pathways. In the central nervous system (CNS), proteoglycans of the lectican family, such as versican, aggrecan, brevican, and neurocan, are important constituents of the ECM. In recent years, members of this family have been found to be involved in the maintenance of CNS homeostasis and to participate directly in processes such as the organization of perineural nets, the regulation of brain plasticity, CNS development, brain injury repair, axonal guidance, and even the altering of synaptic responses. ADAMTSs are a family of “A disintegrin and metalloproteinase with thrombospondin motifs” proteins that have been found to be involved in a multitude of processes through the degradation of lecticans and other proteoglycans. Recently, alterations in ADAMTS expression and activity have been found to be involved in neuronal disorders such as stroke, neurodegeneration, schizophrenia, and even Alzheimer’s disease, which in turn may suggest their potential use as therapeutic targets. Herein, we summarize the different roles of ADAMTSs in regulating CNS events through interactions and the degradation of ECM components (more specifically, the lectican family of proteoglycans).
Collapse
Affiliation(s)
- Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Asturias, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain;
- Instituto Asturiano de Odontología, 33006 Oviedo, Asturias, Spain
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain; (Y.M.); (T.F.); (S.C.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Alvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
- Correspondence:
| |
Collapse
|
61
|
Khan AR, Yang X, Du X, Yang H, Liu Y, Khan AQ, Zhai G. Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery. Carbohydr Polym 2020; 233:115837. [PMID: 32059890 DOI: 10.1016/j.carbpol.2020.115837] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
The standard chemotherapy is facing the challenges of lack of cancer selectivity and development of drug resistance. Currently, with the application of nanotechnology, the rationally designed nanocarriers of chondroitin sulfate (CS) have been fabricated and their unique features of low toxicity, biocompatibility, and active and passive targeting made them drug delivery vehicles of the choice for cancer therapy. The hydrophilic and anionic CS could be incorporated as a building block into- or decorated on the surface of nanoformulations. Micellar nanoparticles (NPs) self-assembled from amphiphilic CS-drug conjugates and CS-polymer conjugates, polyelectrolyte complexes (PECs) and nanogels of CS have been widely implicated in cancer directed therapy. The surface modulation of organic, inorganic, lipid and metallic NPs with CS promotes the receptor-mediated internalization of NPs to the tumor cells. The potential contribution of CS and CS-proteoglycans (CSPGs) in the pathogenesis of various cancer types, and CS nanocarriers in immunotherapy, radiotherapy, sonodynamic therapy (SDT) and photodynamic therapy (PDT) of cancer are summarized in this review paper.
Collapse
Affiliation(s)
- Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Haotong Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Yuanxiu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Abdul Qayyum Khan
- Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
62
|
Nagase H, Katagiri Y, Oh-hashi K, Geller HM, Hirata Y. Reduced Sulfation Enhanced Oxytosis and Ferroptosis in Mouse Hippocampal HT22 Cells. Biomolecules 2020; 10:biom10010092. [PMID: 31935947 PMCID: PMC7022473 DOI: 10.3390/biom10010092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022] Open
Abstract
Sulfation is a common modification of extracellular glycans, tyrosine residues on proteins, and steroid hormones, and is important in a wide variety of signaling pathways. We investigated the role of sulfation on endogenous oxidative stress, such as glutamate-induced oxytosis and erastin-induced ferroptosis, using mouse hippocampal HT22 cells. Sodium chlorate competitively inhibits the formation of 3′-phosphoadenosine 5′-phosphosulfate, the high energy sulfate donor in cellular sulfation reactions. The treatment of HT22 cells with sodium chlorate decreased sulfation of heparan sulfate proteoglycans and chondroitin sulfate proteoglycans. Sodium chlorate and β-d-xyloside, which prevents proteoglycan glycosaminoglycan chain attachment, exacerbated both glutamate- and erastin-induced cell death, suggesting that extracellular matrix influenced oxytosis and ferroptosis. Moreover, sodium chlorate enhanced the generation of reactive oxygen species and influx of extracellular Ca2+ in the process of oxytosis and ferroptosis. Interestingly, sodium chlorate did not affect antioxidant glutathione levels. Western blot analysis revealed that sodium chlorate enhanced erastin-induced c-Jun N-terminal kinase phosphorylation, which is preferentially activated by cell stress-inducing signals. Collectively, our findings indicate that sulfation is an important modification for neuroprotection against oxytosis and ferroptosis in neuronal hippocampal cells.
Collapse
Affiliation(s)
- Haruna Nagase
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan; (H.N.); (K.O.-h.)
| | - Yasuhiro Katagiri
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Y.K.); (H.M.G.)
| | - Kentaro Oh-hashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan; (H.N.); (K.O.-h.)
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Herbert M. Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Y.K.); (H.M.G.)
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan; (H.N.); (K.O.-h.)
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-2609
| |
Collapse
|
63
|
Pearson CS, Solano AG, Tilve SM, Mencio CP, Martin KR, Geller HM. Spatiotemporal distribution of chondroitin sulfate proteoglycans after optic nerve injury in rodents. Exp Eye Res 2019; 190:107859. [PMID: 31705897 DOI: 10.1016/j.exer.2019.107859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
The accumulation of chondroitin sulfate proteoglycans (CSPGs) in the glial scar following acute damage to the central nervous system (CNS) limits the regeneration of injured axons. Given the rich diversity of CSPG core proteins and patterns of GAG sulfation, identifying the composition of these CSPGs is essential for understanding their roles in injury and repair. Differential expression of core proteins and sulfation patterns have been characterized in the brain and spinal cord of mice and rats, but a comprehensive study of these changes following optic nerve injury has not yet been performed. Here, we show that the composition of CSPGs in the optic nerve and retina following optic nerve crush (ONC) in mice and rats exhibits an increase in aggrecan, brevican, phosphacan, neurocan and versican, similar to changes following spinal cord injury. We also observe an increase in inhibitory 4-sulfated (4S) GAG chains, which suggests that the persistence of CSPGs in the glial scar opposes the growth of CNS axons, thereby contributing to the failure of regeneration and recovery of function.
Collapse
Affiliation(s)
- Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Andrea G Solano
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharada M Tilve
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keith R Martin
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
64
|
De Pasquale V, Pavone LM. Heparan sulfate proteoglycans: The sweet side of development turns sour in mucopolysaccharidoses. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165539. [PMID: 31465828 DOI: 10.1016/j.bbadis.2019.165539] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are complex carbohydrate-modified proteins ubiquitously expressed on cell surfaces, extracellular matrix and basement membrane of mammalian tissues. Beside to serve as structural constituents, they regulate multiple cellular activities. A critical involvement of HSPGs in development has been established, and perturbations of HSPG-dependent pathways are associated with many human diseases. Recent evidence suggest a role of HSPGs in the pathogenesis of mucopolysaccharidoses (MPSs) where the accumulation of undigested HS results in the loss of cellular functions, tissue damage and organ dysfunctions accounting for clinical manifestations which include central nervous system (CNS) involvement, degenerative joint disease and reduced bone growth. Current therapies are not curative but only ameliorate the disease symptoms. Here, we highlight the link between HSPG functions in the development of CNS and musculoskeletal structures and the etiology of some MPS phenotypes, suggesting that HSPGs may represent potential targets for the therapy of such incurable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| |
Collapse
|
65
|
Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and its proteolytic remodeling in the brain: structural and functional insights. Cell Mol Life Sci 2019; 76:3229-3248. [PMID: 31197404 PMCID: PMC11105229 DOI: 10.1007/s00018-019-03182-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022]
Abstract
The extracellular matrix (ECM) plays diverse roles in several physiological and pathological conditions. In the brain, the ECM is unique both in its composition and in functions. Furthermore, almost all the cells in the central nervous system contribute to different aspects of this intricate structure. Brain ECM, enriched with proteoglycans and other small proteins, aggregate into distinct structures around neurons and oligodendrocytes. These special structures have cardinal functions in the normal functioning of the brain, such as learning, memory, and synapse regulation. In this review, we have compiled the current knowledge about the structure and function of important ECM molecules in the brain and their proteolytic remodeling by matrix metalloproteinases and other enzymes, highlighting the special structures they form. In particular, the proteoglycans in brain ECM, which are essential for several vital functions, are emphasized in detail.
Collapse
Affiliation(s)
| | - Amit Benbenishty
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Pablo Blinder
- Neurobiology, Biochemistry and Biophysics School, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
66
|
Zhang Z, Dawson PA, Piper M, Simmons DG. Postnatal N-acetylcysteine administration rescues impaired social behaviors and neurogenesis in Slc13a4 haploinsufficient mice. EBioMedicine 2019; 43:435-446. [PMID: 30956169 PMCID: PMC6557756 DOI: 10.1016/j.ebiom.2019.03.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Background Sulfate availability is crucial for the sulfonation of brain extracellular matrix constituents, membrane phospholipids, neurosteroids, and neurotransmitters. Observations from humans and mouse models suggest dysregulated sulfate levels may be associated with neurodevelopmental disorders, such as autism. However, the cellular mechanisms governing sulfate homeostasis within the developing or adult brain are not fully understood. Methods We utilized a mouse model with a conditional allele for the sulfate transporter Slc13a4, and a battery of behavioral tests, to assess the effects of disrupted sulfate transport on maternal behaviors, social interactions, memory, olfaction, exploratory behavior, anxiety, stress, and metabolism. Immunohistochemistry examined neurogenesis within the stem cells niches. Findings The sulfate transporter Slc13a4 plays a critical role in postnatal brain development. Slc13a4 haploinsufficiency results in significant behavioral phenotypes in adult mice, notably impairments in social interaction and long-term memory, as well as increased neurogenesis in the subventricular stem cell niche. Conditional gene deletion shows these phenotypes have a developmental origin, and that full biallelic expression of Slc13a4 is required only in postnatal development. Furthermore, administration of N-acetylcysteine (NAC) within postnatal window P14-P30 prevents the onset of phenotypes in adult Slc13a4+/− mice. Interpretation Slc13a4 haploinsufficient mice highlight a requirement for adequate sulfate supply in postnatal development for the maturation of important social interaction and memory pathways. With evidence suggesting dysregulated sulfate biology may be a feature of some neurodevelopmental disorders, the utility of sulfate levels as a biomarker of disease and NAC administration as an early preventative measure should be further explored.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Paul Anthony Dawson
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Michael Piper
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - David Gordon Simmons
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, QLD 4072, Australia; Mater Research Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
67
|
Smolders SMT, Kessels S, Vangansewinkel T, Rigo JM, Legendre P, Brône B. Microglia: Brain cells on the move. Prog Neurobiol 2019; 178:101612. [PMID: 30954517 DOI: 10.1016/j.pneurobio.2019.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
In the last decade, tremendous progress has been made in understanding the biology of microglia - i.e. the fascinating immigrated resident immune cell population of the central nervous system (CNS). Recent literature reviews have largely dealt with the plentiful functions of microglia in CNS homeostasis, development and pathology, and the influences of sex and the microbiome. In this review, the intriguing aspect of their physical plasticity during CNS development will get specific attention. Microglia move around (mobility) and reshape their processes (motility). Microglial migration into and inside the CNS is most prominent throughout development and consequently most of the data described in this review concern mobility and motility in the changing environment of the developing brain. Here, we first define microglia based on their highly specialized age- and region-dependent gene expression signature and associated functional heterogeneity. Next, we describe their origin, the migration route of immature microglial cells towards the CNS, the mechanisms underlying their invasion of the CNS, and their spatiotemporal localization and surveying behaviour inside the developing CNS. These processes are dependent on microglial mobility and motility which are determined by the microenvironment of the CNS. Therefore, we further zoom in on the changing environment during CNS development. We elaborate on the extracellular matrix and the respective integrin receptors on microglia and we discuss the purinergic and molecular signalling in microglial mobility. In the last section, we discuss the physiological and pathological functions of microglia in which mobility and motility are involved to stress the importance of microglial 'movement'.
Collapse
Affiliation(s)
- Sophie Marie-Thérèse Smolders
- UHasselt, BIOMED, Diepenbeek, Belgium; INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | | | | | | - Pascal Legendre
- INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | |
Collapse
|
68
|
Sonnino S. New horizons in Glycobiology research. FEBS Lett 2018; 592:3771-3772. [PMID: 30536985 DOI: 10.1002/1873-3468.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| |
Collapse
|
69
|
Oksdath M, Perrin SL, Bardy C, Hilder EF, DeForest CA, Arrua RD, Gomez GA. Review: Synthetic scaffolds to control the biochemical, mechanical, and geometrical environment of stem cell-derived brain organoids. APL Bioeng 2018; 2:041501. [PMID: 31069322 PMCID: PMC6481728 DOI: 10.1063/1.5045124] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/31/2018] [Indexed: 01/16/2023] Open
Abstract
Stem cell-derived brain organoids provide a powerful platform for systematic studies of tissue functional architecture and the development of personalized therapies. Here, we review key advances at the interface of soft matter and stem cell biology on synthetic alternatives to extracellular matrices. We emphasize recent biomaterial-based strategies that have been proven advantageous towards optimizing organoid growth and controlling the geometrical, biomechanical, and biochemical properties of the organoid's three-dimensional environment. We highlight systems that have the potential to increase the translational value of region-specific brain organoid models suitable for different types of manipulations and high-throughput applications.
Collapse
Affiliation(s)
- Mariana Oksdath
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | - Sally L. Perrin
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| | | | - Emily F. Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Cole A. DeForest
- Department of Chemical Engineering and Department of Bioengineering, University of Washington, Seattle, Washington 98195-1750, USA
| | - R. Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Guillermo A. Gomez
- Centre for Cancer Biology, South Australia Pathology and University of South Australia, Adelaide 5001, Australia
| |
Collapse
|
70
|
Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018; 475:2511-2545. [PMID: 30115748 DOI: 10.1042/bcj20180283] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.
Collapse
|