51
|
Wickremasinghe H, Yu HH, Azad MAK, Zhao J, Bergen PJ, Velkov T, Zhou QT, Zhu Y, Li J. Clinically Relevant Concentrations of Polymyxin B and Meropenem Synergistically Kill Multidrug-Resistant Pseudomonas aeruginosa and Minimize Biofilm Formation. Antibiotics (Basel) 2021; 10:405. [PMID: 33918040 PMCID: PMC8069709 DOI: 10.3390/antibiotics10040405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic resistance has severely impaired the treatment of chronic respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa. Since the reintroduction of polymyxins as a last-line therapy against MDR Gram-negative bacteria, resistance to its monotherapy and recurrent infections continue to be reported and synergistic antibiotic combinations have been investigated. In this study, comprehensive in vitro microbiological evaluations including synergy panel screening, population analysis profiling, time-kill kinetics, anti-biofilm formation and membrane damage analysis studies were conducted to evaluate the combination of polymyxin B and meropenem against biofilm-producing, polymyxin-resistant MDR P. aeruginosa. Two phylogenetically unrelated MDR P. aeruginosa strains, FADDI-PA060 (MIC of polymyxin B [MICpolymyxin B], 64 mg/L; MICmeropenem, 64 mg/L) and FADDI-PA107 (MICpolymyxin B, 32 mg/L; MICmeropenem, 4 mg/L) were investigated. Genome sequencing identified 57 (FADDI-PA060) and 50 (FADDI-PA107) genes predicted to confer resistance to a variety of antimicrobials, as well as multiple virulence factors in each strain. The presence of resistance genes to a particular antibiotic class generally aligned with MIC results. For both strains, all monotherapies of polymyxin B failed with substantial regrowth and biofilm formation. The combination of polymyxin B (16 mg/L)/meropenem (16 mg/L) was most effective, enhancing initial bacterial killing of FADDI-PA060 by ~3 log10 CFU/mL, followed by a prolonged inhibition of regrowth for up to 24 h with a significant reduction in biofilm formation (* p < 0.05). Membrane integrity studies revealed a substantial increase in membrane depolarization and membrane permeability in the surviving cells. Against FADDI-PA107, planktonic and biofilm bacteria were completely eradicated. In summary, the combination of polymyxin B and meropenem demonstrated synergistic bacterial killing while reinstating the efficacy of two previously ineffective antibiotics against difficult-to-treat polymyxin-resistant MDR P. aeruginosa.
Collapse
Affiliation(s)
- Hasini Wickremasinghe
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Heidi H. Yu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Mohammad A. K. Azad
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Jinxin Zhao
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3053, Australia;
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 1047907, USA;
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| | - Jian Li
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (H.H.Y.); (M.A.K.A.); (J.Z.); (P.J.B.); (Y.Z.); (J.L.)
| |
Collapse
|
52
|
Elango AV, Vasudevan S, Shanmugam K, Solomon AP, Neelakantan P. Exploring the anti-caries properties of baicalin against Streptococcus mutans: an in vitro study. BIOFOULING 2021; 37:267-275. [PMID: 33719751 DOI: 10.1080/08927014.2021.1897789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant-derived molecules are excellent alternatives to antibiotics as anti-infective agents owing to their minimal cytotoxicity. Herein, the anti-infective property of the hydroxyflavone baicalin, was investigated against biofilms of the key dental caries pathogen Streptococcus mutans. Baicalin inhibited sucrose-dependent biofilm formation at a concentration of 500 µg ml-1 without affecting bacterial growth. It significantly inhibited acid production for an extended period of 8 h. Microscopic analysis revealed a 6-fold reduction in the number of adhered cells with baicalin treatment. Transcriptomic analysis of the mid-log phase and biofilm cells showed marked downregulation of the virulence genes required for biofilm formation and acid production. This study sheds significant new light on the potential for baicalin to be developed into an anti-caries agent.
Collapse
Affiliation(s)
- Arval Viji Elango
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR
| |
Collapse
|
53
|
Wang L, Li Q, Li J, Jing S, Jin Y, Yang L, Yu H, Wang D, Wang T, Wang L. Eriodictyol as a Potential Candidate Inhibitor of Sortase A Protects Mice From Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia. Front Microbiol 2021; 12:635710. [PMID: 33679670 PMCID: PMC7929976 DOI: 10.3389/fmicb.2021.635710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
New anti-infective approaches are urgently needed to control multidrug-resistant (MDR) pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Sortase A (SrtA) is a membrane-bound cysteine transpeptidase that plays an essential role in the catalysis of covalent anchoring of surface proteins to the cell wall of Staphylococcus aureus (S. aureus). The present study reports identification of a flavonoid, eriodictyol, as a reversible inhibitor of SrtA with an IC50 of 2.229 ± 0.014 μg/mL that can be used as an innovative means to counter both resistance and virulence. The data indicated that eriodictyol inhibited the adhesion of the bacteria to fibrinogen and reduced the formation of biofilms and anchoring of staphylococcal protein A (SpA) on the cell wall. The results of fluorescence quenching experiments demonstrated a strong interaction between eriodictyol and SrtA. Subsequent mechanistic studies revealed that eriodictyol binds to SrtA by interacting with R197 amino acid residue. Importantly, eriodictyol reduced the adhesion-dependent invasion of A549 cells by S. aureus and showed a good therapeutic effect in a model of mouse pneumonia induced by S. aureus. Overall, the results indicated that eriodictyol can attenuate MRSA virulence and prevent the development of resistance by inhibiting SrtA, suggesting that eriodictyol may be a promising lead compound for the control of MRSA infections.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science, Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianxue Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Science, Academy of Military Medical Science, Academy of Military Science, Changchun, China
| | - Jiaxin Li
- College of Animal Science, Jilin University, Changchun, China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun, China
| | - Lin Yang
- College of Animal Science, Jilin University, Changchun, China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
54
|
Oak U, Hasani S, Khare T. Antibiofilm activity of selenium nanorods against multidrug-resistant staphylococcus aureus. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_35_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
55
|
Guambo MPR, Spencer L, Vispo NS, Vizuete K, Debut A, Whitehead DC, Santos-Oliveira R, Alexis F. Natural Cellulose Fibers for Surgical Suture Applications. Polymers (Basel) 2020; 12:E3042. [PMID: 33353190 PMCID: PMC7765994 DOI: 10.3390/polym12123042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Suture biomaterials are critical in wound repair by providing support to the healing of different tissues including vascular surgery, hemostasis, and plastic surgery. Important properties of a suture material include physical properties, handling characteristics, and biological response for successful performance. However, bacteria can bind to sutures and become a source of infection. For this reason, there is a need for new biomaterials for suture with antifouling properties. Here we report two types of cellulose fibers from coconut (Cocos nucifera) and sisal (Agave sisalana), which were purified with a chemical method, characterized, and tested in vitro and in vivo. According to SEM images, the cellulose fiber from coconut has a porous surface, and sisal has a uniform structure without internal spaces. It was found that the cellulose fiber from sisal has mechanical properties closer to silk fiber biomaterial using Ultimate Tensile Strength. When evaluating the cellulose fibers biodegradability, the cellulose from coconut showed a rapid weight loss compared to sisal. The antifouling test was negative, which demonstrated that neither possesses intrinsic microbicidal activity. Yet, a weak biofilm was formed on sisal cellulose fibers suggesting it possesses antifouling properties compared to cellulose from coconut. In vivo experiments using healthy mice demonstrated that the scarring and mechanical connection was like silk for both cellulose fibers. Overall, our results showed the potential use of cellulose fibers from vegetal for surgical sutures due to excellent mechanical properties, rapid degradation, and no bacterial adhesion.
Collapse
Affiliation(s)
- María Paula Romero Guambo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Imbabura 100115, Ecuador; (M.P.R.G.); (L.S.); (N.S.V.)
| | - Lilian Spencer
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Imbabura 100115, Ecuador; (M.P.R.G.); (L.S.); (N.S.V.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Imbabura 100115, Ecuador; (M.P.R.G.); (L.S.); (N.S.V.)
| | - Karla Vizuete
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 1715231, Ecuador; (K.V.); (A.D.)
| | - Alexis Debut
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 1715231, Ecuador; (K.V.); (A.D.)
| | | | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil;
| | - Frank Alexis
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Imbabura 100115, Ecuador; (M.P.R.G.); (L.S.); (N.S.V.)
- Biodiverse Source, San Miguel de Urcuquí 100651, Ecuador
| |
Collapse
|
56
|
Bharatula LD, Marsili E, Rice SA, Kwan JJ. Influence of High Intensity Focused Ultrasound on the Microstructure and c-di-GMP Signaling of Pseudomonas aeruginosa Biofilms. Front Microbiol 2020; 11:599407. [PMID: 33384674 PMCID: PMC7769819 DOI: 10.3389/fmicb.2020.599407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023] Open
Abstract
Bacterial biofilms are typically more tolerant to antimicrobials compared to bacteria in the planktonic phase and therefore require alternative treatment approaches. Mechanical biofilm disruption from ultrasound may be such an alternative by circumventing rapid biofilm adaptation to antimicrobial agents. Although ultrasound facilitates biofilm dispersal and may enhance the effectiveness of antimicrobial agents, the resulting biological response of bacteria within the biofilms remains poorly understood. To address this question, we investigated the microstructural effects of Pseudomonas aeruginosa biofilms exposed to high intensity focused ultrasound (HIFU) at different acoustic pressures and the subsequent biological response. Confocal microscopy images indicated a clear microstructural response at peak negative pressures equal to or greater than 3.5 MPa. In this pressure amplitude range, HIFU partially reduced the biomass of cells and eroded exopolysaccharides from the biofilm. These pressures also elicited a biological response; we observed an increase in a biomarker for biofilm development (cyclic-di-GMP) proportional to ultrasound induced biofilm removal. Cyclic-di-GMP overproducing mutant strains were also more resilient to disruption from HIFU at these pressures. The biological response was further evidenced by an increase in the relative abundance of cyclic-di-GMP overproducing variants present in the biofilm after exposure to HIFU. Our results, therefore, suggest that both physical and biological effects of ultrasound on bacterial biofilms must be considered in future studies.
Collapse
Affiliation(s)
- Lakshmi Deepika Bharatula
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Enrico Marsili
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Chemical and Materials Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James J. Kwan
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
57
|
Khan S, Khan SN, Akhtar F, Misba L, Meena R, Khan AU. Inhibition of multi-drug resistant Klebsiella pneumoniae: Nanoparticles induced photoinactivation in presence of efflux pump inhibitor. Eur J Pharm Biopharm 2020; 157:165-174. [DOI: 10.1016/j.ejpb.2020.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023]
|
58
|
Terán LC, Distefano M, Bellich B, Petrosino S, Bertoncin P, Cescutti P, Sblattero D. Proteomic Studies of the Biofilm Matrix including Outer Membrane Vesicles of Burkholderia multivorans C1576, a Strain of Clinical Importance for Cystic Fibrosis. Microorganisms 2020; 8:E1826. [PMID: 33228110 PMCID: PMC7699398 DOI: 10.3390/microorganisms8111826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Biofilms are aggregates of microbial cells encased in a highly hydrated matrix made up of self-produced extracellular polymeric substances (EPS) which consist of polysaccharides, proteins, nucleic acids, and lipids. While biofilm matrix polysaccharides are unraveled, there is still poor knowledge about the identity and function of matrix-associated proteins. With this work, we performed a comprehensive proteomic approach to disclose the identity of proteins associated with the matrix of biofilm-growing Burkholderia multivorans C1576 reference strain, a cystic fibrosis clinical isolate. Transmission electron microscopy showed that B. multivorans C1576 also releases outer membrane vesicles (OMVs) in the biofilm matrix, as already demonstrated for other Gram-negative species. The proteomic analysis revealed that cytoplasmic and membrane-bound proteins are widely represented in the matrix, while OMVs are highly enriched in outer membrane proteins and siderophores. Our data suggest that cell lysis and OMVs production are the most important sources of proteins for the B. multivorans C1576 biofilm matrix. Of note, some of the identified proteins are lytic enzymes, siderophores, and proteins involved in reactive oxygen species (ROS) scavenging. These proteins might help B. multivorans C1576 in host tissue invasion and defense towards immune system assaults.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.C.T.); (M.D.); (B.B.); (S.P.); (P.B.); (P.C.)
| |
Collapse
|
59
|
Domnin P, Arkhipova A, Petrov S, Sysolyatina E, Parfenov V, Karalkin P, Mukhachev A, Gusarov A, Moisenovich M, Khesuani Y, Ermolaeva S. An In Vitro Model of Nonattached Biofilm-Like Bacterial Aggregates Based on Magnetic Levitation. Appl Environ Microbiol 2020; 86:e01074-20. [PMID: 32680859 PMCID: PMC7480373 DOI: 10.1128/aem.01074-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic infections are associated with the formation of nonattached biofilm-like aggregates. In vitro models of surface-attached biofilms do not always accurately mimic these processes. Here, we tested a new approach to create in vitro nonattached bacterial aggregates using the principle of magnetic levitation of biological objects placed into a magnetic field gradient. Bacteria grown under magnetic levitation conditions formed nonattached aggregates that were studied with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) and characterized quantitatively. Nonattached aggregates consisted of bacteria submerged into an extracellular matrix and demonstrated features characteristic of biofilms, such as a polymeric matrix that binds Ruby Red and Congo red dyes, a prerequisite of bacterial growth, and increased resistance to gentamicin. Three quantitative parameters were explored to characterize strain-specific potential to form nonattached aggregates: geometric sizes, relative quantities of aggregated and free-swimming bacteria, and Congo red binding. Among three tested Escherichia coli strains, one strain formed nonattached aggregates poorly, and for this strain, all three of the considered parameters were different from those of the other two strains (P < 0.05). Further, we characterized biofilm formation on plastic and agar surfaces by these strains and found that good biofilm formation ability does not necessarily indicate good nonattached aggregate formation ability, and vice versa. The model and quantitative methods can be applied for in vitro studies of nonattached aggregates and modeling bacterial behavior in chronic infections, as it is important to increase our understanding of the role that nonattached bacterial aggregates play in the pathogenesis of chronic diseases.IMPORTANCE An increasing amount of evidence indicates that chronic infections are associated with nonattached biofilm-like aggregates formed by pathogenic bacteria. These aggregates differ from biofilms because they form under low-shear conditions within the volume of biological fluids and they do not attach to surfaces. Here, we describe an in vitro model that provides nonattached aggregate formation within the liquid volume due to magnetic levitation. Using this model, we demonstrated that despite morphological and functional similarities of nonattached aggregates and biofilms, strains that exhibit good biofilm formation might exhibit poor nonattached aggregate formation, suggesting that mechanisms underlying the formation of biofilms and nonattached aggregates are not identical. The magnetic levitation approach can be useful for in vitro studies of nonattached aggregate formation and simulation of bacterial behavior in chronic infections.
Collapse
Affiliation(s)
- Pavel Domnin
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Elena Sysolyatina
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | | | | | - Andrey Mukhachev
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Alexey Gusarov
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | | | | | - Svetlana Ermolaeva
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
60
|
Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia. Arch Microbiol 2020; 202:2825-2840. [PMID: 32747998 DOI: 10.1007/s00203-020-02005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
M18 strain of Streptococcus salivarius is a bacterial replacement probiotic that has been suggested for use in the oral cavity. Here, we have shown that S. salivarius M18 cell-free supernatant reduced the growth of the two most common human pathogens Pseudomonas aeruginosa and Klebsiella pneumonia and sensitized the pathogenic bacteria to antibiotic. Besides, the supernatant inhibited biofilm formation of P. aeruginosa drastically. For pinpointing the biomolecular changes that occurred in P. aeruginosa incubated with the probiotic supernatant, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used. Unsupervised learning algorithms, principal component analysis (PCA) and hierarchical cluster analysis (HCA), and intensity analyses of individual spectral bands exhibited comprehensive alterations in the polysaccharide and lipid contents and compositions of P. aeruginosa cultivated with S. salivarius M18 cell-free supernatant. These results indicate that S. salivarius M18 has the potential for the prevention or alleviation of different pathogen-induced infections along with the infections of oral pathogens.
Collapse
|
61
|
Nitschke MR, Fidalgo C, Simões J, Brandão C, Alves A, Serôdio J, Frommlet JC. Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites. THE ISME JOURNAL 2020; 14:1533-1546. [PMID: 32203119 PMCID: PMC7242451 DOI: 10.1038/s41396-020-0629-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
Abstract
Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial-algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.
Collapse
Affiliation(s)
- Matthew R Nitschke
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Cátia Fidalgo
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Simões
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cláudio Brandão
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jörg C Frommlet
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
62
|
Abdel-Aziz MM, M.Emam T, Raafat MM. Hindering of Cariogenic Streptococcus mutans Biofilm by Fatty Acid Array Derived from an Endophytic Arthrographis kalrae Strain. Biomolecules 2020; 10:E811. [PMID: 32466324 PMCID: PMC7277960 DOI: 10.3390/biom10050811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/16/2023] Open
Abstract
Streptococcus mutans has been considered as the major etiological agent of dental caries, mostly due to its arsenal of virulence factors, including strong biofilm formation, exopolysaccharides production, and high acid production. Here, we present the antivirulence activity of fatty acids derived from the endophytic fungus Arthrographis kalrae isolated from Coriandrum sativum against Streptococcus mutans. The chemical composition of the fatty acids was analyzed by gas chromatography-mass spectrometry GC-MS and revealed nine compounds representing 99.6% of fatty acids, where unsaturated and saturated fatty acids formed 93.8% and 5.8 % respectively. Oleic and linoleic acids were the major unsaturated fatty acids. Noteworthy, the fatty acids at the concentration of 31.3 mg L-1 completely inhibited Streptococcus mutans biofilm, and water insoluble extracellular polysaccharide production in both polystyrene plates, and tooth model assay using saliva-coated hydroxyapatite discs. Inhibition of biofilm correlated significantly and positively with the inhibition of water insoluble extracellular polysaccharide (R=1, p <0.0001). Furthermore, Arthrographis kalrae fatty acids at a concentration of 7.8 mg L-1 exhibited acidogenesis-mitigation activity. They did not show bactericidal activity against Streptococcus mutans and cytotoxic activity against human oral fibroblast cells at the concentration used. On the other hand, saliva-coated hydroxyapatite discs treated with sub-minimum biofilm inhibitory concentration of fatty acids showed disturbed biofilm architecture with a few unequally distributed clumped matrices using fluorescence microscopy. Our findings revealed that the intracellular fatty acid arrays derived from endophytic Arthrographis kalrae could contribute to the biofilm-preventing alternatives, specifically Streptococcus mutans biofilms.
Collapse
Affiliation(s)
- Marwa M. Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11651, Egypt;
| | - Tamer M.Emam
- Microbiology Department, Desert Research Center (DRC), Cairo 11753, Egypt;
| | - Marwa M. Raafat
- Microbiology and Immunology Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt (FUE), Cairo 11835, Egypt
| |
Collapse
|
63
|
García-Bonillo C, Texidó R, Reyes-Carmenaty G, Gilabert-Porres J, Borrós S. Study of the Human Albumin Role in the Formation of a Bacterial Biofilm on Urinary Devices Using QCM-D. ACS APPLIED BIO MATERIALS 2020; 3:3354-3364. [PMID: 35025378 DOI: 10.1021/acsabm.0c00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are the most common health care-associated infections due to rapid bacterial colonization+ and biofilm formation in urinary catheters. This behavior has been extensively documented in medical devices. However, there is a few literature works on CAUTI providing a model that allows the exhaustive study of biofilm formation in a urinary environment. The development of an effective model would be helpful to identify the factors that promote the biofilm formation and identify strategies to avoid it. In this work, we have developed a model to test biofilm formation on urinary medical device surfaces by simulating environmental and physical conditions using a quartz crystal microbalance with dissipation (QCM-D) module with an uropathogenic strain. Moreover, we used the developed model to study the role of human albumin present in artificial urine at high concentrations because of renal failure or heart-diseases in patients. Despite model limitations using artificial urine, these tests show that human albumin can be considered as a promoter of biofilm formation on hydrophobic surfaces, being a possible risk factor to developing a CAUTI.
Collapse
Affiliation(s)
| | - Robert Texidó
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain
| | | | | | | |
Collapse
|
64
|
Anti-Virulence Potential and In Vivo Toxicity of Persicaria maculosa and Bistorta officinalis Extracts. Molecules 2020; 25:molecules25081811. [PMID: 32326481 PMCID: PMC7221584 DOI: 10.3390/molecules25081811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Many traditional remedies represent potential candidates for integration with modern medical practice, but credible data on their activities are often scarce. For the first time, the anti-virulence potential and the safety for human use of the ethanol extracts of two medicinal plants, Persicaria maculosa (PEM) and Bistorta officinalis (BIO), have been addressed. Ethanol extracts of both plants exhibited anti-virulence activity against the medically important opportunistic pathogen Pseudomonas aeruginosa. At the subinhibitory concentration of 50 µg/mL, the extracts demonstrated a maximal inhibitory effect (approx. 50%) against biofilm formation, the highest reduction of pyocyanin production (47% for PEM and 59% for BIO) and completely halted the swarming motility of P. aeruginosa. Both extracts demonstrated better anti-quorum sensing and antibiofilm activities, and a better ability to interfere with LasR receptor, than the tested dominant extracts’ constituents. The bioactive concentrations of the extracts were not toxic in the zebrafish model system. This study represents an initial step towards the integration of P. maculosa and B. officinalis for use in the treatment of Pseudomonas infections.
Collapse
|
65
|
Leonetti S, Tuvo B, Campanella B, Legnaioli S, Onor M, Bramanti E, Totaro M, Baggiani A, Giorgi S, Privitera GP, Piolanti N, Parchi PD, Casini B. Evaluation of Microbial Adhesion and Biofilm Formation on Nano-Structured and Nano-Coated Ortho-Prosthetic Materials by a Dynamic Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031013. [PMID: 32033480 PMCID: PMC7036942 DOI: 10.3390/ijerph17031013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
The bio-engineering technologies of medical devices through nano-structuring and coating was recently proposed to improve biocompatibility and to reduce microbial adhesion in the prevention of implantable device-related infections. Our aim was to evaluate the ability of new nano-structured and coated materials to prevent the adhesion and biofilm formation, according to the American Standard Test Method ASTM-E2647-13. The materials composition was determined by X-ray Fluorescence and Laser Induced Breakdown Spectroscopy. Silver release was evaluated by Inductively Coupled Plasma Mass Spectrometry analysis. The gene expression levels of the Quorum Sensing Las and Rhl system were evaluated by the ΔΔCt method. The Log bacterial density (Log CFU/cm2) on TiAl6V4 was 4.41 ± 0.76 and 4.63 ± 1.01 on TiAl6V4-AgNPs compared to 2.57 ± 0.70 on CoCr and 2.73 ± 0.61 on CoCr-AgNPs (P < 0.0001, A.N.O.V.A.- one way test). The silver release was found to be equal to 17.8 ± 0.2 µg/L after the batch phase and 1.3 ± 0.1 µg/L during continuous flow. The rhlR gene resulted in a 2.70-fold increased expression in biofilm growth on the silver nanoparticles (AgNPs) coating. In conclusion, CoCr showed a greater ability to reduce microbial adhesion, independently of the AgNPs coating. The silver release resulted in promoting the up-regulation of the Rhl system. Further investigation should be conducted to optimize the effectiveness of the coating.
Collapse
Affiliation(s)
- Simone Leonetti
- Department of Translational Research, N.T.M.S., University of Pisa, via San Zeno, 37/39-56127 Pisa, Italy; (S.L.); (B.T.); (M.T.); (A.B.); (S.G.); (G.P.P.)
| | - Benedetta Tuvo
- Department of Translational Research, N.T.M.S., University of Pisa, via San Zeno, 37/39-56127 Pisa, Italy; (S.L.); (B.T.); (M.T.); (A.B.); (S.G.); (G.P.P.)
| | - Beatrice Campanella
- Institute of Chemistry of Organometallic Compounds, National Research Council, via Giuseppe Moruzzi, 1-56124 Pisa, Italy; (B.C.); (S.L.); (M.O.); (E.B.)
| | - Stefano Legnaioli
- Institute of Chemistry of Organometallic Compounds, National Research Council, via Giuseppe Moruzzi, 1-56124 Pisa, Italy; (B.C.); (S.L.); (M.O.); (E.B.)
| | - Massimo Onor
- Institute of Chemistry of Organometallic Compounds, National Research Council, via Giuseppe Moruzzi, 1-56124 Pisa, Italy; (B.C.); (S.L.); (M.O.); (E.B.)
| | - Emilia Bramanti
- Institute of Chemistry of Organometallic Compounds, National Research Council, via Giuseppe Moruzzi, 1-56124 Pisa, Italy; (B.C.); (S.L.); (M.O.); (E.B.)
| | - Michele Totaro
- Department of Translational Research, N.T.M.S., University of Pisa, via San Zeno, 37/39-56127 Pisa, Italy; (S.L.); (B.T.); (M.T.); (A.B.); (S.G.); (G.P.P.)
| | - Angelo Baggiani
- Department of Translational Research, N.T.M.S., University of Pisa, via San Zeno, 37/39-56127 Pisa, Italy; (S.L.); (B.T.); (M.T.); (A.B.); (S.G.); (G.P.P.)
| | - Serena Giorgi
- Department of Translational Research, N.T.M.S., University of Pisa, via San Zeno, 37/39-56127 Pisa, Italy; (S.L.); (B.T.); (M.T.); (A.B.); (S.G.); (G.P.P.)
| | - Gaetano Pierpaolo Privitera
- Department of Translational Research, N.T.M.S., University of Pisa, via San Zeno, 37/39-56127 Pisa, Italy; (S.L.); (B.T.); (M.T.); (A.B.); (S.G.); (G.P.P.)
| | - Nicola Piolanti
- Orthopaedic and Traumatology Division, Azienda ospedaliera-Universitaria Pisana, via Roma, 67-56126 Pisa, Italy;
| | - Paolo Domenico Parchi
- Department of Translational Research, N.T.M.S., University of Pisa, via San Zeno, 37/39-56127 Pisa, Italy; (S.L.); (B.T.); (M.T.); (A.B.); (S.G.); (G.P.P.)
- Orthopaedic and Traumatology Division, Azienda ospedaliera-Universitaria Pisana, via Roma, 67-56126 Pisa, Italy;
| | - Beatrice Casini
- Department of Translational Research, N.T.M.S., University of Pisa, via San Zeno, 37/39-56127 Pisa, Italy; (S.L.); (B.T.); (M.T.); (A.B.); (S.G.); (G.P.P.)
- Correspondence: ; Tel.: +39-050-221-3590
| |
Collapse
|
66
|
McEvoy JP, Genc K, Loi P, Walker WJ. Antimicrobial Applications of Silver Nanoparticles to E. coli Colony Biofilms. Methods Mol Biol 2020; 2118:21-28. [PMID: 32152968 DOI: 10.1007/978-1-0716-0319-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial biofilms can cause problems in various arenas, from the fouling of water processing equipment to persistent in vivo infections. Silver nanoparticles are promising antimicrobial agents with activity against biofilm bacteria. Here we describe the synthesis of antimicrobial silver nanoparticles and the measurement of their antimicrobial activity against E. coli colony biofilms, which is a popular in vitro biofilm model for antibiotic assays.
Collapse
Affiliation(s)
- James P McEvoy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Surrey, UK.
| | - Kayra Genc
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Surrey, UK
| | - Priya Loi
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Surrey, UK
| | - William J Walker
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Surrey, UK
| |
Collapse
|
67
|
Vinay TN, Ray AK, Avunje S, Thangaraj SK, Krishnappa H, Viswanathan B, Reddy MA, Vijayan KK, Patil PK. Vibrio harveyi biofilm as immunostimulant candidate for high-health pacific white shrimp, Penaeus vannamei farming. FISH & SHELLFISH IMMUNOLOGY 2019; 95:498-505. [PMID: 31698068 DOI: 10.1016/j.fsi.2019.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/26/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The study was to develop Vibrio harveyi biofilm-based novel microbial product and its oral delivery for high health Penaeus vannamei farming. Yield of bacterial biofilm was optimized on chitin substrate (size: <360, 360-850 and 850-1250 μm; concentration: 0.3, 0.6 and 0.9%) in tryptone soy broth (0.15%). The biofilm was characterized by crystal violet assay, SEM and LSCM imaging; protein profiling by SDS-PAGE and LC-ESI-MS/MS. The immune stimulatory effect of the biofilm in yard experiments was evaluated by relative quantification of immune genes using real-time PCR effect on overall improvement on health status under field trials. The highest biofilm yield (6.13 ± 0.2 × 107 cfu/ml) was obtained at 0.6% of <360 μm chitin substrate. The biofilm formation was stabilized by 96 h of incubation at 30 °C. Protein profiling confirmed expression of six additional proteins (SDS-PAGE) and 11 proteins were differentially expressed (LC-ESI-MS/MS) in biofilm cells over free cells of V. harveyi. Oral administration of the biofilm for 48 h confirmed to enhance expression of antimicrobial peptides, penaeidin, crustin and lysozyme in P. vannamei. Further Oral administration of biofilm for two weeks to P. vannamei (1.8 ± 0.13 g) improved the growth (2.66 ± 0.06 g) and survival (84.44 ± 1.82%) compared to control (2.15 ± 0.03 g; 70.94 ± 0.66%) Nursery trials showed a significant reduction in occurrence of anatomical deformities like antenna cut (12.67 ± 0.66%), rostrum cut (4.66 ± 0.87%), and tail rot (3.33 ± 0.88%), compared to animals fed with normal diet which was 24.33 ± 2.72; 14 ± 1.52 and 10.66 ± 1.45% respectively. In vitro and in vivo studies suggest inactivated biofilm cells of V. harveyi on chitin substrate express additional antigenic proteins and when administered orally through feed at regular intervals stimulates immune response and improve growth, survival and health status of shrimp.
Collapse
Affiliation(s)
| | - Arvind Kumar Ray
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India
| | - Satheesha Avunje
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India
| | | | | | | | | | | | | |
Collapse
|
68
|
Biofilms facilitate cheating and social exploitation of β-lactam resistance in Escherichia coli. NPJ Biofilms Microbiomes 2019; 5:36. [PMID: 31814991 PMCID: PMC6884583 DOI: 10.1038/s41522-019-0109-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/30/2019] [Indexed: 11/27/2022] Open
Abstract
Gram-negative bacteria such as Escherichia coli commonly resist β-lactam antibiotics using plasmid-encoded β-lactamase enzymes. Bacterial strains that express β-lactamases have been found to detoxify liquid cultures and thus to protect genetically susceptible strains, constituting a clear laboratory example of social protection. These results are not necessarily general; on solid media, for instance, the rapid bactericidal action of β-lactams largely prevents social protection. Here, we tested the hypothesis that the greater tolerance of biofilm bacteria for β-lactams would facilitate social interactions. We used a recently isolated E. coli strain, capable of strong biofilm formation, to compare how cooperation and exploitation in colony biofilms and broth culture drives the dynamics of a non-conjugative plasmid encoding a clinically important β-lactamase. Susceptible cells in biofilms were tolerant of ampicillin—high doses and several days of exposure were required to kill them. In support of our hypothesis, we found robust social protection of susceptible E. coli in biofilms, despite fine-scale physical separation of resistant and susceptible cells and lower rates of production of extracellular β-lactamase. In contrast, social interactions in broth were restricted to a relatively narrow range of ampicillin doses. Our results show that β-lactam selection pressure on Gram-negative biofilms leads to cooperative resistance characterized by a low equilibrium frequency of resistance plasmids, sufficient to protect all cells.
Collapse
|
69
|
Nesrin K, Yusuf C, Ahmet K, Ali SB, Muhammad NA, Suna S, Fatih Ş. Biogenic silver nanoparticles synthesized from Rhododendron ponticum and their antibacterial, antibiofilm and cytotoxic activities. J Pharm Biomed Anal 2019; 179:112993. [PMID: 31780283 DOI: 10.1016/j.jpba.2019.112993] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/30/2023]
Abstract
Nanotechnology is being used effectively in many areas contemporarily. Silver nanoparticles (AgNPs) are one of the most crucial and remarkable nanomaterials involved in medical applications. These nanoparticles (NPs) have an important place in nanomedicine, nanotechnology, and in particularly, nanoscience. AgNPs are one of the most widely used materials in antibacterial and antiseptic practices. The synthesis of biogenic AgNPs has been applied as an alternative to physical and chemical synthesis. For this purpose, water extracts of Rhododendron ponticum were used for biosynthesis of AgNPs. Also, AgNPs were characterized by UV-vis spectrophotometer, scanning transmission electron microscope (STEM) and X-ray diffractometer (XRD). The antimicrobial activity of AgNPs synthesized with Rhododendron ponticum was analyzed by the Minimum Inhibition Concentration (MIC) test. Also, the biofilm inhibition test was made, and AgNPs showed a strong effect for biofilm inhibition. In addition, the prepared nanoparticles were tried for cytotoxicity activity with the help of MTT assay in MCF-7 and 4T1 cancer cell lines.
Collapse
Affiliation(s)
- Korkmaz Nesrin
- Faculty of Science, Biotechnology Department, Bartın University, 74100 Bartın, Turkey.
| | - Ceylan Yusuf
- Faculty of Science, Department of Molecular Biology and Genetics, Bartın University, 74100 Bartın, Turkey
| | - Karadağ Ahmet
- Department of Chemistry, Faculty of Arts and Sciences, Yozgat Bozok University, 66200, Yozgat, Turkey
| | - Savaş Bülbül Ali
- Department of Biology, Faculty of Science and Arts, Kahramanmaraş Sütçü İmam University, 46100, Kahramanmaraş, Turkey
| | - Nauman Aftab Muhammad
- Institute of Industrial Biotechnology Government College University, Lahore, Pakistan
| | - Saygılı Suna
- Faculty of Medicine, Department of Histology-Embryology, Kütahya University of Health Sciences, 43100, Kütahya, Turkey; Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100 Kütahya, Turkey
| | - Şen Fatih
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100 Kütahya, Turkey.
| |
Collapse
|
70
|
Taouai M, Chakroun K, Sommer R, Michaud G, Giacalone D, Ben Maaouia MA, Vallin-Butruille A, Mathiron D, Abidi R, Darbre T, Cragg PJ, Mullié C, Reymond JL, O'Toole GA, Benazza M. Glycocluster Tetrahydroxamic Acids Exhibiting Unprecedented Inhibition of Pseudomonas aeruginosa Biofilms. J Med Chem 2019; 62:7722-7738. [PMID: 31449405 DOI: 10.1021/acs.jmedchem.9b00481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Opportunistic Gram-negative Pseudomonas aeruginosa uses adhesins (e.g., LecA and LecB lectins, type VI pili and flagella) and iron to invade host cells with the formation of a biofilm, a thick barrier that protects bacteria from drugs and host immune system. Hindering iron uptake and disrupting adhesins' function could be a relevant antipseudomonal strategy. To test this hypothesis, we designed an iron-chelating glycocluster incorporating a tetrahydroxamic acid and α-l-fucose bearing linker to interfere with both iron uptake and the glycan recognition process involving the LecB lectin. Iron depletion led to increased production of the siderophore pyoverdine by P. aeruginosa to counteract the loss of iron uptake, and strong biofilm inhibition was observed not only with the α-l-fucocluster (72%), but also with its α-d-manno (84%), and α-d-gluco (92%) counterparts used as negative controls. This unprecedented finding suggests that both LecB and biofilm inhibition are closely related to the presence of hydroxamic acid groups.
Collapse
Affiliation(s)
- Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Roman Sommer
- Chemical Biology of Carbohydrates , Helmholtz Institute for Pharmaceutical Research Saarland , 66123 Saarbrücken , Germany
| | - Gaelle Michaud
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - David Giacalone
- Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Mohamed Amine Ben Maaouia
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France.,Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Aurélie Vallin-Butruille
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - David Mathiron
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - Rym Abidi
- Laboratoire LACReSNE, Unité "Interactions Moléculaires Spécifiques", Faculté des Sciences de Bizerte , Université de Carthage Zarzouna-Bizerte TN 7021 , Tunisie
| | - Tamis Darbre
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - Peter J Cragg
- School of Pharmacy and Biomolecular Science University of Brighton , Brighton BN2 4GJ , U.K
| | - Catherine Mullié
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| | - Jean-Louis Reymond
- Chemistry and Biochemistry , University of Berne , Freistrasse 3 , 3012 Berne , Switzerland
| | - George A O'Toole
- Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202, Remsen Building 66, College Street , Hanover , New Hampshire 03755 , United States
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS) , CNRS-Université de Picardie Jules Verne , 10 Rue Baudelocque , 80039 Amiens Cédex , France
| |
Collapse
|
71
|
Aiyer KS, Vijayakumar BS. An improvised microtiter dish biofilm assay for non-invasive biofilm detection on microbial fuel cell anodes and studying biofilm growth conditions. Braz J Microbiol 2019; 50:769-775. [PMID: 31104214 PMCID: PMC6863186 DOI: 10.1007/s42770-019-00091-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022] Open
Abstract
Microbial life is predominantly observed as biofilms, which are a sessile aggregation of microbial cells formed in response to stress conditions. The microtiter dish biofilm formation assay is one of the most important methods of studying biofilm formation. In this study, the assay has been improvised to allow easy detection of biofilm formation on different substrata. The method has then been used to study growth conditions that affect biofilm formation, viz., the effect of pH, temperature, shaking conditions, and the carbon source provided. Glass, cellulose acetate, and carbon cloth materials were used as substrata to study biofilm development under the above conditions. The method was then extended to determine biofilm formation on the anodes of a microbial fuel cell in order to study the effect of biofilm formation on power production. A high correlation was observed between biofilm formation and power density (r = 0.951). When the electrode containing a biofilm was replaced with another electrode without biofilm, the average power density dropped from 59.55 to 5.76 mW/m2. This method offers an easy way to study the suitability of different materials to support biofilm formation. Growth conditions determining biofilm formation can be studied using this method. This method also offers a non-invasive way to determine biofilm formation on anodes of microbial fuel cells and preserves the anode for further studies.
Collapse
Affiliation(s)
- Kartik S. Aiyer
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh 515134 India
| | - B. S. Vijayakumar
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Andhra Pradesh 515134 India
| |
Collapse
|
72
|
Martínez FL, Orce IG, Rajal VB, Irazusta VP. Salar del Hombre Muerto, source of lithium-tolerant bacteria. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:529-543. [PMID: 29995192 DOI: 10.1007/s10653-018-0148-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The Salar del Hombre Muerto is a flat salt with great microbial activity despite the existing extreme conditions like high altitude, lack of water, low level of oxygen, high radiation and high concentration of sodium and lithium chloride. Despite these unfavorable conditions, we found microbial diversity with the presence of fungi, algae, and bacteria. From aqueous solutions and soil samples, a total of 238 bacteria were isolated and 186 of them were able to grow in the presence of salt. About 30% of the strains showed the ability to grow in solid medium proximally to a LiCl solution close to saturation (636 g/L). These isolates were characterized taking into account the morphology, Gram stain, ability to form biofilms and to produce pigments, and mainly according to the tolerance against lithium chloride. Bacillus was predominant among the most tolerant 26 microorganisms found, followed by Micrococcus and Brevibacterium. Members of the genera Kocuria, Curtobacterium and Halomonas were also represented among the bacteria with tolerance to 30 and 60 g/L of LiCl in defined liquid medium. All the capacities found in these microorganisms make them extremely interesting for biotechnological applications.
Collapse
Affiliation(s)
- Fabiana Lilian Martínez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400, Salta, Argentina
| | - Ingrid Georgina Orce
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400, Salta, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400, Salta, Argentina
- Facultad de Ingeniería, UNSa, Salta, Argentina
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, 4400, Salta, Argentina.
- Facultad de Ciencias Naturales, UNSa, Salta, Argentina.
| |
Collapse
|
73
|
Francolini I, Silvestro I, Di Lisio V, Martinelli A, Piozzi A. Synthesis, Characterization, and Bacterial Fouling-Resistance Properties of Polyethylene Glycol-Grafted Polyurethane Elastomers. Int J Mol Sci 2019; 20:E1001. [PMID: 30823606 PMCID: PMC6412681 DOI: 10.3390/ijms20041001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in material sciences and clinical procedures for surgical hygiene, medical device implantation still exposes patients to the risk of developing local or systemic infections. The development of efficacious antimicrobial/antifouling materials may help with addressing such an issue. In this framework, polyethylene glycol (PEG)-grafted segmented polyurethanes were synthesized, physico-chemically characterized, and evaluated with respect to their bacterial fouling-resistance properties. PEG grafting significantly altered the polymer bulk and surface properties. Specifically, the PEG-grafted polyurethanes possessed a more pronounced hard/soft phase segregated microstructure, which contributed to improving the mechanical resistance of the polymers. The better flexibility of the soft phase in the PEG-functionalized polyurethanes compared to the pristine polyurethane (PU) was presumably also responsible for the higher ability of the polymer to uptake water. Additionally, dynamic contact angle measurements evidenced phenomena of surface reorganization of the PEG-functionalized polyurethanes, presumably involving the exposition of the polar PEG chains towards water. As a consequence, Staphylococcus epidermidis initial adhesion onto the surface of the PEG-functionalized PU was essentially inhibited. That was not true for the pristine PU. Biofilm formation was also strongly reduced.
Collapse
Affiliation(s)
- Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Ilaria Silvestro
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valerio Di Lisio
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
74
|
Zurob E, Dennett G, Gentil D, Montero-Silva F, Gerber U, Naulín P, Gómez A, Fuentes R, Lascano S, Rodrigues da Cunha TH, Ramírez C, Henríquez R, Del Campo V, Barrera N, Wilkens M, Parra C. Inhibition of Wild Enterobacter cloacae Biofilm Formation by Nanostructured Graphene- and Hexagonal Boron Nitride-Coated Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E49. [PMID: 30609710 PMCID: PMC6358881 DOI: 10.3390/nano9010049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/25/2018] [Accepted: 12/25/2018] [Indexed: 11/17/2022]
Abstract
Although biofilm formation is a very effective mechanism to sustain bacterial life, it is detrimental in medical and industrial sectors. Current strategies to control biofilm proliferation are typically based on biocides, which exhibit a negative environmental impact. In the search for environmentally friendly solutions, nanotechnology opens the possibility to control the interaction between biological systems and colonized surfaces by introducing nanostructured coatings that have the potential to affect bacterial adhesion by modifying surface properties at the same scale. In this work, we present a study on the performance of graphene and hexagonal boron nitride coatings (h-BN) to reduce biofilm formation. In contraposition to planktonic state, we focused on evaluating the efficiency of graphene and h-BN at the irreversible stage of biofilm formation, where most of the biocide solutions have a poor performance. A wild Enterobacter cloacae strain was isolated, from fouling found in a natural environment, and used in these experiments. According to our results, graphene and h-BN coatings modify surface energy and electrostatic interactions with biological systems. This nanoscale modification determines a significant reduction in biofilm formation at its irreversible stage. No bactericidal effects were found, suggesting both coatings offer a biocompatible solution for biofilm and fouling control in a wide range of applications.
Collapse
Affiliation(s)
- Elsie Zurob
- Laboratorio Nanobiomateriales, Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
- Laboratorio de Microbiología Básica y Aplicada, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile.
| | - Geraldine Dennett
- Laboratorio Nanobiomateriales, Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Dana Gentil
- Laboratorio Nanobiomateriales, Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Francisco Montero-Silva
- Laboratorio Nanobiomateriales, Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Ulrike Gerber
- Faculty Environment and Natural Science, Institute of Biotechnology, Brandenburg University of Technology, Universitätsplatz 1, 01968 Senftenberg, Germany.
| | - Pamela Naulín
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Andrea Gómez
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Raúl Fuentes
- Departamento de Industrias, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Sheila Lascano
- Departamento de Mecánica, Universidad Técnica Federico Santa María, Avda. Vicuña Mackenna 3939, Santiago, Chile.
| | | | - Cristian Ramírez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Ricardo Henríquez
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Valeria Del Campo
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| | - Nelson Barrera
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Marcela Wilkens
- Laboratorio de Microbiología Básica y Aplicada, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile.
| | - Carolina Parra
- Laboratorio Nanobiomateriales, Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
| |
Collapse
|
75
|
Raneri M, Pinatel E, Peano C, Rampioni G, Leoni L, Bianconi I, Jousson O, Dalmasio C, Ferrante P, Briani F. Pseudomonas aeruginosa mutants defective in glucose uptake have pleiotropic phenotype and altered virulence in non-mammal infection models. Sci Rep 2018; 8:16912. [PMID: 30442901 PMCID: PMC6237876 DOI: 10.1038/s41598-018-35087-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/30/2018] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas spp. are endowed with a complex pathway for glucose uptake that relies on multiple transporters. In this work we report the construction and characterization of Pseudomonas aeruginosa single and multiple mutants with unmarked deletions of genes encoding outer membrane (OM) and inner membrane (IM) proteins involved in glucose uptake. We found that a triple ΔgltKGF ΔgntP ΔkguT mutant lacking all known IM transporters (named GUN for Glucose Uptake Null) is unable to grow on glucose as unique carbon source. More than 500 genes controlling both metabolic functions and virulence traits show differential expression in GUN relative to the parental strain. Consistent with transcriptomic data, the GUN mutant displays a pleiotropic phenotype. Notably, the genome-wide transcriptional profile and most phenotypic traits differ between the GUN mutant and the wild type strain irrespective of the presence of glucose, suggesting that the investigated genes may have additional roles besides glucose transport. Finally, mutants carrying single or multiple deletions in the glucose uptake genes showed attenuated virulence relative to the wild type strain in Galleria mellonella, but not in Caenorhabditis elegans infection model, supporting the notion that metabolic functions may deeply impact P. aeruginosa adaptation to specific environments found inside the host.
Collapse
Affiliation(s)
- Matteo Raneri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Eva Pinatel
- Istituto di Tecnologie Biomediche-CNR, Segrate, Italy
| | - Clelia Peano
- Istituto di Tecnologie Biomediche-CNR, Segrate, Italy
- Istituto Clinico Humanitas-CNR, Rozzano, Italy
| | - Giordano Rampioni
- Dipartimento di Scienze, Università degli Studi Roma Tre, Roma, Italy
| | - Livia Leoni
- Dipartimento di Scienze, Università degli Studi Roma Tre, Roma, Italy
| | - Irene Bianconi
- Centre for Integrative Biology, Università degli Studi di Trento, Trento, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, Università degli Studi di Trento, Trento, Italy
| | - Chiara Dalmasio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Palma Ferrante
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
76
|
Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms. Sci Rep 2018; 8:16260. [PMID: 30389984 PMCID: PMC6214931 DOI: 10.1038/s41598-018-34567-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/19/2018] [Indexed: 01/17/2023] Open
Abstract
Magnesium oxide nanoparticle (nMgO) is a light metal based antimicrobial nanoparticle that can be metabolized and fully resorbed in the body. To take advantage of the antimicrobial properties of nMgO for medical use, it is necessary to determine the minimal inhibitory, bactericidal and fungicidal concentrations (MIC, MBC and MFC) of nMgO against prevalent infectious bacteria and yeasts. The objective of this study was to use consistent methods and conditions to reveal and directly compare the efficacy of nMgO against nine prevalent pathogenic microorganisms, including two gram-negative bacteria, three gram-positive bacteria with drug-resistant strains, and four yeasts with drug-resistant strains. The MIC of nMgO varied from 0.5 mg/mL to 1.2 mg/mL and the minimal lethal concentration (MLC) of nMgO at 90% killing varied from 0.7 mg/mL to 1.4 mg/mL against different pathogenic bacteria and yeasts. The most potent concentrations (MPC) of nMgO were 1.4 and/or 1.6 mg/mL, depending on the type of bacteria and yeasts tested. As the concentration of nMgO increased, the adhesion of bacteria and yeasts decreased. Moreover, S. epidermidis biofilm was disrupted at 1.6 mg/mL of nMgO. E. coli and some yeasts showed membrane damage after cultured with ≥0.5 mg/mL nMgO. Overall, nMgO killed both planktonic bacteria and disrupted nascent biofilms, suggesting new antimicrobial mechanisms of nMgO. Production of reactive oxygen species (ROS), Ca2+ ion concentrations, and quorum sensing likely contribute to the action mechanisms of nMgO against planktonic bacteria, but transient alkaline pH of 7 to 10 or increased Mg2+ ion concentrations from 1 to 50 mM showed no inhibitory or killing effects on bacteria such as S. epidermidis. Further studies are needed to determine if specific concentrations of nMgO at MIC, MLC or MPC level can be integrated into medical devices to evoke desired antimicrobial responses without harming host cells.
Collapse
|
77
|
Tajbakhsh M, Akhavan MM, Fallah F, Karimi A. A Recombinant Snake Cathelicidin Derivative Peptide: Antibiofilm Properties and Expression in Escherichia coli. Biomolecules 2018; 8:E118. [PMID: 30360422 PMCID: PMC6315654 DOI: 10.3390/biom8040118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
The emergence of antimicrobial resistance among pathogenic microorganisms has been led to an urgent need for antibiotic alternatives. Antimicrobial peptides (AMPs) have been introduced as promising therapeutic agents because of their remarkable potentials. A new modified cathelicidin-BF peptide (Cath-A) with 34 amino acid sequences, represents the potential antimicrobial effects against methicillin-resistant Staphylococcus aureus (MRSA) with slight hemolytic and cytotoxic activities on eukaryotic cells. In this study, the effects of Cath-A on Acinetobacter baumannii, and Pseudomonas aeruginosa isolated from medical instruments were studied. Cath-A inhibited the growth of bacterial cells in the range of 8⁻16 μg/mL and 16-≥256 μg/mL for A. baumannii and P. aeruginosa, respectively. The peptide significantly removed the established biofilms. To display a representative approach for the cost-effective constructions of peptides, the recombinant Cath-A was cloned in the expression vector pET-32a(+) and transformed to Escherichia coli BL21. The peptide was expressed with a thioredoxin (Trx) sequence in optimum conditions. The recombinant peptide was purified with a Ni2+ affinity chromatography and the mature peptide was released after removing the Trx fusion protein with enterokinase. The final concentration of the partially purified peptide was 17.6 mg/L of a bacterial culture which exhibited antimicrobial activities. The current expression and purification method displayed a fast and effective system to finally produce active Cath-A for further in-vitro study usage.
Collapse
Affiliation(s)
- Mercedeh Tajbakhsh
- Pediatric Infections Research Center (PIRC), Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran.
| | - Maziar Mohammad Akhavan
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran.
| | - Fatemeh Fallah
- Pediatric Infections Research Center (PIRC), Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran.
| | - Abdollah Karimi
- Pediatric Infections Research Center (PIRC), Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran.
| |
Collapse
|
78
|
Tavakolian M, Okshevsky M, van de Ven TGM, Tufenkji N. Developing Antibacterial Nanocrystalline Cellulose Using Natural Antibacterial Agents. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33827-33838. [PMID: 30207684 DOI: 10.1021/acsami.8b08770] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We used hairy nanocrystalline cellulose functionalized with aldehyde groups, otherwise known as sterically stabilized nanocrystalline cellulose (SNCC), to facilitate the attachment of the antibacterial agents lysozyme and nisin. Immobilization was achieved using a simple, green process that does not require any linker or activator. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses showed successful attachment of both nisin and lysozyme onto the SNCC. The efficacy of the conjugated nanocellulose against the model bacteria Bacillus subtilis and Staphylococcus aureus was tested in terms of bacterial growth, cell viability, and biofilm formation/removal. The results show that the minimum inhibitory concentration of the conjugated nanocellulose is higher than that of lysozyme and nisin in free form, which was expected given that immobilization reduces the possible spatial orientations of these proteins. We observed that free nisin is not active against S. aureus after 24 h of exposure due to either deactivation of free nisin or development of resistance in S. aureus against free nisin. Interestingly, we did not observe this phenomenon when the bacteria were exposed to antibacterials immobilized on nanocellulose, suggesting that immobilization of antibacterial agents onto SNCC effectively retains their activity over long time periods. We suggest that antibacterial SNCC is a promising candidate for the development of antibacterial wound dressings.
Collapse
Affiliation(s)
- Mandana Tavakolian
- Department of Chemical Engineering , McGill University , Montréal , Québec , Canada H3A 0C5
- Quebec Centre for Advanced Materials, Canada (QCAM/CQMF), Montréal , Québec , Canada H3A 2K6
| | - Mira Okshevsky
- Department of Chemical Engineering , McGill University , Montréal , Québec , Canada H3A 0C5
- Quebec Centre for Advanced Materials, Canada (QCAM/CQMF), Montréal , Québec , Canada H3A 2K6
| | - Theo G M van de Ven
- Department of Chemistry , McGill University , Montréal , Québec , Canada H3A 2K6
- Quebec Centre for Advanced Materials, Canada (QCAM/CQMF), Montréal , Québec , Canada H3A 2K6
| | - Nathalie Tufenkji
- Department of Chemical Engineering , McGill University , Montréal , Québec , Canada H3A 0C5
- Quebec Centre for Advanced Materials, Canada (QCAM/CQMF), Montréal , Québec , Canada H3A 2K6
| |
Collapse
|
79
|
Dobay O, Laub K, Stercz B, Kéri A, Balázs B, Tóthpál A, Kardos S, Jaikumpun P, Ruksakiet K, Quinton PM, Zsembery Á. Bicarbonate Inhibits Bacterial Growth and Biofilm Formation of Prevalent Cystic Fibrosis Pathogens. Front Microbiol 2018; 9:2245. [PMID: 30283433 PMCID: PMC6157313 DOI: 10.3389/fmicb.2018.02245] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
We investigated the effects of bicarbonate on the growth of several different bacteria as well as its effects on biofilm formation and intracellular cAMP concentration in Pseudomonas aeruginosa. Biofilm formation was examined in 96-well plates, with or without bicarbonate. The cAMP production of bacteria was measured by a commercial assay kit. We found that NaHCO3 (100 mmol l-1) significantly inhibited, whereas NaCl (100 mmol l-1) did not influence the growth of planktonic bacteria. MIC and MBC measurements indicated that the effect of HCO3− is bacteriostatic rather than bactericidal. Moreover, NaHCO3 prevented biofilm formation as a function of concentration. Bicarbonate and alkalinization of external pH induced a significant increase in intracellular cAMP levels. In conclusion, HCO3− impedes the planktonic growth of different bacteria and impedes biofilm formation by P. aeruginosa that is associated with increased intracellular cAMP production. These findings suggest that aerosol inhalation therapy with HCO3− solutions may help improve respiratory hygiene in patients with cystic fibrosis and possibly other chronically infected lung diseases.
Collapse
Affiliation(s)
- Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Krisztina Laub
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Balázs Stercz
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Adrienn Kéri
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Bernadett Balázs
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Adrienn Tóthpál
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Szilvia Kardos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | | | - Kasidid Ruksakiet
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Paul M Quinton
- Department of Pediatrics, UC San Diego School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
80
|
Flores O, Prince C, Nuñez M, Vallejos A, Mardones C, Yañez C, Besoain X, Bastías R. Genetic and Phenotypic Characterization of Indole-Producing Isolates of Pseudomonas syringae pv. actinidiae Obtained From Chilean Kiwifruit Orchards. Front Microbiol 2018; 9:1907. [PMID: 30186252 PMCID: PMC6113925 DOI: 10.3389/fmicb.2018.01907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/30/2018] [Indexed: 12/29/2022] Open
Abstract
In recent years, Chilean kiwifruit production has been affected by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), which has caused losses to the industry. In this study, we report the genotypic and phenotypic characterization of 18 Psa isolates obtained from Chilean kiwifruits orchards between 2012 and 2016 from different geographic origins. Genetic analysis by multilocus sequence analysis (MLSA) using four housekeeping genes (gyrB, rpoD, gltA, and gapA) and the identification of type III effector genes suggest that the Chilean Psa isolates belong to the Psa Biovar 3 cluster. All of the isolates were highly homogenous in regard to their phenotypic characteristics. None of the isolates were able to form biofilms over solid plastic surfaces. However, all of the isolates formed cellular aggregates in the air-liquid interface. All of the isolates, except for Psa 889, demonstrated swimming motility, while only isolate Psa 510 demonstrated swarming motility. The biochemical profiles of the isolates revealed differences in 22% of the tests in at least one Psa isolate when analyzed with the BIOLOG system. Interestingly, all of the isolates were able to produce indole using a tryptophan-dependent pathway. PCR analysis revealed the presence of the genes aldA/aldB and iaaL/matE, which are associated with the production of indole-3-acetic acid (IAA) and indole-3-acetyl-3-L-lysine (IAA-Lys), respectively, in P. syringae. In addition, IAA was detected in the cell free supernatant of a representative Chilean Psa strain. This work represents the most extensive analysis in terms of the time and geographic origin of Chilean Psa isolates. To our knowledge, this is the first report of Psa being able to produce IAA. Further studies are needed to determine the potential role of IAA in the virulence of Psa during kiwifruit infections and whether this feature is observed in other Psa biovars.
Collapse
Affiliation(s)
- Oriana Flores
- Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Camila Prince
- Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Mauricio Nuñez
- Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alejandro Vallejos
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Carolina Yañez
- Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ximena Besoain
- Laboratorio de Fitopatología, Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
81
|
Nazlı O, Baygar T, Demirci Dönmez ÇE, Dere Ö, Uysal Aİ, Aksözek A, Işık C, Aktürk S. Antimicrobial and antibiofilm activity of polyurethane/Hypericum perforatum extract (PHPE) composite. Bioorg Chem 2018; 82:224-228. [PMID: 30342304 DOI: 10.1016/j.bioorg.2018.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/01/2022]
Abstract
Microbial accumulation in materials used in sectors such as medical, textile and food can lead to serious diseases, infections and uncontrollable problems. Many of the materials used in the above-mentioned industries have highly sensitive surfaces for microorganisms and cause colonization and biofilm formation. Colonization and biofilm formation threaten human health and they cause many diseases that result in death every year. Antimicrobial materials have an important role in combating pathogens. This article is about a new material with antibiofilm and antimicrobial properties combining polyurethane and Hypericum perforatum extract (PHPE) together. Antimicrobial effect of H. perforatum extract was determined against three clinical pathogens; C. albicans, E. coli and S. aureus. The highest antimicrobial activity of H. perforatum extract was found against S. aureus strain. Antibiofilm analysis results revealed that H. perforatum was also inhibited by the biofilm formation of S. aureus by 56.85%. The combination of polyurethane material and H. perforatum extract (PHPE) resulted in 92.85% decrease in S. aureus biofilm compared to control group. The reduction of S. aureus after H. perforatum incorporation was revealed by Scanning Electron Microscopy (SEM) study. The results show that the polyurethane material combined with H. perforatum extract inhibits the formation of S. aureus biofilm.
Collapse
Affiliation(s)
- Okay Nazlı
- Department of General Surgery, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Tuba Baygar
- Research and Application Center for Research Laboratories, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | | | - Özcan Dere
- Department of General Surgery, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Ali İhsan Uysal
- Department of Anesthesia and Reanimation, Muğla Sıtkı Koçman University Training and Research Hospital, 48000 Muğla, Turkey
| | - Alper Aksözek
- Department of Medical Microbiology, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Ceyhun Işık
- Department of Chemistry, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Selçuk Aktürk
- Department of Physics, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey.
| |
Collapse
|
82
|
Fünfhaus A, Göbel J, Ebeling J, Knispel H, Garcia-Gonzalez E, Genersch E. Swarming motility and biofilm formation of Paenibacillus larvae, the etiological agent of American Foulbrood of honey bees (Apis mellifera). Sci Rep 2018; 8:8840. [PMID: 29892084 PMCID: PMC5995878 DOI: 10.1038/s41598-018-27193-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
American Foulbrood is a worldwide distributed, fatal disease of the brood of the Western honey bee (Apis mellifera). The causative agent of this fatal brood disease is the Gram-positive, spore-forming bacterium Paenibacillus larvae, which can be classified into four different genotypes (ERIC I-IV), with ERIC I and II being the ones isolated from contemporary AFB outbreaks. P. larvae is a peritrichously flagellated bacterium and, hence, we hypothesized that P. larvae is capable of coordinated and cooperative multicellular behaviors like swarming motility and biofilm formation. In order to analyze these behaviors of P. larvae, we firstly established appropriate functional assays. Using these assays we demonstrated that P. larvae ERIC II, but not P. larvae ERIC I, was capable of swarming. Swarming motility was hampered in a P. larvae ERIC II-mutant lacking production of paenilarvin, an iturin-like lipopeptide exclusively expressed by this genotype. Both genotypes were able to form free floating biofilm aggregates loosely attached to the walls of the culture wells. Visualizing the biofilms by Congo red and thioflavin S staining suggested structural differences between the biofilms formed. Biofilm formation was shown to be independent from paenilarvin production because the paenilarvin deficient mutant was comparably able to form a biofilm.
Collapse
Affiliation(s)
- Anne Fünfhaus
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Josefine Göbel
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Julia Ebeling
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Henriette Knispel
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Eva Garcia-Gonzalez
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Hohen Neuendorf, Germany.
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen, Berlin, Germany.
| |
Collapse
|
83
|
Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T. Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites. Polymers (Basel) 2018; 10:E202. [PMID: 30966238 PMCID: PMC6415156 DOI: 10.3390/polym10020202] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/03/2022] Open
Abstract
Poly(lactic acid) (PLA), a well-known biodegradable and compostable polymer, was used in this study as a model system to determine if the addition of nanoclays affects its biodegradation in simulated composting conditions and whether the nanoclays impact the microbial population in a compost environment. Three different nanoclays were studied due to their different surface characteristics but similar chemistry: organo-modified montmorillonite (OMMT), Halloysite nanotubes (HNT), and Laponite® RD (LRD). Additionally, the organo-modifier of MMT, methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium (QAC), was studied. PLA and PLA bio-nanocomposite (BNC) films were produced, characterized, and used for biodegradation evaluation with an in-house built direct measurement respirometer (DMR) following the analysis of evolved CO2 approach. A biofilm formation essay and scanning electron microscopy were used to evaluate microbial attachment on the surface of PLA and BNCs. The results obtained from four different biodegradation tests with PLA and its BNCs showed a significantly higher mineralization of the films containing nanoclay in comparison to the pristine PLA during the first three to four weeks of testing, mainly attributed to the reduction in the PLA lag time. The effect of the nanoclays on the initial molecular weight during processing played a crucial role in the evolution of CO2. PLA-LRD5 had the greatest microbial attachment on the surface as confirmed by the biofilm test and the SEM micrographs, while PLA-QAC0.4 had the lowest biofilm formation that may be attributed to the inhibitory effect also found during the biodegradation test when the QAC was tested by itself.
Collapse
Affiliation(s)
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA.
| | - Susan Selke
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA.
| | - Maria Rubino
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA.
| | - Terence Marsh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
84
|
Govantes F. Serial Dilution-Based Growth Curves and Growth Curve Synchronization for High-Resolution Time Series of Bacterial Biofilm Growth. Methods Mol Biol 2018; 1734:159-169. [PMID: 29288453 DOI: 10.1007/978-1-4939-7604-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability to form stable surface-attached communities called biofilms is of paramount importance to both beneficial and harmful interactions between microbes and microbial, plant or animal partners. Assessment of biofilm formation ability is often performed by growing the organisms in microtiter plate wells and staining the well-attached material, a method whose use for time-course analysis is limited by its destructive nature. Here we combine a serial dilution-based biofilm growth curve method with online monitoring of planktonic growth and a serially diluted growth curve synchronization algorithm to reconstruct the time-course of planktonic and biofilm growth. As demonstrated here with the rhizosphere bacterium Pseudomonas putida, the method allows accurate determination of the growth rate and doubling time, a robust depiction of the biofilm formation and dispersal dynamics and assessment of the biofilm development defects in mutant strains.
Collapse
Affiliation(s)
- Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas and Junta de Andalucía, Seville, Spain.
| |
Collapse
|
85
|
Hasan S, Thomas N, Thierry B, Prestidge CA. Controlled and Localized Nitric Oxide Precursor Delivery From Chitosan Gels to Staphylococcus aureus Biofilms. J Pharm Sci 2017; 106:3556-3563. [DOI: 10.1016/j.xphs.2017.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/18/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
|
86
|
Leite L, Jude-Lemeilleur F, Raymond N, Henriques I, Garabetian F, Alves A. Phylogenetic diversity and functional characterization of the Manila clam microbiota: a culture-based approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21721-21732. [PMID: 28766142 DOI: 10.1007/s11356-017-9838-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
According to the hologenome theory, the microbiota contributes to the fitness of the holobiont having an important role in its adaptation, survival, development, health, and evolution. Environmental stress also affects the microbiota and its capability to assist the holobiont in coping with stress factors. Here, we analyzed the diversity of cultivable bacteria associated with Manila clam tissues (mantle, gills, hemolymph) in two non-contaminated sites (Portugal and France) and one metal-contaminated site (Portugal). A total of 240 isolates were obtained. Representative isolates (n = 198) of the overall diversity were identified by 16S rDNA sequencing and subjected to functional characterization. Isolates affiliated with Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Proteobacteria (mostly Pseudoalteromonadaceae and Vibrionaceae) were dominant in non-contaminated sites while Actinobacteria (mostly Microbacteriaceae) dominated in the metal-contaminated site. The main factor affecting the microbiota composition was contamination. No significant differences were observed between clam tissues and geographic regions. Several isolates tested positive for antibacterial activity, biofilm formation, protease, and siderophore production. The results show that the Manila clam harbors a diverse microbiota that may contribute to clam protection and overall fitness, as well as to its adaptation to stressful environments. In addition, the Manila clam microbiota is revealed as a promising source of novel probiotics with potential application in aquaculture.
Collapse
Affiliation(s)
- Laura Leite
- Departamento de Biologia, CESAM, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
- Université de Bordeaux, UMR 5805 EPOC, 33120, Arcachon, France
- CNRS, UMR 5805 EPOC, 33120, Arcachon, France
| | - Florence Jude-Lemeilleur
- Université de Bordeaux, UMR 5805 EPOC, 33120, Arcachon, France
- CNRS, UMR 5805 EPOC, 33120, Arcachon, France
| | - Natalie Raymond
- Université de Bordeaux, UMR 5805 EPOC, 33120, Arcachon, France
- CNRS, UMR 5805 EPOC, 33120, Arcachon, France
| | - Isabel Henriques
- Departamento de Biologia, CESAM, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Frédéric Garabetian
- Université de Bordeaux, UMR 5805 EPOC, 33120, Arcachon, France
- CNRS, UMR 5805 EPOC, 33120, Arcachon, France
| | - Artur Alves
- Departamento de Biologia, CESAM, Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
87
|
Piovia-Scott J, Rejmanek D, Woodhams DC, Worth SJ, Kenny H, McKenzie V, Lawler SP, Foley JE. Greater Species Richness of Bacterial Skin Symbionts Better Suppresses the Amphibian Fungal Pathogen Batrachochytrium Dendrobatidis. MICROBIAL ECOLOGY 2017; 74:217-226. [PMID: 28064360 DOI: 10.1007/s00248-016-0916-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
The symbiotic microbes that grow in and on many organisms can play important roles in protecting their hosts from pathogen infection. While species diversity has been shown to influence community function in many other natural systems, the question of how species diversity of host-associated symbiotic microbes contributes to pathogen resistance is just beginning to be explored. Understanding diversity effects on pathogen resistance could be particularly helpful in combating the fungal pathogen Batrachochytrium dendrobatidis (Bd) which has caused dramatic population declines in many amphibian species and is a major concern for amphibian conservation. Our study investigates the ability of host-associated bacteria to inhibit the proliferation of Bd when grown in experimentally assembled biofilm communities that differ in species number and composition. Six bacterial species isolated from the skin of Cascades frogs (Rana cascadae) were used to assemble bacterial biofilm communities containing 1, 2, 3, or all 6 bacterial species. Biofilm communities were grown with Bd for 7 days following inoculation. More speciose bacterial communities reduced Bd abundance more effectively. This relationship between bacterial species richness and Bd suppression appeared to be driven by dominance effects-the bacterial species that were most effective at inhibiting Bd dominated multi-species communities-and complementarity: multi-species communities inhibited Bd growth more than monocultures of constituent species. These results underscore the notion that pathogen resistance is an emergent property of microbial communities, a consideration that should be taken into account when designing probiotic treatments to reduce the impacts of infectious disease.
Collapse
Affiliation(s)
- Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Avenue, Vancouver, WA, 98686, USA.
| | - Daniel Rejmanek
- Department of Veterinary Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA, 02125, USA
| | - S Joy Worth
- Department of Veterinary Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Heather Kenny
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Avenue, Vancouver, WA, 98686, USA
| | - Valerie McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Sharon P Lawler
- Department of Entomology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Janet E Foley
- Department of Veterinary Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
88
|
Ansari JM, Abraham NM, Massaro J, Murphy K, Smith-Carpenter J, Fikrig E. Anti-Biofilm Activity of a Self-Aggregating Peptide against Streptococcus mutans. Front Microbiol 2017; 8:488. [PMID: 28392782 PMCID: PMC5364132 DOI: 10.3389/fmicb.2017.00488] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Streptococcus mutans is the primary agent of dental cavities, in large part due to its ability to adhere to teeth and create a molecular scaffold of glucan polysaccharides on the tooth surface. Disrupting the architecture of S. mutans biofilms could help undermine the establishment of biofilm communities that cause cavities and tooth decay. Here we present a synthetic peptide P1, derived from a tick antifreeze protein, which significantly reduces S. mutans biofilm formation. Incubating cells with this peptide decreased biofilm biomass by approximately 75% in both a crystal violet microplate assay and an in vitro tooth model using saliva-coated hydroxyapatite discs. Bacteria treated with peptide P1 formed irregular biofilms with disconnected aggregates of cells and exopolymeric matrix that readily detached from surfaces. Peptide P1 can bind directly to S. mutans cells but does not possess bactericidal activity. Anti-biofilm activity was correlated with peptide aggregation and β-sheet formation in solution, and alternative synthetic peptides of different lengths or charge distribution did not inhibit biofilms. This anti-biofilm peptide interferes with S. mutans biofilm formation and architecture, and may have future applications in preventing bacterial buildup on teeth.
Collapse
Affiliation(s)
| | - Nabil M Abraham
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New HavenCT, USA; Howard Hughes Medical Institute, Chevy ChaseMD, USA
| | - Jenna Massaro
- Department of Biology, Fairfield University, Fairfield CT, USA
| | - Kelsey Murphy
- Department of Biology, Fairfield University, Fairfield CT, USA
| | | | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New HavenCT, USA; Howard Hughes Medical Institute, Chevy ChaseMD, USA
| |
Collapse
|
89
|
Vitonyte J, Manca ML, Caddeo C, Valenti D, Peris JE, Usach I, Nacher A, Matos M, Gutiérrez G, Orrù G, Fernàndez-Busquets X, Fadda AM, Manconi M. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur J Pharm Biopharm 2017; 114:278-287. [PMID: 28192250 DOI: 10.1016/j.ejpb.2017.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/01/2017] [Accepted: 02/08/2017] [Indexed: 11/25/2022]
Abstract
Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70nm in diameter, while PEVs were larger (∼170nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections.
Collapse
Affiliation(s)
- Justina Vitonyte
- Dept. of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas, Lithuania
| | - Maria Letizia Manca
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Carla Caddeo
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Donatella Valenti
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Josè Esteban Peris
- Dept. of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia, Spain
| | - Iris Usach
- Dept. of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia, Spain
| | - Amparo Nacher
- Dept. of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia, Spain; Instituto de Reconocimiento Molecular y Desarrollo Tecnológico, Centro Mixto Universidad Politécnica de Valencia-Universidad de Valencia, Spain
| | - Maria Matos
- Dept. Ingeniería Química y Tecnología del Medio Ambiente, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Dept. Ingeniería Química y Tecnología del Medio Ambiente, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Germano Orrù
- Dept. of Surgical Science, University of Cagliari, Molecular Biology Service Lab (MBS), via Ospedale 40, 09124 Cagliari, Italy
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, Barcelona E08028, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, Barcelona E08036, Spain
| | - Anna Maria Fadda
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Manconi
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
90
|
de Almeida Silva KDCF, Calomino MA, Deutsch G, de Castilho SR, de Paula GR, Esper LMR, Teixeira LA. Molecular characterization of multidrug-resistant (MDR) Pseudomonas aeruginosa isolated in a burn center. Burns 2017; 43:137-143. [DOI: 10.1016/j.burns.2016.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/29/2016] [Accepted: 07/14/2016] [Indexed: 11/16/2022]
|
91
|
Melaleuca alternifolia nanoparticles against Candida species biofilms. Microb Pathog 2017; 104:125-132. [PMID: 28089949 DOI: 10.1016/j.micpath.2017.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/03/2016] [Accepted: 01/11/2017] [Indexed: 11/21/2022]
Abstract
Candida infection is an important cause of morbidity and mortality on immunosuppressed patients. This growing trend has been associated with resistance to the antimicrobial therapy and the ability of microorganism to form biofilms. TTO oil is used as antimicrobial which shows antibiofilm activity against Candida species. However, it presents problems due to its poor solubility and high volatility. The present study aimed to evaluate in vitro antibiofilm activity of TTO nanoparticles against many Candida species. It was performed the characterization of the oil and nanoparticles. The levels of exopolysaccharides, proteins, and the biomass of biofilms were measured. The chromatographic profile demonstrated that the TTO oil is in accordance with ISO 4730 with major constituents of 41.9% Terpinen-4-ol, 20.1% of γ-Terpinene, 9,8% of α-Terpinene, and 6,0% of 1,8-Cineole. The TTO nanoparticles showed pH of 6.3, mean diameter of 158.2 ± 2 nm, polydispersion index of 0.213 ± 0.017, and zeta potential of -8.69 ± 0.80 mV. The addition of TTO and its nanoparticles represented a significant reduction of biofilm formed by all Candida species, as well as a reduction of proteins and exopolysaccharides levels. It was possible to visualize the reduction of biofilm in presence of TTO nanoparticles by Calcofluor White method.
Collapse
|
92
|
Karaguler T, Kahraman H, Tuter M. Analyzing effects of ELF electromagnetic fields on removing bacterial biofilm. Biocybern Biomed Eng 2017. [DOI: 10.1016/j.bbe.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
93
|
Abstract
The "golden era" of antibiotic discovery has long passed, but the need for new antibiotics has never been greater due to the emerging threat of antibiotic resistance. This urgency to develop new antibiotics has motivated researchers to find new methods to combat pathogenic microorganisms resulting in a surge of research focused around antimicrobial peptides (AMPs; also termed host defense peptides) and their potential as therapeutics. During the past few decades, more than 2000 AMPs have been identified from a diverse range of organisms (animals, fungi, plants, and bacteria). While these AMPs share a number of common features and a limited number of structural motifs; their sequences, activities, and targets differ considerably. In addition to their antimicrobial effects, AMPs can also exhibit immunomodulatory, anti-biofilm, and anticancer activities. These diverse functions have spurred tremendous interest in research aimed at understanding the activity of AMPs, and various protocols have been described to assess different aspects of AMP function including screening and evaluating the activities of natural and synthetic AMPs, measuring interactions with membranes, optimizing peptide function, and scaling up peptide production. Here, we provide a general overview of AMPs and introduce some of the methodologies that have been used to advance AMP research.
Collapse
Affiliation(s)
- Evan F Haney
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Sarah C Mansour
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Center for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall, Vancouver, BC, Canada, V6T 1Z4.
| |
Collapse
|
94
|
Zaborowska M, Tillander J, Brånemark R, Hagberg L, Thomsen P, Trobos M. Biofilm formation and antimicrobial susceptibility of staphylococci and enterococci from osteomyelitis associated with percutaneous orthopaedic implants. J Biomed Mater Res B Appl Biomater 2016; 105:2630-2640. [PMID: 27779811 DOI: 10.1002/jbm.b.33803] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/24/2016] [Accepted: 10/02/2016] [Indexed: 11/06/2022]
Abstract
Staphylococci and enterococci account for most deep infections associated with bone-anchored percutaneous implants for amputation treatment. Implant-associated infections are difficult to treat; therefore, it is important to investigate if these infections have a biofilm origin and to determine the biofilm antimicrobial susceptibility to improve treatment strategies. The aims were: (i) to test a novel combination of the Calgary biofilm device and a custom-made susceptibility MIC plate (Sensititre® ), (ii) to determine the biofilm formation and antimicrobial resistance in clinical isolates causing implant-associated osteomyelitis, and (iii) to describe the associated clinical outcome. Enterococci and staphylococci were characterized by microtitre plate assay, Congo Red Agar plate test, and PCR. Biofilm susceptibility to 10 antimicrobials and its relationship to treatment outcomes were determined. The majority of the strains produced biofilm in vitro showing inter- and intraspecies differences. Biofilms showed a significantly increased antimicrobial resistance compared with their planktonic counterparts. Slime-producing strains tolerated significantly higher antimicrobial concentrations compared with non-producers. All seven staphylococcal strains carried ica genes, but two did not produce slime. The degree of biofilm formation and up-regulated antibiotic resistance may translate into a variable risk of treatment failure. This new method set-up allows for the reproducible determination of minimum biofilm eradication concentration of antimicrobial agents, which may guide future antimicrobial treatment decisions in orthopaedic implant-associated infection. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2630-2640, 2017.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Biomatcell Vinn Excellence Center of Biomaterials and Cell Therapy, PO Box 412, 405 30, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonatan Tillander
- Biomatcell Vinn Excellence Center of Biomaterials and Cell Therapy, PO Box 412, 405 30, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rickard Brånemark
- Biomatcell Vinn Excellence Center of Biomaterials and Cell Therapy, PO Box 412, 405 30, Gothenburg, Sweden.,Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Orthopaedics, International Center for Osseointegration Research Education and Surgery (iCORES), University of California, San Francisco
| | - Lars Hagberg
- Biomatcell Vinn Excellence Center of Biomaterials and Cell Therapy, PO Box 412, 405 30, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Biomatcell Vinn Excellence Center of Biomaterials and Cell Therapy, PO Box 412, 405 30, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margarita Trobos
- Biomatcell Vinn Excellence Center of Biomaterials and Cell Therapy, PO Box 412, 405 30, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
95
|
Samuelsen ED, Badawi N, Nybroe O, Sørensen SR, Aamand J. Adhesion to sand and ability to mineralise low pesticide concentrations are required for efficient bioaugmentation of flow-through sand filters. Appl Microbiol Biotechnol 2016; 101:411-421. [DOI: 10.1007/s00253-016-7909-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/07/2016] [Accepted: 09/25/2016] [Indexed: 01/30/2023]
|
96
|
Arsenic contamination in areas surrounding mines and selection of potential As-resistant purple nonsulfur bacteria for use in bioremediation based on their detoxification mechanisms. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1229-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
97
|
Thet NT, Alves DR, Bean JE, Booth S, Nzakizwanayo J, Young AER, Jones BV, Jenkins ATA. Prototype Development of the Intelligent Hydrogel Wound Dressing and Its Efficacy in the Detection of Model Pathogenic Wound Biofilms. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14909-19. [PMID: 26492095 DOI: 10.1021/acsami.5b07372] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The early detection of wound infection in situ can dramatically improve patient care pathways and clinical outcomes. There is increasing evidence that within an infected wound the main bacterial mode of living is a biofilm: a confluent community of adherent bacteria encased in an extracellular polymeric matrix. Here we have reported the development of a prototype wound dressing, which switches on a fluorescent color when in contact with pathogenic wound biofilms. The dressing is made of a hydrated agarose film in which the fluorescent dye containing vesicles were mixed with agarose and dispersed within the hydrogel matrix. The static and dynamic models of wound biofilms, from clinical strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis, were established on nanoporous polycarbonate membrane for 24, 48, and 72 h, and the dressing response to the biofilms on the prototype dressing evaluated. The dressing indicated a clear fluorescent/color response within 4 h, only observed when in contact with biofilms produced by a pathogenic strain. The sensitivity of the dressing to biofilms was dependent on the species and strain types of the bacterial pathogens involved, but a relatively higher response was observed in strains considered good biofilm formers. There was a clear difference in the levels of dressing response, when dressings were tested on bacteria grown in biofilm or in planktonic cultures, suggesting that the level of expression of virulence factors is different depending of the growth mode. Colorimetric detection on wound biofilms of prevalent pathogens (S. aureus, P. aeruginosa, and E. faecalis) is also demonstrated using an ex vivo porcine skin model of burn wound infection.
Collapse
Affiliation(s)
- N T Thet
- Department of Chemistry, University of Bath , Bath BA2 7AY, United Kingdom
| | - D R Alves
- Blond McIndoe Research Foundation, Queen Victoria Hospital , East Grinstead, West Sussex RH19 3DZ, United Kingdom
- Queen Victoria Hospital , East Grinstead, West Sussex RH19 3DZ, United Kingdom
- School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, United Kingdom
| | - J E Bean
- Blond McIndoe Research Foundation, Queen Victoria Hospital , East Grinstead, West Sussex RH19 3DZ, United Kingdom
| | - S Booth
- Queen Victoria Hospital , East Grinstead, West Sussex RH19 3DZ, United Kingdom
- School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, United Kingdom
| | - J Nzakizwanayo
- School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, United Kingdom
| | - A E R Young
- Healing Foundation Children's Burns Research Centre, University Hospitals Bristol NHS Foundation Trust , Bristol BS2 8BJ, United Kingdom
| | - B V Jones
- Queen Victoria Hospital , East Grinstead, West Sussex RH19 3DZ, United Kingdom
- School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, United Kingdom
| | - A Toby A Jenkins
- Department of Chemistry, University of Bath , Bath BA2 7AY, United Kingdom
| |
Collapse
|
98
|
Cescutti P, De Benedetto G, Rizzo R. Structural determination of the polysaccharide isolated from biofilms produced by a clinical strain of Klebsiella pneumoniae. Carbohydr Res 2016; 430:29-35. [PMID: 27182661 DOI: 10.1016/j.carres.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/17/2022]
Abstract
Klebsiella pneumoniae are Gram negative opportunistic pathogens producing capsular (K) polysaccharides. Seventy-seven different K antigens have been described and they are the basis for K serotyping. Capsular polysaccharides are important virulence factors and have a relevant role for the structure of biofilm communities. Nevertheless, little information is available on the polysaccharides produced in biofilm matrices by Klebsiella spp. In the present study, a clinical isolate of Klebsiella pneumoniae was grown both on cellulose membranes deposited on agar plates, where it formed an adherent biofilm, and in liquid medium, where it formed floating biofilms (flocs). Extraction and purification of the polysaccharide fraction showed that only one main carbohydrate polymer was present in both adherent biofilms and flocs. Composition and linkage analysis, Smith degradation followed by ESI-MS, 1D and 2D NMR spectroscopy revealed that the polysaccharide belong to the type K24 and has the following structure.
Collapse
Affiliation(s)
- Paola Cescutti
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, Trieste 34127, Italy.
| | - Gianluigi De Benedetto
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, Trieste 34127, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, Trieste 34127, Italy
| |
Collapse
|
99
|
O'May C, Amzallag O, Bechir K, Tufenkji N. Cranberry derivatives enhance biofilm formation and transiently impair swarming motility of the uropathogen Proteus mirabilis HI4320. Can J Microbiol 2016; 62:464-74. [PMID: 27090825 DOI: 10.1139/cjm-2015-0715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteus mirabilis is a major cause of catheter-associated urinary tract infection (CAUTI), emphasizing that novel strategies for targeting this bacterium are needed. Potential targets are P. mirabilis surface-associated swarming motility and the propensity of these bacteria to form biofilms that may lead to catheter blockage. We previously showed that the addition of cranberry powder (CP) to lysogeny broth (LB) medium resulted in impaired P. mirabilis swarming motility over short time periods (up to 16 h). Herein, we significantly expanded on those findings by exploring (i) the effects of cranberry derivatives on biofilm formation of P. mirabilis, (ii) whether swarming inhibition occurred transiently or over longer periods more relevant to real infections (∼3 days), (iii) whether swarming was also blocked by commercially available cranberry juices, (iv) whether CP or cranberry juices exhibited effects under natural urine conditions, and (v) the effects of cranberry on medium pH, which is an indirect indicator of urease activity. At short time scales (24 h), CP and commercially available pure cranberry juice impaired swarming motility and repelled actively swarming bacteria in LB medium. Over longer time periods more representative of infections (∼3 days), the capacity of the cranberry material to impair swarming diminished and bacteria would start to migrate across the surface, albeit by exhibiting a different motility phenotype to the regular "bull's-eye" swarming phenotype of P. mirabilis. This bacterium did not swarm on urine agar or LB agar supplemented with urea, suggesting that any potential application of anti-swarming compounds may be better suited to settings external to the urine environment. Anti-swarming effects were confounded by the ability of cranberry products to enhance biofilm formation in both LB and urine conditions. These findings provide key insights into the long-term strategy of targeting P. mirabilis CAUTIs.
Collapse
Affiliation(s)
- Che O'May
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Olivier Amzallag
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Karim Bechir
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.,Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| |
Collapse
|
100
|
Nastro RA, Arguelles-Arias A, Ongena M, Di Costanzo A, Trifuoggi M, Guida M, Fickers P. Antimicrobial Activity of Bacillus amyloliquefaciens ANT1 Toward Pathogenic Bacteria and Mold: Effects on Biofilm Formation. Probiotics Antimicrob Proteins 2016; 5:252-8. [PMID: 26783071 DOI: 10.1007/s12602-013-9143-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The intensive use and misuse of antibiotics over the last decades have generated a strong selective pressure for the emergence of multi-resistant strains and nosocomial infections. Biofilm has been demonstrated as a key parameter in spreading infections, especially in hospitals and healthcare units. Therefore, the development of novel anti-biofilm drugs is actually of the upmost importance. Here, the antimicrobial and antibiofilm activities toward pathogenic microorganisms of a set of non-ribosomal synthesized peptides and polyketides isolated from Bacillus amyloliquefaciens ANT1 culture supernatant are presented.
Collapse
Affiliation(s)
- Rosa Anna Nastro
- Department of Sciences for the Environment, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy.
| | - Anthony Arguelles-Arias
- Centre d'Ingenierie des Proteines, Bacterial Physiology and Genetics, Allée de la chimie, Université de Liège, Bat. B6, 4000, Liège, Belgium
| | - Marc Ongena
- Unité de Bio-Industrie, Gembloux Agro-Bio Tech, Université de Liège, Passage des Déportés, 5030, Gembloux, Belgium
| | - Amelia Di Costanzo
- Department of Biology, University Federico II of Naples, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 5, 80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University Federico II of Naples, Complesso Universitario di Monte Sant'Angelo, Ed.4, Via Cinthia 5, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University Federico II of Naples, Complesso Universitario di Monte Sant'Angelo, Ed.7, Via Cinthia 5, 80126, Naples, Italy.
| | - Patrick Fickers
- Unité de Biotechnologies et Bioprocédés, Université Libre de Bruxelles, Av F.-D. Roosevelt, 50, CP165/61, 1050, Brussels, Belgium.
| |
Collapse
|