51
|
Liu X, Xiao M, Xue K, Li M, Liu D, Wang Y, Yang X, Hu Y, Kwok RTK, Qin A, Zhu C, Lam JWY, Tang BZ. Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Mingzhao Li
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Dongming Liu
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yong Wang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Xinzhe Yang
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yubing Hu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Anjun Qin
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- AIE Institute, Guangzhou Development District, Huangpu Guangzhou 510530 China
- Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials China
| |
Collapse
|
52
|
Intramolecular cyclization in hyperbranched star copolymers via one-pot Am+Bn+C1 step-growth polymerization resulting in decreased cyclic defect. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
53
|
Liu X, Xiao M, Xue K, Li M, Liu D, Wang Y, Yang X, Hu Y, Kwok RTK, Qin A, Zhu C, Lam JWY, Tang BZ. Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angew Chem Int Ed Engl 2021; 60:19222-19231. [DOI: 10.1002/anie.202104709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/10/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Mingzhao Li
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Dongming Liu
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yong Wang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Xinzhe Yang
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Yubing Hu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Anjun Qin
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute for Advanced Study Division of Biomedical Engineering Division of Life Science, and State Key Laboratory of Molecular Neuroscience The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
- AIE Institute, Guangzhou Development District, Huangpu Guangzhou 510530 China
- Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials China
| |
Collapse
|
54
|
Filipczak N, Yalamarty SSK, Li X, Parveen F, Torchilin V. Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26113304. [PMID: 34072765 PMCID: PMC8198206 DOI: 10.3390/molecules26113304] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/02/2023]
Abstract
Dendrimers comprise a specific group of macromolecules, which combine structural properties of both single molecules and long expanded polymers. The three-dimensional form of dendrimers and the extensive possibilities for use of additional substrates for their construction creates a multivalent potential and a wide possibility for medical, diagnostic and environmental purposes. Depending on their composition and structure, dendrimers have been of interest in many fields of science, ranging from chemistry, biotechnology to biochemical applications. These compounds have found wide application from the production of catalysts for their use as antibacterial, antifungal and antiviral agents. Of particular interest are peptide dendrimers as a medium for transport of therapeutic substances: synthetic vaccines against parasites, bacteria and viruses, contrast agents used in MRI, antibodies and genetic material. This review focuses on the description of the current classes of dendrimers, the methodology for their synthesis and briefly drawbacks of their properties and their use as potential therapies against infectious diseases.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- The Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
55
|
He M, Chen F, Shao D, Weis P, Wei Z, Sun W. Photoresponsive metallopolymer nanoparticles for cancer theranostics. Biomaterials 2021; 275:120915. [PMID: 34102525 DOI: 10.1016/j.biomaterials.2021.120915] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Over the past decades, transition metal complexes have been successfully used in anticancer phototherapies. They have shown promising properties in many different areas including photo-induced ligand exchange or release, rich excited state behavior, and versatile biochemical properties. When encorporated into polymeric frameworks and become part of nanostructures, photoresponsive metallopolymer nanoparticles (MPNs) show enhanced water solubility, extended blood circulation and increased tumor-specific accumulation, which greatly improves the tumor therapeutic effects compared to low-molecule-weight metal complexes. In this review, we aim to present the recent development of photoresponsive MPNs as therapeutic nanomedicines. This review will summarize four major areas separately, namely platinum-containing polymers, zinc-containing polymers, iridium-containing polymers and ruthenium-containing polymers. Representative MPNs of each type are discussed in terms of their design strategies, fabrication methods, and working mechanisms. Current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Fangman Chen
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Dan Shao
- Institutes for Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510630, China
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
56
|
Bexis P, Arno MC, Bell CA, Thomas AW, Dove AP. Thermally-induced hyperbranching of bromine-containing polyesters by insertion of in situ generated chain-end carbenes. Chem Commun (Camb) 2021; 57:4275-4278. [PMID: 33913987 DOI: 10.1039/d1cc00821h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hyperbranched, biodegradable PCL-based polymers are obtained through a random but invasive migration of an in situ generated carbene end group which is unmasked via the thermolysis of its precursor diazirine moiety. These hyperbranched cores are used as macroinitiators for 'grafting-from' polymerisation using controlled radical polymerisation to achieve amphiphilic copolymers which can subsequently be self-assembled into spherical core-shell micelles.
Collapse
Affiliation(s)
- Panagiotis Bexis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK and School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Maria C Arno
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. and Institute of Cancer and Genomic Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Craig A Bell
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK and Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony W Thomas
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
57
|
Zuo C, Zhang H, Liang S, Teng W, Bao C, Li D, Hu Y, Wang Q, Li Z, Li Y. The alleviation of lipid deposition in steatosis hepatocytes by capsaicin-loaded α-lactalbumin nanomicelles via promoted endocytosis and synergetic multiple signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
58
|
Liao M, Chen Y, Brook MA. Spatially Controlled Highly Branched Vinylsilicones. Polymers (Basel) 2021; 13:polym13060859. [PMID: 33799627 PMCID: PMC8000532 DOI: 10.3390/polym13060859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023] Open
Abstract
Branched silicones possess interesting properties as oils, including their viscoelastic behavior, or as precursors to controlled networks. However, highly branched silicone polymers are difficult to form reliably using a “grafting to” strategy because functional groups may be bunched together preventing complete conversion for steric reasons. We report the synthesis of vinyl-functional highly branched silicone polymers based, at their core, on the ability to spatially locate functional vinyl groups along a silicone backbone at the desired frequency. Macromonomers were created and then polymerized using the Piers–Rubinsztajn reaction with dialkoxyvinylsilanes and telechelic HSi-silicones; molecular weights of the polymerized macromonomers were controlled by the ratio of the two reagents. The vinyl groups were subjected to iterative (two steps, one pot) hydrosilylation with alkoxysilane and Piers–Rubinsztajn reactions, leading to high molecular weight, highly branched silicones after one or two iterations. The vinyl-functional products can optionally be converted to phenyl/methyl-modified branched oils or elastomers.
Collapse
|
59
|
Kurmaz SV, Fadeeva NV, Grishchuk AA, Emel’yanova NS, Ignat’ev VM, Shilov GV, Soldatova YV, Faingold II, Kotel’nikova RA. Hybrid Materials Based on Dimethylbiguanide (Metformin) and Copolymer of N-Vinylpyrrolidone with Triethylene Glycol Dimethacrylate. POLYMER SCIENCE, SERIES A 2021; 63:106-116. [DOI: 10.1134/s0965545x2102005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/25/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2025]
|
60
|
Zhang X, Chen J, He J, Bai Y, Zeng H. Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. J Colloid Interface Sci 2021; 585:420-432. [DOI: 10.1016/j.jcis.2020.10.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
|
61
|
Liu R, Rong Z, Han G, Yang X, Zhang W. Synthesis and self-assembly of star multiple block copolymer of poly(4-vinylpyridine)-block-polystyrene. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
62
|
Jang JD, Yoon YJ, Jeon SW, Han YS, Kim TH. Molecular Weight-Dependent, Flexible Phase Behaviors of Amphiphilic Block Copolymer/Additive Complexes in Aqueous Solution. Polymers (Basel) 2021; 13:polym13020178. [PMID: 33419083 PMCID: PMC7825415 DOI: 10.3390/polym13020178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 11/30/2022] Open
Abstract
Pluronic amphiphilic block copolymers, well known to have a phase behavior can be controlled by external conditions, have a wide range of potential for applications such as nanotemplates or nanobuilding blocks. However, the phase behaviors of Pluronic block copolymer/additive complexes with highly ordered phases have not been fully investigated. Here, we report the unusual molecular weight-dependent self-assembly of Pluronic block copolymer/additive complexes. Depending on the temperature and additive, Pluronic P65 block copolymer with a lower molecular weight showed the closed loop-like (CLL) phase behavior with the disorder-order-disorder-order phase transition in aqueous solution, whereas Pluronic P105 and P85 block copolymers with higher molecular weights underwent highly ordered continuous phase transitions with face centered cubic (FCC), hexagonal, and lamellar phases. It is expected that the specific phase behavior of the block copolymer/additive complex can be applied in optical devices such as nanotemplates or optical sensors for a highly ordered superlattice. Furthermore, this study provides a new route to control the phase behavior of the block copolymers without a complicated process.
Collapse
Affiliation(s)
- Jong Dae Jang
- Quantum Beam Material Science Research Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea; (J.D.J.); (Y.S.H.)
| | - Young-Jin Yoon
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea; (Y.-J.Y.); (S.-W.J.)
| | - Sang-Woo Jeon
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea; (Y.-J.Y.); (S.-W.J.)
| | - Young Soo Han
- Quantum Beam Material Science Research Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea; (J.D.J.); (Y.S.H.)
| | - Tae-Hwan Kim
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea; (Y.-J.Y.); (S.-W.J.)
- Department of Quantum System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Korea
- Correspondence:
| |
Collapse
|
63
|
Chimala P, Perera MM, Wade A, McKenzie T, Allor J, Ayres N. Hyperbranched polymer hydrogels with large stimuli-responsive changes in storage moduli and peroxide-induced healing. Polym Chem 2021. [DOI: 10.1039/d1py00560j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels prepared using hyperbranched polymers with dynamic disulfide bonds show larger changes in moduli upon exposure to chemical stimuli for both softening and stiffening responses compared to linear polymers.
Collapse
Affiliation(s)
| | - M. Mario Perera
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Aissatou Wade
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Tucker McKenzie
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Joshua Allor
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Neil Ayres
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
64
|
Azizollahi H, Eshghi H, García‐López J. Fe
3
O
4
‐SAHPG‐Pd
0
nanoparticles: A ligand‐free and low Pd loading quasiheterogeneous catalyst active for mild Suzuki–Miyaura coupling and CH activation of pyrimidine cores. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hamid Azizollahi
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad 91775‐1436 Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad 91775‐1436 Iran
| | | |
Collapse
|
65
|
Guest induced morphology transitions of star shaped pillar[5]arene trimer via endo host-guest and “exo-wall” electron-transfer interactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
66
|
Selianitis D, Pispas S. Multi-responsive poly(oligo(ethylene glycol)methyl methacrylate)-co-poly(2-(diisopropylamino)ethyl methacrylate) hyperbranched copolymers via reversible addition fragmentation chain transfer polymerization. Polym Chem 2021. [DOI: 10.1039/d1py01320c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-responsive P(OEGMA-co-DIPAEMA) hyperbranched copolymers are synthesized via RAFT polymerization. The copolymers form different aggregates in aqueous media depending on solution pH, temperature and copolymer composition.
Collapse
Affiliation(s)
- Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
67
|
Lattuada E, Caprara D, Lamberti V, Sciortino F. Hyperbranched DNA clusters. NANOSCALE 2020; 12:23003-23012. [PMID: 33180079 DOI: 10.1039/d0nr04840b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Taking advantage of the base-pairing specificity and tunability of DNA interactions, we investigate the spontaneous formation of hyperbranched clusters starting from purposely designed DNA tetravalent nanostar monomers, encoding in their four sticky ends the desired binding rules. Specifically, we combine molecular dynamics simulations and Dynamic Light Scattering experiments to follow the aggregation process of DNA nanostars at different concentrations and temperatures. At odds with the Flory-Stockmayer predictions, we find that, even when all possible bonds are formed, the system does not reach percolation due to the presence of intracluster bonds. We present an extension of the Flory-Stockmayer theory that properly describes the numerical and experimental results.
Collapse
Affiliation(s)
- Enrico Lattuada
- Physics Department, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy.
| | | | | | | |
Collapse
|
68
|
Pearce AK, Anane‐Adjei AB, Cavanagh RJ, Monteiro PF, Bennett TM, Taresco V, Clarke PA, Ritchie AA, Alexander MR, Grabowska AM, Alexander C. Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models. Adv Healthc Mater 2020; 9:e2000892. [PMID: 33073536 DOI: 10.1002/adhm.202000892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/16/2020] [Indexed: 02/01/2023]
Abstract
The size, shape, and underlying chemistries of drug delivery particles are key parameters which govern their ultimate performance in vivo. Responsive particles are desirable for triggered drug delivery, achievable through architecture change and biodegradation to control in vivo fate. Here, polymeric materials are synthesized with linear, hyperbranched, star, and micellar-like architectures based on 2-hydroxypropyl methacrylamide (HPMA), and the effects of 3D architecture and redox-responsive biodegradation on biological transport are investigated. Variations in "stealth" behavior between the materials are quantified in vitro and in vivo, whereby reduction-responsive hyperbranched polymers most successfully avoid accumulation within the liver, and none of the materials target the spleen or lungs. Functionalization of selected architectures with doxorubicin (DOX) demonstrates enhanced efficacy over the free drug in 2D and 3D in vitro models, and enhanced efficacy in vivo in a highly aggressive orthotopic breast cancer model when dosed over schedules accounting for the biodistribution of the carriers. These data show it is possible to direct materials of the same chemistries into different cellular and physiological regions via modulation of their 3D architectures, and thus the work overall provides valuable new insight into how nanoparticle architecture and programmed degradation can be tailored to elicit specific biological responses for drug delivery.
Collapse
Affiliation(s)
- Amanda K. Pearce
- School of Chemistry University of Birmingham Edgbaston B15 2TT UK
- School of Pharmacy University of Nottingham Nottingham NG72RD UK
| | | | | | | | | | - Vincenzo Taresco
- School of Pharmacy University of Nottingham Nottingham NG72RD UK
| | - Phil A. Clarke
- School of Medicine University of Nottingham Nottingham NG72RD UK
| | | | | | | | | |
Collapse
|
69
|
Universal size ratios of Gaussian polymers with complex architecture: radius of gyration vs hydrodynamic radius. Sci Rep 2020; 10:14127. [PMID: 32839515 PMCID: PMC7445302 DOI: 10.1038/s41598-020-70649-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/28/2020] [Indexed: 11/08/2022] Open
Abstract
We study the impact of arm architecture of polymers with a single branch point on their structure in solvents. Many physical properties of polymer liquids strongly dependent on the size and shape measures of individual macromolecules, which in turn are determined by their topology. Here, we use combination of analytical theory, based on path integration method, and molecular dynamics simulations to study structural properties of complex Gaussian polymers containing [Formula: see text] linear branches and [Formula: see text] closed loops grafted to the central core. We determine size measures such as the gyration radius [Formula: see text] and the hydrodynamic radii [Formula: see text], and obtain the estimates for the size ratio [Formula: see text] with its dependence on the functionality [Formula: see text] of grafted polymers. In particular, we obtain the quantitative estimate of the degree of compactification of these polymers with increasing number of closed loops [Formula: see text] as compared to linear or star-shape molecules of the same total molecular weight. Numerical simulations corroborate theoretical prediction that [Formula: see text] decreases towards unity with increasing f. These findings provide qualitative description of polymers with complex architecture in [Formula: see text] solvents.
Collapse
|
70
|
Yang D, Liu P, Lin W, Sui S, Huang LB, Xu BB, Kong J. Hyperbranched Poly(ester-enamine) from Spontaneous Amino-yne Click Reaction for Stabilization of Gold Nanoparticle Catalysts. Chem Asian J 2020; 15:2499-2504. [PMID: 32569435 DOI: 10.1002/asia.202000621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Indexed: 12/15/2022]
Abstract
Hyperbranched polymers have garnered much attention due to attractive properties and wide applications, such as drug-controlled release, stimuli-responsive nano-objects, photosensitive materials and catalysts. Herein, two types of novel hyperbranched poly(ester-enamine) (hb-PEEa) were designed and synthesized via the spontaneous amino-yne click reaction of A2 monomer (1, 3-bis(4-piperidyl)-propane (A2a ) or piperazine (A2b )) and B3 monomer (trimethylolpropanetripropiolate). According to Flory's hypothesis, gelation is an intrinsic problem in an ideal A2 +B3 polymerization system. By controlling the polymerization conditions, such as monomer concentration, molar ratio and rate of addition, a non-ideal A2 +B3 polymerization system can be established to avoid gelation and to synthesize soluble hb-PEEa. Due to abundant unreacted alkynyl groups in periphery, the hb-PEEa can be further functionalized by different amino compounds or their derivates. The as-prepared amphiphilic PEG-hb-PEEa copolymer can readily self-assemble into micelles in water, which can be used as surfactant to stabilize Au nanoparticles (AuNPs) during reduction of NaBH4 in aqueous solution. As a demonstration, the as-prepared PEG-hb-PEEa-supported AuNPs demonstrate good dispersion in water, solvent stability and remarkable catalytic activity for reduction of nitrobenzene compounds.
Collapse
Affiliation(s)
- Dong Yang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Pei Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wanran Lin
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shanglin Sui
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Long-Biao Huang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Bin Xu
- Mechanical and Construction Engineering Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK
| | - Jie Kong
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions Shaanxi Key Laboratory of Macromolecular Science and Technology School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
71
|
Workineh ZG, Pellicane G, Tsige M. Tuning Solvent Quality Induces Morphological Phase Transitions in Miktoarm Star Polymer Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Giuseppe Pellicane
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, Via Consolare Valeria 1 (Azienda Ospedaliera Universitaria Policlinico “G.Martino”), 98125 Messina, Italy
- CNR-IPCF, Viale F. Stagno d’Alcontres, 37-98158 Messina, Italy
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X01, Scottsville, 3209 Pietermaritzburg, South Africa
| | - Mesfin Tsige
- Department of Polymer Science, University of Akron, Akron, Ohio United States
| |
Collapse
|
72
|
Shao Q, Zhang S, Hu Z, Zhou Y. Multimode Self‐Oscillating Vesicle Transformers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qing Shao
- School of Chemistry and Chemical Engineering MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhen Hu
- School of Chemistry and Chemical Engineering MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
73
|
Shao Q, Zhang S, Hu Z, Zhou Y. Multimode Self‐Oscillating Vesicle Transformers. Angew Chem Int Ed Engl 2020; 59:17125-17129. [DOI: 10.1002/anie.202007840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Qing Shao
- School of Chemistry and Chemical Engineering MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhen Hu
- School of Chemistry and Chemical Engineering MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage Harbin Institute of Technology Harbin 150001 China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
74
|
Yang B, Wang H, Zhang D, Li Z. Water‐Soluble Three‐Dimensional
Polymers:
Non‐Covalent
and Covalent Synthesis and Functions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000085] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bo Yang
- College of Chemistry, Zhengzhou University 100 Kexue Street Zhengzhou Henan 450001 China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Dan‐Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan‐Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| |
Collapse
|
75
|
|
76
|
Zhou J, Han Y, Yang Y, Zhang L, Wang H, Shen Y, Lai J, Chen J. Phospholipid-Decorated Glycogen Nanoparticles for Stimuli-Responsive Drug Release and Synergetic Chemophotothermal Therapy of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23311-23322. [PMID: 32349481 DOI: 10.1021/acsami.0c02785] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dendritic macromolecules are potential candidates for nanomedical application. Herein, glycogen, the natural hyperbranched polysaccharide with favorable biocompatibility, is explored as an effective drug vehicle for treating liver cancer. In this system, glycogen is oxidized and conjugated with cancer drugs through a disulfide link, followed by in situ loading of polypyrrole nanoparticles and then coated with functional phospholipids to form the desired system, Gly-ss-DOX@ppy@Lipid-RGD. The phospholipid layer has good cell affinity and can assist the system to penetrate into cells smoothly. Additionally, combined with the "fusion targeting" of glycogen and the active targeting effect of RGD toward liver cancer cells, Gly-ss-DOX@ppy@Lipid-RGD presents efficient specificity and enrichment of hepatocellular carcinoma. Owing to the glutathione-triggered cleavage of disulfide linkers, Gly-ss-DOX@ppy@Lipid-RGD can controllably release drugs to induce cell nucleus damage. Meanwhile, the polypyrrole nanoparticles can absorb near-infrared light and radiate heat energy within tumors. Besides enhancing drug release, the heat can also provide photothermal treatment for tumors. As proved by in vitro and in vivo experiments, Gly-ss-DOX@ppy@Lipid-RGD is a remarkable candidate for synergistic chemophotothermal therapy with high anticancer therapeutic activity and reduced systematic toxicity, efficiently suppressing tumor growth. All results demonstrate that glycogen nanoparticles are expected to be a new building block for accurate hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Juan Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yuning Han
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yang Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Li Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Hong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Yiting Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jiahui Lai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
77
|
Blavatska V, Haydukivska K, Holovatch Y. Shape analysis of random polymer networks. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:335102. [PMID: 32289770 DOI: 10.1088/1361-648x/ab88f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
We propose the model of a random polymer network, formed on the base on Erdös-Rényi random graph. In the language of mathematical graphs, the chemical bonds between monomers can be treated as vertices, and their chemical functionalities as degrees of these vertices. We consider graphs with fixed number of verticesN= 5 and variable parameterc(connectedness), defining the total number of linksL=cN(N- 1)/2 between vertices. Each link in such graphs is treated as a Gaussian polymer chain. The universal rotationally invariant size and shape characteristics, such as averaged asphericity and size ratio of such structures are obtained both numerically by application of Wei's method and analytically within the continuous chain model. In particular, our results quantitatively indicate an increase of asymmetry of polymer network structure when its connectednesscdecreases.
Collapse
Affiliation(s)
- V Blavatska
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine
- L4Collaboration & Doctoral College for the Statistical Physics of Complex Systems, Leipzig-Lorraine-Lviv-Coventry, Europe
| | - K Haydukivska
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine
- L4Collaboration & Doctoral College for the Statistical Physics of Complex Systems, Leipzig-Lorraine-Lviv-Coventry, Europe
| | - Yu Holovatch
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine
- L4Collaboration & Doctoral College for the Statistical Physics of Complex Systems, Leipzig-Lorraine-Lviv-Coventry, Europe
- Centre for Fluid and Complex Systems, Coventry University, Coventry, CV1 5FB, United Kingdom
| |
Collapse
|
78
|
Smerkova K, Dolezelikova K, Bozdechova L, Heger Z, Zurek L, Adam V. Nanomaterials with active targeting as advanced antimicrobials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1636. [PMID: 32363802 DOI: 10.1002/wnan.1636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
With a growing health threat of bacterial resistance to antibiotics, the nanomaterials have been extensively studied as an alternative. It is assumed that antimicrobial nanomaterials can affect bacteria by several mechanisms simultaneously and thereby overcome antibiotic resistance. Another promising potential use is employing nanomaterials as nanocarriers for antibiotics in order to overcome bacterial defense mechanisms. The passive targeting of nanomaterials is the often used strategy for bacterial treatment, including intracellular infections of macrophages. Furthermore, the specific targeting enhances the efficacy of antimicrobials and reduces side effects. This review aims to discuss advantages, disadvantages, and challenges of nanomaterials in the context of the targeting strategies for antimicrobials as advanced tools for treatments of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lucie Bozdechova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
79
|
Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release 2020; 321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
80
|
Lv S, Kim H, Song Z, Feng L, Yang Y, Baumgartner R, Tseng KY, Dillon SJ, Leal C, Yin L, Cheng J. Unimolecular Polypeptide Micelles via Ultrafast Polymerization of N-Carboxyanhydrides. J Am Chem Soc 2020; 142:8570-8574. [PMID: 32196323 DOI: 10.1021/jacs.0c01173] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polypeptide micelles are widely used as biocompatible nanoplatforms but often suffer from their poor structural stability. Unimolecular polypeptide micelles can effectively address the structure instability issue, but their synthesis with uniform structure and well-controlled and desired sizes remains challenging. Herein we report the convenient preparation of spherical unimolecular micelles through dendritic polyamine-initiated ultrafast ring-opening polymerization of N-carboxyanhydrides (NCAs). Synthetic polypeptides with exceptionally high molecular weights (up to 85 MDa) and low dispersity (Đ < 1.05) can be readily obtained, which are the biggest synthetic polypeptides ever reported. The degree of polymerization was controlled in a vast range (25-3200), giving access to nearly monodisperse unimolecular micelles with predictable sizes. Many NCA monomers can be polymerized using this ultrafast polymerization method, which enables the incorporation of various structural and functional moieties into the unimolecular micelles. Because of the simplicity of the synthesis and superior control over the structure, the unimolecular polypeptide micelles may find applications in nanomedicine, supermolecular chemistry, and bionanotechnology.
Collapse
Affiliation(s)
- Shixian Lv
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Hojun Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lin Feng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yingfeng Yang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan Baumgartner
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kuan-Ying Tseng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shen J Dillon
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
81
|
Shaw Z, Patel A, Butcher T, Banerjee T, Bean R, Santra S. Pseudo-branched polyester copolymer: an efficient drug delivery system to treat cancer. Biomater Sci 2020; 8:1592-1603. [PMID: 32051980 DOI: 10.1039/c9bm01475f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, a new hyperbranched polyester copolymer was designed using a proprietary monomer and diethylene glycol or triethylene glycol as monomers. The synthesis was carried out using standard melt polymerization technique and catalyzed by p-tolulenesulfonic acid. The progress of the reaction was monitored with respect to time and negative pressure, with samples being subjected to standard characterization protocols. The resulting polymers were purified using the solvent precipitation method and characterized using various chromatographic and spectroscopic methods including GPC, MALDI-TOF, and NMR. We have observed polymers with a molecular weight of 29 643 Da and 33 996 Da, which is ideal to be used as a drug delivery system. Thus, these polymers were chosen for further modification into folate-functionalized polymeric nanoparticles for the targeted treatment of cancer, in this case we have chosen prostate cancer cells as a model. We hypothesized that due to the 3D structure of the A2B monomer, we expect a pseudo-branched polymer that is globular in shape which will be ideal for drug carrying and delivery. We used a solvent diffusion method for the one-pot formulation of water-dispersable polymeric nanoparticles as well as theraputic drug (doxorubicin) encapsulation. The efficacy of this delivery system was gauged by treating LNCaP cells with the drug-loaded nanoparticles and assessing the results of the treatment. The results were analyzed by cytotoxicity (MTT) assays, drug release studies, and fluorescence microscopy. The experimental results collectively show a nanoparticle that was biocompatible, target-specific, and successfully initiated apoptosis in an in vitro prostate cancer model.
Collapse
Affiliation(s)
- Zachary Shaw
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| | - Arth Patel
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| | - Thai Butcher
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| | - Ren Bean
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 S Broadway Street, Pittsburg, KS 66762, USA.
| |
Collapse
|
82
|
Hyperbranched Polycarbosiloxanes: Synthesis by Piers-Rubinsztajn Reaction and Application as Precursors to Magnetoceramics. Polymers (Basel) 2020; 12:polym12030672. [PMID: 32192198 PMCID: PMC7183318 DOI: 10.3390/polym12030672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023] Open
Abstract
Silicon-containing hyperbranched polymers (Si-HBPs) have drawn much attention due to their promising applications. However, the construction of Si-HBPs, especially those containing functional aromatic units in the branched backbones by the simple and efficient Piers-Rubinsztajn (P–R) reaction, has been rarely developed. Herein, a series of novel hyperbranched polycarbosiloxanes were prepared by the P–R reactions of methyl-, or phenyl-triethoxylsilane and three Si–H containing aromatic monomers, including 1,4-bis(dimethylsilyl)benzene, 4,4′-bis(dimethylsilyl)-1,1′-biphenyl and 1,1′-bis(dimethylsilyl)ferrocene, using B(C6F5)3 as the catalyst for 0.5 h at room temperature. Their structures were fully characterized by Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and 29Si NMR. The molecular weights were determined by gel permeation chromatography. The degrees of branching of these polymers were 0.69–0.89, which were calculated based on the quantitative 29Si NMR spectroscopy. For applications, the ferrocene-linked Si-HBP can be used as precursors to produce functional ceramics with good magnetizability after pyrolysis at elevated temperature.
Collapse
|
83
|
Hao T, Tan H, Li S, Wang Y, Zhou Z, Yu C, Zhou Y, Yan D. Multilayer onion‐like vesicles self‐assembled from amphiphilic hyperbranched multiarm copolymers via simulation. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tongfan Hao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang China
| | - Haina Tan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Zhiping Zhou
- Institute of Polymer Materials, School of Materials Science and EngineeringJiangsu University Zhenjiang China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| |
Collapse
|
84
|
Liu Z, Cao T, Xue Y, Li M, Wu M, Engle JW, He Q, Cai W, Lan M, Zhang W. Self-Amplified Photodynamic Therapy through the 1 O 2 -Mediated Internalization of Photosensitizers from a Ppa-Bearing Block Copolymer. Angew Chem Int Ed Engl 2020; 59:3711-3717. [PMID: 31808983 PMCID: PMC7028480 DOI: 10.1002/anie.201914434] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 11/06/2022]
Abstract
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non-selective release of photosensitizers still exist. Herein, we report a 1 O2 -responsive block copolymer (POEGMA-b-P(MAA-co-VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1 O2 ) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1 O2 -responsiveness of POEGMA-b-P(MAA-co-VSPpaMA) block copolymer enabled the realization of self-amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT.
Collapse
Affiliation(s)
- Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tianye Cao
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for, Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, Guangdong, China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mengting Li
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mengsi Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for, Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, Guangdong, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
85
|
Wu WX, Liu Z. Novozym 435-Catalyzed Synthesis of Well-Defined Hyperbranched Aliphatic Poly(β-thioether ester). Molecules 2020; 25:E687. [PMID: 32041136 PMCID: PMC7037349 DOI: 10.3390/molecules25030687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
A series of new hyperbranched aliphatic poly(β-thioether ester)s were prepared by the enzymatic ring-opening polycondensation of 1,4-oxathiepan-7-one (OTO) and AB2/ABB' comonomer with acid-labile β-thiopropionate groups. Two kinds of comonomers, methyl 3-((3-hydroxy-2-(hydroxymethyl)propyl)thio)propanoate (HHTP) and methyl 3-((2,3-dihydroxypropyl)thio)propanoate (DHTP), with different primary alcohols and secondary alcohols, were synthesized by thiol-ene click chemistry and thiol-ene Michael addition, respectively. Immobilized lipase B from Candida antarctica (CALB), Novozym 435, was used as the catalyst. The random copolymers were characterized by 1H-NMR, 13C-NMR, GPC, TGA, and DSC. All branched copolyesters had high molecular weights over 15,000 Da with narrow polydispersities in the range of 1.75-2.01 and were amorphous polymers. Their degradation properties under acidic conditions were also studied in vitro. The polymeric nanoparticles of hyperbranched poly(β-thioether ester)s were successfully obtained and showed good oxidation-responsive properties, indicating their potential for biomedical applications.
Collapse
Affiliation(s)
- Wan-Xia Wu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | | |
Collapse
|
86
|
Jafari M, Abolmaali SS, Najafi H, Tamaddon AM. Hyperbranched polyglycerol nanostructures for anti-biofouling, multifunctional drug delivery, bioimaging and theranostic applications. Int J Pharm 2020; 576:118959. [DOI: 10.1016/j.ijpharm.2019.118959] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
|
87
|
Liu Z, Cao T, Xue Y, Li M, Wu M, Engle JW, He Q, Cai W, Lan M, Zhang W. Self‐Amplified Photodynamic Therapy through the
1
O
2
‐Mediated Internalization of Photosensitizers from a Ppa‐Bearing Block Copolymer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Tianye Cao
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin-Madison Madison WI 53705 USA
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational-Regional Key Technology Engineering Laboratory for, Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Mengting Li
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin-Madison Madison WI 53705 USA
| | - Mengsi Wu
- Shanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jonathan W. Engle
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin-Madison Madison WI 53705 USA
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound ImagingNational-Regional Key Technology Engineering Laboratory for, Medical UltrasoundSchool of Biomedical EngineeringHealth Science CenterShenzhen University No. 1066 Xueyuan Road, Nanshan District Shenzhen 518060 Guangdong China
| | - Weibo Cai
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin-Madison Madison WI 53705 USA
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials ChemistryEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
88
|
Zhang X, Dai Y, Dai G. Advances in amphiphilic hyperbranched copolymers with an aliphatic hyperbranched 2,2-bis(methylol)propionic acid-based polyester core. Polym Chem 2020. [DOI: 10.1039/c9py01608b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic hyperbranched copolymers with an aliphatic hyperbranched 2,2-bis(methylol)propionic acid-based polyester core were highlighted.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake
- Jiangxi Institute of Water Sciences
- Nanchang 330029
- China
| |
Collapse
|
89
|
|
90
|
Zeng M, Cao X, Xu H, Gan W, Smith BD, Gao H, Yuan J. Synthesis and direct assembly of linear–dendritic copolymers via CuAAC click polymerization-induced self-assembly (CPISA). Polym Chem 2020. [DOI: 10.1039/c9py01636h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A one-pot method was developed for in situ preparation of linear–dendritic copolymer assemblies via click polymerization-induced self-assembly (CPISA).
Collapse
Affiliation(s)
- Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Xiaosong Cao
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Hui Xu
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Weiping Gan
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| |
Collapse
|
91
|
Zhu X, Zhang J, Miao C, Li S, Zhao Y. Synthesis, thermoresponsivity and multi-tunable hierarchical self-assembly of multi-responsive (AB)mC miktobrush-coil terpolymers. Polym Chem 2020. [DOI: 10.1039/d0py00245c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive miktobrush-coil terpolymers can exhibit unique physical properties and hierarchical self-assembly behaviors dependent on composition, concentration and external stimuli.
Collapse
Affiliation(s)
- Xiaomin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jian Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Cheng Miao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Siyu Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
92
|
Jiang Z, He H, Liu H, Thayumanavan S. Cellular Uptake Evaluation of Amphiphilic Polymer Assemblies: Importance of Interplay between Pharmacological and Genetic Approaches. Biomacromolecules 2019; 20:4407-4418. [PMID: 31609589 PMCID: PMC6901731 DOI: 10.1021/acs.biomac.9b01073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Understanding the cellular uptake mechanism of materials is of fundamental importance that would be beneficial for materials design with enhanced biological functions. Herein, we report the interplay of pharmacological and genetic approaches to minimize the possible misinterpretation on cellular uptake mechanism. A library of amphiphilic polymers was used as a model system to evaluate the reliability of such methodological interplay. To probe the cellular uptake of amphiphilic polymers, we utilized an orthogonal end-group labeling strategy to conjugate one fluorescent molecule on each polymer chain. The results from the methodological interplay with these labeled polymers revealed the off-target effects of dynasore, a well-known dynamin inhibitor. Instead of dynamin, actin was found to be an essential cellular component during the cellular uptake of these amphiphilic polymers. Our study demonstrates the importance of interplaying pharmacological and genetic approaches when evaluating the endocytic mechanism of functional materials, providing insights on understanding the cellular uptake of future therapeutic materials.
Collapse
|
93
|
Shi Y, Lei G, Zhou L, Li Y, Zhang X, Yang Y, Peng H, Peng R, Wang H, Cai X, Chen X, Wang M, Wang G. Nanocrystal Encapsulation, Release and Application Based on pH-Sensitive Covalent Dynamic Hyperbranched Polymers. Polymers (Basel) 2019; 11:polym11121926. [PMID: 31766705 PMCID: PMC6960846 DOI: 10.3390/polym11121926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022] Open
Abstract
A new strategy for nanocrystal encapsulation, release and application based on pH-sensitive covalent dynamic hyperbranched polymers is described. The covalent dynamic hyperbranched polymers, with multi-arm hydrophobic chains and a hydrophilic hyperbranched poly(amidoamine) (HPAMAM) core connected with pH-sensitive imine bonds (HPAMAM–DA), could encapsulate CdTe quantum dots (QDs) and Au nanoparticles (NPs). Benefiting from its pH response property, CdTe QDs and Au NPs encapsulated by HPAMAM–DA could be released to aqueous phase after imine hydrolysis. The released CdTe/HPAMAM and Au/HPAMAM nanocomposites exhibited excellent biological imaging behavior and high catalytic activities on p-nitrophenol hydrogenation, respectively.
Collapse
Affiliation(s)
- Yunfeng Shi
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (X.Z.); (Y.Y.); (H.P.); (R.P.); (H.W.); (X.C.); (X.C.); (M.W.)
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China
- Correspondence: (Y.S.); (G.W.)
| | - Gaiying Lei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China;
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Yueyang Li
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (X.Z.); (Y.Y.); (H.P.); (R.P.); (H.W.); (X.C.); (X.C.); (M.W.)
| | - Xiaoming Zhang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (X.Z.); (Y.Y.); (H.P.); (R.P.); (H.W.); (X.C.); (X.C.); (M.W.)
| | - Yujiao Yang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (X.Z.); (Y.Y.); (H.P.); (R.P.); (H.W.); (X.C.); (X.C.); (M.W.)
| | - Han Peng
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (X.Z.); (Y.Y.); (H.P.); (R.P.); (H.W.); (X.C.); (X.C.); (M.W.)
| | - Rui Peng
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (X.Z.); (Y.Y.); (H.P.); (R.P.); (H.W.); (X.C.); (X.C.); (M.W.)
| | - Huichun Wang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (X.Z.); (Y.Y.); (H.P.); (R.P.); (H.W.); (X.C.); (X.C.); (M.W.)
| | - Xiufen Cai
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (X.Z.); (Y.Y.); (H.P.); (R.P.); (H.W.); (X.C.); (X.C.); (M.W.)
| | - Xinglong Chen
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (X.Z.); (Y.Y.); (H.P.); (R.P.); (H.W.); (X.C.); (X.C.); (M.W.)
| | - Mengyue Wang
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China; (Y.L.); (X.Z.); (Y.Y.); (H.P.); (R.P.); (H.W.); (X.C.); (X.C.); (M.W.)
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: (Y.S.); (G.W.)
| |
Collapse
|
94
|
Du Z, Yan X, Sun N, Ren B. Dual stimuli-responsive nano-structure transition of three-arm branched amphiphilic polymers containing ferrocene (Fc) and azobenzene (Azo) moieties in aqueous solution. SOFT MATTER 2019; 15:8855-8864. [PMID: 31613297 DOI: 10.1039/c9sm01437c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphiphilic polymers can self-assemble into various nanostructures in solution, which can find applications in many fields such as nanotechnology, drug delivery, and template synthesis. Herein, we report the controlled self-assembly and dual stimuli-responsive nanostructure transition of a class of three-arm branched amphiphilic polymers (AzoFcPEO) containing ferrocene (Fc) and azobenzene (Azo) moieties in aqueous solution. These amphiphilic polymers were synthesized by an esterification reaction of a variety of polyethylene oxide methyl ethers (Me-PEO) with 3-(6-ferrocenyhexyloxyl)-5-(6-azobenzenehexyloxy) benzoic acid. Both the isomerization of Azo and redox of Fc moieties can respectively change the amphiphilicity of these polymers to different degrees. Consequently, these amphiphilic polymers in aqueous solution can self-assemble into various nanostructures, such as spherical micelle, worm-like micelle, spherical compound micelle, rod-like compound micelle and vesicle dependent on the PEO molecular weight, applied stimuli, and polymer concentration. This work can offer tremendous possibilities not only for the fundamental science of the controlled self-assembly but also for establishing a suitable method for regulating the nanostructures of amphiphilic polymers in aqueous solution.
Collapse
Affiliation(s)
- Zhukang Du
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xiaolong Yan
- School of Material Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| | - Ning Sun
- Department of Material Technology, Jiangmen Polytechnic, Jiangmen 529090, China
| | - Biye Ren
- School of Material Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| |
Collapse
|
95
|
Chen P, Liu X, Wang S, Zeng Q, Wang Z, Li Z, Zhang L. Confining Hyperbranched Star Poly(ethylene oxide)-Based Polymer into a 3D Interpenetrating Network for a High-Performance All-Solid-State Polymer Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43146-43155. [PMID: 31647215 DOI: 10.1021/acsami.9b14346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The original poly(ethylene oxide)-based polymer electrolytes normally show low ionic conductivity and inferior mechanical property, which greatly restrict their practical application in all-solid-state lithium-ion batteries (LIBs). In this work, a hyperbranched star polymer with poly(ethylene glycol) methyl ether methacrylate flexible chain segments is embedded into a three-dimensional (3D) interpenetrating cross-linking network created by the rapid one-step UV-derived photopolymerization of the cross-linker (ethoxylated trimethylolpropane triacrylate) in the presence of lithium salt. The rigid 3D network framework provides the polymer electrolyte with not only enhanced mechanical behavior, including film-forming and dendrite-inhibiting capabilities, but also nanoconfinement effects, which can speed up polymer chain segmental dynamics and reduce the crystallinity of the polymer. Depending on this unique rigid-flexible coupling network, the prepared solid polymer electrolyte shows enhanced ionic conductivity (6.8 × 10-5 S cm-1 at 50 °C), widened electrochemical stability window (5.1 V vs Li/Li+), and enough mechanical stability to suppress the growth of uneven Li dendrite (the Li symmetrical cells can operate steadily at both current densities of 0.05 and 0.1 mA cm-2 for 1000 h). Moreover, the assembled LiFePO4//Li cell also exhibited good cycle performance at 50 °C, making the hyperbranched star polymer electrolyte with a nanoconfined cross-linking structure to have potential application in high-safety and high-performance LIBs.
Collapse
Affiliation(s)
- Pingping Chen
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xu Liu
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shi Wang
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qinghui Zeng
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhinan Wang
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zengxi Li
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Liaoyun Zhang
- School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
96
|
Valadez-Pérez NE, Barrera-Rivera KA, Martínez-Richa A, Gil-Villegas A. Monte Carlo simulation of an associating fluid model to describe polymerization in polycaprolactone diols: The role of attractive sites of variable range. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Jing YN, Li SS, Su M, Bao H, Wan WM. Barbier Hyperbranching Polymerization-Induced Emission toward Facile Fabrication of White Light-Emitting Diode and Light-Harvesting Film. J Am Chem Soc 2019; 141:16839-16848. [PMID: 31577139 DOI: 10.1021/jacs.9b08065] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Luminescent polymers are generally constructed through polymerization of luminescent moieties. Polymerization itself, however, is mainly used for constructing polymer main chain, and the importance of polymerization on luminescence has yet to be explored. Here, we demonstrate a polymerization-induced emission strategy producing luminescent polymers by introducing Barbier reaction to hyperbranching polymerization, which allows luminescent properties to be easily tuned from the traditional type to an aggregation-induced emission type by simply adjusting the monomer structure and the polymerization time. When rotation about the phenyl groups in hyperbranched polytriphenylmethanols (HPTPMs) is hindered, HPTPMs exhibit traditional emission property. When all phenyl groups of HPTPM are rotatable, i.e., p,p',p″-HPTPM, it exhibits interesting aggregation-induced emission property with tunable emission colors from blue to yellow, by just adjusting polymerization time. Further applications of aggregation-induced emission type luminescent polymers are illustrated by the facile fabrication of white light-emitting diode (LED) and light-harvesting film with an antenna effect >14. This Barbier hyperbranching polymerization-induced emission provides a new strategy for the design of luminescent polymers and expands the methodology and functionality library of both hyperbranching polymerization and luminescent polymers.
Collapse
Affiliation(s)
- Ya-Nan Jing
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou 350002 , P. R. China.,State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , P. R. China
| | - Shun-Shun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou 350002 , P. R. China.,State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , P. R. China
| | - Muqiao Su
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou 350002 , P. R. China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou 350002 , P. R. China
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou 350002 , P. R. China.,State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , P. R. China
| |
Collapse
|
98
|
Soultan AH, Lambrechts D, Verheyen T, Van Gorp H, Roeffaers MB, Smet M, De Borggraeve WM, Patterson J. Nanocarrier systems assembled from PEGylated hyperbranched poly(arylene oxindole). Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
99
|
Kurmaz SV, Sen’ VD, Kulikov AV, Konev DV, Kurmaz VA, Balakina AA, Terent’ev AA. Polymer nanoparticles of N-vinylpyrrolidone loaded with an organic aminonitroxyl platinum (iv) complex. Characterization and investigation of their in vitro cytotoxicity. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2623-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
100
|
Advances in delivery of Irinotecan (CPT-11) active metabolite 7-ethyl-10-hydroxycamptothecin. Int J Pharm 2019; 568:118499. [DOI: 10.1016/j.ijpharm.2019.118499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
|