51
|
Peptide-based semiconducting polymer nanoparticles for osteosarcoma-targeted NIR-II fluorescence/NIR-I photoacoustic dual-model imaging and photothermal/photodynamic therapies. J Nanobiotechnology 2022; 20:44. [PMID: 35062957 PMCID: PMC8780402 DOI: 10.1186/s12951-022-01249-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The overall survival rate of osteosarcoma (OS) patients has not been improved for 30 years, and the diagnosis and treatment of OS is still a critical issue. To improve OS treatment and prognosis, novel kinds of theranostic modalities are required. Molecular optical imaging and phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), are promising strategies for cancer theranostics that exhibit high imaging sensitivity as well as favorable therapeutic efficacy with minimal side effect. In this study, semiconducting polymer nanoparticles (SPN-PT) for OS-targeted PTT/PDT are designed and prepared, using a semiconducting polymer (PCPDTBT), providing fluorescent emission in the second near-infrared window (NIR-II, 1000 - 1700 nm) and photoacoustic (PA) signal in the first near-infrared window (NIR-I, 650 - 900 nm), served as the photosensitizer, and a polyethylene glycolylated (PEGylated) peptide PT, providing targeting ability to OS.
Results
The results showed that SPN-PT nanoparticles significantly accelerated OS-specific cellular uptake and enhanced therapeutic efficiency of PTT and PDT effects in OS cell lines and xenograft mouse models. SPN-PT carried out significant anti-tumor activities against OS both in vitro and in vivo.
Conclusions
Peptide-based semiconducting polymer nanoparticles permit efficient NIR-II fluorescence/NIR-I PA dual-modal imaging and targeted PTT/PDT for OS.
Graphic Abstract
Collapse
|
52
|
Song J, Sun L, Geng H, Tan W, Zhen D, Cai Q. Near-infrared light-triggered β-NaYF 4:Yb,Tm,Gd@MIL-100(Fe) nanomaterials for antibacterial applications. NEW J CHEM 2022. [DOI: 10.1039/d1nj06014g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By inducing a photo-Fenton reaction under 980 nm light irradiation, β-NaYF4:Yb,Tm,Gd@MIL-100(Fe) could generate abundant ROS for antibacterial applications.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Leilei Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongchao Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wenlong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Deshuai Zhen
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
53
|
Zheng Z, Liu Z, Ding Y, Chen M, Lv P, Tang A, Wang F, Guan L, Li X, Liang B. Structural Engineering toward High Monochromaticity of Carbon Dots-Based Light-Emitting Diodes. J Phys Chem Lett 2021; 12:12107-12113. [PMID: 34910877 DOI: 10.1021/acs.jpclett.1c03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monochromaticity for light-emitting diodes (LEDs) is an important parameter. However, carbon dots-based light-emitting diodes (CDs-LEDs) usually suffer from broad emission, which limits the development of this material. In this work, high-quality carbon dots (CDs) with a quantum yield of 16.2% were synthesized. When they were mixed with poly(N-vinyl carbazole) (PVK) to form a homogeneous film, the solid-state fluorescence of CDs was realized. After fabrication and systematic optimization of the device, the full width at half-maximum (fwhm) of EL spectra could be narrowed to 64 nm in comparison with the fwhm of 77 nm for PL, demonstrating that structural engineering is an effective approach for improving the color purity of CDs-LEDs. Meanwhile, the performance of the devices is improving. The obtained CDs-LEDs display high monochromaticity with a maximum luminance of 681 cd/m2. This work provides a new way to optimize the monochromaticity and performance of CDs-LEDs.
Collapse
Affiliation(s)
- Zhiyong Zheng
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Zhenyang Liu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Yanan Ding
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Mingjun Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Peiwen Lv
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Fenghe Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Li Guan
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Baolai Liang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
54
|
Zhu H, Li Z, Ye E, Leong DT. Oxygenic Enrichment in Hybrid Ruthenium Sulfide Nanoclusters for an Optimized Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60351-60361. [PMID: 34874695 DOI: 10.1021/acsami.1c17608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transition-metal dichalcogenide (TMD)-based nanomaterials have been extensively explored for the photonic therapy. To the best of our knowledge, near-infrared (NIR) light is a requirement for the photothermal therapy (PTT) to achieve the feature of deep-tissue penetration, whereas no obvious absorption peaks existing in the NIR region for existing TMD nanomaterials limit their therapeutic efficacy. As one category of TMD nanomaterials, ruthenium sulfide-based nanomaterials have been less exploited in biomedical applications including tumor therapy so far. Here, we develop a facile biomineralization-assisted bottom-up strategy to synthesize oxygenic hybrid ruthenium sulfide nanoclusters (RuSx NCs) by regulating the oxygen amounts and sulfur defects for the optimized PTT. By regulating the increasing initial molar ratios of Ru to S, RuSx NCs with small sizes were endowed with increasing oxygen contents and sulfur defects, leading to the photothermal conversion efficiency (PCE) increasing from 32.8 to 41.9%, which were higher than that of most small-sized inorganic photothermal nanoagents. In contrast to commercial indocyanine green, these RuSx NCs exhibited higher photostability under NIR laser irradiation. The high PCE and superior photostability allowed RuSx NCs to effectively and completely ablate cancer cells. Thus, the proposed defect engineering strategy endows RuSx NCs with an excellent photothermal effect for the PTT of tumors of living mice, which also proves the potential of further exploring the properties of RuSx NCs for future biomedical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
55
|
Lagos KJ, Buzzá HH, Bagnato VS, Romero MP. Carbon-Based Materials in Photodynamic and Photothermal Therapies Applied to Tumor Destruction. Int J Mol Sci 2021; 23:22. [PMID: 35008458 PMCID: PMC8744821 DOI: 10.3390/ijms23010022] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022] Open
Abstract
Within phototherapy, a grand challenge in clinical cancer treatments is to develop a simple, cost-effective, and biocompatible approach to treat this disease using ultra-low doses of light. Carbon-based materials (CBM), such as graphene oxide (GO), reduced GO (r-GO), graphene quantum dots (GQDs), and carbon dots (C-DOTs), are rapidly emerging as a new class of therapeutic materials against cancer. This review summarizes the progress made in recent years regarding the applications of CBM in photodynamic (PDT) and photothermal (PTT) therapies for tumor destruction. The current understanding of the performance of modified CBM, hybrids and composites, is also addressed. This approach seeks to achieve an enhanced antitumor action by improving and modulating the properties of CBM to treat various types of cancer. Metal oxides, organic molecules, biopolymers, therapeutic drugs, among others, have been combined with CBM to treat cancer by PDT, PTT, or synergistic therapies.
Collapse
Affiliation(s)
- Karina J. Lagos
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador;
| | - Hilde H. Buzzá
- Institute of Physics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-590, Brazil;
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos 13566-590, Brazil;
| | - María Paulina Romero
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador;
| |
Collapse
|
56
|
Ji DK, Dali H, Guo S, Malaganahally S, Vollaire J, Josserand V, Dumortier H, Ménard-Moyon C, Bianco A. Multifunctional Carbon Nanodots: Enhanced Near‐Infrared Photosensitizing, Photothermal Activity, and Body Clearance. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Hayet Dali
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Sowmya Malaganahally
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Julien Vollaire
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
- Institut pour l'Avancée des Biosciences, INSERM U1209 CNRS UMR-5309, Université Grenoble Alpes Grenoble 38000 France
| | - Véronique Josserand
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
- Institut pour l'Avancée des Biosciences, INSERM U1209 CNRS UMR-5309, Université Grenoble Alpes Grenoble 38000 France
| | - Hélène Dumortier
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
57
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
58
|
Luo WK, Zhang LL, Yang ZY, Guo XH, Wu Y, Zhang W, Luo JK, Tang T, Wang Y. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology 2021; 19:320. [PMID: 34645456 PMCID: PMC8513293 DOI: 10.1186/s12951-021-01072-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 02/02/2023] Open
Abstract
Since the number of raw material selections for the synthesis of carbon dots (CDs) has grown extensively, herbal medicine as a precursor receives an increasing amount of attention. Compared with other biomass precursors, CDs derived from herbal medicine (HM-CDs) have become the most recent incomer in the family of CDs. In recent ten years, a great many studies have revealed that HM-CDs tend to be good at theranostics without drug loading. However, the relevant development and research results are not systematically reviewed. Herein, the origin and history of HM-CDs are outlined, especially their functional performances in medical diagnosis and treatment. Besides, we sort out the herbal medicine precursors, and analyze the primary synthetic methods and the key characteristics. In terms of the applications of HM-CDs, medical therapeutics, ion and molecular detection, bioimaging, as well as pH sensing are summarized. Finally, we discuss the crucial challenges and future prospects. ![]()
Collapse
Affiliation(s)
- Wei-Kang Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Liang-Lin Zhang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Zhao-Yu Yang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Xiao-Hang Guo
- Hunan University of Chinese Medicine, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jie-Kun Luo
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, China.
| |
Collapse
|
59
|
Novel high-quantum-yield polydiacetylene conjugated AIE micelles for amplified fluorescence signaling and photodynamic therapy. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
60
|
Bayda S, Amadio E, Cailotto S, Frión-Herrera Y, Perosa A, Rizzolio F. Carbon dots for cancer nanomedicine: a bright future. NANOSCALE ADVANCES 2021; 3:5183-5221. [PMID: 36132627 PMCID: PMC9419712 DOI: 10.1039/d1na00036e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/14/2021] [Indexed: 05/25/2023]
Abstract
Cancer remains one of the main causes of death in the world. Early diagnosis and effective cancer therapies are required to treat this pathology. Traditional therapeutic approaches are limited by lack of specificity and systemic toxicity. In this scenario, nanomaterials could overcome many limitations of conventional approaches by reducing side effects, increasing tumor accumulation and improving the efficacy of drugs. In the past few decades, carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and carbon dots) have attracted significant attention of researchers in various scientific fields including biomedicine due to their unique physical/chemical properties and biological compatibility and are among the most promising materials that have already changed and will keep changing human life. Recently, because of their functionalization and stability, carbon nanomaterials have been explored as a novel tool for the delivery of therapeutic cancer drugs. In this review, we present an overview of the development of carbon dot nanomaterials in the nanomedicine field by focusing on their synthesis, and structural and optical properties as well as their imaging, therapy and cargo delivery applications.
Collapse
Affiliation(s)
- Samer Bayda
- Faculty of Sciences, Jinan University Tripoli Lebanon
| | - Emanuele Amadio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Simone Cailotto
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Yahima Frión-Herrera
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
| | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, University Ca' Foscari of Venice Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute 33081 Aviano Italy
| |
Collapse
|
61
|
Wang B, Song H, Qu X, Chang J, Yang B, Lu S. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
62
|
Sarbadhikary P, George BP, Abrahamse H. Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer. Theranostics 2021; 11:9054-9088. [PMID: 34522227 PMCID: PMC8419035 DOI: 10.7150/thno.62479] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years tremendous effort has been invested in the field of cancer diagnosis and treatment with an overall goal of improving cancer management, therapeutic outcome, patient survival, and quality of life. Photodynamic Therapy (PDT), which works on the principle of light-induced activation of photosensitizers (PS) leading to Reactive Oxygen Species (ROS) mediated cancer cell killing has received increased attention as a promising alternative to overcome several limitations of conventional cancer therapies. Compared to conventional therapies, PDT offers the advantages of selectivity, minimal invasiveness, localized treatment, and spatio-temporal control which minimizes the overall therapeutic side effects and can be repeated as needed without interfering with other treatments and inducing treatment resistance. Overall PDT efficacy requires proper planning of various parameters like localization and concentration of PS at the tumor site, light dose, oxygen concentration and heterogeneity of the tumor microenvironment, which can be achieved with advanced imaging techniques. Consequently, there has been tremendous interest in the rationale design of PS formulations to exploit their theranostic potential to unleash the imperative contribution of medical imaging in the context of successful PDT outcomes. Further, recent advances in PS formulations as activatable phototheranostic agents have shown promising potential for finely controlled imaging-guided PDT due to their propensity to specifically turning on diagnostic signals simultaneously with photodynamic effects in response to the tumor-specific stimuli. In this review, we have summarized the recent progress in the development of PS-based multifunctional theranostic agents for biomedical applications in multimodal imaging combined with PDT. We also present the role of different imaging modalities; magnetic resonance, optical, nuclear, acoustic, and photoacoustic in improving the pre-and post-PDT effects. We anticipate that the information presented in this review will encourage future development and design of PSs for improved image-guided PDT for cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | | |
Collapse
|
63
|
Paúrová M, Taboubi O, Šeděnková I, Hromádková J, Matouš P, Herynek V, Šefc L, Babič M. Role of dextran in stabilization of polypyrrole nanoparticles for photoacoustic imaging. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
64
|
Huang L, Asghar S, Zhu T, Ye P, Hu Z, Chen Z, Xiao Y. Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opin Drug Deliv 2021; 18:1473-1500. [PMID: 34253129 DOI: 10.1080/17425247.2021.1950685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: The treatment of tumors is one of the most difficult problems in the medical field at present. Patients often use a comprehensive therapy that combines surgery, radiotherapy, and chemotherapy. Photodynamic therapy (PDT) has prominent potential for eradicating various cancers. Chlorin-based photosensitizers (PSs), as one of the most utilized photosensitizers, have many advantages over conventional photosensitizers; however, a successful chlorin-based PDT needs multi-functional nano-carriers for selective photosensitizer delivery. The number of researches about nanoparticles designed for improved chlorin-based PSs is increasing in the current era. In this article, we give a brief review focused on the recent research progress in design of chlorin-based nanoparticles for the treatment of malignant tumors with photodynamic therapy.Areas covered: This review focuses on the current nanoparticle platforms for PDT, and describes different strategies to achieve controllable PDT by chlorin-nano-delivery systems. The challenges and prospects of PDT in clinical applications are also discussed.Expert opinions: The requirement for PDT to eradicate cancers has increased exponentially in recent years. The major clinically used photosensitizers are hydrophobic. The main obstacles in effective delivery of PSs are associated with this intrinsic nature. The design of nano-delivery systems to load PSs is pivotal for PSs' widespread use.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ting Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Panting Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Ziyi Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Zhipeng Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China.,Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| |
Collapse
|
65
|
A multifunctional carbon dots with near-infrared fluorescence for Au3+/Hg2+ and GSH detection and tumor diagnosis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
66
|
Havrdová M, Urbančič I, Bartoň Tománková K, Malina L, Štrancar J, Bourlinos AB. Self-Targeting of Carbon Dots into the Cell Nucleus: Diverse Mechanisms of Toxicity in NIH/3T3 and L929 Cells. Int J Mol Sci 2021; 22:ijms22115608. [PMID: 34070594 PMCID: PMC8198156 DOI: 10.3390/ijms22115608] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed.
Collapse
Affiliation(s)
- Markéta Havrdová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-58-563-4384
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia; (I.U.); (J.Š.)
| | - Kateřina Bartoň Tománková
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translation Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic; (K.B.T.); (L.M.)
| | - Lukáš Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Institute of Translation Medicine, Palacký University in Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic; (K.B.T.); (L.M.)
| | - Janez Štrancar
- Laboratory of Biophysics, Condensed Matter Physics Department, “Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia; (I.U.); (J.Š.)
| | | |
Collapse
|
67
|
Ray P, Moitra P, Pan D. Emerging theranostic applications of carbon dots and its variants. VIEW 2021. [DOI: 10.1002/viw.20200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Priyanka Ray
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| | - Parikshit Moitra
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
| | - Dipanjan Pan
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| |
Collapse
|
68
|
Shih CY, Huang WL, Chiang IT, Su WC, Teng H. Biocompatible hole scavenger-assisted graphene oxide dots for photodynamic cancer therapy. NANOSCALE 2021; 13:8431-8441. [PMID: 33912878 DOI: 10.1039/d1nr01476e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) receives scholarly attention for its low invasiveness and mild adverse effects. Among the reactive oxygen species for PDT, H2O2 is advantageous for achieving long life and low cytotoxicity. Nitrogen-doped graphene oxide dots (NGODs), which are small (∼4.4 nm) and highly biocompatible, can serve as a photosensitizer for PDT. The charge transfer in NGODs is efficient because the NGOD structure is highly crystalline and its carbon-π orbitals are extensively conjugated with nitrogen-nonbonding orbitals. In the presence of ascorbic acid (AA), to scavenge photogenerated holes, NGODs effectively produce H2O2 under white-light irradiation and their H2O2 rate is proportional to the AA concentration. This AA-supplemented PDT effectively kills lung, head and neck, colon, and oral cancer cells and it is highly safe for normal cells. During PDT, the NGODs are uptaken into the cell body and they produce concentrated H2O2 and subsequently induce both the apoptosis and necrosis pathways for cell death. The unique structure of NGODs confines the transfer of the photogenerated electrons for H2O2 production. This study demonstrates the high potential for efficacious and accurate deployment of the proposed NGOD-AA combination in PDT.
Collapse
Affiliation(s)
- Chun-Yan Shih
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - I-Ting Chiang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Wu-Chou Su
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan. and Department of Internal Medicine, College of Medicine and Hospital, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsisheng Teng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan. and Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan. and Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
69
|
Bayoumi NA, Emam AN. 99mTc radiolabeling of polyethylenimine capped carbon dots for tumor targeting: synthesis, characterization and biodistribution. Int J Radiat Biol 2021; 97:977-985. [PMID: 33900891 DOI: 10.1080/09553002.2021.1919781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE Due to the favorable physicochemical properties and the biocompatibility, carbon dots (CDs) have gained a great attention as a tumor targeting agent. This study investigates polyethylenimine capped CDs (PEI capped CDs) as a prospective nanocarrier of technetium-99m (99mTc) for tumor targeting. Technetium-labeled CDs could be introduced as a promising candidate for single photon emission tomography (SPECT) imaging. MATERIALS AND METHODS Polyethylenimine capped CDs were prepared by hydrothermal method using hyperbranched PEI and citric acid. For a purpose of comparison, citrate capped CDs were also prepared by microwave irradiation. Both types of CDs were characterized and radiolabeled with 99mTc using sodium borohydride (NaBH4) as a reducing agent. Biodistribution and tumor targeting efficiency of the produced radiolabeled CDs have been studied in Earlich ascites tumor mice model. RESULTS Citrate capped CDs and PEI capped CDs have been synthesized successfully and characterized. High radiochemical yield of 99mTc-citrate capped CDs 99mTc-PEI capped CDs was obtained (97 ± 0.7 and 90 ± 0.2, respectively). Biodistribution studies of 99mTc-labeled PEI capped CDs have shown a potential tumor uptake (10 ± 0.5% Radioactivity/gram tumor) with high target to non-target ratio (T/NT) around 7 at 1-h post injection. 99mTc-citrate capped CDs have achieved a lower tumor uptake level (3.8 ± 0.3% Radioactivity/gram tumor 1 h post injection). CONCLUSION This study introduces PEI capped CDs as a promising nanocarrier of 99mTc for efficient tumor targeting. Technetium-labeled PEI capped CDs could be utilized as a potential SPECT tumor imaging agent.
Collapse
Affiliation(s)
- Noha A Bayoumi
- Department of Radiolabeled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed N Emam
- Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt
- Nanomedicine and Tissue Engineering Lab, Medical Research Center of Excellence National Research Centre, Cairo, Egypt
- Faculty of Postgraduate studies for Nanotechnology, Cairo University, Zayed, Egypt
| |
Collapse
|
70
|
Nocito G, Calabrese G, Forte S, Petralia S, Puglisi C, Campolo M, Esposito E, Conoci S. Carbon Dots as Promising Tools for Cancer Diagnosis and Therapy. Cancers (Basel) 2021; 13:cancers13091991. [PMID: 33919096 PMCID: PMC8122497 DOI: 10.3390/cancers13091991] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Diagnostic approaches and chemotherapeutic delivery based on nanotechnologies, such as nanoparticles (NPs), could be promising candidates for the new era of cancer research. Recently great attention has been received by carbon-based nanomaterials such as Carbon Dots (CDs), due their variegated physical-chemical properties that makes these systems appealing for multiple use from bioimaging, biosensing, nano-carriers for drug delivery systems to innovative therapeutic agents in photodynamic (PDT) and photothermal therapy (PTT). In this review, we report the last evidence on the application and prospects of CDs as useful nano theranostics tools for cancer diagnosis and therapy. Abstract Carbon Dots (CDs) are the latest members of carbon-based nanomaterials, which since their discovery have attracted notable attention due to their chemical and mechanical properties, brilliant fluorescence, high photostability, and good biocompatibility. Together with the ease and affordable preparation costs, these intrinsic features make CDs the most promising nanomaterials for multiple applications in the biological field, such as bioimaging, biotherapy, and gene/drug delivery. This review will illustrate the most recent applications of CDs in the biomedical field, focusing on their biocompatibility, fluorescence, low cytotoxicity, cellular uptake, and theranostic properties to highlight above all their usefulness as a promising tool for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Giuseppe Nocito
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
| | - Giovanna Calabrese
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
- Correspondence: (G.C.); (S.C.)
| | - Stefano Forte
- IOM Ricerca, Viagrande, 95029 Catania, Italy; (S.F.); (C.P.)
| | - Salvatore Petralia
- Department of Drug Science and Health, University of Catania, 95125 Catania, Italy;
| | | | - Michela Campolo
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
| | - Sabrina Conoci
- Department of Chemistry, Biology, Pharmacy and Environmental Science, University of Messina, 98122 Messina, Italy; (G.N.); (M.C.); (E.E.)
- Correspondence: (G.C.); (S.C.)
| |
Collapse
|
71
|
Zhang K, Guo Q, Zhao Q, Wang F, Wang H, Zhi J, Shan C. Photosensitizer Functionalized Nanodiamonds for Raman Imaging and Photodynamic Therapy of Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4308-4315. [PMID: 33780627 DOI: 10.1021/acs.langmuir.1c00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One novel nanoplatform with multiple functions including Raman imaging and photodynamic therapy (PDT) capacities was constructed through modifying nanodiamonds (NDs) with photosensitizer chlorin e6 (Ce6). The NDs-Ce6 nanoparticles show enhanced singlet oxygen generation efficiency relative to free Ce6. Cytotoxicity tests indicate that NDs-Ce6 have negligible influence toward HeLa cells vitality under dark condition but enhanced photodynamic ablation upon 660 nm laser irradiation in comparison with free Ce6. In addition, the NDs-Ce6 could be used as Raman imaging probes toward HeLa cells. These results demonstrate that the NDs-Ce6 multifunctional nanoplatform have attractive features using for Raman imaging and PDT. Additionally, a new idea could be provided for designing the multifunctional platform from the work.
Collapse
Affiliation(s)
- Kuikui Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Qingyue Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Futao Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
72
|
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe 3O 4@MoS 2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021. [PMID: 33052192 DOI: 10.1016/j.cej.2020.127245] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Antibacterial agents with enzyme-like properties and bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, a Fe3O4@MoS2-Ag nanozyme with defect-rich rough surface was constructed by a simple hydrothermal method and in-situ photodeposition of Ag nanoparticles. The nanozyme exhibited good antibacterial performance against E. coli (~69.4%) by the generated ROS and released Ag+, while the nanozyme could further achieve an excellent synergistic disinfection (~100%) by combining with the near-infrared photothermal property of Fe3O4@MoS2-Ag. The antibacterial mechanism study showed that the antibacterial process was determined by the collaborative work of peroxidase-like activity, photothermal effect and leakage of Ag+. The defect-rich rough surface of MoS2 layers facilitated the capture of bacteria, which enhanced the accurate and rapid attack of •OH and Ag+ to the membrane of E. coli with the assistance of local hyperthermia. This method showed broad-spectrum antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-resistant bacteria and fungal bacteria. Meanwhile, the magnetism of Fe3O4 was used to recycle the nanozyme. This work showed great potential of engineered nanozymes for efficient disinfection treatment.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
73
|
Guo Z, Cui Z. Fluorescent nanotechnology for in vivo imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1705. [PMID: 33686803 DOI: 10.1002/wnan.1705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/21/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Fluorescent imaging in living animals gives an intuitive picture of the dynamic processes in the complex environment within a living being. However, animal tissues present a substantial barrier and are opaque to most wavelengths of visible light. Fluorescent nanoparticles (NPs) with new photophysical characteristics have shown excellent performance for in vivo imaging. Hence, fluorescent NPs have been widely studied and applied for the detection of molecular and biological processes in living animals. In addition, developments in the area of nanotechnology have allowed materials to be used in intact animals for disease detection, diagnosis, drug delivery, and treatment. This review provides information on the different types of fluorescent particles based on nanotechnology, describing their unique individual properties and applications for detecting vital processes in vivo. The development and application of new fluorescent NPs will provide opportunities for in vivo imaging with better penetration, sensitivity, and resolution. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
74
|
Spectroscopic Investigation of Chlorin-Based Photosensitizers in Polymer Matrix. INT J POLYM SCI 2021. [DOI: 10.1155/2021/8842052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chlorin e6 and its derivatives are the basis of a number of drugs used in medicine in the treatment of various diseases, including cancer, by photodynamic therapy. Nonpolar derivatives of Chlorin e6—dimethyl ether of Chlorin e6 (DME Ce6) and trimethyl ether of Chlorin e6 (TME Ce6)—are actively studied for application during photodynamic therapy. In this work, based on the electron optical absorption spectra, the interaction of photosensitizer molecules with branched star-like copolymer dextran-graft-polyacrylamide in anionic form was investigated and the possibility of using the latter as a carrier for drug delivery to tumor cells was suggested.
Collapse
|
75
|
Hong SH, Koo MA, Lee MH, Seon GM, Park YJ, Jeong H, Kim D, Park JC. An effective method to generate controllable levels of ROS for the enhancement of HUVEC proliferation using a chlorin e6-immobilized PET film as a photo-functional biomaterial. Regen Biomater 2021; 8:rbab005. [PMID: 33738119 PMCID: PMC7955709 DOI: 10.1093/rb/rbab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of cellular metabolism; they play a significant role as secondary messengers in cell signaling. In cells, high concentrations of ROS induce apoptosis, senescence, and contact inhibition, while low concentrations of ROS result in angiogenesis, proliferation, and cytoskeleton remodeling. Thus, controlling ROS generation is an important factor in cell biology. We designed a chlorin e6 (Ce6)-immobilized polyethylene terephthalate (PET) film (Ce6-PET) to produce extracellular ROS under red-light irradiation. The application of Ce6-PET films can regulate the generation of ROS by altering the intensity of light-emitting diode sources. We confirmed that the Ce6-PET film could effectively promote cell growth under irradiation at 500 μW/cm2 for 30 min in human umbilical vein endothelial cells. We also found that the Ce6-PET film is more efficient in generating ROS than a Ce6-incorporated polyurethane film under the same conditions. Ce6-PET fabrication shows promise for improving the localized delivery of extracellular ROS and regulating ROS formation through the optimization of irradiation intensity.
Collapse
Affiliation(s)
- Seung Hee Hong
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
| | - Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering
| | - Gyeung Mi Seon
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
| | - Ye Jin Park
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Device Engineering and Management, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - HaKyeong Jeong
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Device Engineering and Management, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - Dohyun Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
- Department of Medical Device Engineering and Management, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
76
|
Lei C, Liu XR, Chen QB, Li Y, Zhou JL, Zhou LY, Zou T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release 2021; 331:416-433. [DOI: 10.1016/j.jconrel.2021.01.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
|
77
|
Liu W, Dong A, Wang B, Zhang H. Current Advances in Black Phosphorus-Based Drug Delivery Systems for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003033. [PMID: 33717847 PMCID: PMC7927632 DOI: 10.1002/advs.202003033] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Indexed: 05/12/2023]
Abstract
Cancer has been one of the major threats to the lives of human beings for centuries. Traditional therapy is more or less faced with certain defects, such as poor targeting, easy degradation, high side effects, etc. Therefore, in order to improve the treatment efficiency of drugs, an intelligent drug delivery system (DDS) is considered as a promising solution strategy. Due to their special structure and large specific surface area, 2D materials are considered to be a good platform for drug delivery. Black phosphorus (BP), as a new star of the 2D family, is recommended to have the potential to construct DDS by virtue of its outstanding photothermal therapy (PTT), photodynamic therapy (PDT), and biodegradable properties. This tutorial review is intended to provide an introduction of the current advances in BP-based DDSs for cancer therapy, which covers topics from its construction, classified by the types of platforms, to the stimuli-responsive controlled drug release. Moreover, their cancer therapy applications including mono-, bi-, and multi-modal synergistic cancer therapy as well as the research of biocompatibility are also discussed. Finally, the current status and future prospects of BP-based DDSs for cancer therapy are summarized.
Collapse
Affiliation(s)
- Wenxin Liu
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
- Engineering Research Center of Dairy Quality and Safety Control TechnologyMinistry of EducationInner Mongolia UniversityHohhot010021P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhot010021P. R. China
- Engineering Research Center of Dairy Quality and Safety Control TechnologyMinistry of EducationInner Mongolia UniversityHohhot010021P. R. China
| | - Bing Wang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
78
|
Li B, Suo T, Xie S, Xia A, Ma YJ, Huang H, Zhang X, Hu Q. Rational design, synthesis, and applications of carbon dots@metal–organic frameworks (CD@MOF) based sensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116163] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
79
|
Alizadeh N, Salimi A. Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering. J Nanobiotechnology 2021; 19:26. [PMID: 33468160 PMCID: PMC7815196 DOI: 10.1186/s12951-021-00771-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
With the rapid advancement and progress of nanotechnology, nanomaterials with enzyme-like catalytic activity have fascinated the remarkable attention of researchers, due to their low cost, high operational stability, adjustable catalytic activity, and ease of recycling and reuse. Nanozymes can catalyze the same reactions as performed by enzymes in nature. In contrast the intrinsic shortcomings of natural enzymes such as high manufacturing cost, low operational stability, production complexity, harsh catalytic conditions and difficulties of recycling, did not limit their wide applications. The broad interest in enzymatic nanomaterial relies on their outstanding properties such as stability, high activity, and rigidity to harsh environments, long-term storage and easy preparation, which make them a convenient substitute instead of the native enzyme. These abilities make the nanozymes suitable for multiple applications in sensing and imaging, tissue engineering, environmental protection, satisfactory tumor diagnostic and therapeutic, because of distinguished properties compared with other artificial enzymes such as high biocompatibility, low toxicity, size dependent catalytic activities, large surface area for further bioconjugation or modification and also smart response to external stimuli. This review summarizes and highlights latest progress in applications of metal and metal oxide nanomaterials with enzyme/multienzyme mimicking activities. We cover the applications of sensing, cancer therapy, water treatment and anti-bacterial efficacy. We also put forward the current challenges and prospects in this research area, hoping to extension of this emerging field. In addition to therapeutic potential of nanozymes for disease prevention, their practical effects in diagnostics, to monitor the presence of SARS-CoV-2 and related biomarkers for future pandemics will be predicted.
Collapse
Affiliation(s)
- Negar Alizadeh
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.
- Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| |
Collapse
|
80
|
Shiralizadeh Dezfuli A, Kohan E, Tehrani Fateh S, Alimirzaei N, Arzaghi H, Hamblin MR. Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC Adv 2021; 11:2253-2291. [PMID: 35424170 PMCID: PMC8693874 DOI: 10.1039/d0ra08041a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022] Open
Abstract
Organic dots is a term used to represent materials including graphene quantum dots and carbon quantum dots because they rely on the presence of other atoms (O, H, and N) for their photoluminescence or fluorescence properties. They generally have a small size (as low as 2.5 nm), and show good photostability under prolonged irradiation. The excitation and emission wavelengths of O-dots can be tailored according to their synthetic procedure, where although their quantum yield is quite low compared with organic dyes, this is partly compensated by their large absorption coefficients. A wide range of strategies have been used to modify the surface of O-dots for passivation, improving their solubility and biocompatibility, and allowing the attachment of targeting moieties and therapeutic cargos. Hybrid nanostructures based on O-dots have been used for theranostic applications, particularly for cancer imaging and therapy. This review covers the synthesis, physics, chemistry, and characterization of O-dots. Their applications cover the prevention of protein fibril formation, and both controlled and targeted drug and gene delivery. Multifunctional therapeutic and imaging platforms have been reported, which combine four or more separate modalities, frequently including photothermal or photodynamic therapy and imaging and drug release.
Collapse
Affiliation(s)
- Amin Shiralizadeh Dezfuli
- Physiology Research Center, Iran University of Medical Sciences Tehran Iran
- Ronash Technology Pars Company Tehran Iran
| | - Elmira Kohan
- Department of Science, University of Kurdistan Kurdistan Sanandaj Iran
| | - Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU) Tehran Iran
| | - Neda Alimirzaei
- Institute of Nanoscience and Nanotechnology, University of Kashan Kashan Iran
| | - Hamidreza Arzaghi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School Boston MA 02114 USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein 2028 South Africa
| |
Collapse
|
81
|
Dugam S, Nangare S, Patil P, Jadhav N. Carbon dots: A novel trend in pharmaceutical applications. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:335-345. [PMID: 33383021 DOI: 10.1016/j.pharma.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Carbon quantum dots (CQDs, C-dots, or CDs), are generally small carbon nanoparticles having a size less than 10nm. Carbon dots (CDs) were accidentally discovered during the purification of single-walled carbon nanotubes through preparative electrophoresis in 2004. Carbon is an organic material having poor water solubility that emits less fluorescence. However, CDs have good aqueous solubility and excellent fluorescent property, hence more attention has been given to the synthesis of CDs and their applications in chemistry and allied sciences. CDs being easily accessible for in-house synthesis, simpler fabrication as per compendial requirements are wisely accepted. In addition, since CDs are biocompatible, of low toxicity, and of biodegradable nature, they appear as a promising tool for the health care sector. Furthermore, owing to their capabilities of expressing significant interaction with biological materials, and their excellent photoluminescence (PL), CDs have been emerging as novel pioneered nanoparticles useful for pharmaceutical and theranostic applications. Also, CDs are more eco-friendly in synthesis and therefore can be favorably consumed as alternatives in the further development of biological, environmental, and food areas. A massive study has been performed dealing with different approaches which are adopted for CDs synthesis and their applications as, filters for the separation of pollutants from polluted water, food safety, toxicological studies, and optical properties, etc. While still less emphasis is given on the applications of CDs in pharmaceuticals like for sustained and targeted drug delivery systems, theranostic study, etc. Hence, in the present review, we are exploring CQDs as a boon to pharmaceutical concerns.
Collapse
Affiliation(s)
- S Dugam
- Department of Pharmaceutics, Bharati-Vidyapeeth College of Pharmacy, 416013 Kolhapur, Maharashtra state, India
| | - S Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra state, India
| | - P Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra state, India
| | - N Jadhav
- Department of Pharmaceutics, Bharati-Vidyapeeth College of Pharmacy, 416013 Kolhapur, Maharashtra state, India.
| |
Collapse
|
82
|
Horgan CC, Bergholt MS, Nagelkerke A, Thin MZ, Pence IJ, Kauscher U, Kalber TL, Stuckey DJ, Stevens MM. Integrated photodynamic Raman theranostic system for cancer diagnosis, treatment, and post-treatment molecular monitoring. Theranostics 2021; 11:2006-2019. [PMID: 33408795 PMCID: PMC7778600 DOI: 10.7150/thno.53031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Theranostics, the combination of diagnosis and therapy, has long held promise as a means to achieving personalised precision cancer treatments. However, despite its potential, theranostics has yet to realise significant clinical translation, largely due the complexity and overriding toxicity concerns of existing theranostic nanoparticle strategies. Methods: Here, we present an alternative nanoparticle-free theranostic approach based on simultaneous Raman spectroscopy and photodynamic therapy (PDT) in an integrated clinical platform for cancer theranostics. Results: We detail the compatibility of Raman spectroscopy and PDT for cancer theranostics, whereby Raman spectroscopic diagnosis can be performed on PDT photosensitiser-positive cells and tissues without inadvertent photosensitiser activation/photobleaching or impaired diagnostic capacity. We further demonstrate that our theranostic platform enables in vivo tumour diagnosis, treatment, and post-treatment molecular monitoring in real-time. Conclusion: This system thus achieves effective theranostic performance, providing a promising new avenue towards the clinical realisation of theranostics.
Collapse
Affiliation(s)
- Conor C. Horgan
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Mads S. Bergholt
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Anika Nagelkerke
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Isaac J. Pence
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Ulrike Kauscher
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Tammy L. Kalber
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
83
|
Su H, Cui Y, Wang F, Zhang W, Zhang C, Wang R, Cui H. Theranostic supramolecular polymers formed by the self-assembly of a metal-chelating prodrug. Biomater Sci 2021; 9:463-470. [DOI: 10.1039/d0bm00827c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct linkage of two camptothecin moieties to a metal chelator creates a self-assembling prodrug capable of associating in aqueous solution into theranostic supramolecular polymers.
Collapse
Affiliation(s)
- Hao Su
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| | - Yonggang Cui
- Department of Nuclear Medicine
- Peking University First Hospital
- Beijing
- China
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| | - Weijie Zhang
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| | - Chunli Zhang
- Department of Nuclear Medicine
- Peking University First Hospital
- Beijing
- China
| | - Rongfu Wang
- Department of Nuclear Medicine
- Peking University First Hospital
- Beijing
- China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
84
|
Qiu Y, Tan G, Fang Y, Liu S, Zhou Y, Kumar A, Trivedi M, Liu D, Liu J. Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. NEW J CHEM 2021. [DOI: 10.1039/d1nj04045f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present review, the types and activities of nanometer-sized enzymes are summarized, with recent progress of nanometer-sized enzymes in the field of biomedical detection.
Collapse
Affiliation(s)
- Yuzhi Qiu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Guijian Tan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yuqian Fang
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Si Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yubin Zhou
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, 226 007, India
| | - Manoj Trivedi
- Department of Chemistry, Sri Venkateswara College, University of Delhi, NewDelhi-110021, India
| | - Dong Liu
- Shenzhen Huachuang Bio-pharmaceutical Technology Co. Ltd., Shenzhen, 518112, Guangdong, China
| | - Jianqiang Liu
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
85
|
Ali A, Ahmad Z, Ahmad U, Muazzam Khan M, Faheem Haider M, Akhtar J. Integrating Nanotherapeutic Platforms to Image Guided Approaches for Management of Cancer. Mol Pharmacol 2020. [DOI: 10.5772/intechopen.94391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cancer is a leading cause of mortality worldwide, accounting for 8.8 million deaths in 2015. The landscape of cancer therapeutics is rapidly advancing with development of new and sophisticated approaches to diagnostic testing. Treatment plan for early diagnosed patients include radiation therapy, tumor ablation, surgery, immunotherapy and chemotherapy. However the treatment can only be initiated when the cancer has been diagnosed thoroughly. Theranostics is a term that combines diagnostics with therapeutics. It embraces multiple techniques to arrive at comprehensive diagnosis, molecular images and an individualized treatment regimen. Recently, there is an effort to tangle the emerging approach with nanotechnologies, in an attempt to develop theranostic nanoplatforms and methodologies. Theranostic approach to management of cancer offers numerous advantages. They are designed to monitor cancer treatment in real time. A wide variety of theranostic nanoplatforms that are based on diverse nanostructures like magnetic nanoparticles, carbon nanotubes, gold nanomaterials, polymeric nanoparticles and silica nanoparticles showed great potential as cancer theranostics. Nano therapeutic platforms have been successful in integrating image guidance with targeted approach to treat cancer.
Collapse
|
86
|
Deng Y, Qian J, Zhou Y. Solvothermal Synthesis and Inkjet Printing of Carbon Quantum Dots. ChemistrySelect 2020. [DOI: 10.1002/slct.202003487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yafeng Deng
- School of Printing and Packaging Wuhan University Wuhan 430079 Hubei China
| | - Jun Qian
- School of Printing and Packaging Wuhan University Wuhan 430079 Hubei China
| | - Yihua Zhou
- School of Printing and Packaging Wuhan University Wuhan 430079 Hubei China
| |
Collapse
|
87
|
Nanotheranostic Carbon Dots as an Emerging Platform for Cancer Therapy. JOURNAL OF NANOTHERANOSTICS 2020. [DOI: 10.3390/jnt1010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer remains one of the most deadly diseases globally, but carbon-based nanomaterials have the potential to revolutionize cancer diagnosis and therapy. Advances in nanotechnology and a better understanding of tumor microenvironments have contributed to novel nanotargeting routes that may bring new hope to cancer patients. Several low-dimensional carbon-based nanomaterials have shown promising preclinical results; as such, low-dimensional carbon dots (CDs) and their derivatives are considered up-and-coming candidates for cancer treatment. The unique properties of carbon-based nanomaterials are high surface area to volume ratio, chemical inertness, biocompatibility, and low cytotoxicity. It makes them well suited for delivering chemotherapeutics in cancer treatment and diagnosis. Recent studies have shown that the CDs are potential applicants in biomedical sciences, both as nanocarriers and nanotransducers. This review covers the most commonly used CD nanoparticles in nanomedicines intended for the early diagnosis and therapy of cancer.
Collapse
|
88
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
89
|
Tang Y, Zhou X, Xu K, Dong X. One-pot synthesis of fluorescent non-conjugated polymer dots for Fe 3+ detection and temperature sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118626. [PMID: 32604052 DOI: 10.1016/j.saa.2020.118626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The facile preparation of highly fluorescent polymer dots (PDs) still attracts substantial interest. Here, temperature/Fe3+ dual-responsive PDs are synthesized under mild conditions via the amidation reaction and self-assembly between hyperbranched polyethyleneimine and 5-aminosalicylic acid. The prepared PDs display strong green fluorescence with quantum yield of 15.5% and 53.3% in water and dimethylsulfoxide, respectively. The PDs also possess unique features, including excellent solubility, solvent polarity-dependent emission, remarkable photostability, as well as good salt-tolerance. Interestingly, the fluorescence intensity of PDs exhibits a reversible and sensitive response to temperature within 20-65 °C, which renders the PDs useful as a thermometer probe. Importantly, Fe3+ ion has the specific coordination ability toward the surface groups of PDs, leading to the aggregation and fluorescence quenching of PDs. Thus, the PDs are employed as a fluorescence probe for sensitive detecting Fe3+. The fluorescent intensity linearly decreases with increasing Fe3+ from 2 to 60 μM. Besides, Fe3+ concentration in river water samples is successfully assayed with this developed probe. The non-conjugated PDs with facile preparation, sensitive response to temperature and Fe3+ may hold potential applications in environmental monitoring.
Collapse
Affiliation(s)
- Yecang Tang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China.
| | - Xin Zhou
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Keke Xu
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Xuemei Dong
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| |
Collapse
|
90
|
Dias LD, Mfouo-Tynga IS. Learning from Nature: Bioinspired Chlorin-Based Photosensitizers Immobilized on Carbon Materials for Combined Photodynamic and Photothermal Therapy. Biomimetics (Basel) 2020; 5:E53. [PMID: 33066431 PMCID: PMC7709684 DOI: 10.3390/biomimetics5040053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/27/2020] [Accepted: 10/10/2020] [Indexed: 02/08/2023] Open
Abstract
Chlorophylls, which are chlorin-type photosensitizers, are known as the key building blocks of nature and are fundamental for solar energy metabolism during the photosynthesis process. In this regard, the utilization of bioinspired chlorin analogs as photosensitizers for photodynamic therapy constitutes an evolutionary topic of research. Moreover, carbon nanomaterials have been widely applied in photodynamic therapy protocols due to their optical characteristics, good biocompatibility, and tunable systematic toxicity. Herein, we review the literature related to the applications of chlorin-based photosensitizers that were functionalized onto carbon nanomaterials for photodynamic and photothermal therapies against cancer. Rather than a comprehensive review, we intended to highlight the most important and illustrative examples over the last 10 years.
Collapse
Affiliation(s)
- Lucas D. Dias
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil;
| | | |
Collapse
|
91
|
Wang L, Li W, Yin L, Liu Y, Guo H, Lai J, Han Y, Li G, Li M, Zhang J, Vajtai R, Ajayan PM, Wu M. Full-color fluorescent carbon quantum dots. SCIENCE ADVANCES 2020; 6:6/40/eabb6772. [PMID: 33008913 PMCID: PMC7852397 DOI: 10.1126/sciadv.abb6772] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/19/2020] [Indexed: 05/18/2023]
Abstract
Quantum dots have innate advantages as the key component of optoelectronic devices. For white light-emitting diodes (WLEDs), the modulation of the spectrum and color of the device often involves various quantum dots of different emission wavelengths. Here, we fabricate a series of carbon quantum dots (CQDs) through a scalable acid reagent engineering strategy. The growing electron-withdrawing groups on the surface of CQDs that originated from acid reagents boost their photoluminescence wavelength red shift and raise their particle sizes, elucidating the quantum size effect. These CQDs emit bright and remarkably stable full-color fluorescence ranging from blue to red light and even white light. Full-color emissive polymer films and all types of high-color rendering index WLEDs are synthesized by mixing multiple kinds of CQDs in appropriate ratios. The universal electron-donating/withdrawing group engineering approach for synthesizing tunable emissive CQDs will facilitate the progress of carbon-based luminescent materials for manufacturing forward-looking films and devices.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Weitao Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Luqiao Yin
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, P. R. China
| | - Yijian Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Jiawei Lai
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Yu Han
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Gao Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Ming Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, P. R. China
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
92
|
Fathi P, Pan D. Current trends in pyrrole and porphyrin-derived nanoscale materials for biomedical applications. Nanomedicine (Lond) 2020; 15:2493-2515. [PMID: 32975469 PMCID: PMC7610151 DOI: 10.2217/nnm-2020-0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/14/2020] [Indexed: 02/01/2023] Open
Abstract
This article is written to provide an up-to-date review of pyrrole-based biomedical materials. Porphyrins and other tetrapyrrolic molecules possess unique magnetic, optical and other photophysical properties that make them useful for bioimaging and therapy. This review touches briefly on some of the synthetic strategies to obtain porphyrin- and tetrapyrrole-based nanoparticles, as well as the variety of applications in which crosslinked, self-assembled, porphyrin-coated and other nanoparticles are utilized. We explore examples of these nanoparticles' applications in photothermal therapy, drug delivery, photodynamic therapy, stimuli response, fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, computed tomography and positron emission tomography. We anticipate that this review will provide a comprehensive summary of pyrrole-derived nanoparticles and provide a guideline for their further development.
Collapse
Affiliation(s)
- Parinaz Fathi
- Departments of Bioengineering, Materials Science & Engineering & Beckman Institute, University of Illinois, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science & Engineering & Beckman Institute, University of Illinois, Urbana, IL 61801, USA
- Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
- Departments of Diagnostic Radiology & Nuclear Medicine & Pediatrics, University of Maryland Baltimore, Health Sciences Facility III, 670 W Baltimore St., Baltimore, MD 21201, USA
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, 1000 Hilltop Circle Baltimore, MD 21250, USA
| |
Collapse
|
93
|
Zhang Z, Ji Y. Nanostructured manganese dioxide for anticancer applications: preparation, diagnosis, and therapy. NANOSCALE 2020; 12:17982-18003. [PMID: 32870227 DOI: 10.1039/d0nr04067c] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanostructured manganese dioxide (MnO2) has attracted extensive attention in the field of anticancer applications. As we all know, the tumor microenvironment is usually characterized by a high glutathione (GSH) concentration, overproduced hydrogen peroxide (H2O2), acidity, and hypoxia, which affect the efficacy of many traditional treatments such as chemotherapy, radiotherapy, and surgery. Fortunately, as one kind of redox-active nanomaterial, nanostructured MnO2 has many excellent properties such as strong oxidation ability, excellent catalytic activity, and good biodegradability. It can be used effectively in diagnosis and treatment when it reacts with some harmful substances in the tumor site. It can not only enhance the therapeutic effect but also adjust the tumor microenvironment. Therefore, it is necessary to present the recent achievements and progression of nanostructured MnO2 for anticancer applications, including preparation methods, diagnosis, and treatment. Special attention was paid to photodynamic therapy (PDT), bioimaging and cancer diagnosis (BCD), and drug delivery systems (DDS). This review is expected to provide helpful guidance on further research of nanostructured MnO2 for anticancer applications.
Collapse
Affiliation(s)
- Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | | |
Collapse
|
94
|
Wang H, Zhang M, Ma Y, Wang B, Huang H, Liu Y, Shao M, Kang Z. Carbon Dots Derived from Citric Acid and Glutathione as a Highly Efficient Intracellular Reactive Oxygen Species Scavenger for Alleviating the Lipopolysaccharide-Induced Inflammation in Macrophages. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41088-41095. [PMID: 32805964 DOI: 10.1021/acsami.0c11735] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reactive oxygen species (ROSs), acting as functionalized molecules in intracellular enzyme reactions and intercellular communication of immune response, play vital roles in biological metabolism. However, the inevitably excessive ROS-induced oxidative stress is harmful for organ tissue, causing unexpected local anaphylaxis or inflammation. Here, we demonstrate carbon dots (CDs), made of citric acid and glutathione via one-step hydrothermal method, as a highly efficient intracellular ROS scavenger for alleviating the lipopolysaccharide (LPS)-induced inflammation in macrophage. These CDs have broad-spectrum antioxidant properties and the total antioxidant activity exceeds 51.6% higher than that of the precursor, namely, glutathione, in the same mass concentration. Moreover, their antioxidative performance in macrophage inflammation induced by LPS was investigated, and it was found that CDs can efficiently remove up to 98% of intracellular ROS, notably inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, and decrease the expression level of inflammatory factor IL-12. Our results suggested that CDs can serve as a highly efficient intracellular ROS scavenger and could be employed to cope with oxidative stress-induced diseases.
Collapse
Affiliation(s)
- Huibo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - MengLing Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yurong Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Bo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
95
|
Sun S, Chen Q, Tang Z, Liu C, Li Z, Wu A, Lin H. Tumor Microenvironment Stimuli‐Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbon‐Dot–Cu
2+
Nanoassemblies. Angew Chem Int Ed Engl 2020; 59:21041-21048. [PMID: 32914924 DOI: 10.1002/anie.202007786] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/22/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Shan Sun
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
| | - Qiao Chen
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
| | - Zhongdi Tang
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
| | - Zhongjun Li
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
| | - Hengwei Lin
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| |
Collapse
|
96
|
Sun S, Chen Q, Tang Z, Liu C, Li Z, Wu A, Lin H. Tumor Microenvironment Stimuli‐Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbon‐Dot–Cu
2+
Nanoassemblies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shan Sun
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
| | - Qiao Chen
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
| | - Zhongdi Tang
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
| | - Zhongjun Li
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
| | - Hengwei Lin
- Cixi Institute of Biomedical Engineering Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials Ningbo Institute of Materials Technology and Engineering, CAS 1219 ZhongGuan West Road Ningbo 315201 China
- International Joint Research Center for Photo-responsive Molecules and Materials School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| |
Collapse
|
97
|
Park Y, Kim Y, Chang H, Won S, Kim H, Kwon W. Biocompatible nitrogen-doped carbon dots: synthesis, characterization, and application. J Mater Chem B 2020; 8:8935-8951. [PMID: 32901641 DOI: 10.1039/d0tb01334j] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon dots (CDs) are promising materials for biomedical applications owing to their unique properties, biocompatibility, and biodegradability. The current studies on CDs are focused on improving their functionality by modulating their electronic structure, which helps in controlling their chemical, optical, and electrical properties. Doping with heteroatoms is a typical approach for modulating the electronic structure of CDs. In particular, there has been considerable progress in nitrogen-doped CDs for improving their potential for various biomedical applications, including optical imaging, drug delivery, and light-mediated imaging/therapeutic applications such as photoacoustic imaging, photothermal therapy, and photodynamic therapy. In this review, the important features of nitrogen-doped CDs are discussed along with the recent studies on these materials and their prospects.
Collapse
Affiliation(s)
- Yoonsang Park
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea and Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| | - Yujin Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| | - Heemin Chang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| | - Sungyeon Won
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea.
| |
Collapse
|
98
|
Su L, Mao J, Wang S, Hu Y. A bimodal electrochemiluminescence method based on dual-enhancement Ru(bpy)32+/CQDs/AA system combined with magnetic field enhanced solid-phase microextraction for the direct determination of ascorbic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
99
|
Ji Z, Yin Z, Jia Z, Wei J. Carbon Nanodots Derived from Urea and Citric Acid in Living Cells: Cellular Uptake and Antioxidation Effect. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8632-8640. [PMID: 32610019 DOI: 10.1021/acs.langmuir.0c01598] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanodots (CNDs), reported as polyatomic carbon domains surrounded by amorphous carbon frames, have drawn extensive attention due to their easy-to-synthesis, outstanding electronic properties, and superior biocompatibility. However, substantial assessments regarding their biological performance are still needed, considering the complex nature of this type of relatively new nanoparticles. In this report, CNDs derived from urea and citric acid (U-CNDs) are investigated in the treatment of two cell lines, EA.hy926 and A549 cells, to examine the biocompatibility, cellular uptake, and antioxidation effect. The intracellular uptake study suggests an energy-dependent transport process into the cells mainly involving macropinocytosis and lipid raft-mediated endocytosis pathways. Moreover, the U-CNDs mostly target the mitochondria and present strong antioxidative effects by scavenging reactive oxygen species (ROS) in cells. Overall the findings in this report manifest that the U-CNDs could serve as a bioimaging reagent and antioxidant causing little deleteriousness in the respects of viability, plasma membrane integrity, and mitochondrial activity in both cell lines, and demonstrate some efficacy for inhibiting the metabolic activities of A549 cancer cells at higher concentration.
Collapse
Affiliation(s)
- Zuowei Ji
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Ziyu Yin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
100
|
Ji DK, Reina G, Guo S, Eredia M, Samorì P, Ménard-Moyon C, Bianco A. Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species. NANOSCALE HORIZONS 2020; 5:1240-1249. [PMID: 32555842 DOI: 10.1039/d0nh00300j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Controlled intracellular release of exogenous reactive oxygen species (ROS) is an innovative and efficient strategy for cancer treatment. Well-designed materials, which can produce ROS in targeted cells, minimizing side effects, still need to be explored as new generation nanomedicines. Here, red-emissive carbon nanodots (CNDs) with intrinsic theranostic properties are devised, and further modified with folic acid (FA) ligand through a controlled covalent functionalization for targeted cell imaging and intracellular production of ROS. We demonstrated that covalent functionalization is an effective strategy to prevent the aggregation of the dots, leading to superior colloidal stability, enhanced luminescence and ROS generation. Indeed, the functional nanodots possess a deep-red emission and good dispersibility under physiological conditions. Importantly, they show excellent targeting properties and generation of high levels of ROS under 660 nm laser irradiation, leading to efficient cell death. These unique properties enable FA-modified carbon nanodots to act as a multifunctional nanoplatform for simultaneous targeted imaging and efficient photodynamic therapy to induce cancer cell death.
Collapse
Affiliation(s)
- Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|