51
|
Sun H, Cui J, Ju Y, Chen X, Wong EHH, Tran J, Qiao GG, Caruso F. Tuning the Properties of Polymer Capsules for Cellular Interactions. Bioconjug Chem 2017; 28:1859-1866. [DOI: 10.1021/acs.bioconjchem.7b00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huanli Sun
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, and ‡the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, and ‡the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, and ‡the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xi Chen
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, and ‡the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Jenny Tran
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, and ‡the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, and ‡the Department
of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
52
|
Li Y, Pan T, Ma B, Liu J, Sun J. Healable Antifouling Films Composed of Partially Hydrolyzed Poly(2-ethyl-2-oxazoline) and Poly(acrylic acid). ACS APPLIED MATERIALS & INTERFACES 2017; 9:14429-14436. [PMID: 28398038 DOI: 10.1021/acsami.7b02872] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antifouling polymeric films can prevent undesirable adhesion of bacteria but are prone to accidental scratches, leading to a loss of their antifouling functions. To solve this problem, we report the fabrication of healable antifouling polymeric films by layer-by-layer assembly of partially hydrolyzed poly(2-ethyl-2-oxazoline) (PEtOx-EI-7%) and poly(acrylic acid) (PAA) based on hydrogen-bonding interaction as the driving force. The thermally cross-linked (PAA/PEtOx-EI-7%)*100 films show strong resistance to adhesion of both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria due to the high surface and bulk concentration of the antifouling polymer PEtOx-EI-7%. Meanwhile, the dynamic nature of the hydrogen-bonding interactions and the high mobility of the polymers in the presence of water enable repeated healing of cuts of several tens of micrometers wide in cross-linked (PAA/PEtOx-EI-7%)*100 films to fully restore their antifouling function.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Tiezheng Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Benhua Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| |
Collapse
|
53
|
Song Y, Meyers KP, Gerringer J, Ramakrishnan RK, Humood M, Qin S, Polycarpou AA, Nazarenko S, Grunlan JC. Fast Self‐Healing of Polyelectrolyte Multilayer Nanocoating and Restoration of Super Oxygen Barrier. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/18/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Yixuan Song
- Department of Materials Science and Engineering Texas A&M University College Station TX 77843‐3003 USA
| | - Kevin P. Meyers
- School of Polymers and High Performance Materials University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Joseph Gerringer
- Department of Chemistry Texas A&M University College Station TX 77843‐3012 USA
| | - Ramesh K. Ramakrishnan
- School of Polymers and High Performance Materials University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Mohammad Humood
- Department of Mechanical Engineering Texas A&M University College Station TX 77843‐3123 USA
| | - Shuang Qin
- Department of Materials Science and Engineering Texas A&M University College Station TX 77843‐3003 USA
| | - Andreas A. Polycarpou
- Department of Mechanical Engineering Texas A&M University College Station TX 77843‐3123 USA
| | - Sergei Nazarenko
- School of Polymers and High Performance Materials University of Southern Mississippi Hattiesburg MS 39406 USA
| | - Jaime C. Grunlan
- Department of Materials Science and Engineering Texas A&M University College Station TX 77843‐3003 USA
- Department of Chemistry Texas A&M University College Station TX 77843‐3012 USA
- Department of Mechanical Engineering Texas A&M University College Station TX 77843‐3123 USA
| |
Collapse
|
54
|
Khoshfetrat SM, Mehrgardi MA. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry 2016; 114:24-32. [PMID: 27992855 DOI: 10.1016/j.bioelechem.2016.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023]
Abstract
The increasing demands for early, accurate and ultrasensitive diagnosis of cancers demonstrate the importance of the development of new amplification strategies or diagnostic technologies. In the present study, an aptamer-based electrochemical biosensor for ultrasensitive and selective detection of leukemia cancer cells has been introduced. The thiolated sgc8c aptamer was immobilized on gold nanoparticles-coated magnetic Fe3O4 nanoparticles (Apt-GMNPs). Ethidium bromide (EB), intercalated into the stem of the aptamer hairpin, provides the read-out signal for the quantification of the leukemia cancer cells. After introduction of the leukemia cancer cells onto the Apt-GMNPs, the hairpin structure of the aptamer is disrupted and the intercalator molecules are released, resulting in a decrease of the electrochemical signal. The immobilization of nitrogen-doped graphene nanosheets on the electrode surface provides an excellent platform for amplifying the read-out signal. Under optimal conditions, the aptasensor exhibits a linear response over a wide dynamic range of leukemia cancer cells from 10 to 1×106cellmL-1. The present protocol provides a highly sensitive, selective, simple, and robust method for early stage detection of leukemia cancer. Furthermore, the fabricated aptasensor was successfully used for the detection of leukemia cancer cells in complex media such as human blood plasma, without any serious interference.
Collapse
Affiliation(s)
| | - Masoud A Mehrgardi
- Department of chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
55
|
Zhang Z, Tang Z, Liu W, Zhang H, Lu Y, Wang Y, Pang W, Zhang H, Duan X. Acoustically Triggered Disassembly of Multilayered Polyelectrolyte Thin Films through Gigahertz Resonators for Controlled Drug Release Applications. MICROMACHINES 2016; 7:mi7110194. [PMID: 30404367 PMCID: PMC6189713 DOI: 10.3390/mi7110194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/02/2022]
Abstract
Controlled drug release has a high priority for the development of modern medicine and biochemistry. To develop a versatile method for controlled release, a miniaturized acoustic gigahertz (GHz) resonator is designed and fabricated which can transfer electric supply to mechanical vibrations. By contacting with liquid, the GHz resonator directly excites streaming flows and induces physical shear stress to tear the multilayered polyelectrolyte (PET) thin films. Due to the ultra-high working frequency, the shear stress is greatly intensified, which results in a controlled disassembling of the PET thin films. This technique is demonstrated as an effective method to trigger and control the drug release. Both theory analysis and controlled release experiments prove the thin film destruction and the drug release.
Collapse
Affiliation(s)
- Zhixin Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.
| | - Zifan Tang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.
| | - Wenpeng Liu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.
| | - Hongxiang Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.
| | - Yao Lu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.
| | - Hao Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
56
|
Qi X, Yang L, Zhu J, Hou Y, Yang M. Stiffer but More Healable Exponential Layered Assemblies with Boron Nitride Nanoplatelets. ACS NANO 2016; 10:9434-9445. [PMID: 27648668 DOI: 10.1021/acsnano.6b04482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Self-healing ability and the elastic modulus of polymeric materials may seem conflicting because of their opposite dependence on chain mobility. Here, we show that boron nitride (BN) nanoplatelets can simultaneously enhance these seemingly contradictory properties in exponentially layer-by-layer-assembled nanocomposites as both surface coatings and free-standing films. On one hand, embedding hard BN nanoplatelets into a soft hydrogen bonding network can enhance the elastic modulus and ultimate strength through effective load transfer strengthened by the incorporation of interfacial covalent bonding; on the other hand, during a water-enabled self-healing process, these two-dimensional flakes induce an anisotropic diffusion, maintain the overall diffusion ability of polymers at low loadings, and can be "sealing" agents to retard the out-of-plane diffusion, thereby hampering polymer release into the solution. A detailed mechanism study supported by a theoretical model reveals the critical parameters for achieving a complete self-healing process. The insights gained from this work may be used for the design of high-performance smart materials based on other two-dimensional fillers.
Collapse
Affiliation(s)
- Xiaodong Qi
- Key Laboratory of Microsystems and Micronanostructures Manufacturing and ‡Center for Composite Materials and Structures, Harbin Institute of Technology , 2 Yikuang Street, Harbin 150080, China
| | - Lei Yang
- Key Laboratory of Microsystems and Micronanostructures Manufacturing and ‡Center for Composite Materials and Structures, Harbin Institute of Technology , 2 Yikuang Street, Harbin 150080, China
| | - Jiaqi Zhu
- Key Laboratory of Microsystems and Micronanostructures Manufacturing and ‡Center for Composite Materials and Structures, Harbin Institute of Technology , 2 Yikuang Street, Harbin 150080, China
| | - Ying Hou
- Key Laboratory of Microsystems and Micronanostructures Manufacturing and ‡Center for Composite Materials and Structures, Harbin Institute of Technology , 2 Yikuang Street, Harbin 150080, China
| | - Ming Yang
- Key Laboratory of Microsystems and Micronanostructures Manufacturing and ‡Center for Composite Materials and Structures, Harbin Institute of Technology , 2 Yikuang Street, Harbin 150080, China
| |
Collapse
|
57
|
Cu(II) doped polyaniline nanoshuttles for multimodal tumor diagnosis and therapy. Biomaterials 2016; 104:213-22. [DOI: 10.1016/j.biomaterials.2016.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/10/2016] [Accepted: 07/16/2016] [Indexed: 11/19/2022]
|
58
|
Saftics A, Kurunczi S, Szekrényes Z, Kamarás K, Khánh NQ, Sulyok A, Bſsze S, Horvath R. Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS. Colloids Surf B Biointerfaces 2016; 146:861-70. [DOI: 10.1016/j.colsurfb.2016.06.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/30/2022]
|
59
|
Guan M, Li J, Jia Q, Ge J, Chen D, Zhou Y, Wang P, Zou T, Zhen M, Wang C, Shu C. A Versatile and Clearable Nanocarbon Theranostic Based on Carbon Dots and Gadolinium Metallofullerene Nanocrystals. Adv Healthc Mater 2016; 5:2283-94. [PMID: 27385651 DOI: 10.1002/adhm.201600402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/22/2016] [Indexed: 01/13/2023]
Abstract
Nanocarbons such as carbon nanotubes, graphene derivatives, and carbon nanohorns have illustrated their potential uses as cancer theranostics owing to their intrinsic fluorescence or NIR absorbance as well as superior cargo loading capacity. However, some problems still need to be addressed, such as the fates and long-term toxicology of different nanocarbons in vivo and the improvement of their performance in various biomedical imaging-guided cancer therapy systems. Herein, a versatile and clearable nanocarbon theranostic based on carbon dots (CDs) and gadolinium metallofullerene nanocrystals (GFNCs) is first developed, in which GFNCs enhance the tumor accumulation of CDs, and CDs enhance the relaxivity of GFNCs, leading to an efficient multimodal imaging-guided photodynamic therapy in vivo without obvious long-term toxicity. Furthermore, biochemical analysis reveals that the novel nanotheranostic can harmlessly eliminate from the body in a reasonable period of time after exerting diagnostic and therapeutic function.
Collapse
Affiliation(s)
- Mirong Guan
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Jie Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Qingyan Jia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry (TIPC); Chinese Academy of Sciences; Beijing 100190 China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry (TIPC); Chinese Academy of Sciences; Beijing 100190 China
| | - Daiqin Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Yue Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry (TIPC); Chinese Academy of Sciences; Beijing 100190 China
| | - Toujun Zou
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Mingming Zhen
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| | - Chunying Shu
- Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences; Beijing 100190 China
| |
Collapse
|
60
|
Vilela C, Figueiredo ARP, Silvestre AJD, Freire CSR. Multilayered materials based on biopolymers as drug delivery systems. Expert Opin Drug Deliv 2016; 14:189-200. [DOI: 10.1080/17425247.2016.1214568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Carla Vilela
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana R. P. Figueiredo
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Armando J. D. Silvestre
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carmen S. R. Freire
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
61
|
CNRS Silver and Bronze Medals 2016 / Izatt-Christensen Award: H. F. Sleiman / Cram Lehn Pedersen Prize: I. Aprahamian. Angew Chem Int Ed Engl 2016; 55:6819-20. [DOI: 10.1002/anie.201604168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
62
|
Silber- und Bronzemedaillen des CNRS 2016 / Izatt-Christensen-Preis: H. F. Sleiman / Cram-Lehn-Pedersen-Preis: I. Aprahamian. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
63
|
Gao H, Goriacheva OA, Tarakina NV, Sukhorukov GB. Intracellularly Biodegradable Polyelectrolyte/Silica Composite Microcapsules as Carriers for Small Molecules. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9651-9661. [PMID: 27008032 DOI: 10.1021/acsami.6b01921] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microcapsules that can be efficiently loaded with small molecules and effectively released at the target area through the degradation of the capsule shells hold great potential for treating diseases. Traditional biodegradable polyelectrolyte (PE) capsules can be degraded by cells and eliminated from the body but fail to encapsulate drugs with small molecular weight. Here, we report a poly-l-arginine hydrochloride (PARG)/dextran sulfate sodium salt (DEXS)/silica (SiO2) composite capsule that can be destructed in cells and of which the in situ formed inorganic SiO2 enables loading of small model molecules, Rhodamine B (Rh-B). The composite capsules were fabricated based on the layer-by-layer (LbL) technique and the hydrolysis of tetraethoxysilane (TEOS). Capsules composed of nondegradable PEs and SiO2, polyllamine hydrochloride (PAH)/poly(sodium 4-styrenesulfonate) (PSS)/silica (the control sample), were prepared and briefly compared with the degradable composite capsules. An intracellular degradation study of both types of composite capsules revealed that PARG/DEXS/silica capsules were degraded into fragments and lead to the release of model molecules in a relatively short time (2 h), while the structure of PAH/PSS/silica capsules remained intact even after 3 days incubation with B50 cells. Such results indicated that the polymer components played a significant role in the degradability of the SiO2. Specifically, PAH/PSS scaffolds blocked the degradation of SiO2. For PARG/DEXS/silica capsules, we proposed the effects of both hydrolytic degradation of amorphous silica and enzymatic degradation of PARG/DEXS polymers as a cell degradation mechanism. All the results demonstrated a new type of functional composite microcapsule with low permeability, good biocompatibility, and biodegradability for potential medical applications.
Collapse
Affiliation(s)
- Hui Gao
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | - Olga A Goriacheva
- Saratov State University , 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Nadezda V Tarakina
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|