51
|
|
52
|
Hou K, Yang C, Shi J, Kuang B, Tian B. Nano- and Microscale Optical and Electrical Biointerfaces and Their Relevance to Energy Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100165. [PMID: 34142435 DOI: 10.1002/smll.202100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Different research fields in energy sciences, such as photovoltaics for solar energy conversion, supercapacitors for energy storage, electrocatalysis for clean energy conversion technologies, and materials-bacterial hybrid for CO2 fixation have been under intense investigations over the past decade. In recent years, new platforms for biointerface designs have emerged from the energy conversion and storage principles. This paper reviews recent advances in nano- and microscale materials/devices for optical and electrical biointerfaces. First, a connection is drawn between biointerfaces and energy science, and how these two distinct research fields can be connected is summarized. Then, a brief overview of current available tools for biointerface studies is presented. Third, three representative biointerfaces are reviewed, including neural, cardiac, and bacterial biointerfaces, to show how to apply these tools and principles to biointerface design and research. Finally, two possible future research directions for nano- and microscale biointerfaces are proposed.
Collapse
Affiliation(s)
- Kun Hou
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuanwang Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Boya Kuang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
53
|
Tabassum N, Islam N, Ahmed S. Progress in microbial fuel cells for sustainable management of industrial effluents. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
54
|
Yan R, Ma T, Cheng M, Tao X, Yang Z, Ran F, Li S, Yin B, Cheng C, Yang W. Metal-Organic-Framework-Derived Nanostructures as Multifaceted Electrodes in Metal-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008784. [PMID: 34031929 PMCID: PMC11468141 DOI: 10.1002/adma.202008784] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/10/2021] [Indexed: 02/05/2023]
Abstract
Metal-sulfur batteries (MSBs) are considered up-and-coming future-generation energy storage systems because of their prominent theoretical energy density. However, the practical applications of MSBs are still hampered by several critical challenges, i.e., the shuttle effects, sluggish redox kinetics, and low conductivity of sulfur species. Recently, benefiting from the high surface area, regulated networks, molecular/atomic-level reactive sites, the metal-organic frameworks (MOFs)-derived nanostructures have emerged as efficient and durable multifaceted electrodes in MSBs. Herein, a timely review is presented on recent advancements in designing MOF-derived electrodes, including fabricating strategies, composition management, topography control, and electrochemical performance assessment. Particularly, the inherent charge transfer, intrinsic polysulfide immobilization, and catalytic conversion on designing and engineering of MOF nanostructures for efficient MSBs are systematically discussed. In the end, the essence of how MOFs' nanostructures influence their electrochemical properties in MSBs and conclude the future tendencies regarding the construction of MOF-derived electrodes in MSBs is exposed. It is believed that this progress review will provide significant experimental/theoretical guidance in designing and understanding the MOF-derived nanostructures as multifaceted electrodes, thus offering promising orientations for the future development of fast-kinetic and robust MSBs in broad energy fields.
Collapse
Affiliation(s)
- Rui Yan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Menghao Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xuefeng Tao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Zhao Yang
- State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous MetalsLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non‐ferrous MetalsLanzhou University of TechnologyLanzhouGansu730050P. R. China
| | - Shuang Li
- Functional MaterialsDepartment of ChemistryTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Bo Yin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Wei Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| |
Collapse
|
55
|
Li S, Zhu X, Yu H, Wang X, Liu X, Yang H, Li F, Zhou Q. Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2021; 197:111054. [PMID: 33775682 DOI: 10.1016/j.envres.2021.111054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic wastewater presents serious challenges in water treatment. Metal-organic frameworks (MOFs) have received significant attention as promising precursors and sacrificial templates in the preparation of porous carbon-supported catalysts. Herein, we investigated the sulfamethoxazole (SMX) degradation and electrochemical performance of microbial fuel cells (MFCs) that applied as-prepared Ni-MOF-74 and Ni-N-C (Ni-MOF-74 underwent pyrolysis treatment at different temperatures) as air-cathode catalyst. Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating disk electrode. The results showed that electron transfer number for Ni-MOF-74 was 2.12, while that of 800Ni-N-C was 3.44, which was close to four-electron reduction. Applying Ni-MOF-74 in MFCs, a maximum power density of 446 mW/m2 was obtained, which was close to that of 800Ni-N-C. Besides, using Ni-MOF-74 as cathode catalyst, a chemical oxygen demand removal rate of about 84% was obtained, and the degradation rate of 10 mg/L SMX was 61%. The degradation rate decreased with increasing antibiotic concentration, but the average degradation efficiency increased stepwise. Additionally, the relative abundance of resistant gene sul1 in the reactors of the new catalytic material was about 62% lower than that of sul1 in the control (Pt/C) reactors, and the relative abundance of sul2 was about 73% lower. Moreover, cost assessments related to the catalyst performance are presented. The findings of this study demonstrated that Ni-MOF-74 could be considered as a two-electron transfer ORR catalyst, and offers a promising technique for preparation of Ni-N-C for use as four-electron transfer ORR catalysts. In comparison, Ni-MOF-74 could be a promising ORR catalyst of MFCs for antibiotic degradation.
Collapse
Affiliation(s)
- Shengnan Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xuya Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Hang Yu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Xizi Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Xiaqing Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Hui Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China.
| | - Qixing Zhou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Remediation and Pollution Control for Urban Ecological Environmental, Nankai University, Tianjin, 300350 China
| |
Collapse
|
56
|
Spiess S, Kucera J, Seelajaroen H, Sasiain A, Thallner S, Kremser K, Novak D, Guebitz GM, Haberbauer M. Impact of Carbon Felt Electrode Pretreatment on Anodic Biofilm Composition in Microbial Electrolysis Cells. BIOSENSORS-BASEL 2021; 11:bios11060170. [PMID: 34073192 PMCID: PMC8229196 DOI: 10.3390/bios11060170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/04/2023]
Abstract
Sustainable technologies for energy production and storage are currently in great demand. Bioelectrochemical systems (BESs) offer promising solutions for both. Several attempts have been made to improve carbon felt electrode characteristics with various pretreatments in order to enhance performance. This study was motivated by gaps in current knowledge of the impact of pretreatments on the enrichment and microbial composition of bioelectrochemical systems. Therefore, electrodes were treated with poly(neutral red), chitosan, or isopropanol in a first step and then fixed in microbial electrolysis cells (MECs). Four MECs consisting of organic substance-degrading bioanodes and methane-producing biocathodes were set up and operated in batch mode by controlling the bioanode at 400 mV vs. Ag/AgCl (3M NaCl). After 1 month of operation, Enterococcus species were dominant microorganisms attached to all bioanodes and independent of electrode pretreatment. However, electrode pretreatments led to a decrease in microbial diversity and the enrichment of specific electroactive genera, according to the type of modification used. The MEC containing isopropanol-treated electrodes achieved the highest performance due to presence of both Enterococcus and Geobacter. The obtained results might help to select suitable electrode pretreatments and support growth conditions for desired electroactive microorganisms, whereby performance of BESs and related applications, such as BES-based biosensors, could be enhanced.
Collapse
Affiliation(s)
- Sabine Spiess
- K1-MET GmbH, Stahlstrasse 14, 4020 Linz, Austria; (A.S.); (S.T.); (M.H.)
- ACIB GmbH (Austrian Centre of Industrial Biotechnology), Krenngasse 37/2, 8010 Graz, Austria;
- Correspondence:
| | - Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (D.N.)
| | - Hathaichanok Seelajaroen
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria;
| | - Amaia Sasiain
- K1-MET GmbH, Stahlstrasse 14, 4020 Linz, Austria; (A.S.); (S.T.); (M.H.)
| | - Sophie Thallner
- K1-MET GmbH, Stahlstrasse 14, 4020 Linz, Austria; (A.S.); (S.T.); (M.H.)
- ACIB GmbH (Austrian Centre of Industrial Biotechnology), Krenngasse 37/2, 8010 Graz, Austria;
| | - Klemens Kremser
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria;
| | - David Novak
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (D.N.)
| | - Georg M. Guebitz
- ACIB GmbH (Austrian Centre of Industrial Biotechnology), Krenngasse 37/2, 8010 Graz, Austria;
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria;
| | - Marianne Haberbauer
- K1-MET GmbH, Stahlstrasse 14, 4020 Linz, Austria; (A.S.); (S.T.); (M.H.)
- ACIB GmbH (Austrian Centre of Industrial Biotechnology), Krenngasse 37/2, 8010 Graz, Austria;
| |
Collapse
|
57
|
Yaqoob AA, Ibrahim MNM, Yaakop AS, Ahmad A. Application of microbial fuel cells energized by oil palm trunk sap (OPTS) to remove the toxic metal from synthetic wastewater with generation of electricity. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01885-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
58
|
Zakaria BS, Dhar BR. Characterization and significance of extracellular polymeric substances, reactive oxygen species, and extracellular electron transfer in methanogenic biocathode. Sci Rep 2021; 11:7933. [PMID: 33846480 PMCID: PMC8041852 DOI: 10.1038/s41598-021-87118-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
The microbial electrolysis cell assisted anaerobic digestion holds great promises over conventional anaerobic digestion. This article reports an experimental investigation of extracellular polymeric substances (EPS), reactive oxygen species (ROS), and the expression of genes associated with extracellular electron transfer (EET) in methanogenic biocathodes. The MEC-AD systems were examined using two cathode materials: carbon fibers and stainless-steel mesh. A higher abundance of hydrogenotrophic Methanobacterium sp. and homoacetogenic Acetobacterium sp. appeared to play a major role in superior methanogenesis from stainless steel biocathode than carbon fibers. Moreover, the higher secretion of EPS accompanied by the lower ROS level in stainless steel biocathode indicated that higher EPS perhaps protected cells from harsh metabolic conditions (possibly unfavorable local pH) induced by faster catalysis of hydrogen evolution reaction. In contrast, EET-associated gene expression patterns were comparable in both biocathodes. Thus, these results indicated hydrogenotrophic methanogenesis is the key mechanism, while cathodic EET has a trivial role in distinguishing performances between two cathode electrodes. These results provide new insights into the efficient methanogenic biocathode development.
Collapse
Affiliation(s)
- Basem S. Zakaria
- grid.17089.37Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9 Canada
| | - Bipro Ranjan Dhar
- grid.17089.37Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9 Canada
| |
Collapse
|
59
|
Zeng N, Wu Y, Chen W, Huang Q, Cai P. Whole-Cell Microbial Bioreporter for Soil Contaminants Detection. Front Bioeng Biotechnol 2021; 9:622994. [PMID: 33708764 PMCID: PMC7940511 DOI: 10.3389/fbioe.2021.622994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Anthropogenic activities have released various contaminants into soil that pose a serious threat to the ecosystem and human well-being. Compared to conventional analytical methodologies, microbial cell-based bioreporters are offering a flexible, rapid, and cost-effective strategy to assess the environmental risks. This review aims to summarize the recent progress in the application of bioreporters in soil contamination detection and provide insight into the challenges and current strategies. The biosensing principles and genetic circuit engineering are introduced. Developments of bioreporters to detect and quantify heavy metal and organic contaminants in soil are reviewed. Moreover, future opportunities of whole-cell bioreporters for soil contamination monitoring are discussed.
Collapse
Affiliation(s)
- Ni Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
60
|
Vassilev I, Averesch NJH, Ledezma P, Kokko M. Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration. Biotechnol Adv 2021; 48:107728. [PMID: 33705913 DOI: 10.1016/j.biotechadv.2021.107728] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/31/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022]
Abstract
In nature as well as in industrial microbiology, all microorganisms need to achieve redox balance. Their redox state and energy conservation highly depend on the availability of a terminal electron acceptor, for example oxygen in aerobic production processes. Under anaerobic conditions in the absence of an electron acceptor, redox balance is achieved via the production of reduced carbon-compounds (fermentation). An alternative strategy to artificially stabilize microbial redox and energy state is the use of anodic electro-fermentation (AEF). This emerging biotechnology empowers respiration under anaerobic conditions using the anode of a bioelectrochemical system as an undepletable terminal electron acceptor. Electrochemical control of redox metabolism and energy conservation via AEF can steer the carbon metabolism towards a product of interest and avoid the need for continuous and cost-inefficient supply of oxygen as well as the production of mixed reduced by-products, as is the case in aerobic production and fermentation processes, respectively. The great challenge for AEF is to establish efficient extracellular electron transfer (EET) from the microbe to the anode and link it to central carbon metabolism to enhance the synthesis of a target product. This article reviews the advantages and challenges of AEF, EET mechanisms, microbial energy gain, and discusses the rational choice of substrate-product couple as well as the choice of microbial catalyst. Besides, it discusses the potential of the industrial model-organism Bacillus subtilis as a promising candidate for AEF, which has not been yet considered for such an application. This prospective review contributes to a better understanding of how industrial microbiology can benefit from AEF and analyses key-factors required to successfully implement AEF processes. Overall, this work aims to advance the young research field especially by critically revisiting the fundamental aspects of AEF.
Collapse
Affiliation(s)
- Igor Vassilev
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| | - Nils J H Averesch
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States.
| | - Pablo Ledezma
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD, Australia.
| | - Marika Kokko
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.
| |
Collapse
|
61
|
Status Update on Bioelectrochemical Systems: Prospects for Carbon Electrode Design and Scale-Up. Catalysts 2021. [DOI: 10.3390/catal11020278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Bioelectrochemical systems (BES) employ enzymes, subcellular structures or whole electroactive microorganisms as biocatalysts for energy conversion purposes, such as the electrosynthesis of value-added chemicals and power generation in biofuel cells. From a bioelectrode engineering viewpoint, customizable nanostructured carbonaceous matrices have recently received considerable scientific attention as promising electrode supports due to their unique properties attractive to bioelectronics devices. This review demonstrates the latest advances in the application of nano- and micro-structured carbon electrode assemblies in BES. Specifically, in view of the gradual increase in the commercial applicability of these systems, we aim to address the stability and scalability of different BES designs and to highlight their potential roles in a circular bioeconomy.
Collapse
|
62
|
Microbial Electrolysis Cells for Decentralised Wastewater Treatment: The Next Steps. WATER 2021. [DOI: 10.3390/w13040445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional wastewater treatment methods have become aged and inefficient, meaning alternative methods are essential to protect the environment and ensure water and energy security worldwide. The use of microbial electrolysis cells (MEC) for wastewater treatment provides an innovative alternative, working towards circular wastewater treatment for energy production. This study evaluates the factors hindering industrial adoption of this technology and proposes the next steps for further research and development. Existing pilot-scale investigations are studied to critically assess the main limitations, focusing on the electrode material, feedstock, system design and inoculation and what steps need to be taken for industrial adoption of the technology. It was found that high strength influents lead to an increase in energy production, improving economic viability; however, large variations in waste streams indicated that a homogenous solution to wastewater treatment is unlikely with changes to the MEC system specific to different waste streams. The current capital cost of implementing MECs is high and reducing the cost of the electrodes should be a priority. Previous pilot-scale studies have predominantly used carbon-based materials. Significant reductions in relative performance are observed when electrodes increase in size. Inoculation time was found to be a significant barrier to quick operational performance. Economic analysis of the technology indicated that MECs offer an attractive option for wastewater treatment, namely greater energy production and improved treatment efficiency. However, a significant reduction in capital cost is necessary to make this economically viable. MEC based systems should offer improvements in system reliability, reduced downtime, improved treatment rates and improved energy return. Discussion of the merits of H2 or CH4 production indicates that an initial focus on methane production could provide a stepping-stone in the adoption of this technology while the hydrogen market matures.
Collapse
|
63
|
Guo W, Chen M, Liu X, Cheng F, Lu X. Mo 2 C/Reduced Graphene Oxide Composites with Enhanced Electrocatalytic Activity and Biocompatibility for Microbial Fuel Cells. Chemistry 2021; 27:4291-4296. [PMID: 33411374 DOI: 10.1002/chem.202005020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Indexed: 01/08/2023]
Abstract
A simple, cost-effective strategy was developed to effectively improve the electron transfer efficiency as well as the power output of microbial fuel cells (MFCs) by decorating the commercial carbon paper (CP) anode with an advanced Mo2 C/reduced graphene oxide (Mo2 C/RGO) composite. Benefiting from the synergistic effects of the superior electrocatalytic activity of Mo2 C, the high surface area, and prominent conductivity of RGO, the MFC equipped with this Mo2 C/RGO composite yielded a remarkable output power density of 1747±37.6 mW m-2 , which was considerably higher than that of CP-MFC (926.8±6.3 mW m-2 ). Importantly, the composite also facilitated the formation of 3D hybrid biofilm and could effectively improve the bacteria-electrode interaction. These features resulted in an enhanced coulombic efficiency up 13.2 %, nearly one order of magnitude higher than that of the CP (1.2 %).
Collapse
Affiliation(s)
- Wenxian Guo
- School of Urban Construction and Environment, City College of Dongguan University of Technology, Dongguan, Guangdong, 523419, P. R. China
| | - Meiqiong Chen
- School of Urban Construction and Environment, City College of Dongguan University of Technology, Dongguan, Guangdong, 523419, P. R. China
| | - Xiaoqing Liu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Faliang Cheng
- School of Environment and Civil Engineering, Guangdong Engineering and Technology Research Center for, Advanced Nanomaterials, Dongguan University of Technology, Guangdong, 523808, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
64
|
Oxygen reduction reaction (ORR) electrocatalysts in constructed wetland-microbial fuel cells: Effect of different carbon-based catalyst biocathode during bioelectricity production. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
65
|
Wang R, Li H, Sun J, Zhang L, Jiao J, Wang Q, Liu S. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004051. [PMID: 33325567 DOI: 10.1002/adma.202004051] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Electrochemically active bacteria can transport their metabolically generated electrons to anodes, or accept electrons from cathodes to synthesize high-value chemicals and fuels, via a process known as extracellular electron transfer (EET). Harnessing of this microbial EET process has led to the development of microbial bio-electrochemical systems (BESs), which can achieve the interconversion of electrical and chemical energy and enable electricity generation, hydrogen production, electrosynthesis, wastewater treatment, desalination, water and soil remediation, and sensing. Here, the focus is on the current understanding of the microbial EET process occurring at both the bacteria-electrode interface and the biotic interface, as well as some attempts to improve the EET by using various nanomaterials. The behavior of nanomaterials in different EET routes and their influence on the performance of BESs are described. The inherent mechanisms will guide rational design of EET-related materials and lead to a better understanding of EET mechanisms.
Collapse
Affiliation(s)
- Ruiwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huidong Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinzhi Sun
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jia Jiao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingqing Wang
- School of Chemistry and Chemical Engineering, Micro- and Nanotechnology Research Center, Harbin Institute of Technology, Harbin, 150090, China
| | - Shaoqin Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
66
|
A Novel Design Portable Plugged-Type Soil Microbial Fuel Cell for Bioelectricity Generation. ENERGIES 2021. [DOI: 10.3390/en14030553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Soil microbial fuel cells (SMFCs) are a promising cost-effective power source for on-demand electricity generation applications. So far, reported SMFC configurations are usually bulky and hard to setup. In this study, a low-cost portable plugged-type SMFC (PSMFC) was designed and fabricated for on-demand micropower generation. The PSMFC can be activated just by plugging into natural wet soil, which is easy to access in the natural condition. The PSMFC uses carbon-based electrodes for cost-effectiveness. After setting the PSMFC into the soil to activate, it started to produce electricity after 1 h and reached the power density of 7.3 mW/m2 after 48 h. The proposed PSMFC can potentially generate electricity for remote sensors or soil sensing systems.
Collapse
|
67
|
Abstract
Graphene materials (GMs) are being investigated for multiple microbiological applications because of their unique physicochemical characteristics including high electrical conductivity, large specific surface area, and robust mechanical strength. In the last decade, studies on the interaction of GMs with bacterial cells appear conflicting. On one side, GMs have been developed to promote the proliferation of electroactive bacteria on the surface of electrodes in bioelectrochemical systems or to accelerate interspecies electron transfer during anaerobic digestion. On the other side, GMs with antibacterial properties have been synthesized to prevent biofilm formation on membranes for water treatment, on medical equipment, and on tissue engineering scaffolds. In this review, we discuss the mechanisms and factors determining the positive or negative impact of GMs on bacteria. Furthermore, we examine the bacterial growth-promoting and antibacterial applications of GMs and debate their practicability.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
68
|
Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. ENERGIES 2020. [DOI: 10.3390/en13246596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sustainable production of electricity from renewable sources by microorganisms is considered an attractive alternative to energy production from fossil fuels. In recent years, research on microbial fuel cells (MFCs) technology for electricity production has increased. However, there are problems with up-scaling MFCs due to the fairly low power output and high operational costs. One of the approaches to improving energy generation in MFCs is by modifying the existing anode materials to provide more electrochemically active sites and improve the adhesion of microorganisms. The aim of this review is to present the effect of anode modification with carbon compounds, metallic nanomaterials, and polymers and the effect that these modifications have on the structure of the microbiological community inhabiting the anode surface. This review summarizes the advantages and disadvantages of individual materials as well as possibilities for using them for environmentally friendly production of electricity in MFCs.
Collapse
|
69
|
Yi G, Cui D, Yang L, Fang D, Chang Z, Cheng H, Shao P, Luo X, Wang A. Bacteria-affinity aminated carbon nanotubes bridging reduced graphene oxide for highly efficient microbial electrocatalysis. ENVIRONMENTAL RESEARCH 2020; 191:110212. [PMID: 32931790 DOI: 10.1016/j.envres.2020.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/08/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Bioelectrochemical systems (BESs) exhibit great potential for simultaneous wastewater treatment and energy recovery. However, the efficiency of microbial electrocatalysis is fundamentally limited by the high resistance and poor biocompatibility of electrode materials. Herein, we construct a novel "binder-free" 3D biocompatible bioelectrode consists of 1D aminated carbon nanotubes (CNTs-NH2) and 2D conductive reduced graphene oxide (rGO) nanosheets through one-step electrodeposition. As expected, the maximum current density reached to 3.25 ± 0.03 mA cm-2 with the rGO@CNTs-NH2 electrode, which is 4.33-fold higher than that of a bare rGO (0.75 ± 0.01 mA cm-2), and is among the best performance reported for three-dimensional electrodes. The high microbial electrocatalytic activity is mainly attributed to the excellent performance of electron transfer and bacterial colonization, which originates from the 3D interconnecting scaffold, fast 1D CNTs "e-bridge" and positively charged surface.
Collapse
Affiliation(s)
- Genping Yi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Dan Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Difan Fang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Ziwen Chang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Haoyi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| |
Collapse
|
70
|
Gao Y, Yang C, Zhou M, He C, Cao S, Long Y, Li S, Lin Y, Zhu P, Cheng C. Transition Metal and Metal–N
x
Codoped MOF‐Derived Fenton‐Like Catalysts: A Comparative Study on Single Atoms and Nanoparticles. SMALL 2020; 16:e2005060. [PMID: 33230912 DOI: 10.1002/smll.202005060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Yun Gao
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
| | - Chengdong Yang
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
| | - Mi Zhou
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
- Textile Institute Sichuan University Chengdu 610065 China
| | - Chao He
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
| | - Yanping Long
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
| | - Shuang Li
- Functional Materials Department of Chemistry Technische Universität Berlin Hardenbergstraße 40 Berlin 10623 Germany
| | - Yi Lin
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
- Textile Institute Sichuan University Chengdu 610065 China
| | - Puxin Zhu
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
- Textile Institute Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Biomass Science and Engineering College of Polymer Science and Engineering West China School of Medicine/West China Hospital Sichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610041 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| |
Collapse
|
71
|
Pollutants degradation and power generation by photocatalytic fuel cells: A comprehensive review. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
72
|
Gajda I, You J, Santoro C, Greenman J, Ieropoulos IA. A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells. Electrochim Acta 2020; 353:136388. [PMID: 32884154 PMCID: PMC7430051 DOI: 10.1016/j.electacta.2020.136388] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 01/11/2023]
Abstract
This work is presenting for the first time the use of inexpensive and efficient anode material for boosting power production, as well as improving electrofiltration of human urine in tubular microbial fuel cells (MFCs). The MFCs were constructed using unglazed ceramic clay functioning as the membrane and chassis. The study is looking into effective anodic surface modification by applying activated carbon micro-nanostructure onto carbon fibres that allows electrode packing without excessive enlargement of the electrode. The surface treatment of the carbon veil matrix resulted in 3.7 mW (52.9 W m-3 and 1626 mW m-2) of power generated and almost a 10-fold increase in the anodic current due to the doping as well as long-term stability in one year of continuous operation. The higher power output resulted in the synthesis of clear catholyte, thereby i) avoiding cathode fouling and contributing to the active splitting of both pH and ions and ii) transforming urine into a purified catholyte - 30% salt reduction - by electroosmotic drag, whilst generating - rather than consuming - electricity, and in a way demonstrating electrofiltration. For the purpose of future technology implementation , the importance of simultaneous increase in power generation, long-term stability over 1 year and efficient urine cleaning by using low-cost materials, is very promising and helps the technology enter the wider market.
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Jiseon You
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| | - Ioannis A. Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, University of the West of England, BS16 1QY, UK
| |
Collapse
|
73
|
Prajapati S, Yelamarthi PS. Microbial fuel cell‐assisted Congo red dye decolorization using biowaste‐derived anode material. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shalini Prajapati
- Department of Chemical Engineering National Institute of Technology Warangal India
| | | |
Collapse
|
74
|
Santoro C, Walter XA, Soavi F, Greenman J, Ieropoulos I. Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochim Acta 2020; 353:136530. [PMID: 32884155 PMCID: PMC7430050 DOI: 10.1016/j.electacta.2020.136530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, a membraneless microbial fuel cell (MFC) with an empty volume of 1.5 mL, fed continuously with hydrolysed urine, was tested in supercapacitive mode (SC-MFC). In order to enhance the power output, a double strategy was used: i) a double cathode was added leading to a decrease in the equivalent series resistance (ESR); ii) the apparent capacitance was boosted up by adding capacitive features on the anode electrode. Galvanostatic (GLV) discharges were performed at different discharge currents. The results showed that both strategies were successful obtaining a maximum power output of 1.59 ± 0.01 mW (1.06 ± 0.01 mW mL−1) at pulse time of 0.01 s and 0.57 ± 0.01 mW (0.38 ± 0.01 mW mL−1) at pulse time of 2 s. The highest energy delivered at ipulse equal to 2 mA was 3.3 ± 0.1 mJ. The best performing SC-MFCs were then connected in series and parallel and tested through GLV discharges. As the power output was similar, the connection in parallel allowed to roughly doubling the current produced. Durability tests over ≈5.6 days showed certain stability despite a light overall decrease. Air-breathing microbial fuel cell was tested in supercapacitive mode. A double cathode addition lead to a decrease in ohmic resistance. Apparent capacitance was boosted up by adding capacitive features. Maximum power output of 1.59 mW (1.06 mW mL−1) was reached at tpulse 0.01s. Series and parallel connections improved the galvanostatic discharges.
Collapse
Affiliation(s)
- Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Francesca Soavi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - Università̀; di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK.,Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
75
|
A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater. SUSTAINABILITY 2020. [DOI: 10.3390/su12166538] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microbial fuel cell (MFC) is an emerging method for extracting energy from wastewater. The power generated from such systems is low due to the sluggish electron transfer from the inside of the biocatalyst to the anode surface. One strategy for enhancing the electron transfer rate is anode modification. In this study, iron nanostructure was synthesized on a carbon cloth (CC) via a simple electroplating technique, and later investigated as a bio-anode in an MFC operated with real wastewater. The performance of an MFC with a nano-layer of iron was compared to that using bare CC. The results demonstrated that the open-circuit voltage increased from 600 mV in the case of bare CC to 800 mV in the case of the iron modified CC, showing a 33% increase in OCV. This increase in OCV can be credited to the decrease in the anode potential from 0.16 V vs. Ag/AgCl in the case of bare CC, to −0.01 V vs. Ag/AgCl in the case of the modified CC. The power output in the case of the modified electrode was 80 mW/m2—two times that of the MFC using the bare CC. Furthermore, the steady-state current in the case of the iron modified carbon cloth was two times that of the bare CC electrode. The improved performance was correlated to the enhanced electron transfer between the microorganisms and the iron-plated surface, along with the increase of the anode surface- as confirmed from the electrochemical impedance spectroscopy and the surface morphology, respectively.
Collapse
|
76
|
Graphene-Like Layers from Carbon Black: In Vivo Toxicity Assessment. NANOMATERIALS 2020; 10:nano10081472. [PMID: 32727143 PMCID: PMC7466612 DOI: 10.3390/nano10081472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Graphene-like (GL) layers, a new graphene-related material (GRM), possess peculiar chemical, colloidal, optical and transport properties. Considering the very recent promising application of GL layers in biomedical and bioelectronic fields, it is of utmost importance to investigate the toxicological profile of these nanomaterials. This study represents an important first report of a complete in vivo toxicity assessment of GL layers on embryonic zebrafish (Danio rerio). Our results show that GL layers do not lead to any perturbations in the different biological parameters evaluated, indicating their good biocompatibility on a vertebrate model. The new insight into the biosafety of GL layers will expand their applications in nanomedicine.
Collapse
|
77
|
Gajda I, Obata O, Jose Salar-Garcia M, Greenman J, Ieropoulos IA. Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations. Bioelectrochemistry 2020; 133:107459. [PMID: 32126486 PMCID: PMC7132540 DOI: 10.1016/j.bioelechem.2020.107459] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 11/30/2022]
Abstract
In order to improve the potential of Microbial Fuel Cells (MFCs) as an applicable technology, the main challenge is to engineer practical systems for bioenergy production at larger scales and to test how the prototypes withstand the challenges occurring during the prolonged operation under constant feeding regime with real waste stream. This work presents the performance assessment of low-cost ceramic MFCs in the individual, stacked (modular) and modular cascade (3 modules) configurations during long term operation up to 19 months, utilising neat human urine as feedstock. During 1 year, the performance of the individual MFC units reached up to 1.56 mW (22.3 W/m3), exhibiting only 20% power loss on day 350 which was significantly smaller in comparison to conventional proton or cation exchange membranes. The stack module comprising 22 MFCs reached up to 21.4 mW (11.9 W/m3) showing power recovery to the initial output levels after 580 days, whereas the 3-module cascade reached up to 75 mW (13.9 W/m3) of power, showing 20% power loss on day 446. In terms of chemical oxygen demand (COD) removal, the 3-module cascade configuration achieved a cumulative reduction of >92%, which is higher than that observed in the single module (56%).
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK.
| | - Oluwatosin Obata
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - Maria Jose Salar-Garcia
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Centre For Research in Biosciences, University of the West of England, BS16 1QY, UK
| | - Ioannis A Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, BS16 1QY, UK; Centre For Research in Biosciences, University of the West of England, BS16 1QY, UK.
| |
Collapse
|
78
|
Sirajudeen AAO, Annuar MSM, Subramaniam R. Composite of medium-chain-length polyhydroxyalkanoates-co-methyl acrylate and carbon nanotubes as innovative electrodes modifier in microbial fuel cell. Biotechnol Appl Biochem 2020; 68:307-318. [PMID: 32314420 DOI: 10.1002/bab.1928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 11/11/2022]
Abstract
A microbial fuel cell is a sustainable and environmental-friendly device that combines electricity generation and wastewater treatment through metabolic activities of microorganisms. However, low power output from inadequate electron transfer to the anode electrode hampers its practical implementation. Nanocomposites of oxidized carbon nanotubes and medium-chain-length polyhydroxyalkanoates (mcl-PHA) grafted with methyl acrylate monomers enhance the electrochemical function of electrodes in microbial fuel cell. Extensive polymerization of methyl acrylate monomers within mcl-PHA matrix, and homogenous dispersion of carbon nanotubes within the graft matrix are responsible for the enhancement. Modified electrodes exhibit high conductivities, better redox peak and reduction of cell internal resistance up to 76%. A stable voltage output at almost 700 mV running for 225 H generates maximum power and current density of 351 mW/m2 and 765 mA/m2 , respectively. Superior biofilm growth on modified surface is responsible for improved electron transfer to the anode hence stable and elevated power output generation.
Collapse
Affiliation(s)
| | | | - Ramesh Subramaniam
- Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
79
|
Abstract
Since the observation of direct interspecies electron transfer (DIET) in anaerobic mixed cultures in 2010s, the topic “DIET-stimulation” has been the main route to enhance the performance of anaerobic digestion (AD) under harsh conditions, such as high organic loading rate (OLR) and the toxicants’ presence. In this review article, we tried to answer three main questions: (i) What are the merits and strategies for DIET stimulation? (ii) What are the consequences of stimulation? (iii) What is the mechanism of action behind the impact of this stimulation? Therefore, we introduced DIET history and recent relevant findings with a focus on the theoretical advantages. Then, we reviewed the most recent articles by categorizing how DIET reaction was stimulated by adding conductive material (CM) and/or applying external voltage (EV). The emphasis was made on the enhanced performance (yield and/or production rate), CM type, applied EV, and mechanism of action for each stimulation strategy. In addition, we explained DIET-caused changes in microbial community structure. Finally, future perspectives and practical limitations/chances were explored in detail. We expect this review article will provide a better understanding for DIET pathway in AD and encourage further research development in a right direction.
Collapse
|
80
|
Luo S, Fu B, Liu F, He K, Yang H, Ma J, Wang H, Zhang X, Liang P, Huang X. Construction of innovative 3D-weaved carbon mesh anode network to boost electron transfer and microbial activity in bioelectrochemical system. WATER RESEARCH 2020; 172:115493. [PMID: 31978838 DOI: 10.1016/j.watres.2020.115493] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Bioelectrochemical system (BES) is promising technology to simultaneously treat wastewater and recover energy, and electrode material is important for the system performance. Microbial fuel cell (MFC) is one of typical BES to be applied in wastewater treatment. How to improve the electrode material is significant to improve wastewater treatment, energy recovery and cost effectiveness. In this study, 3D-weaved carbon electrode entity, assembled by multiple pieces of carbon mesh (CM), was proposed to combine all electrode components as entity to facilitate electron conduction and ionic migration, compared with carbon brush (CB) and granular activated carbon (GAC). The result showed that current density and internal resistance of MFC using 3D-weaved CM as horizontally extended inside anode (CM(T)) were 30.9 A m-3 and 4.5 Ω, respectively, with higher output than traditional GAC (22.6 A m-3 and 6.2 Ω). Though GAC had greater electrode filling and surface area for biomass growth, the electron transfer efficiency per unit electrode biomass was only at 0.0019 ± 0.0002 mol g-1 d-1, much lower than CM(T) at 0.0077 ± 0.0009 mol g-1 day-1. Higher ionic migration rate of CM(T) suggested the assisting effect of composite electrode to enhance ionic transportation towards the cathode. Microbial analysis further indicated that 3D-CM electrode network could simultaneously enhance Geobacter abundance and methanogen activity, suggesting the importance of electrode network on electricigens. Furthermore, CM(T) could obtain 10 times higher energy output efficiency than traditional GAC when applied inside anode chamber. This study proved that network construction of anode electrode could promote the electrode performance and cost effectiveness, suggesting the future development of reactor design of bioelectrochemical system.
Collapse
Affiliation(s)
- Shuai Luo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Boya Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Fubin Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Kai He
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Heng Yang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Junjun Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Han Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
81
|
Zhang X, Wang Q, Tang C, Wang HF, Liang P, Huang X, Zhang Q. High-Power Microbial Fuel Cells Based on a Carbon-Carbon Composite Air Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905240. [PMID: 31755227 DOI: 10.1002/smll.201905240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Microbial fuel cells (MFCs) can convert organics in wastewater directly to electricity, and improving oxygen reduction reaction (ORR) performance is critical to their development and future applications. Electrocatalytic ORR performance is determined by the intrinsic activity and accessible amounts of active sites. A surface nitrogen-enriched carbon coaxial nanocable (NCCN) is applied as an ORR electrocatalyst and combined with activated carbon (AC) with 80 wt% addition as a carbon-carbon composite air cathode in MFCs. The fully exposed nitrogen active sites of NCCN contribute to the enhanced ORR activity, while the graphitized core affords a rapid pathway for electron transportation. AC serves as a spacer to construct a porous framework with interconnected ion diffusion channels. This cathode thus exhibits a maximum power density of 2090 mW m-2 , 120% higher than commercial Pt/C electrocatalysts, and also 6% higher than the pure NCCN, indicating a synergistic effect between NCCN and AC. A high-performance NCCN-AC air cathode with a great promise for future MFC applications is reported and an effective strategy to bridge the electrocatalytic performance from nanomaterials to practical devices is presented.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiuying Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Cheng Tang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Hao-Fan Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
82
|
Yang W, Chen S. Biomass-Derived Carbon for Electrode Fabrication in Microbial Fuel Cells: A Review. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00041] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
83
|
Gajda I, Greenman J, Ieropoulos I. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. APPLIED ENERGY 2020; 262:114475. [PMID: 32201452 PMCID: PMC7074012 DOI: 10.1016/j.apenergy.2019.114475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 05/09/2023]
Abstract
The chemical energy contained in urine can be efficiently extracted into direct electricity by Microbial Fuel Cell stacks to reach usable power levels for practical implementation and a decentralised power source in remote locations. Herein, a novel type of the anode electrode was developed using powdered activated carbon (PAC) applied onto the carbon fibre scaffold in the ceramic MFC stack to achieve superior electrochemical performance during 500 days of operation. The stack equipped with modified anodes (MF-CV) produced up to 37.9 mW (21.1 W m-3) in comparison to the control (CV) that reached 21.4 mW (11.9 W m-3) showing 77% increase in power production. The novel combination of highly porous activated carbon particles applied onto the conductive network of carbon fibres promoted simultaneously electrocatalytic activity and increased surface area, resulting in excellent power output from the MFC stack as well as higher treatment rate. Considering the low cost and simplicity of the material preparation, as well as the outstanding electrochemical activity during long term operation, the resulting modification provides a promising anode electrocatalyst for high-performance MFC stacks to enhance urine and waste treatment for the purpose of future scale-up and technology implementation as an applied off-grid energy source.
Collapse
Affiliation(s)
- Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
84
|
Yang C, Aslan H, Zhang P, Zhu S, Xiao Y, Chen L, Khan N, Boesen T, Wang Y, Liu Y, Wang L, Sun Y, Feng Y, Besenbacher F, Zhao F, Yu M. Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement. Nat Commun 2020; 11:1379. [PMID: 32170166 PMCID: PMC7070098 DOI: 10.1038/s41467-020-14866-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/31/2020] [Indexed: 01/02/2023] Open
Abstract
Bioelectricity generation, by Shewanella oneidensis (S. oneidensis) MR-1, has become particularly alluring, thanks to its extraordinary prospects for energy production, pollution treatment, and biosynthesis. Attempts to improve its technological output by modification of S. oneidensis MR-1 remains complicated, expensive and inefficient. Herein, we report on the augmentation of S. oneidensis MR-1 with carbon dots (CDs). The CDs-fed cells show accelerated extracellular electron transfer and metabolic rate, with increased intracellular charge, higher adenosine triphosphate level, quicker substrate consumption and more abundant extracellular secretion. Meanwhile, the CDs promote cellular adhesion, electronegativity, and biofilm formation. In bioelectrical systems the CDs-fed cells increase the maximum current value, 7.34 fold, and power output, 6.46 fold. The enhancement efficacy is found to be strongly dependent on the surface charge of the CDs. This work demonstrates a simple, cost-effective and efficient route to improve bioelectricity generation of S. oneidensis MR-1, holding promise in all relevant technologies. Bacterial fuel cells have generated attention with the prospect of green energy production; current research is focused on optimising the system to improve efficiency. Here, the authors report on the feeding of carbon dots to S. oneidensis MR-1 to enhance metabolic activity and bioelectric generation.
Collapse
Affiliation(s)
- Chenhui Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China.,Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Hüsnü Aslan
- iNANO Centre, Aarhus University, 8000, Aarhus, Denmark.,Sino-Danish Centre for Research and Education (SDC), 8000, Aarhus, Denmark
| | - Peng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090, Harbin, China
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China
| | - Nasar Khan
- iNANO Centre, Aarhus University, 8000, Aarhus, Denmark
| | - Thomas Boesen
- iNANO Centre, Aarhus University, 8000, Aarhus, Denmark.,Center for Electromicrobiology, Aarhus University, 8000, Aarhus, Denmark
| | - Yuanlin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Yang Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Lei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Ye Sun
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, 150001, Harbin, China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090, Harbin, China.
| | | | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China.
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China.
| |
Collapse
|
85
|
A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. Proc Natl Acad Sci U S A 2020; 117:5074-5080. [PMID: 32051251 PMCID: PMC7060665 DOI: 10.1073/pnas.1913463117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Addressing the global challenge of sustainability calls for cost-effective and eco-friendly pathways to go beyond the existing energy-intense synthetic routes. Biohybrid electrochemical systems integrate electroactive bacteria with synthetic electrodes to leverage the power of biocatalysis for energy conversion and chemical synthesis. This work presents a three-dimensional electrode scaffold to couple the intracellular metabolism with extracellular redox transformations by means of electrochemistry. The large population of bacteria actively metabolizing within the electrode scaffold produces a benchmark current density. The biohybrid electrode can also carry out synthetic reactions within or beyond biochemical pathways driven by solar light. This hierarchical electrode provides a robust and versatile platform to wire bacteria’s intrinsic physiological functionalities with artificial electronics for sustainable energy conversion and chemical production. Integration of electroactive bacteria into electrodes combines strengths of intracellular biochemistry with electrochemistry for energy conversion and chemical synthesis. However, such biohybrid systems are often plagued with suboptimal electrodes, which limits the incorporation and productivity of the bacterial colony. Here, we show that an inverse opal-indium tin oxide electrode hosts a large population of current-producing Geobacter and attains a current density of 3 mA cm−2 stemming from bacterial respiration. Differential gene expression analysis revealed Geobacter’s transcriptional regulations to express more electron-relaying proteins when interfaced with electrodes. The electrode also allows coculturing with Shewanella for syntrophic electrogenesis, which grants the system additional flexibility in converting electron donors. The biohybrid electrode containing Geobacter can also catalyze the reduction of soluble fumarate and heterogenous graphene oxide, with electrons from an external power source or an irradiated photoanode. This biohybrid electrode represents a platform to employ live cells for sustainable power generation and biosynthesis.
Collapse
|
86
|
Wang F, Zhang P, You S, Du J, Jiang B, Li X, Cai Z, Ren N, Zou J. Co 8FeS 8 wrapped in Auricularia-derived N-doped carbon with a micron-size spherical structure as an efficient cathode catalyst for strengthening charge transfer and bioelectricity generation. J Colloid Interface Sci 2020; 567:65-74. [PMID: 32036115 DOI: 10.1016/j.jcis.2020.01.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022]
Abstract
The main issues regarding the practical application of microbial fuel cells (MFCs) are the poor activity and tolerance of oxygen reduction reaction (ORR) catalysts in wastewater. In this study, Auricularia chelated with Co, Fe and S ions is used as a nitrogen (N)-enriched carbon source to prepare N-doped bimetallic sulfide (Co8FeS8)-embedded carbon spheres (Co8FeS8/NSC) using a hydrothermal method. The effects of various temperatures (800-950 °C) on the structure and catalytic activity of Co8FeS8/NSC catalysts are investigated. The MFC with a Co8FeS8/NSC (900 °C) cathode obtained the maximum power density of 1.002 W m-2, which is higher than that of Pt/C (0.88 W m-2). After 1440 h of operation, the power density of the Co8FeS8/NSC (900 °C) cathode only declined by 5.49%, indicating that the Co8FeS8 activity, charge transfer and O2 transport were slightly influenced by the attached microbes and poisonous substances in the wastewater. The electrochemical results indicate that Co8FeS8/NSC (900 °C) mainly proceeds by a 4e- ORR pathway, indicating that Co8FeS8 (Co2+ and Fe2+) wrapped in NSCs (carbon spheres) can trigger synergistic effects to provide more active sites and high electrical conductivity to achieve the rapid kinetics required for the ORR. Moreover, the porous structures of the NSCs (220.97 m2 g-1) with incorporated pyridinic N, pyrrolic N and graphitic N can provide abundant available channels for O2 and OH- transport to ensure the preferential accessibility of the reactant molecules to active sites. This indicates that Auricularia-derived Co8FeS8/NSC catalysts have great potential as alternatives for precious metal-based catalysts in neutral electrolyte MFCs.
Collapse
Affiliation(s)
- Fangyu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Peng Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiannan Du
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Xuerui Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zhuang Cai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
87
|
Fang X, Kalathil S, Reisner E. Semi-biological approaches to solar-to-chemical conversion. Chem Soc Rev 2020; 49:4926-4952. [DOI: 10.1039/c9cs00496c] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review provides an overview of the cross-disciplinary field of semi-artificial photosynthesis, which combines strengths of biocatalysis and artificial photosynthesis to develop new concepts and approaches for solar-to-chemical conversion.
Collapse
Affiliation(s)
- Xin Fang
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Shafeer Kalathil
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Erwin Reisner
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
88
|
Suo D, Fang Z, Yu Y, Yong Y. Synthetic curli enables efficient microbial electrocatalysis with stainless‐steel electrode. AIChE J 2019. [DOI: 10.1002/aic.16897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Di Suo
- Biofuels Institute, School of Environment and Safety EngineeringJiangsu University Zhenjiang China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety EngineeringJiangsu University Zhenjiang China
| | - Yang‐Yang Yu
- Biofuels Institute, School of Environment and Safety EngineeringJiangsu University Zhenjiang China
| | - Yang‐Chun Yong
- Biofuels Institute, School of Environment and Safety EngineeringJiangsu University Zhenjiang China
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University Zhenjiang China
| |
Collapse
|
89
|
Heydorn RL, Engel C, Krull R, Dohnt K. Strategies for the Targeted Improvement of Anodic Electron Transfer in Microbial Fuel Cells. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Raymond Leopold Heydorn
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Christina Engel
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Rainer Krull
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Katrin Dohnt
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| |
Collapse
|
90
|
Co-modified MoO2 nanoparticles highly dispersed on N-doped carbon nanorods as anode electrocatalyst of microbial fuel cells. Biosens Bioelectron 2019; 145:111727. [DOI: 10.1016/j.bios.2019.111727] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
|
91
|
Chen Y, Xie A, Cui J, Lang J, Li C, Yan Y, Dai J. One-step facile fabrication of visible light driven antifouling carbon cloth fibers membrane for efficient oil-water separation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
92
|
Yoshida N, Miyata Y, Iida K. Current recovery from sewage wastewater using electrochemically oxidized graphite felt. RSC Adv 2019; 9:39348-39354. [PMID: 35540661 PMCID: PMC9076062 DOI: 10.1039/c9ra07671a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
The oxidation of a carbon anode has been reported to enhance electricity recovery in a microbial fuel cell (MFC). This study investigates the applicability of electrochemically oxidized graphite felt (EOGF) as the anode for the recovery of electricity from sewage wastewater when polarized at 0.2 V during MFC operation. EOGFs were prepared by polarizing graphite felt (GF) at 2 V in 1% sulfuric acid or nitric acid. The nitric acid-treated EOGF inoculated with an sewage sludge produced a maximum current of 110 μA cm-3, which exceeds that produced by the original GF (91 μA cm-3) under electrochemical cultivation at 0.2 V vs. Ag/AgCl. This outcome is attributed to a decrease in charge-transfer resistance and an increase in the capacitance of the anode. In contrast, electrochemical oxidation did not affect the chemical oxygen demand (COD) removal rate or the microbial community structure of the anode. The MFC equipped with the EOGF delivered 340-560 mW m-3-MFC of electricity during operation in the drainage water channel of a primary sedimentation tank, which corresponds to 11-15 μA cm-3 of current density. The lower current produced in the MFC compared to that observed during electrochemical cultivation indicates that factors other than the anode material restrict current production in the MFC. Even with the small amount of generated electricity, when operated for more than three days, the MFC provides a positive net energy balance when integrated with post-aeration treatment.
Collapse
Affiliation(s)
- Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology Nagoya Aichi Japan
| | - Yasushi Miyata
- Nagoya Municipal Industrial Research Institute 3-4-41, Rokuban, Atsuta-ku Nagoya 456-0058 Japan
| | - Kazuki Iida
- Nippon Koei Co., Ltd. 1-14-6 Kudankita, Chiyoda-ku Tokyo 102-8539 Japan
| |
Collapse
|
93
|
Li S, Pan Q, Xiao K, Ouyang T, Li N, Liu Z. Metallic Co
9
S
8
Coupled Hollow N‐Doped Carbon Sphere with Synergistic Interface Structure for Efficient Electricity Generation in Microbial Fuel Cells. ChemCatChem 2019. [DOI: 10.1002/cctc.201901667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Si‐Jie Li
- School of Chemistry and Chemical Engineering Institute of Clean Energy and Materials Guangzhou Key Laboratory for Clean Energy and MaterialsGuangzhou University Guangzhou 510006 P. R. China
| | - Qiu‐Ren Pan
- School of Chemistry and Chemical Engineering Institute of Clean Energy and Materials Guangzhou Key Laboratory for Clean Energy and MaterialsGuangzhou University Guangzhou 510006 P. R. China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering Institute of Clean Energy and Materials Guangzhou Key Laboratory for Clean Energy and MaterialsGuangzhou University Guangzhou 510006 P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering Institute of Clean Energy and Materials Guangzhou Key Laboratory for Clean Energy and MaterialsGuangzhou University Guangzhou 510006 P. R. China
| | - Nan Li
- School of Chemistry and Chemical Engineering Institute of Clean Energy and Materials Guangzhou Key Laboratory for Clean Energy and MaterialsGuangzhou University Guangzhou 510006 P. R. China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering Institute of Clean Energy and Materials Guangzhou Key Laboratory for Clean Energy and MaterialsGuangzhou University Guangzhou 510006 P. R. China
| |
Collapse
|
94
|
Ren L, McCuskey SR, Moreland A, Bazan GC, Nguyen TQ. Tuning Geobacter sulfurreducens biofilm with conjugated polyelectrolyte for increased performance in bioelectrochemical system. Biosens Bioelectron 2019; 144:111630. [DOI: 10.1016/j.bios.2019.111630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/17/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
|
95
|
Yang C, Zhou M, He C, Gao Y, Li S, Fan X, Lin Y, Cheng F, Zhu P, Cheng C. Augmenting Intrinsic Fenton-Like Activities of MOF-Derived Catalysts via N-Molecule-Assisted Self-catalyzed Carbonization. NANO-MICRO LETTERS 2019; 11:87. [PMID: 34138053 PMCID: PMC7770684 DOI: 10.1007/s40820-019-0319-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/29/2019] [Indexed: 05/23/2023]
Abstract
To overcome the ever-growing organic pollutions in the water system, abundant efforts have been dedicated to fabricating efficient Fenton-like carbon catalysts. However, the rational design of carbon catalysts with high intrinsic activity remains a long-term goal. Herein, we report a new N-molecule-assisted self-catalytic carbonization process in augmenting the intrinsic Fenton-like activity of metal-organic-framework-derived carbon hybrids. During carbonization, the N-molecules provide alkane/ammonia gases and the formed iron nanocrystals act as the in situ catalysts, which result in the elaborated formation of carbon nanotubes (in situ chemical vapor deposition from alkane/iron catalysts) and micro-/meso-porous structures (ammonia gas etching). The obtained catalysts exhibited with abundant Fe/Fe-Nx/pyridinic-N active species, micro-/meso-porous structures, and conductive carbon nanotubes. Consequently, the catalysts exhibit high efficiency toward the degradation of different organic pollutions, such as bisphenol A, methylene blue, and tetracycline. This study not only creates a new pathway for achieving highly active Fenton-like carbon catalysts but also takes a step toward the customized production of advanced carbon hybrids for diverse energy and environmental applications.
Collapse
Affiliation(s)
- Chengdong Yang
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Mi Zhou
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yun Gao
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Xin Fan
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yi Lin
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Fei Cheng
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Puxin Zhu
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
96
|
Yang W, Li J, Lan L, Li Z, Wei W, Lu JE, Chen S. Facile Synthesis of Fe/N/S‐Doped Carbon Tubes as High‐Performance Cathode and Anode for Microbial Fuel Cells. ChemCatChem 2019. [DOI: 10.1002/cctc.201901084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering College of Water Resource & Hydropower Sichuan University Chengdu 610065 P. R. China
| | - Jun Li
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University Chongqing 400030 P. R. China
| | - Linghan Lan
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University Chongqing 400030 P. R. China
| | - Zhuo Li
- Institute of Engineering Thermophysics School of Energy and Power Engineering Chongqing University Chongqing 400030 P. R. China
| | - Wenli Wei
- Department of Chemistry and Biochemistry University of California Santa Cruz CA-95064 USA
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Jia En Lu
- Department of Chemistry and Biochemistry University of California Santa Cruz CA-95064 USA
| | - Shaowei Chen
- Department of Chemistry and Biochemistry University of California Santa Cruz CA-95064 USA
| |
Collapse
|
97
|
Yang L, Yi G, Hou Y, Cheng H, Luo X, Pavlostathis SG, Luo S, Wang A. Building electrode with three-dimensional macroporous interface from biocompatible polypyrrole and conductive graphene nanosheets to achieve highly efficient microbial electrocatalysis. Biosens Bioelectron 2019; 141:111444. [DOI: 10.1016/j.bios.2019.111444] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
|
98
|
Liu J, Wei L, Cao C, Zhang F, Lang F, Wang H, Yang H, Shen J. Salt-induced silk gel-derived N and trace Fe co-doped 3D porous carbon as an oxygen reduction catalyst in microbial fuel cells. NANOSCALE 2019; 11:13431-13439. [PMID: 31281907 DOI: 10.1039/c9nr03778k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inexpensive and high-efficiency oxygen reduction reaction (ORR) catalysts play a significant role in achieving practical applications of microbial fuel cells (MFCs). Hence, herein, novel nitrogen (N) and trace iron (Fe) co-doped three-dimensional (3D) porous carbon (NFex-C) was synthesized as an excellent ORR catalyst from an interesting salt-induced silk gel, which was beneficial to the spontaneously formation of porosity and boosted the ORR activity. Among the series of NFex-C, NFe0.5-C (1.20% N-ORR/C, 0.07 at% Fe) possessed a higher specific surface area (538.94 m2 g-1) and pore volume (2.158 cm3 g-1). Note that NFe0.5-C exhibited a significantly higher positive initial potential (0.274 V vs. Ag/AgCl) and half-wave potential (0.095 V vs. Ag/AgCl) than other catalysts and commercial Pt/C (20 wt%); this implied that it possessed prominent ORR catalytic activity. In the MFC tests, the output-voltage and maximum power density of NFe0.5-C were enhanced to 517.37 ± 7.87 mV and 605.35 ± 15.39 mW m-2, respectively. Moreover, NFe0.5-C (0.15 $ g-1) exhibits excellent anti-poisoning ability and is thousands of times cheaper than commercial Pt/C (20 wt%, 220.04 $ g-1); therefore, NFe0.5-C should be a prospective catalyst to substitute precious commercial Pt/C in MFCs and even for application in other types of fuel cells.
Collapse
Affiliation(s)
- Jianting Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liling Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China.
| | - Chun Cao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fengzheng Lang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huiqiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China. and University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haijun Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China.
| | - Jianquan Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, PR China.
| |
Collapse
|
99
|
Novel thin-film nanofibrous composite membranes containing directional toxin transport nanochannels for efficient and safe hemodialysis application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
100
|
Santoro C, Walter XA, Soavi F, Greenman J, Ieropoulos I. Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochim Acta 2019; 307:241-252. [PMID: 31217626 PMCID: PMC6559283 DOI: 10.1016/j.electacta.2019.03.194] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
A self-stratified microbial fuel cell fed with human urine with a total internal volume of 0.55 ml was investigated as an internal supercapacitor, for the first time. The internal self-stratification allowed the development of two zones within the cell volume. The oxidation reaction occurred on the bottom electrode (anode) and the reduction reaction on the top electrode (cathode). The electrodes were discharged galvanostatically at different currents and the two electrodes were able to recover their initial voltage value due to their red-ox reactions. Anode and cathode apparent capacitance was increased after introducing high surface area activated carbon embedded within the electrodes. Peak power produced was 1.20 ± 0.04 mW (2.19 ± 0.06 mW ml-1) for a pulse time of 0.01 s that decreased to 0.65 ± 0.02 mW (1.18 ± 0.04 mW ml-1) for longer pulse periods (5 s). Durability tests were conducted over 44 h with ≈2600 discharge/recharge cycles. In this relatively long-term test, the equivalent series resistance increased only by 10% and the apparent capacitance decreased by 18%.
Collapse
Affiliation(s)
- Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - John Greenman
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|