51
|
Chen YJ, Zhang JZ, Wu ZX, Qiao YX, Zheng L, Wondu Dagnaw F, Tong QX, Jian JX. Molecular Engineering of Perylene Diimide Polymers with a Robust Built-in Electric Field for Enhanced Solar-Driven Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202318224. [PMID: 38095880 DOI: 10.1002/anie.202318224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The built-in electric field of the polymer semiconductors could be regulated by the dipole moment of its building blocks, thereby promoting the separation of photogenerated carriers and achieving efficient solar-driven water splitting. Herein, three perylene diimide (PDI) polymers, namely oPDI, mPDI and pPDI, are synthesized with different phenylenediamine linkers. Notably, the energy level structure, light-harvesting efficiency, and photogenerated carrier separation and migration of polymers are regulated by the orientation of PDI unit. Among them, oPDI enables a large dipole moment and robust built-in electric field, resulting in enhanced solar-driven water splitting performance. Under simulated sunlight irradiation, oPDI exhibits the highest photocurrent of 115.1 μA cm-2 for photoelectrochemical oxygen evolution, which is 11.5 times that of mPDI, 26.8 times that of pPDI and 104.6 times that of its counterparts PDI monomer at the same conditions. This work provides a strategy for designing polymers by regulating the orientation of structural units to construct efficient solar energy conversion systems.
Collapse
Affiliation(s)
- Yi-Jing Chen
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Jun-Zheng Zhang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Zhi-Xing Wu
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, 60174, Norrköping, Sweden
| | - Ying-Xin Qiao
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Lei Zheng
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Fentahun Wondu Dagnaw
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| | - Jing-Xin Jian
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, 515063, Guangdong, P. R. China
| |
Collapse
|
52
|
Chu X, Luan BB, Huang AX, Zhao Y, Guo H, Ning Y, Cheng H, Zhang G, Zhang FM. Controlled synthesis of 2D-2D conductive metal-organic framework/g-C 3N 4 heterojunctions for efficient photocatalytic hydrogen evolution. Dalton Trans 2024; 53:2534-2540. [PMID: 38234156 DOI: 10.1039/d3dt03894g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Designing photocatalysts with efficient charge separation and electron transport capabilities to achieve efficient visible-driven hydrogen production remains a challenge. Herein, 2D-2D conductive metal-organic framework/g-C3N4 heterojunctions were successfully prepared by an in situ assembly. Compared to pristine g-C3N4, the ratio-optimized Ni-CAT-1/g-C3N4 exhibits approximately 3.6 times higher visible-light H2 production activity, reaching 14 mmol g-1. Through investigations using time-resolved photoluminescence, surface photovoltage, and wavelength-dependent photocurrent action spectroscopies, it is determined that the improved photocatalytic performance is attributed to enhanced charge transfer and separation, specifically the efficient transfer of excited high-energy-level electrons from g-C3N4 to Ni-CAT in the heterojunctions. Furthermore, the high electrical conductivity of Ni-CAT enables rapid electron transport, contributing to the overall enhanced performance. This work provides a feasible strategy to construct efficient dimension-matched g-C3N4-based heterojunction photocatalysts with high-efficiency charge separation for solar-driven H2 production.
Collapse
Affiliation(s)
- Xiaoyu Chu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
- Yongkang Jiaxiao Electric Welding Automation Equipment Co. Ltd, Jinhua 321000, P. R. China
| | - Bing-Bing Luan
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
| | - Ao-Xiang Huang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
| | - Yongkuo Zhao
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
| | - Hongxia Guo
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
| | - Yang Ning
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
| | - Haojian Cheng
- Yongkang Jiaxiao Electric Welding Automation Equipment Co. Ltd, Jinhua 321000, P. R. China
| | - Guiling Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
| |
Collapse
|
53
|
Zhou E, Zhang X, Zhu L, Chai E, Chen J, Li J, Yuan D, Kang L, Sun Q, Wang Y. Ultrathin covalent organic framework nanosheets for enhanced photocatalytic water oxidation. SCIENCE ADVANCES 2024; 10:eadk8564. [PMID: 38232160 DOI: 10.1126/sciadv.adk8564] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Photocatalytic water oxidation is a key half-reaction for various solar-to-fuel conversion systems but requires simultaneous water affinity and hole accumulation at the photocatalytic site. Here, we present the rational design and synthesis of an ionic-type covalent organic framework (COF) named tetraphenylporphyrin cobalt and cobalt bipyridine complex (CoTPP-CoBpy3) COF, combining cobalt porphyrin and cobalt bipyridine building blocks as a photocatalyst for water oxidation. The good dispersibility of porous large-size (>2 micrometers) COF nanosheets (≈1.45 nanometers) facilitates local water collection; the ultrafast triplet-state charge transfer (1.8 picoseconds) and prolonged charge separation (1.2 nanoseconds) further contribute to the efficient accumulation of holes in the CoTPP moiety, leading to a photocatalytic dioxygen production rate of 7323 micromoles per gram per hour. Moreover, we have identified an end-on superoxide radical (O2·) intermediate at the active site of the CoTPP moiety and proposed an electron-intermediate cascade mechanism that elucidates the synergistic coupling of electron relay (S1-T1-T1') and intermediate evolution during the photocatalytic process.
Collapse
Affiliation(s)
- Enbo Zhou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, P. R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002 Anhui, P. R. China
| | - Erchong Chai
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Jinsong Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
| | - Jie Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
| | - Daqiang Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Longtian Kang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qingfu Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108 Fujian, P. R. China
| |
Collapse
|
54
|
Hou S, Gao X, Lv X, Zhao Y, Yin X, Liu Y, Fang J, Yu X, Ma X, Ma T, Su D. Decade Milestone Advancement of Defect-Engineered g-C 3N 4 for Solar Catalytic Applications. NANO-MICRO LETTERS 2024; 16:70. [PMID: 38175329 PMCID: PMC10766942 DOI: 10.1007/s40820-023-01297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Over the past decade, graphitic carbon nitride (g-C3N4) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C3N4 is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the "all-in-one" defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultra-active coordinated environment (M-Nx, M-C2N2, M-O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra (fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C3N4 "customization", motivating more profound thinking and flourishing research outputs on g-C3N4-based photocatalysis.
Collapse
Affiliation(s)
- Shaoqi Hou
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia
| | - Xiaochun Gao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China.
| | - Xingyue Lv
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Yilin Zhao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Xitao Yin
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Ying Liu
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Juan Fang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xingxing Yu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hogo, Bunkyo, Tokyo, Japan
| | - Xiaoguang Ma
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China.
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Dawei Su
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia.
| |
Collapse
|
55
|
Gan W, Fu X, Jin J, Guo J, Zhang M, Chen R, Ding C, Lu Y, Li J, Sun Z. Nitrogen-rich carbon nitride (C 3N 5) coupled with oxygen vacancy TiO 2 arrays for efficient photocatalytic H 2O 2 production. J Colloid Interface Sci 2024; 653:1028-1039. [PMID: 37778152 DOI: 10.1016/j.jcis.2023.09.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Developing efficient and facilitated recycling photocatalysts for H2O2 formation is an ideal strategy for solar-to-chemical energy conversion. In this work, we synthesized ultrathin C3N5 nanosheets through the process of thermal polymerization and polyvinylpyrrolidone (PVP)-assisted solvent exfoliation. Subsequently, the obtained ultrathin C3N5 nanosheets were tightly attached to the surface of TiO2-x arrays, resulting in an enhanced photocatalytic H2O2 production rate. The density functional theory (DFT) calculations demonstrate that an internal electric field (IEF) is generated between the TiO2-x array and the ultrathin C3N5 due to the different work functions. The presence of IEF provides an additional driving force for carrier separation and transfer in the heterointerface. Benefitting from this unique strategy, the optimal heterojunction obtains the highest H2O2 formation rate (2.93 μmol/L/min), which is about 4.1 times than that of TiO2-x arrays. The rotating disk electrode (RDE) analysis manifests H2O2 formation through 2e--dominated oxygen reduction reaction (ORR). This research provides an innovative strategy for assembling a type-II heterojunction with a useful IEF for efficient photocatalytic H2O2 production.
Collapse
Affiliation(s)
- Wei Gan
- School of Materials Science and Engineering, Anhui University, Hefei 230601, Anhui Province, PR China
| | - Xucheng Fu
- College of Materials and Chemical Engineering, West Anhui University, LuAn 237015, Anhui Province, PR China
| | - Juncheng Jin
- College of Materials and Chemical Engineering, West Anhui University, LuAn 237015, Anhui Province, PR China
| | - Jun Guo
- School of Materials Science and Engineering, Anhui University, Hefei 230601, Anhui Province, PR China
| | - Miao Zhang
- School of Materials Science and Engineering, Anhui University, Hefei 230601, Anhui Province, PR China.
| | - Ruixin Chen
- School of Materials Science and Engineering, Anhui University, Hefei 230601, Anhui Province, PR China
| | - Chunsheng Ding
- School of Materials Science and Engineering, Anhui University, Hefei 230601, Anhui Province, PR China
| | - Yuqing Lu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, Anhui Province, PR China
| | - Jianrou Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, Anhui Province, PR China
| | - Zhaoqi Sun
- School of Materials Science and Engineering, Anhui University, Hefei 230601, Anhui Province, PR China.
| |
Collapse
|
56
|
Song J, Ma Y, Zhang Q, Zhang C, Wu X. Simultaneous Morphology and Band Structure Manipulation of BiOBr by Te Doping for Enhanced Photocatalytic Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59444-59453. [PMID: 38091379 DOI: 10.1021/acsami.3c13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The photocatalytic oxygen evolution of bismuth oxybromide (BiOBr) is greatly hindered by its low visible-light response and high electron-hole recombination. Nonmetal doping can effectively alleviate these issues, leading to improvement in photocatalytic performance. Herein, Bi2Te3 was introduced as both the Te doping source and the morphology-control template to improve the photocatalytic performance of BiOBr. Appropriate amounts of Te are critical to maintain the ultrathin plate-like structure of BiOBr, whereas excessive Te results in the formation of a flower-like architecture. Oxygen evolution activity disclosed that a plate-like structure is essential for realizing higher performance owing to sufficient light utilization and efficient charge separation. An optimal oxygen evolution rate of 368.0 μmol h-1 g-1 was achieved for the Te-doped sample, which is 2.3-fold as that of the undoped BiOBr (158.9 μmol h-1 g-1). Theoretical calculations demonstrated that Te doping can induce impurity levels above the valence band of BiOBr, which slightly narrowed the band gap and strengthened the light absorption in the range of 400-800 nm. More importantly, Te dopants could act as shallow traps for confining the excited electrons, thus prolonging the carrier lifetime. This work provides a novel strategy to prepare highly efficient photocatalysts by simultaneously realizing morphology manipulation and nonmetal doping.
Collapse
Affiliation(s)
- Jia Song
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yunfei Ma
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chaohua Zhang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xuelian Wu
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, Institute of Deep Underground Sciences and Green Energy, Shenzhen University, Shenzhen 518060, P. R. China
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
57
|
Ye Q, Yang R, Huang L, Li Q, Zhang Q, Li D, Tian D, Jiang D. Bridging engineering of polymeric carbon nitride for boosting photocatalytic CO 2 reduction. J Colloid Interface Sci 2023; 652:813-824. [PMID: 37619260 DOI: 10.1016/j.jcis.2023.08.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The inherent electron localized heptazine structure of carbon nitride (CN) derived from intrinsic tertiary N (N3C) bridging structure makes the photogenerated charge separation rather difficult, which severely limits photocatalytic CO2 activity of CN. Therefore, modulation of N3C bridging structure of CN is highly desirable to enhance the charge separation efficiency of CN. Herein, we reported a novel thiophene-bridged CN (BTCN) with intramolecular donor-π-acceptor (D-π-A) systems synthesized by nucleophilic substitution and Schiff base reaction to improve the photogenerated charge separation efficiency. The experimental and density functional theory (DFT) results indicate that this BTCN exhibits a high π-electron delocalization range and enhanced photogenerated charge transfer efficiency, which mainly account for the enhanced photocatalytic activity. The optimal BTCN photocatalyst exhibits enhanced charge separation efficiency and higher photocatalytic CO2 reduction activity with a CO yield of 23.02 μmol·g-1·h-1, which was higher than those of CN and edge-modified CN (ETCN) counterpart. This work highlights the importance of regulation of π-electron delocalization for the design of highly active CN photocatalysts via the rational substitution of N3C bridging structure with π-spacer molecular linkages for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ran Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Longhui Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qin Li
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qiong Zhang
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Dan Tian
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
58
|
Chava RK, Kang M. Ordered and carbon-doped porous polymeric graphitic carbon nitride nanosheets toward enhanced visible light absorption and efficient photocatalytic H 2 evolution. NANOSCALE 2023; 15:18347-18358. [PMID: 37921504 DOI: 10.1039/d3nr04270g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
An effective and rational pathway to tune the electronic bandstructure and visible light absorption properties of low-cost organic graphitic carbon nitride (g-C3N4, GCN) photocatalysts is still very challenging. Here, an efficient strategy is validated to tailor the bandstructure of g-C3N4 and C-doping can be regulated by polymerizing melamine with malonic acid, which can greatly extend the photoresponse range to 900 nm. The optimized GCN exhibits an improved photocatalytic hydrogen production rate of 663.6 μmol g-1 h-1 under visible light irradiation and an apparent quantum yield of 11% at 420 nm, which is three times higher than that of traditional bulk g-C3N4. This superior performance is derived from the unique ordered and porous structure of GCN, which effectively improves its light absorption and provides a larger specific surface area. In addition, the introduction of malonic acid into melamine and the subsequent thermal polymerization reaction further optimize the band structure of GCN, extend its light absorption via C-doping, and improve the photoinduced charge separation, resulting in high photocatalytic performance. This strategy provides a novel platform to design highly efficient GCN-based photocatalysts with precisely tunable operation windows and enhanced charge separation.
Collapse
Affiliation(s)
- Rama Krishna Chava
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Misook Kang
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
59
|
Feng H, Wang W, Wang T, Pu Y, Ma C, Chen S. Interfacial regulation of BiOI@Bi 2S 3/MXene heterostructures for enhanced photothermal and photodynamic therapy in antibacterial applications. Acta Biomater 2023; 171:506-518. [PMID: 37778485 DOI: 10.1016/j.actbio.2023.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Developing environmentally friendly, broad-spectrum, and long-lasting antibacterial materials remains challenging. Our ternary BiOI@Bi2S3/MXene composites, which exhibit both photothermal therapy (PTT) and photodynamic therapy (PDT) antibacterial properties, were synthesized through in-situ vulcanization of hollow flower-shaped BiOI on the surface of two-dimensional Ti3C2 MXene. The unique hollow flower-shaped BiOI structure with a high exposure of the (001) crystal plane amplifies light reflection and scattering, offering more active sites to improve light utilization. Under 808 nm irradiation, these composites achieved a photothermal conversion efficiency of 57.8 %, boosting the PTT antibacterial effect. The heterojunction between Bi2S3 and BiOI creates a built-in electric field at the interface, promoting hole and electron transfer. Significantly, the close-contact heterogeneous interface enhances charge transfer and suppresses electron-hole recombination, thereby boosting PDT bacteriostatic performance. EPR experiments confirmed that ∙O2- and •OH radicals play major roles in photocatalytic bacteriostatic reactions. The combined antibacterial action of PTT and PDT led to efficiencies of 99.7 % and 99.8 % against P. aeruginosa and S. aureus, respectively, under 808 nm laser irradiation. This innovative strategy and thoughtful design open new avenues for heterojunction materials in PTT and PDT sterilization. STATEMENT OF SIGNIFICANCE: Photodynamic and photothermal therapy is a promising antibacterial treatment, but its efficiency still limits its application. To overcome this limitation, we prepared three-dimensional heterogeneous BiOI@Bi2S3/MXene nanocomposites through in-situ vulcanization of hollow flower-shaped BiOI with a high exposure of the (001) crystal plane onto the surface of two-dimensional MXene material. The resulting ternary material forms a close-contact heterogeneous interface, which improves charge transfer channels, reduces electron-hole pair recombination, and amplifies photodynamic bacteriostatic performance. These nanocomposites exhibit photothermal conversion efficiency of 57.8 %, enhancing their photothermal bactericidal effects. They demonstrated antibacterial efficiencies of 99.7 % against P. aeruginosa and 99.8 % against S. aureus. Therefore, this study provides a promising method for the synthesis of environmentally friendly and efficient antibacterial materials.
Collapse
Affiliation(s)
- Huimeng Feng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tong Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Pu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chengcheng Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
60
|
Wang Y, Liu A, Song J, Zheng Y, Xian H, Liu Z, Jiang T. Methyl-terminated graphite carbon nitride with regulatable local charge redistribution for ultra-high photocatalytic hydrogen production and antibiotic degradation. CHEMOSPHERE 2023; 340:139736. [PMID: 37544526 DOI: 10.1016/j.chemosphere.2023.139736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Intramolecular-tailored graphite carbon nitride (g-C3N4) has great potential to greatly optimize the photo-response performance and carrier separation ability, but exquisite molecular structure engineering is still challenging. Firstly, a series of oxygen and terminal methyl moiety co-modified g-C3N4 (CNNx) has been systematically prepared by using N-Hydroxysuccinimide (HOSu) as a novel copolymerized precursor and urea. The density functional theory (DFT) calculations demonstrated that the presence of oxygen can lower the binding energy for the C-C bond to make the terminal modification easier. The terminal methyl and Oxygen not only caused abundant alveolar defects to break the periodic symmetry but also acted as an electron-accepting platform to tune the local charge redistribution within g-C3N4 molecular. The synthesized CNNx (CNN25) achieved ultra-high photocatalytic activity and chemical stability under visible light toward antibiotic degradation (99% tetracycline, 92% doxycycline, 65% ofloxacin and 74% sulfathiazole degradation within 30 min) and hydrogen production (an apparent quantum efficiency of 2.10% at 400 nm). CNN25 also maintains good efficiency in surface water and groundwater. Moreover, the TC solution treated with CNN25 had hardly any harm to the growth of E. coli. We believe our findings will provide a facile and green strategy for the preparation of non-metallic modified g-C3N4.
Collapse
Affiliation(s)
- Yating Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, School of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China; National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Airu Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, School of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Jinyue Song
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, School of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Yi Zheng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, School of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Hui Xian
- School of Continuing Education, Tianjin Polytechnic University, Tianjin, 300387, PR China
| | - Zhenxue Liu
- Shandong Chambroad Holding Group Co., Ltd., Shandong, 256500, PR China.
| | - Tao Jiang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, School of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
61
|
Zhang Y, Cao Q, Meng A, Wu X, Xiao Y, Su C, Zhang Q. Molecular Heptazine-Triazine Junction over Carbon Nitride Frameworks for Artificial Photosynthesis of Hydrogen Peroxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306831. [PMID: 37775094 DOI: 10.1002/adma.202306831] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Revealing the photocatalytic mechanism between various junctions and catalytic activities has become a hotspot in photocatalytic systems. Herein, an internal molecular heptazine/triazine (H/T) junction in crystalline carbon nitride (HTCN) is constructed and devoted to selective two-electron oxygen reduction reaction (2e- ORR) for efficient hydrogen peroxide (H2 O2 ) production. In-situ X-ray diffraction spectra under various temperatures authenticate the successful formation of molecular H/T junction in HTCN during the calcining process rather than physically mixing. The increased surface photovoltage and transient photovoltage signals, and the decreased exciton binding energy undoubtably elucidate that an obvious increasement of carrier density and diffusion capability of photogenerated electrons are realized over HTCN. Additionally, the analyses of in situ photoirradiated Kelvin probe force microscopy and femto-second transient absorption spectra reveal the successful construction of the strong internal built-in-electric field and the existence of the majority of long-lived shallow trapped electrons associated with molecular H/T junction over HTCN, respectively. Benefiting from these, the photocatalytic results exhibit an incredible improvement (96.5-fold) for H2 O2 production. This novel work provides a comprehensive understanding of the long-lived reactive charges in molecular H/T junctions for strengthening the driving-force for photocatalytic H2 O2 production, which opens potential applications for enhancing PCN-based photocatalytic redox reactions.
Collapse
Affiliation(s)
- Yunxiao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528300, P. R. China
| | - Qingxiang Cao
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528300, P. R. China
| | - Aiyun Meng
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Xuelian Wu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yonghao Xiao
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
62
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
63
|
Yao F, Dai L, Fang C, Zhang X, Wang Y, Xu X, Han S, Yang R, Li R, Zhu J, Sun J. Molecule level precise construction of donor-acceptor polymeric carbon nitride for photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 654:1154-1162. [PMID: 39491905 DOI: 10.1016/j.jcis.2023.10.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Constructing donor-acceptor structures in polymeric carbon nitride (CN) provides an attractive pathway for facilitating charge carrier separation in photocatalytic reactions. However, achieving the implantation of donor or acceptor moieties at molecule level precision remains challenging. Here we develop a three-dimensional (3D) porous thiophene implanted carbon nitride (TCN) with donor-acceptor structure via a supramolecular assembly strategy. The specific-designed triazine derivatives with similar hydrogen bonding sites allow for the uniform introduction of thiophene groups at molecule level precision during the supramolecular assemble stage. The electron-donating thiophene groups in TCN can continuously tune electronic band structure, expand visible light absorption range, and promote charge carriers' separation. The optimized properties enable TCN-3 an outstanding H2 evolution rate of 5620 μmol h-1 g-1, greatly exceeding bulk CN (95 μmol h-1 g-1). Briefly, our work may offer opportunities to prepare highly active photocatalysts with molecule level precise donor-acceptor structure.
Collapse
Affiliation(s)
- Fanglei Yao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Liming Dai
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chenchen Fang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoyuan Zhang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaya Wang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuefeng Xu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shangling Han
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ruiming Yang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ruixin Li
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
64
|
Meng J, Zhang X, Yang G, Qin L, Pan Y, Guo Y. Porous cyclopentadiene unit-incorporated graphitic carbon nitride nanosheets for efficient photocatalytic oxidation of recalcitrant organic micropollutants in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132365. [PMID: 37639791 DOI: 10.1016/j.jhazmat.2023.132365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
For the purpose of searching for efficient photocatalysts to deal with recalcitrant organic micropollutants in wastewater, here an in-situ supramolecule self-assembly-thermal polymerization strategy is developed to prepare a series of porous cyclopentadiene (CPD) unit-incorporated g-C3N4 ultrathin nanosheets (CCPD-g-C3N4). The CCPD-g-C3N4 demonstrate CPD unit doping level-dependent and remarkably enhanced visible-light photocatalytic oxidation efficiency towards two organic micropollutants, acetaminophen and methylparaben, in which the optimized CCPD-g-C3N4-2 shows 6.1 and 3.5 times higher acetaminophen and methylparaben degradation rate than bulk g-C3N4; moreover, CCPD-g-C3N4-2 is still robust and efficient in the treatment of five mixed organic micropollutants in pharmaceutical wastewater, and the satisfactory micropollutant removal efficiency is obtained in a wide pH window and the presence of high concentrations of inorganic anions and cations as well as dissolved organic matters. Theoretical calculation combined with experimental test reveal that CCPD-g-C3N4 can significantly reduce ecological risk of the target pollutant after the photocatalytic degradation reaction. Such enhanced photocatalytic oxidation efficiency is dominated by the accelerated charge carrier separation dynamics and extended visible-light response region due to the incorporation of CPD units, which finally lead to the generation of abundant reactive oxygen species to degrade and mineralize target micropollutants efficiently.
Collapse
Affiliation(s)
- Jiaqi Meng
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China
| | - Xueyan Zhang
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China
| | - Guang Yang
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China
| | - Lang Qin
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China
| | - Yue Pan
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China
| | - Yihang Guo
- School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, PR China.
| |
Collapse
|
65
|
Yu K, Li Y, Cao X, Wang R, Zhou L, Wu L, He N, Lei J, Fu D, Chen T, He R, Zhu W. In-situ constructing amidoxime groups on metal-free g-C 3N 4 to enhance chemisorption, light absorption, and carrier separation for efficient photo-assisted uranium(VI) extraction. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132356. [PMID: 37633015 DOI: 10.1016/j.jhazmat.2023.132356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
The development of inexpensive and efficient semiconductor catalysts for photo-assisted uranium extraction from seawater remains a huge challenge. Herein, we have successfully synthesized amidoxime-rich g-C3N4 (AO-C3N4) by simply amidoximing a cyano-rich precursor for photo-assisted uranium extraction from seawater. The amidoxime groups not only served as the U(VI) binding sites for efficient uranium adsorption, but also significantly improved the visible light absorption capacity and carrier separation efficiency via introducing defect energy level, resulting in the excellent photocatalytic activity for AO-C3N4 towards photo-assisted uranium extraction. In the process of photo-assisted uranium extraction, U(VI) was first adsorbed by the amidoxime groups on the AO-C3N4 and then reduced to U(IV), while (UO2)O2·2H2O and (UO2)O2·4H2O were further formed by the oxidation of U(IV) by superoxide radicals (·O2-). Moreover, the generated reactive oxygen species (ROS) under light endowed AO-C3N4 with outstanding antibacterial properties, preventing the limitation of uranium extraction capacity from marine biofouling.
Collapse
Affiliation(s)
- Kaifu Yu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China; College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Yi Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Xin Cao
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Ruixiang Wang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Linzhen Wu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Ningning He
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jia Lei
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdiscipli-nary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Dengjiang Fu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Rong He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
66
|
Shmila T, Mondal S, Barzilai S, Karjule N, Volokh M, Shalom M. Boron and Sodium Doping of Polymeric Carbon Nitride Photoanodes for Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303602. [PMID: 37344993 DOI: 10.1002/smll.202303602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Polymeric carbon nitride is a promising photoanode material for water-splitting and organic transformation-based photochemical cells. Despite achieving significant progress in performance, these materials still exhibit low photoactivity compared to inorganic photoanodic materials because of a moderate visible light response, poor charge separation, and slow oxidation kinetics. Here, the synthesis of a sodium- and boron-doped carbon nitride layer with excellent activity as a photoanode in a water-splitting photoelectrochemical cell is reported. The new synthesis consists of the direct growth of carbon nitride (CN) monomers from a hot precursor solution, enabling control over the monomer-to-dopant ratio, thus determining the final CN properties. The introduction of Na and B as dopants results in a dense CN layer with a packed morphology, better charge separation thanks to the in situ formation of an electron density gradient, and an extended visible light response up to 550 nm. The optimized photoanode exhibits state-of-the-art performance: photocurrent densities with and without a hole scavenger of about 1.5 and 0.9 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE), and maximal external quantum efficiencies of 56% and 24%, respectively, alongside an onset potential of 0.3 V.
Collapse
Affiliation(s)
- Tirza Shmila
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Sanjit Mondal
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Shmuel Barzilai
- Department of Chemistry, Nuclear Research Centre-Negev, P.O. Box 9001, Beer-Sheva, 84910, Israel
| | - Neeta Karjule
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Michael Volokh
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
67
|
Zhang Q, Chen J, Che H, Liu B, Ao Y. n→π* Electron Transitions and Directional Charge Migration Synergistically Promoting O 2 Activation and Holes Utilization on Carbon Nitride for Efficiently Photocatalytic Degradation of Organic Contaminants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302510. [PMID: 37323095 DOI: 10.1002/smll.202302510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Stimulating electron transitions and promoting exciton dissociation are crucial for improving the photocatalytic performance of polymeric carbon nitride (CN) yet still challenging. Herein, a novel CN with C dopant and asymmetric structure (CC-UCN2 ) is ingeniously synthesized. The obtained CC-UCN2 not only reinforces the intrinsic π→π* electron transitions, but also successfully awakens additional n→π* electron transitions. Besides, charge centers dislocation caused by symmetry breaking induces a spontaneous polarized electric field, effectively breaking the constraints of Coulomb electrostatic interaction between electrons and holes and driving their directional migration. Along with the spatial separation of reduction and oxidation sites, CC-UCN2 shows exceptional O2 activation and holes oxidation efficiency, thus exhibits a high degradation rate constant (0.201 min-1 ) and mineralization rate (80.1%) for bisphenol A (BPA)(far outperforming pristine and other modified CNs). This work proposes a novel perspective for developing high-efficiency photocatalysts and comprehending the underlying mechanism of O2 activation and holes oxidation for pollutant degradation.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing, 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing, 210098, China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang road, Nanjing, 210098, China
| |
Collapse
|
68
|
Li Z, Zhou Y, Zhou Y, Wang K, Yun Y, Chen S, Jiao W, Chen L, Zou B, Zhu M. Dipole field in nitrogen-enriched carbon nitride with external forces to boost the artificial photosynthesis of hydrogen peroxide. Nat Commun 2023; 14:5742. [PMID: 37717005 PMCID: PMC10505161 DOI: 10.1038/s41467-023-41522-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Artificial photosynthesis is a promising strategy for efficient hydrogen peroxide production, but the poor directional charge transfer from bulk to active sites restricts the overall photocatalytic efficiency. To address this, a new process of dipole field-driven spontaneous polarization in nitrogen-rich triazole-based carbon nitride (C3N5) to harness photogenerated charge kinetics for hydrogen peroxide production is constructed. Here, C3N5 achieves a hydrogen peroxide photosynthesis rate of 3809.5 µmol g-1 h-1 and a 2e- transfer selectivity of 92% under simulated sunlight and ultrasonic forces. This high performance is attributed to the introduction of rich nitrogen active sites of the triazole ring in C3N5, which brings a dipole field. This dipole field induces a spontaneous polarization field to accelerate a rapid directional electron transfer process to nitrogen active sites and therefore induces Pauling-type adsorption of oxygen through an indirect 2e- transfer pathway to form hydrogen peroxide. This innovative concept using a dipole field to harness the migration and transport of photogenerated carriers provides a new route to improve photosynthesis efficiency via structural engineering.
Collapse
Affiliation(s)
- Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China
| | - Yuanyi Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China
| | - Yingtang Zhou
- Marine Science and Technology College, Zhejiang Ocean University, 316004, Zhoushan, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, 030006, Taiyuan, China
| | - Shanyong Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy Sciences, 100085, Beijing, China.
| | - Li Chen
- Department of General Practice, First Medical Center, Chinese PLA General Hospital, 100853, Beijing, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China.
| |
Collapse
|
69
|
Du S, Huang B, Hao GP, Huang J, Liu Z, Oschatz M, Xiao J, Lu AH. pH-Regulated Refinement of Pore Size in Carbon Spheres for Size-Sieving of Gaseous C 8 , C 6 and C 3 Hydrocarbon Pairs. CHEMSUSCHEM 2023; 16:e202300215. [PMID: 37186177 DOI: 10.1002/cssc.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Selective separation of industrial important C8 , C6 and C3 hydrocarbon pairs by physisorbents can greatly reduce the energy intensity related to the currently used cryogenic distillation techniques. The achievement of size-sieving based on carbonaceous materials is desirable, but commonly hindered by the random structure of carbons often with a broad pore size distribution. Herein, a pH-regulated pre-condensation strategy was introduced to control the carbon pore architecture by the sp2 /sp3 hybridization of precursor. The lower pH value during pre-condensation of glucose facilitates the growth of aromatic nanodomains, rearrangement of stacked layers and a concomitant transition from sp3 -C to sp2 -C. The subsequent pyrolysis endows the pore size manipulated from 6.8 to 4.8 Å and narrowly distributed over a range of 0.2 Å. The refined pores enable effective size-sieving of C8 , C6 and C3 hydrocarbon pairs with high separation factor of 1.9 and 4.9 for C8 xylene (X) isomers para-X/meta-X and para-X/ortho-X, respectively, 5.1 for C6 alkane isomers n-hexane/3-methylpentane, and 22.0 for C3 H6 /C3 H8 . The excellent separation performance based-on size exclusion effect is validated by static adsorption isotherms and dynamic breakthrough experiments. This synthesis strategy provides a means of exploring advanced carbonaceous materials with controlled hybridized structure and pore sizes for challenging separation needs.
Collapse
Affiliation(s)
- Shengjun Du
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena, Friedrich-Schiller-University, Jena, 07745, Germany
| | - Baolin Huang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiawu Huang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zewei Liu
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Martin Oschatz
- Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena, Friedrich-Schiller-University, Jena, 07745, Germany
| | - Jing Xiao
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
70
|
Liu T, Zhu W, Wang N, Zhang K, Wen X, Xing Y, Li Y. Preparation of Structure Vacancy Defect Modified Diatomic-Layered g-C 3 N 4 Nanosheet with Enhanced Photocatalytic Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302503. [PMID: 37344350 PMCID: PMC10460902 DOI: 10.1002/advs.202302503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Indexed: 06/23/2023]
Abstract
Structure self-modification of graphitic carbon nitride (g-C3 N4 ) without the assistance of other species has attracted considerable attention. In this study, the structure vacancy defect modified diatomic-layered g-C3 N4 nanosheet (VCN) is synthesized by thermal treatment of bulk g-C3 N4 in a quartz tube with vacuum atmosphere that will generate a pressure-thermal dual driving force to boost the exfoliation and formation of structure vacancy for g-C3 N4 . The as-prepared VCN possesses a large specific surface area with a rich pore structure to provide more active centers for catalytic reactions. Furthermore, the as-formed special defect level in VCN sample can generate a higher exciton density at photoexcitation stage. Meanwhile, the photogenerated charges will rapidly transfer to VCN surface due to the greatly shortened transfer path resulting from the ultrathin structure (≈1.5 nm), which corresponds to two graphite carbon nitride atomic layers. In addition, the defect level alleviates the drawback of enlarged bandgap caused by the quantum size effect of nano-scaled g-C3 N4 , resulting in a well visible-light utilization. As a result, the VCN sample exhibits an excellent photocatalytic performance both in hydrogen production and photodegradation of typical antibiotics.
Collapse
Affiliation(s)
- Tian Liu
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Wei Zhu
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Ning Wang
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Keyu Zhang
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| | - Xue Wen
- School of ChemistryXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yan Xing
- Jilin Provincial Key Laboratory of Advanced Energy MaterialsDepartment of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Yunfeng Li
- College of Environmental and Chemical EngineeringXi'an Key Laboratory of Textile Chemical Engineering AuxiliariesXi'an Polytechnic UniversityXi'an710048P. R. China
| |
Collapse
|
71
|
Wu L, Zhao M, Xin X, Ye Q, Zhang K, Wang Z. Core-Shell Composite MIL-101(Cr)@TiO 2 for Organic Dye Pollutants and Vehicle Exhaust. Molecules 2023; 28:5530. [PMID: 37513402 PMCID: PMC10384209 DOI: 10.3390/molecules28145530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
MIL-101(Cr)@TiO2 core-shell composite material was synthesized via the hydrothermal method, where MIL-101(Cr) served as the core and TiO2 acted as the shell. SEM results revealed that the metal-organic framework core effectively prevented the aggregation of TiO2 nanoparticles and facilitated their dispersion. Characterization techniques such as XRD, XPS, and TGA were utilized to confirm the successful loading of TiO2 onto MIL-101(Cr) and its excellent thermal stability. MIL-101(Cr)@TiO2 was employed in photocatalytic degradation of dye pollutants and vehicle exhaust, and the potential degradation mechanisms were investigated in detail. The results showed that MIL-101(Cr)@TiO2 exhibited excellent photocatalytic degradation performance towards dye pollutants, with degradation efficiencies of 91.7% and 67.8% achieved for MB and RhB, respectively, under visible light irradiation for 90 min. Furthermore, the photocatalytic degradation of automobile exhaust revealed that the MIL-101(Cr)@TiO2 composite material also exhibited degradation effects on NOx, CO, and HC. The degradation efficiency for NO reached 24.2%, indicating its broader applicability.
Collapse
Affiliation(s)
- Lei Wu
- School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Mengmeng Zhao
- School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Xian Xin
- School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Qiuyan Ye
- School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Kun Zhang
- School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Ziwei Wang
- School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|
72
|
Deveci HA, Mavioğlu Kaya M, Kaya İ, Bankoğlu Yola B, Atar N, Yola ML. Bisphenol A Imprinted Electrochemical Sensor Based on Graphene Quantum Dots with Boron Functionalized g-C 3N 4 in Food Samples. BIOSENSORS 2023; 13:725. [PMID: 37504124 PMCID: PMC10377542 DOI: 10.3390/bios13070725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
A molecular imprinted electrochemical sensor based on boron-functionalized graphitic carbon nitride (B-g-C3N4) and graphene quantum dots (GQDs) was presented for selective determination of bisphenol A (BPA). In particular, by combining the selectivity and high stability properties, which are the most important advantages of molecular imprinted polymers, and the highly sensitive properties of GQDs/B-g-C3N4 nanocomposite, a highly selective and sensitive analytical method was developed for BPA analysis. Firstly, GQDs/B-g-C3N4 nanocomposite was characterized by using microscopic, spectroscopic, and electrochemical techniques. This novel molecular imprinted electrochemical sensor for BPA detection demonstrated a linearity of 1.0 × 10-11-1.0 × 10-9 M and a low detection limit (LOD, 3.0 × 10-12 M). BPA-imprinted polymer on GQDs/B-g-C3N4 nanocomposite also showed good stability, repeatability and selectivity in food samples.
Collapse
Affiliation(s)
- Haci Ahmet Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep 27000, Turkey
| | - Müge Mavioğlu Kaya
- Department of Molecular Biology and Genetic, Faculty of Arts and Sciences, Kafkas University, Kars 36000, Turkey
| | - İnan Kaya
- Department of Biology, Faculty of Arts and Sciences, Kafkas University, Kars 36000, Turkey
| | - Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep 27000, Turkey
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli 20000, Turkey
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey
| |
Collapse
|
73
|
Li Q, Zhang Y, Zeng Y, Ding M. Ordered porous nitrogen-vacancy carbon nitride for efficient visible-light hydrogen evolution. J Colloid Interface Sci 2023; 642:53-60. [PMID: 37001457 DOI: 10.1016/j.jcis.2023.03.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Photocatalytic H2 evolution is a promising technology which could be instrumental in producing clean hydrogen energy. In regard to the photocatalyst, its band structure, morphology and light utilization have a significant influence on the H2 evolution rate and stability. Herein, a three-dimensional ordered macroporous nitrogen-vacancy carbon nitride (3DOM V-CN) photocatalyst was developed by combining vacancies with 3DOM structure for visible-light photocatalytic H2 evolution. This strategy preserved the structural properties of 3DOM to improve the light utilization and the specific surface area of the photocatalysts. Moreover, constructing suitable vacancies could trap electrons to facilitate the separation of photogenerated carriers, and extend the light absorption region of the photocatalysts by adjusting band structure, thus improving photocatalytic activity. Compared with CN (0.3 mmol h-1 g-1), 3DOM V-CN demonstrated a superior photocatalytic H2 evolution rate of 2.3 mmol h-1 g-1 (λ ≥ 420 nm) while possessing excellent stability. This work provides an effective and low-cost strategy for the design of the photocatalysts with high activity and stability by simultaneously tuning the band structure and morphology.
Collapse
|
74
|
Zhao F, Law YL, Zhang N, Wang X, Wu W, Luo Z, Wang Y. Constructing Spatially Separated Cage-Like Z-scheme Heterojunction Photocatalyst for Enhancing Photocatalytic H 2 Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208266. [PMID: 36890784 DOI: 10.1002/smll.202208266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Indexed: 06/08/2023]
Abstract
Heterojunctions coupled into micro-mesoscopic structures is an attractive strategy to optimize the light harvesting and carrier separation of semiconductor photocatalysts. A self-templating method of ion exchange is reported to synthesize an exquisite hollow cage-structured Ag2 S@CdS/ZnS that direct Z-scheme heterojunction photocatalyst. On the ultrathin shell of the cage, Ag2 S, CdS, and ZnS with Zn-vacancies (VZn ) are arranged sequentially from outside to inside. Among them, the photogenerated electrons are excited by ZnS to the VZn energy level and then recombine with the photogenerated holes that are generated by CdS, while the electrons remained in the CdS conduction band are further transferred to Ag2 S. The ingenious cooperation of the Z-scheme heterojunction with the hollow structure optimizes the photogenerated charges transport channel, spatially separated the oxidation and reduction half-reactions, decreases the charge recombination probability, and simultaneously improves the light harvesting efficiency. As a result, the photocatalytic hydrogen evolution activity of the optimal sample is 136.6 and 17.3 times higher than that of cage-like ZnS with VZn and CdS by, respectively. This unique strategy demonstrates the tremendous potential of the incorporation of heterojunction construction to morphology design of photocatalytic materials, and also provided a reasonable route for designing other efficient synergistic photocatalytic reactions.
Collapse
Affiliation(s)
- Fei Zhao
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Ying Lo Law
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Nan Zhang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Wenli Wu
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yuhua Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
75
|
Xiao Y, Yao B, Cao M, Wang Y. Super-Photothermal Effect-Mediated Fast Reaction Kinetic in S-Scheme Organic/Inorganic Heterojunction Hollow Spheres Toward Optimized Photocatalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207499. [PMID: 36896995 DOI: 10.1002/smll.202207499] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Indexed: 06/08/2023]
Abstract
Using full solar spectrum for energy conversion and environmental remediation is a major challenge, and solar-driven photothermal chemistry is a promising route to achieve this goal. Herein, this work reports a photothermal nano-constrained reactor based on hollow structured g-C3 N4 @ZnIn2 S4 core-shell S-scheme heterojunction, where the synergistic effect of super-photothermal effect and S-scheme heterostructure significantly improve the photocatalytic performance of g-C3 N4 . The formation mechanism of g-C3 N4 @ZnIn2 S4 is predicted in advance by theoretical calculations and advanced techniques, and the super-photothermal effect of g-C3 N4 @ZnIn2 S4 and its contribution to the near-field chemical reaction is confirmed by numerical simulations and infrared thermography. Consequently, the photocatalytic degradation rate of g-C3 N4 @ZnIn2 S4 for tetracycline hydrochloride is 99.3%, and the photocatalytic hydrogen production is up to 4075.65 µmol h-1 g-1 , which are 6.94 and 30.87 times those of pure g-C3 N4 , respectively. The combination of S-scheme heterojunction and thermal synergism provides a promising insight for the design of an efficient photocatalytic reaction platform.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 6500504, P. R. China
| |
Collapse
|
76
|
Che H, Wang J, Wang P, Ao Y, Chen J, Gao X, Zhu F, Liu B. Simultaneously Achieving Fast Intramolecular Charge Transfer and Mass Transport in Holey D-π-A Organic Conjugated Polymers for Highly Efficient Photocatalytic Pollutant Degradation. JACS AU 2023; 3:1424-1434. [PMID: 37234118 PMCID: PMC10206595 DOI: 10.1021/jacsau.3c00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Simultaneously realizing efficient intramolecular charge transfer and mass transport in metal-free polymer photocatalysts is critical but challenging for environmental remediation. Herein, we develop a simple strategy to construct holey polymeric carbon nitride (PCN)-based donor-π-acceptor organic conjugated polymers via copolymerizing urea with 5-bromo-2-thiophenecarboxaldehyde (PCN-5B2T D-π-A OCPs). The resultant PCN-5B2T D-π-A OCPs extended the π-conjugate structure and introduced abundant micro-, meso-, and macro-pores, which greatly promoted intramolecular charge transfer, light absorption, and mass transport and thus significantly enhanced the photocatalytic performance in pollutant degradation. The apparent rate constant of the optimized PCN-5B2T D-π-A OCP for 2-mercaptobenzothiazole (2-MBT) removal is ∼10 times higher than that of the pure PCN. Density functional theory calculations reveal that the photogenerated electrons in PCN-5B2T D-π-A OCPs are much easier to transfer from the donor tertiary amine group to the benzene π-bridge and then to the acceptor imine group, while 2-MBT is more easily adsorbed on π-bridge and reacts with the photogenerated holes. A Fukui function calculation on the intermediates of 2-MBT predicted the real-time changing of actual reaction sites during the entire degradation process. Additionally, computational fluid dynamics further verified the rapid mass transport in holey PCN-5B2T D-π-A OCPs. These results demonstrate a novel concept toward highly efficient photocatalysis for environmental remediation by improving both intramolecular charge transfer and mass transport.
Collapse
Affiliation(s)
- Huinan Che
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Jian Wang
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Peifang Wang
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Yanhui Ao
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Juan Chen
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Xin Gao
- Key
Laboratory of Integrated Regulation and Resource Development on Shallow
Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing 210098, China
| | - Fangyuan Zhu
- Shanghai
Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bin Liu
- Department
of Materials Science and Engineering, City
University of Hong Kong, Hong Kong-SAR 999077, China
| |
Collapse
|
77
|
Gao M, Tian F, Zhang X, Chen Z, Yang W, Yu Y. Improved Plasmonic Hot-Electron Capture in Au Nanoparticle/Polymeric Carbon Nitride by Pt Single Atoms for Broad-Spectrum Photocatalytic H 2 Evolution. NANO-MICRO LETTERS 2023; 15:129. [PMID: 37209296 PMCID: PMC10199823 DOI: 10.1007/s40820-023-01098-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/22/2023]
Abstract
Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a "holy grail" for researchers, but is still a challenging issue. Herein, based on the common polymeric carbon nitride (PCN), a hybrid co-catalysts system comprising plasmonic Au nanoparticles (NPs) and atomically dispersed Pt single atoms (PtSAs) with different functions was constructed to address this challenge. For the dual co-catalysts decorated PCN (PtSAs-Au2.5/PCN), the PCN is photoexcited to generate electrons under UV and short-wavelength visible light, and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H2 evolution. Furthermore, the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance, and the adjacent PtSAs trap the plasmonic hot-electrons for H2 evolution via direct electron transfer effect. Consequently, the PtSAs-Au2.5/PCN exhibits excellent broad-spectrum photocatalytic H2 evolution activity with the H2 evolution rate of 8.8 mmol g-1 h-1 at 420 nm and 264 μmol g-1 h-1 at 550 nm, much higher than that of Au2.5/PCN and PtSAs-PCN, respectively. This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.
Collapse
Affiliation(s)
- Manyi Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Fenyang Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Zhaoyu Chen
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China.
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
78
|
Wang H, Jiang J, Yu L, Peng J, Song Z, Xiong Z, Li N, Xiang K, Zou J, Hsu JP, Zhai T. Tailoring Advanced N-Defective and S-Doped g-C 3 N 4 for Photocatalytic H 2 Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301116. [PMID: 37191326 DOI: 10.1002/smll.202301116] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Indexed: 05/17/2023]
Abstract
Although challenges remain, synergistic adjusting various microstructures and photo/electrochemical parameters of graphitic carbon nitride (g-C3 N4 ) in photocatalytic hydrogen evolution reaction (HER) are the keys to alleviating the energy crisis and environmental pollution. In this work, a novel nitrogen-defective and sulfur-doped g-C3 N4 (S-g-C3 N4 -D) is designed elaborately. Subsequent physical and chemical characterization proved that the developed S-g-C3 N4 -D not only displays well-defined 2D lamellar morphology with a large porosity and a high specific surface area but also has an efficient light utilization and carriers-separation and transfer. Moreover, the calculated optimal Gibbs free energy of adsorbed hydrogen (ΔGH* ) for S-g-C3 N4 -D at the S active sites is close to zero (≈0.24 eV) on the basis of first-principle density functional theory (DFT). Accordingly, the developed S-g-C3 N4 -D catalyst shows a high H2 evolution rate of 5651.5 µmol g-1 h-1 . Both DFT calculations and experimental results reveal that a memorable defective g-C3 N4 /S-doped g-C3 N4 step-scheme heterojunction is constructed between S-doped domains and N-defective domains in the structural configuration of S-g-C3 N4 -D. This work exhibits a significant guidance for the design and fabrication of high-efficiency photocatalysts.
Collapse
Affiliation(s)
- Haitao Wang
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jizhou Jiang
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Lianglang Yu
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jiahe Peng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhou Song
- Key Laboratory of Rare Mineral, Ministry of Natural Resources, Hubei Key Laboratory of Resources and Eco-environmental Geology, Geological Experimental Testing Center of Hubei Province, Wuhan, 430034, P. R. China
| | - Zhiguo Xiong
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Neng Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Kun Xiang
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jing Zou
- School of Chemistry and Environmental Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jyh-Ping Hsu
- Department of Chemical Engineering, "National Taiwan University", Taipei, 10617, China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
79
|
Bao X, Lu D, Wang Z, Yin H, Zhu B, Chen B, Shi M, Zhang Y, Xu Q, Qin Y, Shen XC, Wu K. Significantly enhanced photothermal catalytic CO 2 reduction over TiO 2/g-C 3N 4 composite with full spectrum solar light. J Colloid Interface Sci 2023; 638:63-75. [PMID: 36736119 DOI: 10.1016/j.jcis.2023.01.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Using solar energy to drive catalytic conversion of CO2 into value-added chemicals has great potential to alleviate the global energy shortage and anthropogenic climate change. Herein, a "hitting three birds with one stone" strategy was reported to prepared boron-doped g-C3N4/TiO2-x composite (BCT) by a one-step thermal reduction process. A series of characterizations showed that the composite catalyst has extended full-spectrum absorption, rapid photogenerated charge separation, and outstanding CO2 photoreduction performance (265.2 μmol g-1h-1), which is 7.5 and 9.2 times higher than that of pure TiO2 and g-C3N4, respectively. In addition, the CO2 conversion rate can be further increased to 345.1 μmol g-1h-1 at 70 °C due to its excellent photothermal conversion. Mechanistic studies reveal that synergistic effects alter the charge density distribution, thereby lowering the energy barrier for CO2 conversion by adsorbing and activating CO2 molecules. This work provides a novel three-in-one integrated strategy for fabricating high-efficiency catalysts.
Collapse
Affiliation(s)
- Xiaoyan Bao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Dawei Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Zining Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Yin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Biao Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Bin Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Meixiang Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Yang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Qianxin Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
| | - Yumei Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China.
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
80
|
Xiao Y, Tian X, Chen Y, Xiao X, Chen T, Wang Y. Recent Advances in Carbon Nitride-Based S-scheme Photocatalysts for Solar Energy Conversion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103745. [PMID: 37241371 DOI: 10.3390/ma16103745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Energy shortages are a major challenge to the sustainable development of human society, and photocatalytic solar energy conversion is a potential way to alleviate energy problems. As a two-dimensional organic polymer semiconductor, carbon nitride is considered to be the most promising photocatalyst due to its stable properties, low cost, and suitable band structure. Unfortunately, pristine carbon nitride has low spectral utilization, easy recombination of electron holes, and insufficient hole oxidation ability. The S-scheme strategy has developed in recent years, providing a new perspective for effectively solving the above problems of carbon nitride. Therefore, this review summarizes the latest progress in enhancing the photocatalytic performance of carbon nitride via the S-scheme strategy, including the design principles, preparation methods, characterization techniques, and photocatalytic mechanisms of the carbon nitride-based S-scheme photocatalyst. In addition, the latest research progress of the S-scheme strategy based on carbon nitride in photocatalytic H2 evolution and CO2 reduction is also reviewed. Finally, some concluding remarks and perspectives on the challenges and opportunities for exploring advanced nitride-based S-scheme photocatalysts are presented. This review brings the research of carbon nitride-based S-scheme strategy to the forefront and is expected to guide the development of the next-generation carbon nitride-based S-scheme photocatalysts for efficient energy conversion.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xu Tian
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yunhua Chen
- Department of Physics, Yunnan University, Kunming 650504, China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Ting Chen
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650504, China
| |
Collapse
|
81
|
Xiao ST, Yin R, Wu L, Wu SM, Tian G, Shalom M, Wang LY, Wang YT, Pu FF, Barad HN, Wang F, Yang XY. Hierarchically Porous Few-Layer Carbon Nitride and Its High H + Selectivity for Efficient Photocatalytic Seawater Splitting. NANO LETTERS 2023; 23:4390-4398. [PMID: 37154763 DOI: 10.1021/acs.nanolett.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Photocatalysts for seawater splitting are severely restricted because of the presence of multiple types of ions in seawater that cause corrosion and deactivation. As a result, new materials that promote adsorption of H+ and hinder competing adsorption of metal cations should enhance utilization of photogenerated electrons on the catalyst surface for efficient H2 production. One strategy to design advanced photocatalysts involves introduction of hierarchical porous structures that enable fast mass transfer and creation of defect sites that promote selective hydrogen ion adsorption. Herein, we used a facile calcination method to fabricate the macro-mesoporous C3N4 derivative, VN-HCN, that contains multiple nitrogen vacancies. We demonstrated that VN-HCN has enhanced corrosion resistance and elevated photocatalytic H2 production performance in seawater. Experimental results and theoretical calculations reveal that enhanced mass and carrier transfer and selective adsorption of hydrogen ions are key features of VN-HCN that lead to its high seawater splitting activity.
Collapse
Affiliation(s)
- Shi-Tian Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & State Key Laboratory of Silicate Materials for Architectures & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & State Key Laboratory of Silicate Materials for Architectures & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Lu Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & State Key Laboratory of Silicate Materials for Architectures & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Si-Ming Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & State Key Laboratory of Silicate Materials for Architectures & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & State Key Laboratory of Silicate Materials for Architectures & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Li-Ying Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yi-Tian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & State Key Laboratory of Silicate Materials for Architectures & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Fu-Fei Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & State Key Laboratory of Silicate Materials for Architectures & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Hannah-Noa Barad
- Department of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Fazhou Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & State Key Laboratory of Silicate Materials for Architectures & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineering & State Key Laboratory of Silicate Materials for Architectures & Shenzhen Research Institute, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
82
|
Jing M, Zhao H, Jian L, Pan C, Dong Y, Zhu Y. Coral-like B-doped g-C 3N 4 with enhanced molecular dipole to boost photocatalysis-self-Fenton removal of persistent organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131017. [PMID: 36812729 DOI: 10.1016/j.jhazmat.2023.131017] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Fenton process is a popular advanced oxidation process for water purification. However, it requires an external addition of H2O2, thus raising safety threats and economic costs and encountering the problems of slow cycling of Fe2+/Fe3+ and low mineralization efficiency. Herein, we developed a novel photocatalysis-self-Fenton system based on coral-like B-doped g-C3N4 (Coral-B-CN) photocatalyst for 4-chlorophenol (4-CP) removal where H2O2 can be in situ generated by photocatalysis over Coral-B-CN, the cycling of Fe2+/Fe3+ was accelerated by photoelectrons, and the photoholes promoted 4-CP mineralization. Coral-B-CN was innovatively synthesized by hydrogen bond self-assembly followed by calcination. B heteroatom doping produced enhanced molecular dipole, while the morphological engineering exposed more active sites and optimized band structure. The effective combination of the two enhances charge separation and mass transfer between the phases, resulting in efficient in-situ H2O2 production, faster Fe2+/Fe3+ valence cycling and enhanced hole oxidation. Accordingly, nearly all 4-CP can be degraded during 50 min under the combined action of more ·OH and holes with stronger oxidation capacity. The mineralization rate of this system reached 70.3%, which is 2.6 and 4.9 times higher than that of Fenton process and photocatalysis, respectively. Besides, this system maintained excellent stability and can be applied in a broad range of pHs. The study would provide important insights into developing improved Fenton process with high performance for the removal of persistent organic pollutants.
Collapse
Affiliation(s)
- Mengyang Jing
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hui Zhao
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Liang Jian
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chengsi Pan
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuming Dong
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Yongfa Zhu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
83
|
Lee YJ, Jeong YJ, Cho IS, Park SJ, Lee CG, Alvarez PJJ. Facile synthesis of N vacancy g-C 3N 4 using Mg-induced defect on the amine groups for enhanced photocatalytic •OH generation. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131046. [PMID: 36821907 DOI: 10.1016/j.jhazmat.2023.131046] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Photocatalysis offers opportunities to degrade recalcitrant organic pollutants without adding treatment chemicals. Nitrogen (N) vacancy is an effective point-defect engineering strategy to mitigate electron-hole recombination and facilitate hydroxyl radical (•OH) production via superoxide radical (O2•-) generation during photocatalytic application of graphitic carbon nitride (g-C3N4). Here, we report a novel strategy for fabrication of N-vacancy-rich g-C3N4 (NvrCN) via post-solvothermal treatment of Mg-doped g-C3N4. The addition of the Mg precursor during the polycondensation of urea created abundant amine sites in the g-C3N4 framework, which facilitates formation of N vacancies during post-solvothermal treatment. Elemental analysis and electron paramagnetic resonance spectra confirmed a higher abundance of N vacancies in the resultant NvrCN. Further optical and electronic analyses revealed the beneficial role of N vacancies in light-harvesting capacity, electron-hole separation, and charge transfer. N vacancies also provide specific reaction centers for O2 molecules, promoting oxygen reduction reaction (ORR). Therefore, •OH generation increased via enhanced formation of H2O2 under visible light irradiation, and NvrCN photocatalytically degraded oxytetracycline 4-fold faster with degradation rate constant of 1.85 × 10-2 min-1 (light intensity = 1.03 mW/cm2, catalyst concentration = 0.6 g/L, oxytetracycline concentration = 20 mg/L) than pristine g-C3N4. Overall, this study provides a facile method for synthesizing N-vacancy-rich g-C3N4 and elucidates the role of the defect structure in enhancing the photocatalytic activity of g-C3N4.
Collapse
Affiliation(s)
- Youn-Jun Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Yoo Jae Jeong
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; Department of Materials Science & Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - In Sun Cho
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; Department of Materials Science & Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, Republic of Korea
| | - Chang-Gu Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea; Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea.
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
84
|
Shi W, Cao L, Shi Y, Zhong W, Chen Z, Wei Y, Guo F, Chen L, Du X. Boosted built-in electric field and active sites based on Ni-doped heptazine/triazine crystalline carbon nitride for achieving high-efficient photocatalytic H2 evolution. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
85
|
Cheng C, Shi J, Mao L, Dong CL, Huang YC, Zong S, Liu J, Shen S, Guo L. Ultrathin porous graphitic carbon nitride from recrystallized precursor toward significantly enhanced photocatalytic water splitting. J Colloid Interface Sci 2023; 637:271-282. [PMID: 36706723 DOI: 10.1016/j.jcis.2023.01.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Structure regulation (including electronic structure and morphology) for graphitic carbon nitride (g-C3N4) is an effective way to promote the photocatalytic activity. Herein, an ultrathin porous g-C3N4 (BCN-HT100) was synthesized by calcination of biuret hydrate. Hydrothermal treatment induced biuret recrystallization to form biuret hydrate precursor with regular morphology and large crystal size, thus promoting the polymerization of melem to form g-C3N4 network. Accordingly, BCN-HT100 possessed ultrathin nanosheet structure, higher polymerization degree, larger surface area and more pores than biuret-derived g-C3N4. BCN-HT100 behaved high-efficiency photocatalytic H2-productin activity with an apparent quantum yield (AQY) of 58.7% at 405 nm due to the enhanced utilization efficiency for photo-generated charge carriers and abundant reactive sites. Furthermore, Pt-NiCo2O4 dual cocatalysts were employed on BCN-HT100 for achieving photocatalytic overall water splitting, and the AQY reached 4.9% at 405 nm. This work provides a meaningful reference to designing g-C3N4 to achieve efficient solar energy conversion into hydrogen.
Collapse
Affiliation(s)
- Cheng Cheng
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China; School of Chemical Engineering and Technology, Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Jinwen Shi
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China; Integrated Energy Institute, Sichuan Digital Economy Industry Development Research Institute, 88 Jiefang Road, Chengdu 610036, China.
| | - Liuhao Mao
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, 151 Yingzhuan Road, Tamsui 25137, Taiwan, China
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, 151 Yingzhuan Road, Tamsui 25137, Taiwan, China
| | - Shichao Zong
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Jiamei Liu
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Shaohua Shen
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| | - Liejin Guo
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China
| |
Collapse
|
86
|
Mo Z, Miao Z, Yan P, Sun P, Wu G, Zhu X, Ding C, Zhu Q, Lei Y, Xu H. Electronic and energy level structural engineering of graphitic carbon nitride nanotubes with B and S co-doping for photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 645:525-532. [PMID: 37159994 DOI: 10.1016/j.jcis.2023.04.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/11/2023]
Abstract
The ideal photocatalyst used for photocatalytic water splitting requires strong light absorption, fast charge separation/transfer ability and abundant active sites. Heteroatom doping offers a promising and rational approach to optimize the photocatalytic activity. However, achieving high photocatalytic performance remains challenging if just relying on single-element doping. Herein, Boron (B) and sulfur (S) dopants are simultaneously introduced into graphitic carbon nitride (g-C3N4) nanotubes by supramolecular self-assembly strategy. The developed B and S co-doped g-C3N4 nanotubes (B,S-TCN) exhibited an outstanding photocatalytic performance in the conversion of H2O into H2 (9.321 mmol g-1h-1), and the corresponding external quantum efficiency (EQE) reached 5.3% under the irradiation of λ = 420 nm. It is well evidenced by the closely combined experimental and (density functional theory) DFT calculations: (1) the introduction of B dopants can facilitate H2O adsorption and drive interatomic electron transfer, leading to efficient water splitting reaction. (2) S dopants can stretch the VB position to promote the oxidation ability of g-C3N4, which can accelerate the consumption of holes and thus inhibit the recombination with electrons. (3) the simultaneous introduction of B and S can engineer the electronic and energy level structural of g-C3N4 for optimizing interior charge transfer. Finally, the purpose of maximizing photocatalytic performance is achieved.
Collapse
Affiliation(s)
- Zhao Mo
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihuan Miao
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengcheng Yan
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Peipei Sun
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Guanyu Wu
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Xingwang Zhu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Cheng Ding
- School of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Qiang Zhu
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Yucheng Lei
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Xu
- School of Materials Science & Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
87
|
Du L, Gao B, Xu S, Xu Q. Strong ferromagnetism of g-C 3N 4 achieved by atomic manipulation. Nat Commun 2023; 14:2278. [PMID: 37080974 PMCID: PMC10119309 DOI: 10.1038/s41467-023-38012-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
Two-dimensional (2D) metal-free ferromagnetic materials are ideal candidates to fabricate next-generation memory and logic devices, but optimization of their ferromagnetism at atomic-scale remains challenging. Theoretically, optimization of ferromagnetism could be achieved by inducing long-range magnetic sequence, which requires short-range exchange interactions. In this work, we propose a strategy to enhance the ferromagnetism of 2D graphite carbon nitride (g-C3N4), which is facilitating the short-range exchange interaction by introducing in-planar boron bridges. As expected, the ferromagnetism of g-C3N4 was significantly enhanced after the introduction of boron bridges, consistent with theoretical calculations. Overall, boosting ferromagnetism of 2D materials by introducing bridging groups is emphasized, which could be applied to manipulate the magnetism of other materials.
Collapse
Affiliation(s)
- Lina Du
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, PR China
| | - Song Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, PR China
| | - Qun Xu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, PR China.
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
88
|
Weng Z, Lin Y, Han B, Zhang X, Guo Q, Luo Y, Ou X, Zhou Y, Jiang J. Donor-acceptor engineered g-C 3N 4 enabling peroxymonosulfate photocatalytic conversion to 1O 2 with nearly 100% selectivity. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130869. [PMID: 36709733 DOI: 10.1016/j.jhazmat.2023.130869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Singlet oxygen (1O2) is a thrilling active species for selectively oxidating organic substances. However, the efficient and selective generation of 1O2 maintains a great challenge. Here, we develop a donor-acceptor structured g-C3N4 by covalently engineering benzenetricarboxaldehyde (BTA) onto the fringe of g-C3N4. The g-C3N4-BTA exerts high-efficiency 1O2 generation with nearly 100% selectivity via peroxymonosulfate (PMS) photocatalytic activation upon visible light illumination, exhibiting obviously boosted efficiency for selective elimination of atrazine (ATZ). The consequences of experiments and theoretical calculations demonstrate that BTA units serve as electron-withdrawing sites to trap photogenerated electrons and facilitate the adsorption of PMS on the electron-deficient heptazine rings of g-C3N4. As such, PMS can be in-situ oxidated by the photogenerated holes to selectively produce 1O2. Besides, the g-C3N4-BTA/PMS system delivers high stability and strong resistance to the coexisting organic ions and natural organic matter, demonstrating great potential for selectively removing targeted organic contaminants with high efficiency.
Collapse
Affiliation(s)
- Zonglin Weng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yuanfang Lin
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xinfei Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yu Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xinwen Ou
- Department of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, PR China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
89
|
Gao Y, Li Y, Shangguan L, Mou Z, Zhang H, Ge D, Sun J, Xia F, Lei W. Optimizing the band structure of sponge-like S-doped poly(heptazine imide) with quantum confinement effect towards boosting visible-light photocatalytic H 2 generation. J Colloid Interface Sci 2023; 644:116-123. [PMID: 37105035 DOI: 10.1016/j.jcis.2023.03.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Simultaneously manipulating the nanostructure and band structure of semiconductors for boosting the photocatalytic performance of photocatalyts is highly desirable. Herein, a series of hierarchical sponge-like S-doped poly(heptazine imide) (HS-SPHI) assembled by ultrathin nanosheets were successfully fabricated via a facile bottom-up supramolecular preassembly approach using melamine (MA) and trithiocyanuric acid (TTCA) as precursors. Benefiting from the synergistic effect of the S-doping and their unique hierarchical porous structure coupled with quantum confinement effect, the as-obtained HS-SPHIs are endowed with extended visible-light response, improved charge separation efficiency, enlarged specific surface area, and enhanced thermodynamic driving force for water reduction. As a result, all the HS-SPHIs exhibit remarkable boosting visible-light (>420 nm) photocatalytic H2evolution (PHE). The maximum PHE rate achieved by HS-SPHI-650 can be up to 3584.2 μmol g-1h-1, with an apparent quantum efficiency (AQE) of 14.67 % at 420 nm, which is about 22.4 times than that of pristine bulk g-C3N4 (B-GCN). We believe that this work will provide a significant strategy for optimizing the band structure of PCN in order to improve its photocatalytic performance.
Collapse
Affiliation(s)
- Yang Gao
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, PR China
| | - Yuxuan Li
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, PR China
| | - Li Shangguan
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, PR China
| | - Zhigang Mou
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, PR China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, PR China
| | - Dachuan Ge
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, PR China
| | - Jianhua Sun
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, PR China.
| | - Feifei Xia
- School of Chemistry and Chemical Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, Jiangsu Province, PR China
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
90
|
Cao L, Feng Z, Guo R, Tian Q, Wang W, Rong X, Zhou M, Cheng C, Ma T, Deng D. The direct catalytic synthesis of ultrasmall Cu 2O-coordinated carbon nitrides on ceria for multimodal antitumor therapy. MATERIALS HORIZONS 2023; 10:1342-1353. [PMID: 36723012 DOI: 10.1039/d2mh01540d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Engineering chem-/sono-/photo-multimodal antitumor therapies has become an efficient strategy to combat malignant tumors. However, the existence of hypoxia in the tumor microenvironment (TME) leads to limited sonodynamic or photodynamic efficiency because O2 is the key reactant during the process of generation of reactive oxygen species (ROS). Here, to design a desirable platform that can simultaneously convert H2O2 in the TME into ROS and O2 for efficient chem-/sono-/photo-multimodal tumor therapies, we have created ultrasmall Cu2O-coordinated carbon nitride on a biocompatible ceria substrate (denoted as Cu2O-CNx@CeO2) via a self-assisted catalytic growth strategy. The chemical and morphological structures, ROS and O2 generation activities, and chemo-/photo-/sono-dynamic specificities of Cu2O-CNx@CeO2 when serving as multifunctional biocatalytic agents were systematically disclosed. The experimental studies validated that Cu2O-CNx@CeO2 presents state-of-the-art peroxidase-like and catalase-like activities. Moreover, the light excitation and ultrasound irradiation were also demonstrated to boost ROS production. The in vitro and in vivo experiments suggest that Cu2O-CNx@CeO2 can efficiently inhibit the growth of malignant melanoma via chem-/sono-/photo-multimodal antitumor ability. We believe that applying these new biocatalysts with dual catalytic activities of producing ROS and O2 will offer a new path for engineering multimodal nanoagents to combat malignant tumors.
Collapse
Affiliation(s)
- Lijian Cao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Ziyan Feng
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, P. R. China.
| | - Ruiqian Guo
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, P. R. China.
| | - Qinyu Tian
- Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Weiwen Wang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, P. R. China.
| | - Xiao Rong
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, P. R. China.
| | - Mi Zhou
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, P. R. China.
| | - Chong Cheng
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, P. R. China.
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610041, P. R. China.
| | - Dawei Deng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| |
Collapse
|
91
|
Hasija V, Singh P, Thakur S, Nguyen VH, Van Le Q, Ahamad T, Alshehri SM, Raizada P, Matsagar BM, Wu KCW. O and S co-doping induced N-vacancy in graphitic carbon nitride towards photocatalytic peroxymonosulfate activation for sulfamethoxazole degradation. CHEMOSPHERE 2023; 320:138015. [PMID: 36746247 DOI: 10.1016/j.chemosphere.2023.138015] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Doping-induced vacancy engineering of graphitic carbon nitride (GCN) is beneficial for bandgap modulation, efficient electronic excitation, and facilitated charge carrier migration. In this study, synthesis of oxygen and sulphur co-doped induced N vacancies (OSGCN) by the hydrothermal method was performed to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) antibiotic degradation and H2 production. The results from experimental and DFT simulation studies validate the synergistic effects of co-dopants and N-vacancies, i.e., bandgap lowering, electron-hole pairs separation, and high solar energy utilization. The substitution of sp2 N atom by O and S co-dopants causes strong delocalization of HOMO-LUMO distribution, enhancing carrier mobility, increasing reactive sites, and facilitating charge-carrier separation. Remarkably, OSGCN/PMS photocatalytic system achieved 99.4% SMX degradation efficiency and a high H2 generation rate of 548.23 μ mol g-1 h-1 within 60 min and 36 h, respectively under visible light irradiations. The SMX degradation kinetics was pseudo-first-order with retained recycling efficiency up to 4 catalytic cycles. The results of EPR and chemical scavenging experiments revealed the redox action of reactive oxidative species, wherein 1O2 was the dominant reactive species in SMX degradation. The identification of formed intermediates and the SMX stepwise degradation pathway was investigated via LC-MS analysis and DFT studies, respectively. The results from this work anticipated deepening the understanding of PMS activation by substitutional co-doping favoring N-vacancy formation in GCN lattice for improved photocatalytic activity.
Collapse
Affiliation(s)
- Vasudha Hasija
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India
| | - Quyet Van Le
- Faculty of Department of Materials Science and Engineering, Korea University, 145, Anamro Seongbuk-gu, Seoul, 02841, South Korea
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia.
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
92
|
Liu D, Yang X, Chen P, Zhang X, Chen G, Guo Q, Hou H, Li Y. Rational Design of PDI-Based Linear Conjugated Polymers for Highly Effective and Long-Term Photocatalytic Oxygen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300655. [PMID: 37000924 DOI: 10.1002/adma.202300655] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Constructed through relatively weak noncovalent forces, the stability of organic supramolecular materials has shown to be a challenge. Herein, the designing of a linear conjugated polymer is proposed through creating a chain polymer connected via bridging covalent bonds in one direction and retaining π-stacked aromatic columns in its orthogonal direction. Specifically, three analogs of linear conjugated polymers through tuning the aromatic core and its covalently linked moiety (bridging group) within the building block monomer are prepared. Cooperatively supported by strong π-π stacking interactions from the extended aromatic core of perylene and favorable dipole-dipole interactions from the bridging group, the as-expected high crystallinity, wide light absorption, and increased stability are successfully achieved for Oxamide-PDI (perylene diimide) through ordered molecular arrangement, and present a remarkable full-spectrum oxygen evolution rate of 5110.25 µmol g-1 h-1 without any cocatalyst. Notably, experimental and theoretical studies reveal that large internal dipole moments within Oxamide-PDI together with its ordered crystalline structure enable a robust built-in electric field for efficient charge carrier migration and separation. Moreover, density functional theory (DFT) calculations also reveal oxidative sites located at carbon atoms next to imide bonds and inner bay positions based on proven spatially separated photogenerated electrons and holes, thus resulting in highly efficient water photolysis into oxygen.
Collapse
Affiliation(s)
- Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Xuan Yang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xinling Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - GaoYuan Chen
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Qiwei Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Huan Hou
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Yi Li
- Future Science Research Institute, Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310013, P. R. China
| |
Collapse
|
93
|
Chen B, Lu W, Xu P, Yao K. Potassium Poly(heptazine imide) Coupled with Ti 3C 2 MXene-Derived TiO 2 as a Composite Photocatalyst for Efficient Pollutant Degradation. ACS OMEGA 2023; 8:11397-11405. [PMID: 37008085 PMCID: PMC10061626 DOI: 10.1021/acsomega.3c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The photocatalytic degradation of pollutants is an effective and sustainable way to solve environmental problems, and the key is to develop an efficient, low-cost, and stable photocatalyst. Polymeric potassium poly(heptazine imide) (K-PHI), as a new member of the carbon nitride family, is a promising candidate but is characterized by a high charge recombination rate. To solve this problem, K-PHI was in-situ composited with MXene Ti3C2-derived TiO2 to construct a type-II heterojunction. The morphology and structure of composite K-PHI/TiO2 photocatalysts were characterized via different technologies, including TEM, XRD, FT-IR, XPS, and UV-vis reflectance spectra. Robust heterostructures and tight interactions between the two components of the composite were verified. Furthermore, the K-PHI/TiO2 photocatalyst showed excellent activity for Rhodamine 6G removal under visible light illumination. When the weight percent of K-PHI in the original mixture of K-PHI and Ti3C2 was set to 10%, the prepared K-PHI/TiO2 composite photocatalyst shows the highest photocatalytic degradation efficiency as high as 96.3%. The electron paramagnetic resonance characterization indicated that the·OH radical is the active species accounting for the degradation of Rhodamine 6G.
Collapse
|
94
|
Wang G, Wu Y, Li Z, Lou Z, Chen Q, Li Y, Wang D, Mao J. Engineering a Copper Single-Atom Electron Bridge to Achieve Efficient Photocatalytic CO 2 Conversion. Angew Chem Int Ed Engl 2023; 62:e202218460. [PMID: 36749548 DOI: 10.1002/anie.202218460] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2 RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N-Cu1 -S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2 RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1 μmol g-1 h-1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N-Cu1 -S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2 RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yan Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Zhujie Li
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, P. R. China
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, P. R. China
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yifan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| |
Collapse
|
95
|
Khan I, Khan S, Wu SY, Chen HT, Zada A, Linlin L, Ismail A, Ali S, Raziq F, Haider M, Khan J, Ullah S, Ju SP, Wang S. Synergistic Functionality of Dopants and Defects in Co-Phthalocyanine/B-CN Z-Scheme Photocatalysts for Promoting Photocatalytic CO 2 Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208179. [PMID: 36935369 DOI: 10.1002/smll.202208179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The realization of solar-light-driven CO2 reduction reactions (CO2 RR) is essential for the commercial development of renewable energy modules and the reduction of global CO2 emissions. Combining experimental measurements and theoretical calculations, to introduce boron dopants and nitrogen defects in graphitic carbon nitride (g-C3 N4 ), sodium borohydride is simply calcined with the mixture of g-C3 N4 (CN), followed by the introduction of ultrathin Co phthalocyanine through phosphate groups. By strengthening H-bonding interactions, the resultant CoPc/P-BNDCN nanocomposite showed excellent photocatalytic CO2 reduction activity, releasing 197.76 and 130.32 µmol h-1 g-1 CO and CH4 , respectively, and conveying an unprecedented 10-26-time improvement under visible-light irradiation. The substantial tuning is performed towards the conduction and valance band locations by B-dopants and N-defects to modulate the band structure for significantly accelerated CO2 RR. Through the use of ultrathin metal phthalocyanine assemblies that have a lot of single-atom sites, this work demonstrates a sustainable approach for achieving effective photocatalytic CO2 activation. More importantly, the excellent photoactivity is attributed to the fast charge separation via Z-scheme transfer mechanism formed by the universally facile strategy of dimension-matched ultrathin (≈4 nm) metal phthalocyanine-assisted nanocomposites.
Collapse
Affiliation(s)
- Imran Khan
- School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Salman Khan
- Key Laboratory of Functional Inorganic Material Chemistry, The Ministry of Education of the Peoples Republic of China, Heilongjiang University, Harbin, 150080, P. R. China
| | - Shiuan-Yau Wu
- Department of Chemistry, R&D Center for Membrane Technology, and Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Chungli District, Taoyuan City, 320314, Taiwan
| | - Hsin-Tsung Chen
- Department of Chemistry, R&D Center for Membrane Technology, and Research Center for Semiconductor Materials and Advanced Optics, Chung Yuan Christian University, Chungli District, Taoyuan City, 320314, Taiwan
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University, Khyber Pakhtunkhwa, Mardan, 23200, Pakistan
| | - Liu Linlin
- School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Ahmed Ismail
- Key Laboratory of Functional Inorganic Material Chemistry, The Ministry of Education of the Peoples Republic of China, Heilongjiang University, Harbin, 150080, P. R. China
| | - Sharafat Ali
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fazal Raziq
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Mustafa Haider
- School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| | - Javid Khan
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sami Ullah
- K.A.CARE Energy Research & Innovation Center (ERIC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering, National Sun-Yat-Sen University, 70 Lienhai Rd, Kaohsiung, 804, Taiwan
| | - Shiliang Wang
- School of Physics and Electronics, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
96
|
Zheng L, Zhang H, Won M, Kim E, Li M, Kim JS. Codoping g-C 3N 4 with boron and graphene quantum dots: Enhancement of charge transfer for ultrasensitive and selective photoelectrochemical detection of dopamine. Biosens Bioelectron 2023; 224:115050. [PMID: 36603286 DOI: 10.1016/j.bios.2022.115050] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
The development of superior photoelectrochemical (PEC) sensors for biosensing has become a major objective of PEC research. However, conventional PEC-active materials are typically constrained by a weak photocurrent response owing to their limited surface-active sites and high electron-hole recombination rate. Here, a boron and graphene quantum dots codoped g-C3N4 (named GBCN) as PEC sensor for highly sensitive dopamine (DA) detection was fabricated. GBCN exhibited the greatest photocurrent response and PEC activity compared to free g-C3N4 and g-C3N4 doped with boron. The proposed PEC sensor for DA determination exhibited a broad linear range (0.001-800 μM) and a low detection limit (0.96 nM). In particular, a sensitivity up to 10.3771 μA/μM/cm2 was seen in the case of GBCN. The high PEC activity can be attributed to the following factors: (1) the boron and graphene quantum dots co-doping significantly increased the specific surface area of g-C3N4, providing more adsorption sites for DA; (2) the dopants extended the absorption intensity of g-C3N4, red-shifting the absorption from 470 to 540 nm; and (3) the synergism of boron and graphene quantum dots efficiently boosted the photogenerated electrons migration from the conduction band of g-C3N4 to graphene quantum dots, facilitating charge separation. In addition, GBCN also exhibited good anti-interference ability and stability. This research may shed light on the creation of a highly sensitive and selective PEC platform for detecting biomolecules.
Collapse
Affiliation(s)
- Longhui Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Haobo Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
97
|
Mechanical activation-enhanced doping and defect strategy to construct Fe–S co-doped carbon nitride for efficient photocatalytic tetracycline degradation and hydrogen evolution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
98
|
Zhang S, Zheng J, Li Z, Ding X, Wang Y. A green catalytic reaction system for the synthesis 5-amino-1-pentanol with furfural and ionic liquid hydroxylamine salt as the initial raw material. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
99
|
Zhang S, Yi X, Hu G, Chen M, Shen H, Li B, Yang L, Dai W, Zou J, Luo S. Configuration regulation of active sites by accurate doping inducing self-adapting defect for enhanced photocatalytic applications: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
100
|
Chen L, Liu X, Wang D, Xia Y, Yan G, Huang X, Wang X. Plasmon Au/K-doped defective graphitic carbon nitride for enhanced hydrogen production. Dalton Trans 2023; 52:2845-2852. [PMID: 36756969 DOI: 10.1039/d2dt03925g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Knowledge of the photocatalytic H2-evolution mechanism is of critical importance for water splitting, and for designing active catalysts for a sustainable energy supply. In this study, we prepared plasmon Au-modified K-doped defective graphitic carbon nitride (Au/KCNx) and then applied it in photocatalytic hydrogen-production tests. The hydrogen-production rate of the Au/KCNx photocatalyst (8.85 mmol g-1 h-1) was found to be almost 104 times higher than that of Au/g-C3N4 (0.085 mmol g-1 h-1), together with an apparent quantum efficiency of 12.8% at 420 nm. It could significantly improve the photocatalytic activities of the Au/KCNx sample, which was attributed to the synergistic effects of the plasmon effect, potassium doping, and nitrogen vacancy. In addition, the Au/KCNx photocatalyst had a large surface area, which was beneficial for photogenerated carrier separation and transfer. The novel strategy proposed here is a potential new method for the development of graphitic carbon nitride photocatalysts with obviously enhanced activities.
Collapse
Affiliation(s)
- Lu Chen
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Xiyao Liu
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Deling Wang
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Yuzhou Xia
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Guiyang Yan
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Xueyan Huang
- School of Automobile, Fujian Chuanzheng Communications College, Fuzhou, 350002, PR China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, PR China
| |
Collapse
|