51
|
Lan N, Vogl AW, Weinberg J. Prenatal ethanol exposure delays the onset of spermatogenesis in the rat. Alcohol Clin Exp Res 2013; 37:1074-81. [PMID: 23488802 DOI: 10.1111/acer.12079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/05/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND During late prenatal and early postnatal life, the reproductive system in males undergoes an extensive series of physiological and morphological changes. Prenatal ethanol (EtOH) exposure has marked effects on the development of the reproductive system, with long-term effects on function in adulthood. The present study tested the hypothesis that prenatal EtOH exposure will delay the onset of spermatogenesis. METHODS Development of the seminiferous tubules and the onset of spermatogenesis were examined utilizing a rat model of fetal alcohol spectrum disorder (FASD). Male offspring from ad libitum-fed control (C), pair-fed (PF), and EtOH-fed (prenatal alcohol exposure [PAE]) dams were terminated on postnatal (PN) days 5, 15, 18, 20, 25, 35, 45, and 55, to investigate morphological changes through morphometric analysis of the testes from early neonatal life through young adulthood. RESULTS PAE males had lower relative (adjusted for body weight) testis weights compared with PF and/or C males from PN15 through puberty (PN45). In addition, fewer gonocytes (primordial germ cells) were located on the basal lamina on PN5, while more of those touching the basal lamina were dividing in PAE compared with PF and C males, suggesting delayed cell division and migration processes. As well, the percentage of tubules with open lumena was lower in PAE compared with PF and C males on PN18 and 20, and PAE males had fewer primary spermatocytes per tubule on PN18 and round spermatids per tubule on PN25 compared with C males. Finally, the percentage of tubules at stages VII and VIII, when mature spermatids move to the apex of the epithelium and are released, was lower in PAE compared with PF and/or C males in young adulthood (PN55). CONCLUSIONS Maternal EtOH consumption appears to delay both reproductive development and the onset of spermatogenesis in male offspring, with effects persisting at least until young adulthood.
Collapse
Affiliation(s)
- Ni Lan
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
52
|
Agbor VA, Tao S, Lei N, Heckert LL. A Wt1-Dmrt1 transgene restores DMRT1 to sertoli cells of Dmrt1(-/-) testes: a novel model of DMRT1-deficient germ cells. Biol Reprod 2013; 88:51. [PMID: 23255335 DOI: 10.1095/biolreprod.112.103135] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DMRT1 is an evolutionarily conserved transcriptional factor expressed only in the postnatal testis, where it is produced in Sertoli cells and germ cells. While deletion of Dmrt1 in mice demonstrated it is required for postnatal testis development and fertility, much is still unknown about its temporal- and cell-specific functions. This study characterized a novel mouse model of DMRT1-deficient germ cells that was generated by breeding Dmrt1-null (Dmrt1(-/-)) mice with Wt1-Dmrt1 transgenic (Dmrt1(+/-;tg)) mice, which express a rat Dmrt1 cDNA in gonadal supporting cells by directing it from the Wilms tumor 1 locus in a yeast artificial chromosome transgene. Like Dmrt1(-/-) mice, male Dmrt1(-/-) transgenic mice (Dmrt1(-/-;tg)) were infertile, while female mice were fertile. Immunohistochemistry and Western blot analysis showed transgenic DMRT1 expressed in supporting cells of the newborn gonads of both sex and in Sertoli cells of the testis afterbirth. Sertoli cells were evaluated by electron microscopy, revealing that maturation of Dmrt1(-/-;tg) Sertoli cells was incomplete. Morphological analysis of testes from 42-day-old mice showed that, compared to Dmrt1(-/-) mice, Dmrt1(-/-;tg) mice have improved seminiferous tubule structure, with lumens present in many. Immunohistochemistry of the polarity markers ESPIN and NECTIN-2 showed that DMRT1 in Sertoli cells is required for NECTIN-2 expression and influences organization of ectoplasmic specializations. Further functional analyses of the transgene on a Dmrt1(-/-) background showed that it did not rescue the decrease in Dmrt1(-/-) testis size, but when expressed on a wild-type background, exogenous DMRT1 prevented the normal age-related decline in testis size and enhanced sperm progressive motility. The studies suggest that DMRT1 in Sertoli cells regulates tubule morphology, spermatogenesis, and sperm function via its effects on Sertoli cell maturation and polarity. Furthermore, expression and function of transgenic DMRT1 in Sertoli cells establishes a novel mouse model of DMRT1-deficient germ cells generated by breeding Dmrt1-null mice with Wt1-Dmrt1 transgenic mice (rescue; Dmrt1(-/-;tg)).
Collapse
Affiliation(s)
- Valentine A Agbor
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
53
|
Pfaff T, Rhodes J, Bergmann M, Weinbauer GF. Inhibin B as a Marker of Sertoli Cell Damage and Spermatogenic Disturbance in the Rat. ACTA ACUST UNITED AC 2013; 98:91-103. [DOI: 10.1002/bdrb.21046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/12/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Tamara Pfaff
- Preclinical Drug Safety; AiCuris GmbH & Co. KG; Wuppertal; Germany
| | | | - Martin Bergmann
- Institute of Veterinary Anatomy, -Histology and -Embryology, University Giessen; Giessen; Germany
| | | |
Collapse
|
54
|
Hazra R, Corcoran L, Robson M, McTavish KJ, Upton D, Handelsman DJ, Allan CM. Temporal role of Sertoli cell androgen receptor expression in spermatogenic development. Mol Endocrinol 2012; 27:12-24. [PMID: 23160479 DOI: 10.1210/me.2012-1219] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development.
Collapse
Affiliation(s)
- Rasmani Hazra
- ANZAC Research Institute, Concord Hospital, Sydney, New South Wales 2139, Australia
| | | | | | | | | | | | | |
Collapse
|
55
|
Functions of water channels in male and female reproductive systems. Mol Aspects Med 2012; 33:676-90. [DOI: 10.1016/j.mam.2012.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 12/31/2022]
|
56
|
Abstract
The blood-testis barrier includes strands of tight junctions between somatic Sertoli cells that restricts solutes from crossing the paracellular space, creating a microenvironment within seminiferous tubules and providing immune privilege to meiotic and postmeiotic cells. Large cysts of germ cells transit the Sertoli cell tight junctions (SCTJs) without compromising their integrity. We used confocal microscopy to visualize SCTJ components during germ cell cyst migration across the SCTJs. Cysts become enclosed within a network of transient compartments fully bounded by old and new tight junctions. Dissolution of the old tight junctions releases the germ cells into the adluminal compartment, thus completing transit across the blood-testis barrier. Claudin 3, a tight junction protein, is transiently incorporated into new tight junctions and then replaced by claudin 11.
Collapse
Affiliation(s)
- Benjamin E Smith
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | |
Collapse
|
57
|
Schulz RW, van Dijk W, Chaves-Pozo E, García-López A, de França LR, Bogerd J. Sertoli cell proliferation in the adult testis is induced by unilateral gonadectomy in African catfish. Gen Comp Endocrinol 2012; 177:160-7. [PMID: 22465554 DOI: 10.1016/j.ygcen.2012.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 11/21/2022]
Abstract
Survival and development of male germ cells depends on their close contact with Sertoli cells. In the cystic spermatogenesis found in fish, one germ cell clone, initially a single undifferentiated spermatogonium type A, is enclosed by and accompanied through spermatogenesis by a group of Sertoli cells. Previous work showed that after forming such spermatogenic cysts, Sertoli cells proliferated mainly during the mitotic expansion of the spermatogonial clone in the cyst. Here, we used unilateral gonadectomy (ULG) as experimental model to study Sertoli cell proliferation at the start of cyst development in adult African catfish testis. Four days after surgery, we observed a particularly strong increase in the number of mitotic Sertoli cells along with a significant increase in the number of mitotic single type A spermatogonia. Proliferation of pairs of spermatogonia or of larger germ cell clones, however, did not change. At the same time, pituitary transcript levels of the three gonadotropin-subunits (cga, glycoprotein hormones, alpha polypeptide; fshb, follicle stimulating hormone, beta polypeptide; lhb, luteinizing hormone, beta polypeptide) were not different between sham-operated and ULG males. However, expression of the gonadotropin-releasing hormone receptor gene gnrhr1 was significantly reduced after ULG, and Lh plasma levels were slightly elevated. In the testis remaining after ULG, Fsh receptor (fshr) mRNA levels increased significantly but luteinizing hormone/choriogonadotropin receptor (lhcgr) mRNA levels did not change. Circulating androgen levels did not differ between groups, but testicular androgen release increased significantly 2- to 3-fold after ULG. Considering the strong steroidogenic potency of Fsh and the expression of the fshr gene by Leydig cells in catfish, we explain the absence of an effect of ULG on circulating androgen levels by an Fshr-mediated, compensatory increase in the steroid production of the remaining testis, perhaps supported in addition by the increased Lh plasma levels. Since Fsh is a major stimulator of mammalian Sertoli cell proliferation, we propose that ULG-induced activation of the Fsh signalling system also promoted Sertoli cell proliferation and - possibly as a consequence of that - proliferation of single type A spermatogonia, providing the basis for an increased spermatogenic capacity.
Collapse
Affiliation(s)
- Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
58
|
|
59
|
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium into the basal and the apical (adluminal) compartments. Meiosis I and II, spermiogenesis, and spermiation all take place in a specialized microenvironment behind the BTB in the apical compartment, but spermatogonial renewal and differentiation and cell cycle progression up to the preleptotene spermatocyte stage take place outside of the BTB in the basal compartment of the epithelium. However, the BTB is not a static ultrastructure. Instead, it undergoes extensive restructuring during the seminiferous epithelial cycle of spermatogenesis at stage VIII to allow the transit of preleptotene spermatocytes at the BTB. Yet the immunological barrier conferred by the BTB cannot be compromised, even transiently, during the epithelial cycle to avoid the production of antibodies against meiotic and postmeiotic germ cells. Studies have demonstrated that some unlikely partners, namely adhesion protein complexes (e.g., occludin-ZO-1, N-cadherin-β-catenin, claudin-5-ZO-1), steroids (e.g., testosterone, estradiol-17β), nonreceptor protein kinases (e.g., focal adhesion kinase, c-Src, c-Yes), polarity proteins (e.g., PAR6, Cdc42, 14-3-3), endocytic vesicle proteins (e.g., clathrin, caveolin, dynamin 2), and actin regulatory proteins (e.g., Eps8, Arp2/3 complex), are working together, apparently under the overall influence of cytokines (e.g., transforming growth factor-β3, tumor necrosis factor-α, interleukin-1α). In short, a "new" BTB is created behind spermatocytes in transit while the "old" BTB above transiting cells undergoes timely degeneration, so that the immunological barrier can be maintained while spermatocytes are traversing the BTB. We also discuss recent findings regarding the molecular mechanisms by which environmental toxicants (e.g., cadmium, bisphenol A) induce testicular injury via their initial actions at the BTB to elicit subsequent damage to germ-cell adhesion, thereby leading to germ-cell loss, reduced sperm count, and male infertility or subfertility. Moreover, we also critically evaluate findings in the field regarding studies on drug transporters in the testis and discuss how these influx and efflux pumps regulate the entry of potential nonhormonal male contraceptives to the apical compartment to exert their effects. Collectively, these findings illustrate multiple potential targets are present at the BTB for innovative contraceptive development and for better delivery of drugs to alleviate toxicant-induced reproductive dysfunction in men.
Collapse
Affiliation(s)
- C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
60
|
Bellingham M, McKinnell C, Fowler PA, Amezaga MR, Zhang Z, Rhind SM, Cotinot C, Mandon-Pepin B, Evans NP, Sharpe RM. Foetal and post-natal exposure of sheep to sewage sludge chemicals disrupts sperm production in adulthood in a subset of animals. ACTA ACUST UNITED AC 2011; 35:317-29. [PMID: 22150464 PMCID: PMC3440584 DOI: 10.1111/j.1365-2605.2011.01234.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to ubiquitous, environmental chemicals (ECs) has been hypothesized as a cause for declining male reproductive health. Understanding the long-term effects of EC exposure on reproductive health in humans requires animal models and exposure to ‘real life’, environmentally relevant, mixtures during development, a life stage of particular sensitivity to ECs. The aim of this study was to evaluate the effects of in utero and post-natal exposure to environmentally relevant levels of ECs, via sewage sludge application to pasture, on the adult male sheep testis. Hormones, liver concentrations of candidate ECs and Sertoli and germ cell numbers in testes of adult rams that were exposed to ECs in sewage sludge in utero, and until weaning via maternal exposure, and post-weaning via grazing pastures fertilized with sewage sludge, were quantified. Evaluated as a single group, exposure to sludge ECs was without significant effect on most parameters. However, a more detailed study revealed that 5 of 12 sludge-exposed rams exhibited major spermatogenic abnormalities. These consisted of major reductions in germ cell numbers per testis or per Sertoli cell and more Sertoli cell-only tubules, when compared with controls, which did not show any such changes. The sludge-related spermatogenic changes in the five affected animals were significantly different from controls (p < 0.001); Sertoli cell number was unaffected. Hormone profiles and liver candidate EC concentrations were not measurably affected by exposure. We conclude that developmental exposure of male sheep to real-world mixtures of ECs can result in major reduction in germ cell numbers, indicative of impaired sperm production, in a proportion of exposed males. The individual-specific effects are presumed to reflect EC effects on a heterogeneous population in which some individuals may be more susceptible to adverse EC effects. Such effects of EC exposure in humans could have adverse consequences for sperm counts and fertility in some exposed males.
Collapse
Affiliation(s)
- M Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Marchlewska K, Kula K, Walczak-Jedrzejowska R, Oszukowska E, Orkisz S, Slowikowska-Hilczer J. Triiodothyronine modulates initiation of spermatogenesis in rats depending on treatment timing and blood level of the hormone. Mol Cell Endocrinol 2011; 341:25-34. [PMID: 21664241 DOI: 10.1016/j.mce.2011.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/29/2011] [Accepted: 04/29/2011] [Indexed: 11/18/2022]
Abstract
Triiodothyronine (T3) stimulates spermatogenic onset but the influence of T3 on spermatogonia development is unknown. The aim of the study was to investigate the role of T3 for both processes simultaneously. Male rats were given daily injections of 100 μg T3/kg body weight or vehicle from birth until postnatal day (pnd) 5 and euthanized on pnd 6 (short T3-sT3). Other rats, euthanized on pnd 16, were treated either transiently with T3 (tT3) during the initial 5 days or continuously until pnd 15 (cT3). sT3 was found to increase gonocyte differentiation, spermatogonia number, cell degeneration and proliferation. tT3 increased serum T3 level and spermatogonial development to adult values precociously, but cell degeneration or proliferation were not affected. cT3 increased serum T3 together with cell degeneration and proliferation, but cell number was not affected. In conclusion, T3 may modulate spermatogonial development quantitatively depending on treatment timing and blood level of the hormone.
Collapse
|
62
|
Gribbins K, Anzalone M, Collier M, Granados-González G, Villagrán-Santa Cruz M, Hernández-Gallegos O. Temporal germ cell development strategy during continuous spermatogenesis within the montane lizard, Sceloporus bicanthalis (Squamata; Phrynosomatidae). Theriogenology 2011; 76:1090-9. [PMID: 21752450 DOI: 10.1016/j.theriogenology.2011.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 11/27/2022]
Abstract
Sceloporus bicanthalis is a viviparous lizard that lives at higher elevations in Mexico. Adult male S. bicanthalis were collected (n = 36) from the Nevado de Toluca, Mexico (elevation is 4200 m) during August to December, 2007 and January to July, 2008. Testes were extracted, fixed in Trumps, and dehydrated in a graded series of ethanol. Tissues were embedded, sectioned (2 μm), stained, and examined via a light microscope to determine the spermatogenic developmental strategy of S. bicanthalis. In all months examined, the testes were spermiogenically active; based on this, plus the presence of sperm in the lumina of seminiferous tubules, we inferred that S. bicanthalis had year-round or continuous spermatogenesis, unlike most reptiles that occupy a temperate or montane habitat. It was recently reported that seasonally breeding reptiles had a temporal germ cell development strategy similar to amphibians, where germ cells progress through spermatogenesis as a single population, which leads to a single spermiation event. This was much different than spatial development within the testis of other derived amniotes. We hypothesized that germ cell development was temporal in S. bicanthalis. Therefore, we wanted to determine whether reptiles that practice continuous spermatogenesis have a mammalian-like spatial germ cell development, which is different than the typical temperate reptile exhibiting a temporal development. In the present study, S. bicanthalis had a temporal development strategy, despite its continuous spermatogenic cycle, making them similar to tropical anoles.
Collapse
Affiliation(s)
- Kevin Gribbins
- Department of Biology, Wittenberg University, Springfield, Ohio 45501, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Mok KW, Mruk DD, Lee WM, Cheng CY. A study to assess the assembly of a functional blood-testis barrier in developing rat testes. SPERMATOGENESIS 2011; 1:270-280. [PMID: 22319674 PMCID: PMC3271668 DOI: 10.4161/spmg.1.3.17998] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 01/08/2023]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the seminiferous tubule of the mammalian testis that segregates the events of spermatogenesis, in particular post-meiotic germ cell development, from the harmful substances in the environment including toxicants and drugs, as well as from the unwanted hormones and biomolecules in the systemic circulation. It is known that the BTB is assembled by ∼15-21 days postpartum (dpp) in rats coinciding with the onset of late cell cycle progression, namely the formation of zygotene and pachytene spermatocytes by day 15-18 dpp. This is to prepare for: (1) the differentiation/transformation of pachytene spermatocytes to diplotene and dictyate spermatocytes and (2) meiosis I and II, which take place by 23-26 and 26 dpp, respectively. Recent findings have shown spermatogonia/spermatogonial stem cells (SSC) in the tubules failed to re-initiate spermatogenesis by differentiating spermatogonia beyond type A spermatogonia in the absence of a functional BTB, leading to meiotic arrest. These studies thus illustrate that a functional BTB is crucial to the initiation and/or re-initiation of spermatogenesis. Herein, we sought to examine the precise time window when a functional and intact BTB is established in the developing rat testis during the final stage of cell cycle progression and meiosis. Using the techniques of: (1) dual-labeled immunofluorescence analysis to assess the distribution of integrated proteins at the tight junction (TJ), basal ectoplasmic specialization [basal ES, a testis-specific atypical adherens junction (AJ) type] and gap junction (GJ) at the BTB, (2) functional assay to assess the BTB integrity in vivo, (3) immunoblot analysis to monitor changes in steady-state levels of adhesion proteins at the BTB, and (4) co-immunoprecipitation to assess changes in protein-protein interactions at the BTB, it was shown that a BTB was being assembled by day 15-20 dpp, but a functional BTB was not fully established until day 25 dpp in Sprague-Dawley rats, tightly associated with the onset of meiosis I and II. These findings thus illustrate the significance of the BTB on cell cycle progression and the preparation for meiosis, such as germ cell differentiation beyond type A spermatogonia.
Collapse
Affiliation(s)
- Ka-Wai Mok
- Center for Biomedical Research; The Population Council; New York, NY USA
| | | | | | | |
Collapse
|
64
|
Park C, Lee J, Oh Y, Shim S, Nah W, Choi K, Gye M. Expression of claudin-1 and -11 in immature and mature pheasant (Phasianus colchicus) testes. Theriogenology 2011; 75:445-58. [DOI: 10.1016/j.theriogenology.2010.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/06/2010] [Accepted: 09/10/2010] [Indexed: 11/27/2022]
|
65
|
Willems A, Batlouni SR, Esnal A, Swinnen JV, Saunders PTK, Sharpe RM, França LR, De Gendt K, Verhoeven G. Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development. PLoS One 2010; 5:e14168. [PMID: 21152390 PMCID: PMC2994754 DOI: 10.1371/journal.pone.0014168] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 11/10/2010] [Indexed: 11/19/2022] Open
Abstract
The observation that mice with a selective ablation of the androgen receptor (AR) in Sertoli cells (SC) (SCARKO mice) display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli) and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin). Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2). It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.
Collapse
Affiliation(s)
- Ariane Willems
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sergio R. Batlouni
- Aquaculture Center (CAUNESP), São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Arantza Esnal
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Edinburgh, Scotland, United Kingdom
| | - Johannes V. Swinnen
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Philippa T. K. Saunders
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Edinburgh, Scotland, United Kingdom
| | - Richard M. Sharpe
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Edinburgh, Scotland, United Kingdom
| | - Luiz R. França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karel De Gendt
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Guido Verhoeven
- Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
66
|
Avelar GF, Oliveira CF, Soares JM, Silva IJ, Dobrinski I, Hess RA, França LR. Postnatal somatic cell proliferation and seminiferous tubule maturation in pigs: a non-random event. Theriogenology 2010; 74:11-23. [PMID: 20189235 PMCID: PMC4805375 DOI: 10.1016/j.theriogenology.2009.12.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 11/28/2022]
Abstract
Although seminiferous tubule maturation in horses begins in the central area of the testis, this process is thought to occur randomly throughout the testis in most mammals. Studies in our laboratory revealed that the establishment of spermatogenesis may not be a synchronous event in the testicular parenchyma of pigs. The objectives of the present study were to evaluate the pattern of seminiferous cord/tubule maturation and the morphological and functional characteristics of testicular somatic cells during postnatal development in three regions of the pig testis: a) near the tunica albuginea (TA); b) in the transitional area between the seminiferous tubules and mediastinum (TR); and c) in the intermediate area (ID) between the TA and TR. Based on the diameter of seminiferous cords/tubules, nucleus size of Sertoli cells and fluid secretion, mainly at 90 and 120 d of age, seminiferous tubule maturation was more advanced in the ID and TR. The mitotic activity of Sertoli cells was higher (P<0.05) in the TR than the ID and TA at 7 and 120 d. Except for the mitotic index of the Leydig cells, which was lower (P<0.05) in the ID at 7, 30, and 180 d than in the TA and TR, other Leydig cell ebd points, e.g., individual cell size, nuclear volume, and cytoplasmic volume, were consistently higher (P<0.05) in the ID, suggesting that steroidogenesis was more active in this region during the period investigated. Overall, we inferred that Leydig cells in the ID may play a pivotal role in postnatal testis development in pigs and this type of cell is likely related to asynchronous testicular parenchyma development, with the transitional area providing the primary zone for growth of seminiferous tubules.
Collapse
Affiliation(s)
- Gleide F. Avelar
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| | - Carolina F.A. Oliveira
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| | - Jaqueline M. Soares
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| | - Israel J. Silva
- School of Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Rex A. Hess
- Department of Veterinary Biosciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Luiz R. França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| |
Collapse
|
67
|
McCabe MJ, Tarulli GA, Meachem SJ, Robertson DM, Smooker PM, Stanton PG. Gonadotropins regulate rat testicular tight junctions in vivo. Endocrinology 2010; 151:2911-22. [PMID: 20357222 PMCID: PMC2875820 DOI: 10.1210/en.2009-1278] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sertoli cell tight junctions (TJs) are an essential component of the blood-testis barrier required for spermatogenesis; however, the role of gonadotropins in their maintenance is unknown. This study aimed to investigate the effect of gonadotropin suppression and short-term replacement on TJ function and TJ protein (occludin and claudin-11) expression and localization, in an adult rat model in vivo. Rats (n = 10/group) received the GnRH antagonist, acyline, for 7 wk to suppress gonadotropins. Three groups then received for 7 d: 1) human recombinant FSH, 2) human chorionic gonadotropin (hCG) and rat FSH antibody (to study testicular androgen stimulation alone), and 3) hCG alone (to study testicular androgen and pituitary FSH production). TJ proteins were assessed by real-time PCR, Western blot analysis, and immunohistochemistry, whereas TJ function was assessed with a biotin permeation tracer. Acyline treatment significantly reduced testis weights, serum androgens, LH and FSH, and adluminal germ cells (pachytene spermatocyte, round and elongating spermatids). In contrast to controls, acyline induced seminiferous tubule permeability to biotin, loss of tubule lumens, and loss of occludin, but redistribution of claudin-11, immunostaining. Short-term hormone replacement stimulated significant recoveries in adluminal germ cell numbers. In hCG +/- FSH antibody-treated rats, occludin and claudin-11 protein relocalized at the TJ, but such relocalization was minimal with FSH alone. Tubule lumens also reappeared, but most tubules remained permeable to biotin tracer, despite the presence of occludin. It is concluded that gonadotropins maintain Sertoli cell TJs in the adult rat via a mechanism that includes the localization of occludin and claudin-11 at functional TJs.
Collapse
Affiliation(s)
- Mark J McCabe
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton 3168, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
68
|
Auharek SA, de Franca LR, McKinnell C, Jobling MS, Scott HM, Sharpe RM. Prenatal plus postnatal exposure to Di(n-Butyl) phthalate and/or flutamide markedly reduces final sertoli cell number in the rat. Endocrinology 2010; 151:2868-75. [PMID: 20392824 DOI: 10.1210/en.2010-0108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Androgens may be important regulators of Sertoli cell (SC) proliferation perinatally, with implications for the testicular dysgenesis syndrome (TDS) hypothesis. Fetal exposure of rats to 500 mg/kg . d di(n-butyl) phthalate (DBP) reduces fetal testosterone production and SC number at birth, but SC number recovers to normal by postnatal d (Pnd)25. It is unclear when and how SC proliferation is affected prenatally by DBP exposure or when and how postnatal compensation occurs. This study addressed these questions and investigated whether continued maternal exposure to DBP or to flutamide from Pnd1-Pnd15 could prevent SC number compensation, because this would have implications for how sperm counts might be lowered in TDS. DBP exposure attenuated SC proliferation by 7-18% throughout embryonic d (e)15.5-e21.5 (P < 0.05 at e21.5). After birth, SC proliferation increased significantly (>1.5-fold) between Pnd6 and Pnd10 in prenatally DBP-exposed animals, explaining the compensation. Continued maternal administration of DBP after birth attenuated (19% reduction) SC number compensation at Pnd25 and maternal administration of flutamide (100 mg/kg . d) to prenatally DBP-exposed animals was even more effective (42% reduction), suggesting the postnatal compensatory increase in SC proliferation after prenatal DBP exposure is androgen dependent. SC maturation (Pnd25) was unaffected, based on analysis of expression of key proteins, but lumen formation/expansion was attenuated in parallel with treatment-induced reduction in SC number. Our results provide further evidence that perinatal SC proliferation is androgen dependent and, importantly, show that similar exposure of mothers to antiandrogenic chemicals before birth and during lactation reduces final SC number, with implications for the origin of low sperm counts in TDS.
Collapse
Affiliation(s)
- Sarah A Auharek
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
69
|
Welsh M, Saunders PTK, Atanassova N, Sharpe RM, Smith LB. Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 2009; 23:4218-30. [PMID: 19692648 PMCID: PMC2812048 DOI: 10.1096/fj.09-138347] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/30/2009] [Indexed: 11/23/2022]
Abstract
Androgens are essential for normal spermatogenesis and male fertility, but how androgens exert this effect remains uncertain. Androgen receptors (ARs) are expressed in several testicular cell types, but continuing uncertainty exists over which cell type mediates androgen control of spermatogenesis. Androgen signaling via Sertoli cells (SCs) is essential for complete spermatogenesis, but the role for androgen signaling via peritubular myoid (PTM) cells is contentious. To address this controversy, we generated PTM-specific AR-knockout (PTM-ARKO) mice in which gross reproductive development was normal, but all PTM-ARKO males were azoospermic and infertile. Testis weight was reduced beyond puberty, and in adulthood there was an 86% reduction in germ cells, compared with wild-type littermates. These changes were not explained by any deficits in testosterone, luteinizing hormone, or follicle-stimulating hormone concentrations. SC function was impaired in PTM-ARKO males, indicated by reduced seminiferous tubule fluid production and reduced expression of some androgen-dependent SC genes. Androgen action via PTM cells is therefore essential for normal testis function, spermatogenesis, and fertility in males. This study also provides the first direct evidence for the importance of androgen-driven stromal-epithelial interactions underpinning the regulation of spermatogenesis; PTM-ARKO mice will enable identification of the new molecular pathways involved.
Collapse
Affiliation(s)
- Michelle Welsh
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | | | | | | | | |
Collapse
|
70
|
Kopera IA, Su L, Bilinska B, Cheng CY, Mruk DD. An in vivo study on adjudin and blood-testis barrier dynamics. Endocrinology 2009; 150:4724-33. [PMID: 19574397 PMCID: PMC2754679 DOI: 10.1210/en.2008-1779] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 06/22/2009] [Indexed: 12/16/2022]
Abstract
Adjudin is known to specifically affect Sertoli-germ cell adhesion, resulting in germ cell loss from the seminiferous epithelium and transient infertility. The apical ectoplasmic specialization (ES) was shown to be the primary target of adjudin because adhesion was unaffected in organs that lack this structure. Herein we expand previous findings by treating rat pups with adjudin, and we aimed to address two questions. First, can adjudin perturb germ cell adhesion in the seminiferous epithelium of testes in which the apical ES is not yet present? Second, can adjudin affect assembly of the blood-testis barrier (BTB) at 15-18 d of age? Interesting changes were noted when aged-matched testes from control and adjudin-treated rats were examined, including a delay in the appearance of developing germ cells as well as a delay in the formation of the tubule lumen. Immunoblotting using antibodies against BTB-constituent proteins indicated that formation of the BTB was affected in rat pups gavaged with adjudin. These results were corroborated by immunofluorescence microscopy, which showed profound changes in the cellular distribution of tight junction and basal ES proteins. Moreover, the BTB was shown to be compromised in 30-d-old rats when its integrity was assessed by a functional in vivo assay. By 45 d of age, however, the seminiferous epithelium of treated rats was indistinguishable from that of control rats. Collectively these results demonstrate that adjudin targets the apical ES as well as the basal ES and tight junction, which in turn delays assembly of the BTB.
Collapse
Affiliation(s)
- Ilona A Kopera
- Population Council, Center for Biomedical Research, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
71
|
Gassei K, Ehmcke J, Wood MA, Walker WH, Schlatt S. Immature rat seminiferous tubules reconstructed in vitro express markers of Sertoli cell maturation after xenografting into nude mouse hosts. Mol Hum Reprod 2009; 16:97-110. [PMID: 19770206 DOI: 10.1093/molehr/gap081] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sertoli cells undergo a maturation process during post-natal testicular development that leads to the adult-type Sertoli cell, which is required for spermatogenesis. Understanding Sertoli cell maturation is therefore necessary to gain insight into the underlying causes of impaired spermatogenesis and male infertility. The present study characterized the cellular and molecular differentiation of Sertoli cells in a xenograft model of mammalian testicular development. Immature rat Sertoli cells were cultured in a three-dimensional culture system to allow the formation of cord-like structures. The in vitro Sertoli cell cultures were then grafted into nude mice. Sertoli cell proliferation, morphological differentiation and mRNA expression of Sertoli cell maturation markers were evaluated in xenografts. Sertoli cell proliferation significantly decreased between 1 and 4 weeks (6.7 +/- 0.9 versus 1.2+/- 0.1%, P < 0.001), and was maintained at low levels thereafter. Sertoli cell cord-like structures significantly decreased between 1 and 4 weeks (59.6 versus 21%, P < 0.05), whereas Sertoli cell tubules were more frequently observed after 4 weeks (13.3 versus 73.1%, P < 0.05). Furthermore, expression of androgen binding protein, transferrin and follicle stimulating hormone receptor, markers for mature Sertoli cells, was detected after 1 week of grafting and increased significantly thereafter. We conclude from these results that rat Sertoli cells continue maturation after xenografting to the physiological environment of a host. This model of in vitro tubule formation will be helpful in future investigations addressing testicular maturation in the mammalian testis.
Collapse
Affiliation(s)
- K Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
72
|
Setchell BP. Blood-testis barrier, junctional and transport proteins and spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:212-33. [PMID: 19856170 DOI: 10.1007/978-0-387-09597-4_12] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Brian P Setchell
- Department of Anatomical Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
73
|
Mruk DD, Lau ASN. RAB13 participates in ectoplasmic specialization dynamics in the rat testis. Biol Reprod 2008; 80:590-601. [PMID: 19074001 DOI: 10.1095/biolreprod.108.071647] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During spermatogenesis, leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) to gain entry into the adluminal compartment for further development. At the same time, these as well as other germ cell types in the epithelium must retain their close association with Sertoli cells via specialized cell junctions. In this study, we demonstrate that RAB13-a guanosine triphosphatase (GTPase) known to participate in tight junction function in other epithelia-also participates in the dynamics of the ectoplasmic specialization, a testis-specific type of anchoring junction. By immunohistochemistry microscopy, RAB13 localized to the ectoplasmic specialization. Moreover, RAB13 was found to associate with vinculin (VCL) and espin (ESPN), two putative ectoplasmic specialization actin (ACT)-binding proteins, by coimmunoprecipitation and immunofluorescence microscopy experiments. To address the role of RAB13 in ectoplasmic specialization dynamics, an in vivo model was used in which administration of Adjudin induced the disassembly of Sertoli-germ cell anchoring junctions. Following administration of this drug, the RAB13 level decreased steadily when the loss in testicular weight was taken into account. Similarly, the association of RAB13 with VCL decreased but was not completely lost during Adjudin-mediated ectoplasmic specialization restructuring. Taken collectively, these results suggest that RAB13 functions in ectoplasmic specialization dynamics in the testis.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, New York 10065, USA.
| | | |
Collapse
|
74
|
Leal MC, França LR. Postnatal Sertoli and Leydig cell proliferation and the establishment of puberty and sexual maturity in Chinchilla lanigera (Rodentia, Chinchillidae). Reprod Fertil Dev 2008; 20:665-73. [PMID: 18671914 DOI: 10.1071/rd07134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 05/19/2008] [Indexed: 11/23/2022] Open
Abstract
The Chilean chinchilla (Chinchilla lanigera) is threatened in its natural habitat and there is very little information concerning the reproductive biology of this species. Our main objectives were to investigate the postnatal testis development in this rodent, with emphasis on Sertoli and Leydig cell proliferation and the establishment of puberty and sexual maturity. Forty-four animals from one day to 30 months of age had their testis and epididymis prepared (time of collection for animals from 5 to 30 months of age, May-November in the southern hemisphere) for histological and stereological analyses. Both Sertoli and Leydig cell proliferation occurred up to two months after birth and their total number per testis were stable thereafter. Based on spermatid release from the seminiferous epithelium and the presence of sperm in the epididymis, puberty in chinchilla took place at around three months of age. However, testis weight and tubular diameter and epithelium height appeared to stabilise only after the animals reached 17 months of age, indicating that the establishment of full sexual maturity in this species takes a relatively long period of time. This particular finding indicates that chinchilla might represent an interesting experimental model to investigate the mechanisms that regulate the establishment of this important event of reproductive physiology in mammals.
Collapse
Affiliation(s)
- Marcelo C Leal
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
75
|
Yoon SI, Park CJ, Nah WH, Gye MC. Expression of occludin in testis and epididymis of wild rabbits, Lepus sinensis coreanus. Reprod Domest Anim 2008; 44:745-50. [PMID: 18992101 DOI: 10.1111/j.1439-0531.2008.01064.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tight junctions (TJs) in inter-Sertoli junctional areas and epididymal epithelia build up the blood-testis barrier (BTB) and the blood-epididymal barrier (BEB), respectively. In this study, the expression of occludin, an integral member of the TJs, was examined in testis and different regions of epididymis of Lepus sinensis coreanus, an Korean wild rabbit species. In testis, intense occludin immunoreactivity was found in the basally located inter-Sertoli junctional area together with diffused immunoreactivity of occludin in the cytoplasm of Sertoli cells. It can be suggested that occludin is one of the robust elements of BTB in seminiferous tubules of rabbit testis. In proximal and distal caput epididymis, occludin immunoreactivity was found in the lateral as well as apical contacts of epithelial cells. In corpus epididymis, intense occludin immunoreactivity was found in the basolateral as well as apical contacts of epithelial cells together with cytoplasmic signal. In cauda epididymis, occludin immunoreactivity in luminal epithelia was relatively strong but largely found in the cytoplasm. This suggests that intriguing regulatory mechanisms differentially recruit occludin to the TJ in the different regions of epididymal epithelia. The differences in the subcellular localization as well as expression levels of occludin among the epididymal segments may reflect differential paracellular permeability of epithelia along the epididymal tubules and be correlated with sperm maturation in rabbit. In Western blot, a major form of occludin was MW 62 kDa together with small fragments of MW 34-39 kDa in testis and epididymis, suggesting the peptide cleavage of occludin. This is the first report on the molecular nature of TJs in a wild rabbit testis and epididymis.
Collapse
Affiliation(s)
- S I Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | | | | | | |
Collapse
|
76
|
Herrera-Alarcón J, Villagómez-Amezcua E, González-Padilla E, Jiménez-Severiano H. Stereological study of postnatal testicular development in Blackbelly sheep. Theriogenology 2007; 68:582-91. [PMID: 17583781 DOI: 10.1016/j.theriogenology.2007.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 01/27/2007] [Indexed: 11/24/2022]
Abstract
The objective was to characterize testicular development in Blackbelly sheep, focusing primarily on Sertoli cell number. Lambs (n=43) were allotted into eight groups, and surgically castrated at 0, 3, 6, 9, 12, 15,18 or 21 weeks of age (n=4-6 lambs per group). Testes were fixed and paraffin-embedded, cross-sections (5 microm) were stained and evaluated with quantitative morphometry techniques. Testis weight increased at a greater rate between 9 and 15 weeks of age, which was associated with remarkable changes in testicular histology, including increases in tubular tissue volume, and tubule diameter and length. Spermatogenesis started in a period between 9 and 12 weeks, lumen and elongated spermatids were observed for the first time at 12 weeks (78% of the tubules) and 15 weeks (37% of the tubules), respectively. Total number of Sertoli cells (mean+/-S.E.M.) increased steadily from birth (531+/-76 x 10(6)) to 15 weeks (12,008+/-1722 x 10(6)), with no changes afterwards. Sertoli cell number per gram of testicular tissue decreased as lambs were older, with the most remarkable change occurring between Weeks 9 and 12. An early increase in serum LH was observed at 6 weeks of age, with testosterone (T) increasing at Weeks 12 and 21. In conclusion, Sertoli cells maintained the capacity of proliferating from birth to 15 weeks of age in Blackbelly sheep; furthermore, the period of accelerated testis growth was associated with increased serum T concentration and with important changes in testicular morphology, as a consequence of the beginning and establishment of spermatogenesis and Sertoli cell maturation.
Collapse
Affiliation(s)
- J Herrera-Alarcón
- Facultad de Estudios Superiores Cuautitlán UNAM, Campus Ajuchitlán, Querétaro Qro, Mexico
| | | | | | | |
Collapse
|
77
|
Siemieniuch MJ, Wocławek-Potocka I. Morphological features of the seminiferous epithelium in cat (Felis catus, L. 1758) testes. J Reprod Dev 2007; 53:1125-30. [PMID: 17615443 DOI: 10.1262/jrd.19053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to assess the changes in the germinal epithelium in cats of different ages. Routine histological staining was applied to perform morphological and stereological examinations. The animals were divided into five groups according to age: under 8 months (n=28), 8-12 months (n=30), 12-36 months (n=33), 3-6 years (n=14) and older than 6 years (n=13). The appearance of the gonads of the males in the first group varied the most. The seminiferous tubules of the youngest cats consisted of a monolayer of supporting cells and a few spermatogonia. No tubular lumina were present, and the diameters of the seminiferous tubules reached 132.5 microm. We noted the typical arrangement of gametogenic cells with a tubule diameter of 191.83 microm in the second group. We observed multilayer germinal epithelia with the most significant production of gametes and a seminiferous tubule diameter of 202.61 microm in the third group. The diameters of the seminiferous tubules of the forth and fifth groups were 193.38 microm and 191.84 microm, respectively. The obtained data revealed that the most intensive morphological diversification of the seminiferous epithelium in cats occurs at about 7-8 months of age. The diameters of seminiferous tubules were highest in the third group of cats, and the activity of spermatogenesis of this group, expressed as the number of sperm per 10 mm(2), was also the most distinctive. The spermatogenesis process was most evident in cats between 12 and 36 months of age, which was also when the sperm concentration was highest per estimated surface.
Collapse
Affiliation(s)
- Marta J Siemieniuch
- Department of Reproductive Immunology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland.
| | | |
Collapse
|
78
|
Kaitu'u-Lino TJ, Sluka P, Foo CFH, Stanton PG. Claudin-11 expression and localisation is regulated by androgens in rat Sertoli cells in vitro. Reproduction 2007; 133:1169-79. [PMID: 17636171 DOI: 10.1530/rep-06-0385] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Claudin-11 and occludin are protein components in tight junctions (TJs) between Sertoli cells which are important for the maintenance of the blood-testis barrier. Barrier formation occurs during puberty, with evidence suggesting hormonal regulation of both claudin-11 and occludin. This study aimed to investigate the regulation of claudin-11 and occludin mRNA expression by testosterone (T) and FSH and their immunolocalisation at rat Sertoli cell TJs in vitro, and to correlate any steroid regulation with the functional capacity of TJs. Sertoli cells formed functional TJs within 3 days as assessed by transepithelial electrical resistance (TER). Both T and dihydrotestosterone significantly (P < 0.01) increased TER twofold and claudin-11 mRNA two- to threefold within 3 days. FSH partially stimulated TER and claudin-11 mRNA, but estradiol had no effect. T also promoted claudin-11 localisation into extensive intercellular contacts. In contrast to claudin-11, Tand FSH did not change occludin mRNA expression, however, T promoted localisation of occludin at cell contacts in a similar manner to claudin-11. Addition of flutamide to T-stimulated cells caused a twofold decrease in both TER and claudin-11 mRNA expression, and resulted in the loss of both proteins from cell contacts. This effect was reversible following flutamide removal. It is concluded that androgens i) co-regulate claudin-11 mRNA expression and TER, implicating claudin-11 in TJ formation and ii) promote the localisation of claudin-11 and occludin at Sertoli cell contacts. Hence, the ability of androgens to maintain spermatogenesis in vivo is partly via their effects on TJ proteins and regulation of the blood-testis barrier.
Collapse
Affiliation(s)
- Tu'uhevaha J Kaitu'u-Lino
- Prince Henry's Institute of Medical Research, Monash Medical Centre, PO Box 5152, Clayton 3168, Victoria, Australia
| | | | | | | |
Collapse
|
79
|
Zamoner A, Barreto KP, Filho DW, Sell F, Woehl VM, Guma FCR, Silva FRMB, Pessoa-Pureur R. Hyperthyroidism in the developing rat testis is associated with oxidative stress and hyperphosphorylated vimentin accumulation. Mol Cell Endocrinol 2007; 267:116-26. [PMID: 17306450 DOI: 10.1016/j.mce.2007.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/06/2007] [Accepted: 01/09/2007] [Indexed: 12/20/2022]
Abstract
Hyperthyroidism was induced in rats and somatic indices and metabolic parameters were analyzed in testis. In addition, the morphological analysis evidenced testes maturation and intense protein synthesis and processing, supporting the enhancement in vimentin synthesis in hyperthyroid testis. Furthermore, vimentin phosphorylation was increased, indicating an accumulation of phosphorylated vimentin associated to the cytoskeleton, which could be a consequence of the extracellular-regulated kinase (ERK) activation regulating the cytoskeleton. Biomarkers of oxidative stress demonstrated an increased basal metabolic rate measured by tissue oxygen consumption, as well as, increased TBARS levels. In addition, the enzymatic and non-enzymatic antioxidant defences appeared to respond according to the augmented oxygen consumption. We observed decreased total glutathione levels, with enhancement of reduced glutathione, whereas most of the antioxidant enzyme activities were induced. Otherwise, superoxide dismutase activity was inhibited. These results support the idea that an increase in mitochondrial ROS generation, underlying cellular oxidative damage, is a side effect of hyperthyroid-induced biochemical changes by which rat testis increase their metabolic capacity.
Collapse
Affiliation(s)
- Ariane Zamoner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Morales A, Mohamed F, Cavicchia JC. Apoptosis and blood–testis barrier during the first spermatogenic wave in the pubertal rat. Anat Rec (Hoboken) 2007; 290:206-14. [PMID: 17441213 DOI: 10.1002/ar.20417] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This research explores the initial assembly of the blood-testis barrier (BTB) during puberty, when a massive physiological apoptosis in the first spermatogenic wave takes place. Fragments of testis from 14- to 20-day-old rats were studied by conventional transmission electron microscopic techniques. Lanthanum hydroxide was used as an intercellular tracer. Light microscopy was used to confirm apoptotic death when paraffin-embedded sections were studied by TUNEL analysis. When the seminiferous cords reached the zygotene-pachytene spermatocyte level, they exhibited abundant apoptotic figures, whereas the remaining segments showed sporadic apoptosis. We found a BTB not yet assembled in the cords with zygotene-pachytene spermatocytes and abundant apoptosis. The observed apoptosis frequency diminished drastically when BTB was organized, as confirmed by the use of the tracer. Our conclusion is that the massive apoptosis found in the zygotene-pachytene spermatocytes between days 14 and 20 coincides with an open BTB. The absence of BTB could be one of the factors causing massive apoptosis of zygotene-pachytene spermatocytes, at least within the time span analyzed. The zygotene-pachytene spermatocytes are left exposed in an open environment instead of being isolated in the adluminal compartment to which they are destined.
Collapse
Affiliation(s)
- Alfonsina Morales
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | |
Collapse
|
81
|
Mackay S, Smith RA. Effects of growth factors on testicular morphogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 260:113-73. [PMID: 17482905 DOI: 10.1016/s0074-7696(06)60003-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since the discovery of the sex-determining gene Sry in 1990, research effort has focused on the events downstream of its expression. A range of different experimental approaches including gene expression, knocking-out and knocking-in genes of interest, and cell and tissue culture techniques have been applied, highlighting the importance of growth factors at all stages of testicular morphogenesis. Migration of primordial germ cells and the mesonephric precursors of peritubular myoid cells and endothelial cells to the gonad is under growth factor control. Proliferation of both germ cells and somatic cells within the gonadal primordium is also controlled by cytokines as is the interaction of Sertoli cells (with each other and with the extracellular matrix) to form testicular cords. Several growth factors/growth factor families (e.g., platelet-derived growth factor, fibroblast growth factor family, TGFbeta family, and neurotrophins) have emerged as key players, exerting an influence at different time points and steps in organogenesis. Although most evidence has emerged in the mouse, comparative studies are important in elucidating the variety, potential, and evolution of control mechanisms.
Collapse
Affiliation(s)
- Sarah Mackay
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK, G12 8QQ
| | | |
Collapse
|
82
|
Domeniconi RF, Orsi AM, Justulin LA, Beu CCL, Felisbino SL. Aquaporin 9 (AQP9) Localization in the Adult Dog Testis Excurrent Ducts by Immunohistochemistry. Anat Rec (Hoboken) 2007; 290:1519-25. [DOI: 10.1002/ar.20611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
83
|
Huang HF, He RH, Sun CC, Zhang Y, Meng QX, Ma YY. Function of aquaporins in female and male reproductive systems. Hum Reprod Update 2006; 12:785-95. [PMID: 16840793 DOI: 10.1093/humupd/dml035] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The flow of water and some other small molecules across cell membranes is important in many of the processes underlying reproduction. The fluid movement is strongly associated with the presence of aquaporins (AQPs) in the female and male reproductive systems. It has been suggested that AQPs mediate water movement into the antral follicle and play important roles in follicle development. AQPs are known to be involved in the early stage of spermatogenesis, in the secretion of tubule liquid and in the concentration and storage of spermatozoa. Fluid reabsorption in some regions of the male reproductive tract is under steroid hormone control and could be mediated by various AQPs. Also AQPs take part in the processes of fertilization, blastocyst formation (as the pathway for transtrophoectodermal water movement during cavitation) and implantation. Alterations in the expression and function or regulation of AQPs have already been demonstrated in disorders of the male reproductive system, such as abnormal sperm motility, the abnormal epididymis and infertility seen in cystic fibrosis, and varicocele. This article extensively reviews the distribution of AQPs in mammalian reproductive tissues and discusses their possible physiological and pathophysiological roles.
Collapse
Affiliation(s)
- He-Feng Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | | | | | | | | | | |
Collapse
|
84
|
Shamekh R, Mallery J, Newcomb J, Hushen J, Saporta S, Cameron DF, Sanberg CD, Sanberg PR, Willing AE. Enhancing tyrosine hydroxylase expression and survival of fetal ventral mesencephalon neurons with rat or porcine Sertoli cells in vitro. Brain Res 2006; 1096:1-10. [PMID: 16780819 DOI: 10.1016/j.brainres.2006.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 03/29/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Sertoli cells (SCs) are testis-derived cells that secrete trophic factors important for the development of germ cells. Both porcine and rat SCs have been used as graft facilitators - neonatal porcine SCs to support islets in diabetes and 15-day-old rat SCs to enhance dopaminergic neuron transplants in Parkinson's disease models. However, there has never been a study examining the optimal SCs preparation to enhance tyrosine hydroxylase expression in the ventral mesencephalon (VM) neuron. The aim of this study was to compare the ability of both rat and porcine SCs to enhance tyrosine hydroxylase expression (TH) and neuronal survival at the same postnatal developmental ages. The SCs were isolated from 1-, 9-, or 15-day-old rat, or neonate (2-5 days), 2-month, or 4-month-old pig, and co-cultured with VM tissue from 13.5-day-old embryos. Our results showed that VM neurons co-cultured with SCs dispersed over the culture plate and had extensive neuritic outgrowth, while VM neurons cultured alone tended to cluster together forming a mass of cells with limited neurite outgrowth. TH expression was significantly increased when VM neurons were co-cultured with 15-day rat SCs or 2-month pig SCs but not when the cells were co-cultured with other ages of SCs. This suggests that secretion of trophic factors by SCs varies according to the developmental age, and it is critical for the success of graft facilitation that SCs from the appropriate age and species be used.
Collapse
Affiliation(s)
- Rania Shamekh
- Department of Neurosurgery, Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Andrade AJM, Grande SW, Talsness CE, Grote K, Golombiewski A, Sterner-Kock A, Chahoud I. A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): effects on androgenic status, developmental landmarks and testicular histology in male offspring rats. Toxicology 2006; 225:64-74. [PMID: 16806631 DOI: 10.1016/j.tox.2006.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 11/16/2022]
Abstract
An extensive dose-response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP) was conducted. A wide range of low and high DEHP doses were tested. Reproductive effects were evaluated on male offspring rats. Female Wistar rats were treated daily with DEHP and peanut oil by gavage from gestation day 6 to lactation day 21 at doses of 0.015, 0.045, 0.135, 0.405 and 1.215 mg DEHP/kg body weight (bw)/day (low doses) and at 5, 15, 45, 135 and 405 mg DEHP/kg bw/day (high doses). Nipple retention and reduced anogenital distance, both sensitive markers of anti-androgenic effects during development, were only seen in males exposed to the highest dose (405 mg/kg/day). Delayed preputial separation was observed in animals exposed to 15 mg DEHP/kg/day and higher doses. Histopathological examination of the testis on postnatal days (PNDs) 1 and 22 revealed changes at 135 and 405 mg DEHP/kg/day. The most prominent finding on PND 1 was the presence of bi- and multinucleated gonocytes. On PND 22 signs of reduced germ cell differentiation in seminiferous tubules of exposed animals were observed. Testis weight on PND 22 was significantly increased at 5, 15, 45 and 135 mg/kg/day, an effect that qualitatively differs from exposure to higher doses. The current results show that DEHP acts as an anti-androgen at a high dose exposure (405 mg/kg/day). However, these results also indicate that other subtle developmental effects occur at lower DEHP doses.
Collapse
Affiliation(s)
- Anderson J M Andrade
- Charité University Medical School Berlin, Campus Benjamin Franklin, Institute of Clinical Pharmacology and Toxicology, Department of Toxicology, Garystrasse 5, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
86
|
Myers M, Ebling FJP, Nwagwu M, Boulton R, Wadhwa K, Stewart J, Kerr JB. Atypical development of Sertoli cells and impairment of spermatogenesis in the hypogonadal (hpg) mouse. J Anat 2006; 207:797-811. [PMID: 16367806 PMCID: PMC1571580 DOI: 10.1111/j.1469-7580.2005.00493.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Testes of hypogonadal (hpg) mice show arrested postnatal development due to congenital deficiencies of gonadotrophin-releasing hormone (GnRH) and gonadotrophin synthesis and secretion. Follicle-stimulating hormone (FSH), androgen or oestrogen treatment restore qualitatively normal spermatogenesis in hpg testes. Understanding the cellular and molecular changes accompanying hormone-induced spermatogenesis in hpg mice requires detailed morphological analyses of the germ cells and Sertoli cells in the untreated hpg testis. We compared seminiferous epithelial cytology in adult hpg, immature and adult wild-type mice using unbiased optical disector-based stereology, immunolocalization of Sertoli cell microtubules (MT), espin (a component of the blood-testis barrier), markers of Sertoli cell maturity (p27(kip1) and WT-1), and electron microscopy. Hpg testes had marked reductions in weight, seminiferous cord volume and length, and severe spermatogenic impairment with germ cells per testis < 1% of adult wild-type testes. Sertoli cell nuclei expressed WT-1 in hpg testes, but often were centrally located, similar to 9-14-day-old wild-type testes, and they expressed p27(kip1), indicating that hpg Sertoli cells were post-mitotic. Hpg testes had significantly (P < 0.05) reduced Sertoli cells per testis (0.56 million) compared with 10-day wild-type (1.15 million) and adult wild-type testes (2.06 million). Immunofluorescence labelling of normal adult Sertoli cells showed supranuclear MT columns and basally located espin, but these features were absent in 10-day-old and hpg Sertoli cells. Hpg Sertoli cells showed pleomorphic nuclear ultrastructure with mature-type nucleoli, similar to normal adult-type Sertoli cells, but hpg Sertoli cells exhibited incomplete tight junctions that lacked ectoplasmic specializations. We conclude that in hpg mice, chronic gonadotrophin insufficiency restrains Sertoli cell proliferation and maturation, forming pseudo-adult-type Sertoli cells that are incapable of supporting germ cell proliferation and maturation.
Collapse
Affiliation(s)
- M Myers
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
87
|
Tarulli GA, Stanton PG, Lerchl A, Meachem SJ. Adult sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organization. Biol Reprod 2006; 74:798-806. [PMID: 16407497 DOI: 10.1095/biolreprod.105.050450] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Sertoli cell number is considered to be stable and unmodifiable by hormones after puberty in mammals, although recent data using the seasonal breeding adult Djungarian hamster (Phodopus sungorus) model challenged this assertion by demonstrating a decrease in Sertoli cell number after gonadotropin depletion and a return to control levels following 7 days of FSH replacement. The present study aimed to determine whether adult Sertoli cells are terminally differentiated using known characteristics of cellular differentiation, including proliferation, junction protein localization, and expression of particular maturational markers, in the Djungarian hamster model. Adult long-day (LD) photoperiod (16L:8D) hamsters were exposed to short-day (SD) photoperiod (8L:16D) for 11 wk to suppress gonadotropins and then received exogenous FSH for up to 10 days. Sertoli cell proliferation was assessed by immunofluorescence by the colocalization of GATA4 and proliferating cell nuclear antigen and quantified by stereology. Markers of Sertoli cell maturation (immature, cytokeratin 18 [KRT18]; mature, GATA1) and junction proteins (actin, espin, claudin 11 [CLDN11], and tight junction protein 1 [TJP1, also known as ZO-1]) also were localized using confocal immunofluorescence. In response to FSH treatment, proliferation was upregulated within 2 days compared with SD controls (90% vs. 0.2%, P < 0.001) and declined gradually thereafter. In LD hamsters, junction proteins colocalized at the basal aspect of Sertoli cells, consistent with inter-Sertoli cell junctions, and were disordered within the Sertoli cell cytoplasm in SD animals. Exogenous FSH treatment promptly restored localization of these junction markers to the LD phenotype. Protein markers of maturity remain consistent with those of adult Sertoli cells. It is concluded that adult Sertoli cells are not terminally differentiated in the Djungarian hamster and that FSH plays an important role in governing the differentiation process. It is proposed that Sertoli cells can enter a transitional state, exhibiting features common to both undifferentiated and differentiated Sertoli cells.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Prince Henry's Institute of Medical Research, Clayton Victoria, 3168, Australia
| | | | | | | |
Collapse
|
88
|
Devkota B, Sasaki M, Takahashi KI, Matsuzaki S, Matsui M, Haneda S, Takahashi M, Osawa T, Miyake YI. Postnatal Developmental Changes in Immunohistochemical Localization of .ALPHA.-Smooth Muscle Actin (SMA) and Vimentin in Bovine Testes. J Reprod Dev 2006; 52:43-9. [PMID: 16293946 DOI: 10.1262/jrd.17062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study demonstrates the postnatal developmental changes in immunohistochemical localization of alpha-smooth muscle actin (SMA) and vimentin in the bovine testis. In the peritubular myoid cells of seminiferous tubules and the sub-epithelial and stromal cells of straight tubules and the rete testis, alpha-SMA starts appearing at around 4 months of age. Peritubular alpha-SMA attains the continuous mature pattern at around 5 months of age whereas sub-epithelial and stromal alpha-SMA increases with advancing age. Vimentin is localized in the perinuclear zone of Sertoli cells, peritubular and vascular wall cells, a few interstitial cells, and in the basal part of the epithelia of straight and rete tubules. Developmental changes are only evident in the Sertoli cell vimentin, which is basal and weak at birth and increases moderately until 4 months of age. From around 5 to 8 months of age when the Sertoli cells are under morphological transformation, vimentin intensity is considerably increased and the characteristic vimentin extensions connect the Sertoli nuclei to the basal membrane. These extensions get shorter at around 9 month of age as the Sertoli nuclei are positioned basally. The mature Sertoli cell perinuclear vimentin is strong and stable without infranuclear extension. In conclusion, the age of appearance of alpha-SMA coincides with the onset of postnatal division of spermatogonia, and vimentin may play a key role in stabilizing Sertoli cell nuclei during their transformation in bovine.
Collapse
Affiliation(s)
- Bhuminand Devkota
- Department of Clinical Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Schulz RW, Menting S, Bogerd J, França LR, Vilela DAR, Godinho HP. Sertoli cell proliferation in the adult testis--evidence from two fish species belonging to different orders. Biol Reprod 2005; 73:891-8. [PMID: 16000552 DOI: 10.1095/biolreprod.105.039891] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Germ cell survival and development critically depend on the cells' contact with Sertoli cells in the vertebrate testis. Fish and amphibians are different from mammals in that they show a cystic type of spermatogenesis in which a single germ cell clone is enclosed by and accompanied through the different stages of spermatogenesis by an accompanying group of Sertoli cells. We show that in maturing and adult testes from African catfish and Nile tilapia, Sertoli cell proliferation occurs primarily during spermatogonial proliferation, allowing the cyst-forming Sertoli cells to provide the increasing space required by the growing germ cell clone. In this regard, coincident with a dramatic increase in cyst volume and number of germ cells per cyst, in Nile tilapia, the number of Sertoli cells per cyst was strikingly increased from primary spermatogonia to spermatocyte cysts. In both African catfish and Nile tilapia, Sertoli cell proliferation is strongly reduced when germ cells have proceeded into meiosis, and stops in postmeiotic cysts. We conclude that Sertoli cell proliferation is the primary factor responsible for the increase in testis size and sperm production observed in teleost fish. In mammals, Sertoli cell proliferation in the adult testis is not observed under natural conditions. However, on the level of the individual spermatogenic cyst--similar to mammals--Sertoli cell proliferation ceases when germ cells have entered meiosis and when tight junctions are established between Sertoli cells. This suggests that fish are valid vertebrate models for studying Sertoli cell physiology.
Collapse
Affiliation(s)
- Rüdiger W Schulz
- Department of Endocrinology, Faculty of Biology, University of Utrecht, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
90
|
Miyagawa Y, Tsujimura A, Matsumiya K, Takao T, Tohda A, Koga M, Takeyama M, Fujioka H, Takada S, Koide T, Okuyama A. OUTCOME OF GONADOTROPIN THERAPY FOR MALE HYPOGONADOTROPIC HYPOGONADISM AT UNIVERSITY AFFILIATED MALE INFERTILITY CENTERS: A 30-YEAR RETROSPECTIVE STUDY. J Urol 2005; 173:2072-5. [PMID: 15879837 DOI: 10.1097/01.ju.0000158133.09197.f4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Hypogonadotropic hypogonadism (HH) is an uncommon cause of male infertility. Even specialized centers see small numbers of patients and have little experience in restoring fertility in these patients. To explore the phenotypic heterogeneity and treatment outcome of HH, we summarized our 30-year experience. MATERIALS AND METHODS Medical charts of 36 male patients (age range 11 to 42 years) with HH (81% primary, 19% secondary) treated at university affiliated male infertility centers were reviewed. Pubic hair stage, genital stage, testicular volume (TV), sexual function and sperm production were determined before and after human chorionic gonadotropin/human menopausal gonadotropin (hCG/hMG) treatment. Differences were analyzed statistically. RESULTS The population was stratified according to initial TV into a small testis subset (TV less than 4 ml in 23) and a large testis subset (TV 4 ml or greater in 13). Comparison of these 2 subsets revealed significant differences in the incidence of cryptorchidism (39% vs 8%) and Kallmann's syndrome (22% vs 0%), pubic hair stage (1.3 +/- 0.5 vs 3.5 +/- 1.4), genital stage (1.2 +/- 0.4 vs 3.9 +/- 0.9) and TV (1.6 +/- 0.9 vs 7.5 +/- 3.5 ml). Long-term administration of hCG/hMG for 12 to 240 months (average 56 +/- 11) resulted in sperm production in only 36% of the small testis subjects but in 71% of the large testis subjects. CONCLUSIONS Initial TV values provide insight into phenotypic variables such as time of onset and severity in patients with primary or secondary HH, and may predict sperm output in response to hCG/hMG therapy.
Collapse
Affiliation(s)
- Yasushi Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Holsberger DR, Kiesewetter SE, Cooke PS. Regulation of neonatal Sertoli cell development by thyroid hormone receptor alpha1. Biol Reprod 2005; 73:396-403. [PMID: 15858214 DOI: 10.1095/biolreprod.105.041426] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Neonatal hypothyroidism increases adult Sertoli cell populations by extending Sertoli cell proliferation. Conversely, hyperthyroidism induces premature cessation of Sertoli cell proliferation and stimulates maturational events like seminiferous tubule canalization. Thyroid hormone receptors alpha1 and beta1, which are commonly referred to as TRalpha1 and TRbeta1, respectively, are expressed in neonatal Sertoli cells. We determined the relative roles of TRalpha1 and TRbeta1 in the thyroid hormone effect on testicular development and Sertoli cell proliferation using Thra knockout (TRalphaKO), Thrb knockout (TRbetaKO), and wild-type (WT) mice. Triiodothyronine (T3) treatment from birth until Postnatal Day 10 reduced Sertoli cell proliferation to minimal levels in WT and TRbetaKO mice versus that in their untreated controls, whereas T3 had a diminished effect on TRalphaKO Sertoli cell proliferation. Seminiferous tubule patency and luminal diameter were increased in T3-treated WT and TRbetaKO testes. In contrast, T3 had no effect on these parameters in TRalphaKO mice. In untreated adult TRalphaKO mice, Sertoli cell number, testis weight, and daily sperm production were increased or trended toward an increase, but the increase in magnitude was smaller than that seen in WT mice following neonatal hypothyroidism. Conversely, in TRbetaKO mice, Sertoli cell number, testis weight, and daily sperm production were similar to those in untreated WT mice. In addition, Sertoli cell number and testis weight in adult WT and TRbetaKO mice showed comparable increases following hypothyroidism. Our results show that TRalphaKO mice have testicular effects similar to those seen in WT mice following neonatal hypothyroidism and that TRbetaKO mice, but not TRalphaKO mice, have normal Sertoli cell responsiveness to T3. Thus, effects of exogenous manipulation of T3 on neonatal Sertoli cell development are predominately mediated through TRalpha1.
Collapse
Affiliation(s)
- Denise R Holsberger
- Department of Veterinary Biosciences, University of Illinois, Urbana, Illinois 61802, USA
| | | | | |
Collapse
|
92
|
Tsevi I, Vicente R, Grande M, López-Iglesias C, Figueras A, Capellà G, Condom E, Felipe A. KCNQ1/KCNE1 channels during germ-cell differentiation in the rat: expression associated with testis pathologies. J Cell Physiol 2005; 202:400-10. [PMID: 15389592 DOI: 10.1002/jcp.20132] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
KCNQ1/KCNE1 channels are responsible for the Jervell-Lange-Nielsen cardiac syndrome, which is also characterized by congenital deafness. KCNQ1/KCNE1 is crucial for K+ transport in the inner ear. We show that KCNQ1 and KCNE1 are associated in testis and that their expression is closely regulated during development. Both genes were expressed in undifferentiated germ cells in 21-day-old rats and mostly confined to basal immature germ cells in adulthood. Leydig and Sertoli cells were negative. KCNQ1 and KCNE1 were also studied in various germ-cell pathologies. First, in spontaneous unilateral rat testis atrophy, hematoxylin-eosin analysis revealed massive germ-cell aplasia with only Sertoli cells and groups of interstitial Leydig cells. In these samples, KCNQ1 and KCNE1 were not expressed. In human seminoma samples characterized by a proliferation of undifferentiated germ cells, KCNQ1/KCNE1 protein levels were higher than in healthy samples. Our results demonstrate that the expression of KCNQ1 and KCNE1 is associated with early stages of spermatogenesis and with the presence of undifferentiated healthy or neoplastic germ cells. The presence of a K+ rich-fluid in the seminiferous tubule suggests that KCNQ1/KCNE1 is involved in K+ transport, probably during germ-cell development.
Collapse
Affiliation(s)
- Irini Tsevi
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Hermo L, Adamali HI, Trasler JM. Postnatal development and regulation of beta-hexosaminidase in epithelial cells of the rat epididymis. ACTA ACUST UNITED AC 2004; 25:69-81. [PMID: 14662788 DOI: 10.1002/j.1939-4640.2004.tb02760.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
beta-Hexosaminidase (Hex) catalyzes the hydrolysis of terminal sugar residues from a number of substrates such as GM2 gangliosides, glycoproteins, glycolipids, and glycosaminoglycans. As an enzyme present in lysosomes of epithelial cells of the adult rat epididymis, it serves to degrade substances endocytosed from the epididymal lumen. In this way, it modifies and creates a luminal environment where sperm can undergo their maturational modifications. In this study, the postnatal developmental pattern of expression of Hex was examined in animals from days 7-56. In addition, the role of testicular factors on Hex expression in the different cell types and regions of the epididymis of adult rats was examined in orchidectomized and efferent duct-ligated rats. Both parameters were examined on Bouin-fixed epididymides in conjunction with light microscope immunocytochemistry. At postnatal day 7, the epithelium of the entire epididymis was unreactive for anti-Hex antibody. By day 21, narrow and clear cells of their respective regions became reactive, whereas basal cells became reactive only by day 29. Principal cells displayed only an occasional reactive lysosome at day 21, several by day 29, and numerous reactive lysosomes by day 39, comparable to the region-specific distribution noted for 90-day-old animals, and at an age when high androgen levels are attained. Thus, postnatal onset of Hex expression varies according to the different cell types of the epididymis, suggesting different regulatory factors. This finding was confirmed from studies employing adult orchidectomized and efferent duct-ligated adult rats. Indeed, in all experimental animals, Hex immunostaining in narrow, clear, and basal cells was intense and comparable to control animals. In contrast, there was a notable absence of lysosomal staining in principal cells at all time points after orchidectomy, which was restored, however, following testosterone replacement. No effect on Hex expression was observed in efferent duct-ligated animals. Taken together, the data suggest that Hex expression in lysosomes of principal cells is regulated by testosterone or one of its metabolites. However, the expression of Hex being independent of testicular factors in narrow, clear, and basal cells of adult animals, but occurring at different time points during postnatal development, suggests that different regulatory factors are responsible for onset of Hex expression in these cell types during development.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
94
|
Gye MC. Changes in the expression of claudins and transepithelial electrical resistance of mouse Sertoli cells by Leydig cell coculture. ACTA ACUST UNITED AC 2004; 26:271-8. [PMID: 14511215 DOI: 10.1046/j.1365-2605.2003.00423.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the testis, tight junctions (TJs) between adjacent Sertoli cells are important for the formation of blood-testis barrier (BTB). To verify the role of paracrine interactions between the Sertoli and Leydig cells in the structure and function of BTB in testis, the expression of claudin-1 and -11, and transepithelial electrical resistance (TER) of the mouse Sertoli cells were examined under the Leydig cell coculture. TER of Sertoli cell monolayer was significantly larger under the Leydig cell coculture in comparison with the control culture. Meanwhile, the expression of claudin-1 slightly decreased and claudin-11 significantly increased in the Sertoli cells in the Leydig cell coculture compared with control. Testosterone significantly increased claudin-11 expression in cultured Sertoli cells. Taken together, it suggested that Leydig cell coculture changed the structure and functions of inter-Sertoli TJs in vitro. Interactions between Leydig and Sertoli cells might be involved in the development of functional blood testis barrier in mouse testis.
Collapse
Affiliation(s)
- M C Gye
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea.
| |
Collapse
|
95
|
Abstract
Tight junctions (TJ) in inter-Sertoli junctional areas and epididymal epithelia are important for the formation of blood-testis barrier (BTB) and blood-epididymal barrier (BEB). In this study, the expression of occludin, an integral member of the TJ, was verified in canine testis and epididymis. Both low molecular weight (MW) (25-28 kDa) forms as well as high MW (68-72 kDa) forms of occludin were detected in the testis and epididymis using Western blot. The relative amount of the high MW forms of occludin vs low MW forms was higher in the testis than in the epididymis. Some difference in the composition of different MW forms of occludin was found along the segments of epididymis, suggesting the possible correlation between cellular composition of occludin proteins and paracellular permeability of epithelia along the epididymal tubule. In the testis, intense occludin immunoreactivity was found in the basally located inter-Sertoli junctional area. Diffused immunoreactivity of occludin was also found in the cytoplasm of Sertoli cells. A similar pattern of zonula occludens-1 immunoreactivity was found in the cytoplasm of Sertoli cells, suggesting that occludin was not confined to the inter-Sertoli junctional areas and that subcellular localization of occludin in the Sertoli cells was dynamically regulated during spermatogenesis in canine testis. In the epididymis weak immunoreactivity was found in the apical sides and cytoplasm of epithelial cells.
Collapse
Affiliation(s)
- M C Gye
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea.
| |
Collapse
|
96
|
Fritz WA, Cotroneo MS, Wang J, Eltoum IE, Lamartiniere CA. Dietary diethylstilbestrol but not genistein adversely affects rat testicular development. J Nutr 2003; 133:2287-93. [PMID: 12840195 DOI: 10.1093/jn/133.7.2287] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Isoflavones, including genistein, contribute to the health benefits of a soy diet. However, the estrogenic activity of genistein suggests that there may be adverse effects on reproductive tract development. We investigated the potential of exposure to genistein (250 and 1000 mg/kg diet) and the synthetic estrogen and known male reproductive toxicant, diethylstilbestrol (DES, 75 micro g/kg diet) from d 21 to d 35 to alter rat testicular development. These dietary genistein concentrations resulted in serum concentrations that approximate or exceed concentrations in Asian men on a soy-containing diet. DES exposure reduced testicular weights, altered morphology and increased apoptosis in the seminiferous tubules. The effects of DES were accompanied by a reduction in androgen receptor (AR) protein concentrations, predominantly localized to Sertoli cells. Increased expression and immunostaining for the epidermal growth factor receptor (EGFR) and its downstream extracellular signal-regulated kinases (ERK) 1 and 2 in spermatagonia and spermatocytes were also observed. Immunohistochemical analysis of serial sections demonstrated that greater EGFR expression correlated with increased cellular proliferation, rather than apoptosis, and reflected impaired testicular development in DES-treated rats. Genistein in the diet did not significantly alter testicular weights, morphology, AR, EGFR and ERK expression or apoptosis. However, the higher concentration significantly reduced testicular aromatase activity, an effect that may contribute to reduced estrogen concentrations and suppression of prostate cancer development. These data suggest that exposure to genistein in the diet at concentrations that result in serum concentrations at the upper limit of humans consuming soy products does not adversely affect testicular development, but may provide health benefits.
Collapse
Affiliation(s)
- Wayne A Fritz
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
97
|
Abstract
In testis, tight junctions (TJs) between adjacent Sertoli cells are important for the formation of the blood-testis barrier (BTB) and crucial for spermatogenesis. The present study aimed to find postnatal changes in the expression of claudin-1, one of the TJ genes in mouse testis. By semiquantitative RT-PCR, it was found that claudin-1 expression in testis increased up to a peak at 10 days after birth and decreased thereafter. Western blot analysis showed abundant expression of 21-kDa protein in testis, lung, and brain from the adult mouse. The developmental change in the expression of claudin-1 protein in testis coincided with that from the RT-PCR. Testosterone treatment significantly increased claudin-1 expression in immature Sertoli cells, suggesting the possible regulation of claudin-1 expression by androgen in mouse Sertoli cells. Claudin-1 expression appears to be developmentally regulated in the mouse testis.
Collapse
Affiliation(s)
- M C Gye
- Department of Life Science, College of Natural Sciences, Hanyang University, Haengdang-dong, Seungdong-gu, Seoul 133-791, Korea.
| |
Collapse
|
98
|
Wistuba J, Brinkworth MH, Schlatt S, Chahoud I, Nieschlag E. Intrauterine bisphenol A exposure leads to stimulatory effects on Sertoli cell number in rats. ENVIRONMENTAL RESEARCH 2003; 91:95-103. [PMID: 12584010 DOI: 10.1016/s0013-9351(02)00019-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using the optical disector for quantifying cell numbers, we investigated whether oral treatment of rats on days 6-21 of gestation with the weakly estrogenic bisphenol A (BPA, 0.1 or 50 mg/kg) or the highly estrogenic ethinyl estradiol (EE, 0.02 mg/kg) alters testicular histology, in those offspring 9-12 month of age. Since production of male germ cells depends on Sertoli cell number, possible changes in that parameter were investigated using unbiased stereology. Spermatogenesis was qualitatively normal in all groups. BPA increases Sertoli cell number per organ but not when expressed as per gram testis. EE did not affect cell number per organ but did affect numbers on a per gram testis basis due to a lowered testis weight. In contrast to the lowering of Sertoli cell numbers that might have been expected according to the estrogen hypothesis, intrauterine administration of these xenoestrogens in fact resulted in minor increases in Sertoli cell numbers and had no qualitative effect on spermatogenesis.
Collapse
Affiliation(s)
- Joachim Wistuba
- Institute of Reproductive Medicine of the University, Domagkstrasse11, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
99
|
Noguchi J, Toyama Y, Yuasa S, Kikuchi K, Kaneko H. Hereditary defects in both germ cells and the blood-testis barrier system in as-mutant rats: evidence from spermatogonial transplantation and tracer-permeability analysis. Biol Reprod 2002; 67:880-8. [PMID: 12193398 DOI: 10.1095/biolreprod.101.003061] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The rat mutant allele as is located on chromosome 12. Homozygous (as/as) males show arrested spermatogenesis, mainly at the pachytene spermatocyte stage. It is not clear whether this defective spermatogenesis is caused by a failure in a somatic cell component that supports spermatogenesis or in the germ cell itself. Spermatogonial transplantation was performed to identify the genetically defective site in the as/as testis. In experiment 1, germ cells collected from as/as testes were transplanted into the testes of immunodeficient mice and normal rats. In experiment 2, normal rat germ cells were transplanted into as/as testes. The results of experiment 1 showed arrest of spermatogenesis at the pachytene spermatocyte stage, accompanied by a characteristic morphological feature, i.e., the formation of inclusion-like bodies in the cytoplasm, in both rat and mouse recipients. These results revealed the intrinsic effect of the mutant gene(s) on germ cells. In experiment 2, no restoration of spermatogenesis was detected in the recipient testes despite thorough histological examination. These results suggest that defects in a somatic cell component in as/as testes prevent the donor germ cells from colonizing and regaining their spermatogenetic ability. When the seminiferous epithelium of the as/as testis was examined by electron microscopy, no morphological abnormalities, including the formation of ectoplasmic specializations between adjacent Sertoli cells, were observed in the somatic cell components. However, when cytochrome c was applied as a tracer material, it penetrated the tight junctions between the Sertoli cells, indicating dysfunction of the blood-testis barrier in the as/as testis. The lack of restoration of spermatogenesis in the as/as testis after transplantation of normal germ cells may have been caused by the unfavorable environment in the seminiferous epithelium resulting from the incomplete barrier system between adjoining Sertoli cells. The gene(s) at the as locus may have a role in both germ cell differentiation and the establishment of the blood-testis barrier.
Collapse
Affiliation(s)
- Junko Noguchi
- Genetic Diversity Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | |
Collapse
|
100
|
Calamita G, Mazzone A, Bizzoca A, Svelto M. Possible involvement of aquaporin-7 and -8 in rat testis development and spermatogenesis. Biochem Biophys Res Commun 2001; 288:619-25. [PMID: 11676488 DOI: 10.1006/bbrc.2001.5810] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluid secretion and reabsorption are of central importance in male reproductive (MR) physiology. However, the related molecular mechanisms are poorly known. Here, potential roles for AQP7 and AQP8, two aquaporin water channels abundantly expressed in the MR tract, were investigated by studying their expression and distribution in the developing testis of the Wistar rat. By semiquantitative RT-PCR and immunoblotting, first expression of AQP7 was noted at postnatal day 45 (P45), with levels increasing substantially at P90 and remaining at high levels thereafter. AQP8 began to be expressed at P15, rapidly increased until P20, and remained fairly stable thereafter. Immunohistochemical analyses demonstrated AQP7 in elongated spermatids, testicular spermatozoa, and residual bodies at P45 with increased signal intensity thereafter. AQP8 was observed in primary spermatocytes from P20 to P30 and, in elongated spermatids, residual bodies and Sertoli cells at P30 and thereafter. The ontogeny and distribution of AQP7 and AQP8 in rat testis suggest involvement in major physiologic changes in testis development and spermatogenesis.
Collapse
Affiliation(s)
- G Calamita
- Department of General and Environmental Physiology, University of Bari, Bari, Italy.
| | | | | | | |
Collapse
|