51
|
Miao Y, Chen J, Guo X, Wei Y, Wu X, Sang Y, Wu D. Case report: Clinical manifestations and genotype analysis of a child with PTPN11 and SEC24D mutations. Front Pediatr 2022; 10:973920. [PMID: 36186652 PMCID: PMC9524269 DOI: 10.3389/fped.2022.973920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The PTPN11 gene, located at 12q24. 13, encodes protein tyrosine phosphatase 2C. Mutations in the PTPN11 gene can lead to various phenotypes, including Noonan syndrome and LEOPARD syndrome. The SEC24D gene is located at 4q26 and encodes a component of the COPII complex, and is closely related to endoplasmic reticulum protein transport. Mutations in SEC24D can lead to Cole-Carpenter syndrome-2. To date, dual mutations in these two genes have not been reported in the literature. METHODS We report a patient with short stature and osteogenesis imperfecta as the primary clinical manifestation. Other clinical features were peculiar facial features, deafness, and a history of recurrent fractures. Whole exome sequencing was performed on this patient. RESULTS After whole-exome sequencing, three mutations in two genes were identified that induced protein alterations associated with the patient's phenotype. One was a de novo variant c.1403C>T (p.Thr468Met) on exon 12 of the PTPN11 gene, and the other was a compound heterozygous mutation in the SEC24D gene, a novel variant c.2609_2610delGA (p.Arg870Thrfs*10) on exon 20 and a reported variant c.938G>A (p.Arg313His) on exon 8. CONCLUSIONS Concurrent mutations in PTPN11 and SEC24D induced a phenotype that was significantly different from individual mutations in either PTPN11 or SEC24D gene. Personalized genetic analysis and interpretation could help us understand the patient's etiology and hence develop treatments and improve the prognosis of these patients.
Collapse
Affiliation(s)
- Yuqi Miao
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jiahui Chen
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xiaoya Guo
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Yu Wei
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xiaozhi Wu
- Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing, China
| | - Yanmei Sang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| |
Collapse
|
52
|
Shehade-Awwad N, Yeshayahu Y, Pinhas-Hamiel O, Katz U. Differences in severity of cardiovascular anomalies in children with Noonan syndrome based on the causative gene. Front Pediatr 2022; 10:946071. [PMID: 36160796 PMCID: PMC9492920 DOI: 10.3389/fped.2022.946071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Noonan syndrome (NS) is a genetic syndrome, characterized by various dysmorphic features, cardiac anomalies, short stature, and developmental delay. NS is a leading cause of cardiovascular anomalies. The syndrome results from dysregulation in the RAS-MAPK pathway and is related to the RASopathy family syndromes. Pathogenic variants in more than 20 related genes have been identified in association with NS, and several genotype-phenotype correlations were suggested. The specific severity of the same cardiovascular anomalies has not been described as linked to a specific causative gene. METHODS For this retrospective, single-center study, data retrieved from medical charts of a multidisciplinary NS clinic included genetic diagnosis, cardiac malformations, the need for intervention, demographics, and prenatal diagnosis. We analyzed molecular genetics and the severity of cardiac malformations. RESULTS The cohort comprised 74 children with NS. Consistent with previous studies, pathogenic variants in PTPN11 were the most common (62%). Cardiovascular anomalies presented in 57%; pulmonary stenosis (PS) was the most common (about 79% of anomalies). In children with pathogenic variants in PTPN11, PS tended to be more severe and required intervention in 53%, compared to 25% of children with PS and a variant in other genes. CONCLUSION This first Israeli cohort of NS showed similar rates of cardiac malformations and genetic breakdown as previously published. Variants in PTPN11 were prone to a higher risk for severe PS that requires intervention. This finding may assist in genetic counseling and cardiac treatment decisions, and stresses the importance of genetic in addition to clinical diagnosis of NS.
Collapse
Affiliation(s)
| | - Yonatan Yeshayahu
- Pediatrics Department, Samson Assuta Ashdod Hospital, Ashdod, Israel.,Noonan Multidisciplinary Clinic, Pediatric Endocrinology and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,Faculty of Health Sciences, Ben-Gurion University, Beer Sheva, Israel
| | - Orit Pinhas-Hamiel
- Noonan Multidisciplinary Clinic, Pediatric Endocrinology and Diabetes Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Uriel Katz
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Pediatric Heart Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
53
|
Butler MG, Miller BS, Romano A, Ross J, Abuzzahab MJ, Backeljauw P, Bamba V, Bhangoo A, Mauras N, Geffner M. Genetic conditions of short stature: A review of three classic examples. Front Endocrinol (Lausanne) 2022; 13:1011960. [PMID: 36339399 PMCID: PMC9634554 DOI: 10.3389/fendo.2022.1011960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan, Turner, and Prader-Willi syndromes are classical genetic disorders that are marked by short stature. Each disorder has been recognized for several decades and is backed by extensive published literature describing its features, genetic origins, and optimal treatment strategies. These disorders are accompanied by a multitude of comorbidities, including cardiovascular issues, endocrinopathies, and infertility. Diagnostic delays, syndrome-associated comorbidities, and inefficient communication among the members of a patient's health care team can affect a patient's well-being from birth through adulthood. Insufficient information is available to help patients and their multidisciplinary team of providers transition from pediatric to adult health care systems. The aim of this review is to summarize the clinical features and genetics associated with each syndrome, describe best practices for diagnosis and treatment, and emphasize the importance of multidisciplinary teams and appropriate care plans for the pediatric to adult health care transition.
Collapse
Affiliation(s)
- Merlin G. Butler
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Merlin G. Butler,
| | - Bradley S. Miller
- Pediatric Endocrinology, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN, United States
| | - Alicia Romano
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Judith Ross
- Department of Pediatrics, Nemours Children’s Health, Wilmington, DE, United States
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Philippe Backeljauw
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Vaneeta Bamba
- Division of Endocrinology, Children’s Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amrit Bhangoo
- Pediatric Endocrinology, Children's Health of Orange County (CHOC) Children’s Hospital, Orange, CA, United States
| | - Nelly Mauras
- Division of Endocrinology, Nemours Children’s Health, Jacksonville, FL, United States
| | - Mitchell Geffner
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
54
|
Lioncino M, Monda E, Verrillo F, Moscarella E, Calcagni G, Drago F, Marino B, Digilio MC, Putotto C, Calabrò P, Russo MG, Roberts AE, Gelb BD, Tartaglia M, Limongelli G. Hypertrophic Cardiomyopathy in RASopathies: Diagnosis, Clinical Characteristics, Prognostic Implications, and Management. Heart Fail Clin 2022; 18:19-29. [PMID: 34776080 PMCID: PMC9674037 DOI: 10.1016/j.hfc.2021.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RASopathies are multisystemic disorders caused by germline mutations in genes linked to the RAS/mitogen-activated protein kinase pathway. Diagnosis of RASopathy can be triggered by clinical clues ("red flags") which may direct the clinician toward a specific gene test. Compared with sarcomeric hypertrophic cardiomyopathy, hypertrophic cardiomyopathy in RASopathies (R-HCM) is associated with higher prevalence of congestive heart failure and shows increased prevalence and severity of left ventricular outflow tract obstruction. Biventricular involvement and the association with congenital heart disease, mainly pulmonary stenosis, have been commonly described in R-HCM. The aim of this review is to assess the prevalence and unique features of R-HCM and to define the available therapeutic options.
Collapse
Affiliation(s)
- Michele Lioncino
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples
| | - Emanuele Monda
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples
| | - Federica Verrillo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples;,Division of Cardiology, A.O.R.N. “Sant’Anna & San Sebastiano”, Caserta I-81100, Italy
| | - Giulio Calcagni
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart - ERN GUARD-Heart;,Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children’s Hospital IRCSS, Rome, Italy
| | - Fabrizio Drago
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart - ERN GUARD-Heart;,Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children’s Hospital IRCSS, Rome, Italy
| | - Bruno Marino
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Disease Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Carolina Putotto
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples;,Division of Cardiology, A.O.R.N. “Sant’Anna & San Sebastiano”, Caserta I-81100, Italy
| | - Maria Giovanna Russo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples;,Department of Pediatric Cardiology, AORN dei Colli, Monaldi Hospital, Naples
| | - Amy E. Roberts
- Department of Cardiology, Children’s Hospital Boston, Boston, MA, USA
| | - Bruce D. Gelb
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Tartaglia
- Genetics and Rare Disease Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples;,Division of Cardiology, A.O.R.N. “Sant’Anna & San Sebastiano”, Caserta I-81100, Italy;,Corresponding author. Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples.
| |
Collapse
|
55
|
Sasaki H, Mizuta K. Severe Bleeding During Orthognathic Surgery for a Noonan Syndrome Patient. Anesth Prog 2022; 69:22-25. [PMID: 36534772 PMCID: PMC9773416 DOI: 10.2344/anpr-69-02-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
Noonan syndrome (NS) is a genetic disorder characterized by craniofacial dysmorphism, chest deformities, congenital heart defects, and bleeding disorders. Although patients with NS have a high prevalence of orofacial deformity, few reports are available on their anesthetic management during orthognathic surgery. This case report describes a 31-year-old female with NS, anemia, hypertrophic cardiomyopathy, and mild mitral valve regurgitation who experienced severe bleeding during orthognathic surgery. After treating her anemia with oral iron therapy and subcutaneous epoetin β, 4 units of autologous blood was deposited prior to surgery. General anesthesia was induced with remifentanil and propofol and maintained with sevoflurane, remifentanil, and fentanyl. Despite mild hypotensive anesthesia (targeted mean arterial pressure of 65 mm Hg) with nitroglycerine and intravenous tranexamic acid for bleeding, adequate hemostasis was difficult to achieve and led to severe blood loss (1442 mL). Therefore, the 4 units of autologous blood and 2 units of packed red blood cells were transfused. Her postoperative course proceeded uneventfully without abnormal postoperative bleeding. Because patients with NS can have difficulty with hemostasis, vascular malformations, and fragile blood vessels, extensive hematologic evaluation and thorough preparation for unexpected bleeding are crucial to accomplish orthognathic surgery.
Collapse
Affiliation(s)
- Haruka Sasaki
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kentaro Mizuta
- Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
56
|
Yang D, Ren X, Lu Y, Han J. Current diagnosis and management of rare pediatric diseases in China. Intractable Rare Dis Res 2021; 10:223-237. [PMID: 34877234 PMCID: PMC8630464 DOI: 10.5582/irdr.2021.01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
This review categorizes and summarizes the rare pediatric diseases that have been included in the First List of Rare Diseases that was jointly published by the National Health Commission and four other government departments in China in 2018. In total, 58 diseases that develop during childhood are included. These diseases involve nine organ systems, including the musculoskeletal, respiratory, immune, endocrine and metabolic, nervous, cardiovascular, hematological, urinary, and integumentary systems. Affected children often have multiorgan involvement with various presentations. Severe diseases can cause acute symptoms starting in the neonatal period that lead to increased morbidity and mortality without prompt management. Early diagnosis and treatment can significantly change the course of a disease and improve its prognosis. This work systemically reviews the status of rare pediatric diseases with a relatively high incidence in the First List of Rare Diseases.
Collapse
Affiliation(s)
- Dan Yang
- Department of Endocrinology, The First Hospital Affiliated with Shandong First Medical University, Ji'nan, China
- National Health Commission Key Laboratory for Biotech-Drugs, Shandong Province Key Laboratory for Rare & Uncommon Diseases, Biomedical Sciences College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Xiuzhi Ren
- Department of Orthopaedic Surgery, The People's Hospital of Wuqing District, Tianjin, China
| | - Yanqin Lu
- Department of Endocrinology, The First Hospital Affiliated with Shandong First Medical University, Ji'nan, China
- National Health Commission Key Laboratory for Biotech-Drugs, Shandong Province Key Laboratory for Rare & Uncommon Diseases, Biomedical Sciences College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jinxiang Han
- Department of Endocrinology, The First Hospital Affiliated with Shandong First Medical University, Ji'nan, China
- National Health Commission Key Laboratory for Biotech-Drugs, Shandong Province Key Laboratory for Rare & Uncommon Diseases, Biomedical Sciences College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| |
Collapse
|
57
|
Wolf CM, Zenker M, Burkitt-Wright E, Edouard T, García-Miñaúr S, Lebl J, Shaikh G, Tartaglia M, Verloes A, Östman-Smith I. Management of cardiac aspects in children with Noonan syndrome - results from a European clinical practice survey among paediatric cardiologists. Eur J Med Genet 2021; 65:104372. [PMID: 34757052 DOI: 10.1016/j.ejmg.2021.104372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND The majority of children with Noonan syndrome (NS) or other diseases from the RASopathy spectrum suffer from congenital heart disease. This study aims to survey cardiac care of this patient cohort within Europe. METHODS A cross-sectional exploratory survey assessing the treatment and management of patients with NS by paediatric endocrinologists, cardiologists and clinical geneticists was developed. This report details responses of 110 participating paediatric cardiologists from multiple countries. RESULTS Most paediatric cardiologists responding to the questionnaire were associated with university hospitals, and most treated <10 patients/year with congenital heart disease associated with the NS spectrum. Molecular genetic testing for diagnosis confirmation was initiated by 81%. Half of the respondents reported that patients with NS and congenital heart disease typically present <1y of age, and that a large percentage of affected patients require interventions and pharmacotherapy early in life. A higher proportion of infant presentation and need for pharmacotherapy was reported by respondents from Germany and Sweden than from France and Spain (p = 0.031; p = 0.014; Fisher's exact test). Older age at first presentation was reported more from general hospitals and independent practices than from university hospitals (p = 0.031). The majority of NS patients were followed at specialist centres, but only 37% reported that their institution offered dedicated transition clinic to adult services. Very few NS patients with hypertrophic cardiomyopathy (HCM) were reported to carry implantable cardioverter defibrillators for sudden cardiac death prevention. Uncertainty was evident in regard to growth hormone treatment in patients with NS and co-existing HCM, where 13% considered it not a contra-indication, 24% stated they did not know, but 63% considered HCM either a possible (20%) or definite (15%) contraindication, or a cause for frequent monitoring (28%). Regarding adverse reactions for patients with NS on growth hormone therapy, 5/19 paediatric cardiology respondents reported a total of 12 adverse cardiac events. CONCLUSIONS Congenital heart disease in patients with NS or other RASopathies is associated with significant morbidity during early life, and specialty centre care is appropriate. More research is needed regarding the use of growth hormone in patients with NS with congenital heart disease, and unmet medical needs have been identified.
Collapse
Affiliation(s)
- Cordula M Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Emma Burkitt-Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust and University of Manchester, Manchester, UK
| | - Thomas Edouard
- Endocrine, Bone Diseases, And Genetics Unit, Children's Hospital, Toulouse University Hospital, RESTORE INSERM UMR1301, Toulouse, France
| | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz Research Institute (IdiPAZ), Hospital Universitario La Paz, Madrid, Spain
| | - Jan Lebl
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Guftar Shaikh
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Alain Verloes
- Department of Genetics, APHP-Robert Debré University Hospital and Université de Paris Medical School, Paris, France
| | - Ingegerd Östman-Smith
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.
| |
Collapse
|
58
|
Leoni C, Blandino R, Delogu AB, De Rosa G, Onesimo R, Verusio V, Marino MV, Lanza GA, Rigante D, Tartaglia M, Zampino G. Genotype-cardiac phenotype correlations in a large single-center cohort of patients affected by RASopathies: Clinical implications and literature review. Am J Med Genet A 2021; 188:431-445. [PMID: 34643321 DOI: 10.1002/ajmg.a.62529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/11/2021] [Accepted: 09/21/2021] [Indexed: 11/07/2022]
Abstract
Congenital heart disease (CHD) and hypertrophic cardiomyopathy (HCM) are common features in patients affected by RASopathies. The aim of this study was to assess genotype- phenotype correlations, focusing on the cardiac features and outcomes of interventions for cardiac conditions, in a single-center cohort of 116 patients with molecularly confirmed diagnosis of RASopathy, and compare these findings with previously published data. All enrolled patients underwent a comprehensive echocardiographic examination. Relevant information was also retrospectively collected through the analysis of clinical records. As expected, significant associations were found between PTPN11 mutations and pulmonary stenosis (both valvular and supravalvular) and pulmonary valve dysplasia, and between SOS1 mutations and valvular defects. Similarly, HRAS mutations were significantly associated with HCM. Potential associations between less prevalent mutations and cardiac defects were also observed, including RIT1 mutations and HCM, SOS2 mutations and septal defects, and SHOC2 mutations and septal and valve abnormalities. Patients with PTPN11 mutations were the most likely to require both a primary treatment (transcatheter or surgical) and surgical reintervention. Other cardiac anomalies less reported until recently in this population, such as isolated functional and structural mitral valve diseases, as well as a sigmoid-shaped interventricular septum in the absence of HCM, were also reported. In conclusion, our study confirms previous data but also provides new insights on cardiac involvement in RASopathies. Further research concerning genotype/phenotype associations in RASopathies could lead to a more rational approach to surgery and the consideration of drug therapy in patients at higher risk due to age, severity, anatomy, and comorbidities.
Collapse
Affiliation(s)
- Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Rita Blandino
- Unit of Pediatrics, Pediatric Cardiology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Angelica Bibiana Delogu
- Unit of Pediatrics, Pediatric Cardiology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriella De Rosa
- Unit of Pediatrics, Pediatric Cardiology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Valeria Verusio
- Unit of Pediatrics, Pediatric Cardiology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Vittoria Marino
- Unit of Pediatrics, Pediatric Cardiology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Antonio Lanza
- Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Donato Rigante
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
59
|
Zhang X, Wang B, You G, Xiang Y, Fu Q, Yu Y, Zhang X. Copy number variation analysis in Chinese children with complete atrioventricular canal and single ventricle. BMC Med Genomics 2021; 14:243. [PMID: 34627233 PMCID: PMC8502261 DOI: 10.1186/s12920-021-01090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most common birth defects. Copy number variations (CNVs) have been proved to be important genetic factors that contribute to CHD. Here we screened genome-wide CNVs in Chinese children with complete atrioventricular canal (CAVC) and single ventricle (SV), since there were scarce researches dedicated to these two types of CHD. METHODS We screened CNVs in 262 sporadic CAVC cases and 259 sporadic SV cases respectively, using a customized SNP array. The detected CNVs were annotated and filtered using available databases. RESULTS Among 262 CAVC patients, we identified 6 potentially-causative CNVs in 43 individuals (16.41%, 43/262), including 2 syndrome-related CNVs (7q11.23 and 8q24.3 deletion). Surprisingly, 90.70% CAVC patients with detected CNVs (39/43) were found to carry duplications of 21q11.2-21q22.3, which were recognized as trisomy 21 (Down syndrome, DS). In CAVC with DS patients, the female to male ratio was 1.6:1.0 (24:15), and the rate of pulmonary hypertension (PH) was 41.03% (16/39). Additionally, 6 potentially-causative CNVs were identified in the SV patients (2.32%, 6/259), and none of them was trisomy 21. Most CNVs identified in our cohort were classified as rare (< 1%), occurring just once among CAVC or SV individuals except the 21q11.2-21q22.3 duplication (14.89%) in CAVC cohort. CONCLUSIONS Our study identified 12 potentially-causative CNVs in 262 CAVC and 259 SV patients, representing the largest cohort of these two CHD types in Chinese population. The results provided strong correlation between CAVC and DS, which also showed sex difference and high incidence of PH. The presence of potentially-causative CNVs suggests the etiology of complex CHD is incredibly diverse, and CHD candidate genes remain to be discovered.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoling You
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xiang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
60
|
Ramos-Kuri M, Meka SH, Salamanca-Buentello F, Hajjar RJ, Lipskaia L, Chemaly ER. Molecules linked to Ras signaling as therapeutic targets in cardiac pathologies. Biol Res 2021; 54:23. [PMID: 34344467 PMCID: PMC8330049 DOI: 10.1186/s40659-021-00342-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022] Open
Abstract
Abstract The Ras family of small Guanosine Triphosphate (GTP)-binding proteins (G proteins) represents one of the main components of intracellular signal transduction required for normal cardiac growth, but is also critically involved in the development of cardiac hypertrophy and heart failure. The present review provides an update on the role of the H-, K- and N-Ras genes and their related pathways in cardiac diseases. We focus on cardiac hypertrophy and heart failure, where Ras has been studied the most. We also review other cardiac diseases, like genetic disorders related to Ras. The scope of the review extends from fundamental concepts to therapeutic applications. Although the three Ras genes have a nearly identical primary structure, there are important functional differences between them: H-Ras mainly regulates cardiomyocyte size, whereas K-Ras regulates cardiomyocyte proliferation. N-Ras is the least studied in cardiac cells and is less associated to cardiac defects. Clinically, oncogenic H-Ras causes Costello syndrome and facio-cutaneous-skeletal syndromes with hypertrophic cardiomyopathy and arrhythmias. On the other hand, oncogenic K-Ras and alterations of other genes of the Ras-Mitogen-Activated Protein Kinase (MAPK) pathway, like Raf, cause Noonan syndrome and cardio-facio-cutaneous syndromes characterized by cardiac hypertrophy and septal defects. We further review the modulation by Ras of key signaling pathways in the cardiomyocyte, including: (i) the classical Ras-Raf-MAPK pathway, which leads to a more physiological form of cardiac hypertrophy; as well as other pathways associated with pathological cardiac hypertrophy, like (ii) The SAPK (stress activated protein kinase) pathways p38 and JNK; and (iii) The alternative pathway Raf-Calcineurin-Nuclear Factor of Activated T cells (NFAT). Genetic alterations of Ras isoforms or of genes in the Ras-MAPK pathway result in Ras-opathies, conditions frequently associated with cardiac hypertrophy or septal defects among other cardiac diseases. Several studies underline the potential role of H- and K-Ras as a hinge between physiological and pathological cardiac hypertrophy, and as potential therapeutic targets in cardiac hypertrophy and failure. Graphic abstract ![]()
The Ras (Rat Sarcoma) gene family is a group of small G proteins Ras is regulated by growth factors and neurohormones affecting cardiomyocyte growth and hypertrophy Ras directly affects cardiomyocyte physiological and pathological hypertrophy Genetic alterations of Ras and its pathways result in various cardiac phenotypes Ras and its pathway are differentially regulated in acquired heart disease Ras modulation is a promising therapeutic target in various cardiac conditions.
Collapse
Affiliation(s)
- Manuel Ramos-Kuri
- Instituto Nacional de Cancerología, Unidad de Investigación Biomédica en Cáncer, Secretarìa de Salud/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México.,Researcher of the Facultad de Bioética, Cátedra de Infertilidad, Universidad Anáhuac, Mexico City, México.,Centro de Investigación en Bioética y Genética, Querétaro, México
| | - Sri Harika Meka
- Division of Nephrology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Suite 8030B, Buffalo, NY, 14203, USA
| | - Fabio Salamanca-Buentello
- University of Toronto Institute of Medical Science, Medical Sciences Building, 1 King's College Circle, Room 2374, Toronto, ON, M5S 1A8, Canada
| | | | - Larissa Lipskaia
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, FHU SENEC, AP-HP, and Université Paris-Est Créteil (UPEC), 94010, Créteil, France
| | - Elie R Chemaly
- Division of Nephrology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Clinical and Translational Research Center, 875 Ellicott Street, Suite 8030B, Buffalo, NY, 14203, USA.
| |
Collapse
|
61
|
Calcagni G, Gagliostro G, Limongelli G, Unolt M, De Luca E, Digilio MC, Baban A, Albanese SB, Ferrero GB, Baldassarre G, Agnoletti G, Banaudi E, Marek J, Kaski JP, Tuo G, Marasini M, Cairello F, Madrigali A, Pacileo G, Russo MG, Milanesi O, Formigari R, Brighenti M, Ragni L, Donti A, Drago F, Dallapiccola B, Tartaglia M, Marino B, Versacci P. Atypical cardiac defects in patients with RASopathies: Updated data on CARNET study. Birth Defects Res 2021; 112:725-731. [PMID: 32558384 DOI: 10.1002/bdr2.1670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND RASopathies are a set of relatively common autosomal dominant clinically and genetically heterogeneous disorders. Cardiac outcomes in terms of mortality and morbidity for common heart defects (such as pulmonary valve stenosis and hypertrophic cardiomyopathy) have been reported. Nevertheless, also Atypical Cardiac Defects (ACDs) are described. The aim of the present study was to report both prevalence and cardiac outcome of ACDs in patients with RASopathies. METHODS A retrospective, multicentric observational study (CArdiac Rasopathy NETwork-CARNET study) was carried out. Clinical, surgical, and genetic data of the patients who were followed until December 2019 were collected. RESULTS Forty-five patients out of 440 followed in CARNET centers had ACDs. Noonan Syndrome (NS), NS Multiple Lentigines (NSML) and CardioFacioCutaneous Syndrome (CFCS) were present in 36, 5 and 4 patients, respectively. Median age at last follow-up was 20.1 years (range 6.9-47 years). Different ACDs were reported, including mitral and aortic valve dysfunction, ascending and descending aortic arch anomalies, coronary arteries dilation, enlargement of left atrial appendage and isolated pulmonary branches diseases. Five patients (11%) underwent cardiac surgery and one of them underwent a second intervention for mitral valve replacement and severe pericardial effusion. No patients died in our cohort until December 2019. CONCLUSIONS Patients with RASopathies present a distinct CHD spectrum. Present data suggest that also ACDs must be carefully investigated for their possible impact on the clinical outcome. A careful longitudinal follow up until the individuals reach an adult age is recommended.
Collapse
Affiliation(s)
- Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Giulia Gagliostro
- Pediatric Cardiology, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| | | | - Marta Unolt
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Enrica De Luca
- Pediatric Cardiology, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| | - Maria C Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Sonia B Albanese
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Giovanni B Ferrero
- Department of Pediatric and Public Health Sciences, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Giuseppina Baldassarre
- Department of Pediatric and Public Health Sciences, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Gabriella Agnoletti
- Department of Pediatric and Public Health Sciences, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Elena Banaudi
- Department of Pediatric and Public Health Sciences, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Jan Marek
- Cardiorespiratory Unit, Great Ormond Street Hospital for Children, London, UK, UCL Institute of Cardiovascular Science, London, UK
| | - Juan P Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, UK, UCL Institute of Cardiovascular Science, London, UK
| | - Giulia Tuo
- Cardiovascular Department, Giannina Gaslini Institute, Genoa, Italy
| | | | | | - Andrea Madrigali
- Pediatric Cardiology, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Pacileo
- Cardiologia SUN, Monaldi Hospital, II University of Naples, Naples, Italy
| | - Maria G Russo
- Cardiologia SUN, Monaldi Hospital, II University of Naples, Naples, Italy
| | - Ornella Milanesi
- Department of Woman and Child's Health, Pediatric Cardiology, University of Padova, Padua, Italy
| | - Roberto Formigari
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy.,Cardiology and Cardiac Surgery, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Maurizio Brighenti
- Cardiology and Cardiac Surgery, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Luca Ragni
- Cardiology and Cardiac Surgery, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Andrea Donti
- Cardiology and Cardiac Surgery, Sant'Orsola Malpighi Hospital, Bologna, Italy
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| | - Paolo Versacci
- Pediatric Cardiology, Department of Pediatrics, Obstetrics and Gynecology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
62
|
Bell JM, Considine EM, McCallen LM, Chatfield KC. The Prevalence of Noonan Spectrum Disorders in Pediatric Patients with Pulmonary Valve Stenosis. J Pediatr 2021; 234:134-141.e5. [PMID: 33794220 DOI: 10.1016/j.jpeds.2021.03.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the prevalence of Noonan spectrum disorders in a pediatric population with pulmonary valve stenosis (PVS) and explore other characteristics of Noonan spectrum disorders associated with PVS. STUDY DESIGN A retrospective medical record review was completed for patients with a diagnosis of PVS seen at the Children's Hospital Colorado Cardiology clinic between 2009 and 2019. Syndromic diagnoses, genotypes, cardiac characteristics, and extracardiac characteristics associated with Noonan spectrum disorders were recorded; statistical analysis was conducted using R. RESULTS Syndromic diagnoses were made in 16% of 686 pediatric patients with PVS, with Noonan spectrum disorders accounting for 9% of the total diagnoses. Individuals with Noonan spectrum disorders were significantly more likely to have an atrial septal defect and/or hypertrophic cardiomyopathy than the non-Noonan spectrum disorder individuals. Supravalvar pulmonary stenosis was also correlated significantly with Noonan spectrum disorders. Extracardiac clinical features presenting with PVS that were significantly associated with Noonan spectrum disorders included feeding issues, failure to thrive, developmental delay, short stature, and ocular findings. The strongest predictors of a Noonan spectrum disorder diagnosis were cryptorchidism (70%), pectus abnormalities (66%), and ocular findings (48%). The presence of a second characteristic further increased this likelihood, with the highest probability occurring with cryptorchidism combined with ocular findings (92%). CONCLUSIONS The 9% prevalence of Noonan spectrum disorder in patients with PVS should alert clinicians to consider Noonan spectrum disorders when encountering a pediatric patient with PVS. The presence of PVS with 1 or more Noonan spectrum disorder-related features should prompt a genetic evaluation and genetic testing for RAS pathway defects. Noonan spectrum disorders should also be included in the differential when a patient presents with supravalvar pulmonary stenosis.
Collapse
Affiliation(s)
- Janet M Bell
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Ellen M Considine
- Department of Applied Mathematics, University of Colorado College of Engineering & Applied Science, Laboratory for Interdisciplinary Statistical Analysis (LISA), Boulder, CO
| | - Leslie M McCallen
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO.
| |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW This article reviews the current understanding and limitations in knowledge of the effect genetics and genetic diagnoses have on perioperative and postoperative surgical outcomes in patients with congenital heart disease (CHD). RECENT FINDINGS Presence of a known genetic diagnosis seems to effect multiple significant outcome metrics in CHD surgery including length of stay, need for extracorporeal membrane oxygenation, mortality, bleeding, and heart failure. Data regarding the effects of genetics in CHD is complicated by lack of standard genetic assessment resulting in inaccurate risk stratification of patients when analyzing data. Only 30% of variation in CHD surgical outcomes are explained by currently measured variables, with 2.5% being attributed to diagnosed genetic disorders, it is thought a significant amount of the remaining outcome variation is because of unmeasured genetic factors. SUMMARY Genetic diagnoses clearly have a significant effect on surgical outcomes in patients with CHD. Our current understanding is limited by lack of consistent genetic evaluation and assessment as well as evolving knowledge and discovery regarding the genetics of CHD. Standardizing genetic assessment of patients with CHD will allow for the best risk stratification and ultimate understanding of these effects.
Collapse
|
64
|
Bertola DR, Castro MAA, Yamamoto GL, Honjo RS, Ceroni JR, Buscarilli MM, Freitas AB, Malaquias AC, Pereira AC, Jorge AAL, Passos‐Bueno MR, Kim CA. Phenotype–genotype analysis of 242 individuals with
RASopathies
: 18‐year experience of a tertiary center in Brazil. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:896-911. [DOI: 10.1002/ajmg.c.31851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Débora R. Bertola
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
- Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| | - Matheus A. A. Castro
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Guilherme L. Yamamoto
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Rachel S. Honjo
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - José Ricardo Ceroni
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Michele M. Buscarilli
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Amanda B. Freitas
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Alexsandra C. Malaquias
- Unidade de Endocrinologia‐Genetica LIM 25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo São Paulo Brazil
| | - Alexandre C. Pereira
- Laboratório de Genética e Cardiologia Molecular Instituto do Coração, do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| | - Alexander A. L. Jorge
- Unidade de Endocrinologia‐Genetica LIM 25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo São Paulo Brazil
| | | | - Chong A. Kim
- Unidade de Genética Instituto da Criança do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
65
|
Liu XM, Du SL, Miao R, Wang LF, Zhong JC. Targeting the forkhead box protein P1 pathway as a novel therapeutic approach for cardiovascular diseases. Heart Fail Rev 2020; 27:345-355. [PMID: 32648149 DOI: 10.1007/s10741-020-09992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and encompasses diverse diseases of the vasculature, myocardium, cardiac electrical circuit, and cardiac development. Forkhead box protein P1 (Foxp1) is a large multi-domain transcriptional regulator belonging to the Fox family with winged helix DNA-binding protein, which plays critical roles in cardiovascular homeostasis and disorders. The broad distribution of Foxp1 and alternative splicing isoforms implicate its distinct functions in diverse cardiac and vascular cells and tissue types. Foxp1 is essential for diverse biological processes and has been shown to regulate cellular proliferation, apoptosis, oxidative stress, fibrosis, angiogenesis, cardiovascular remodeling, and dysfunction. Notably, both loss-of-function and gain-of-function approaches have defined critical roles of Foxp1 in CVD. Genetic deletion of Foxp1 results in pathological cardiac remodeling, exacerbation of atherosclerotic lesion formation, prolonged occlusive thrombus formation, severe cardiac defects, and embryo death. In contrast, activation of Foxp1 performs a wide range of physiological effects, including cell growth, hypertrophy, differentiation, angiogenesis, and cardiac development. More importantly, Foxp1 exerts anti-inflammatory and anti-atherosclerotic effects in controlling coronary thrombus formation and myocardial infarction (MI). Thus, targeting for Foxp1 signaling has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of CVD, and an increased understanding of cardiovascular actions of the Foxp1 signaling will help to develop effective interventions. In this review, we focus on the diverse actions and underlying mechanisms of Foxp1 highlighting its roles in CVD, including heart failure, MI, atherosclerosis, congenital heart defects, and atrial fibrillation.
Collapse
Affiliation(s)
- Xin-Ming Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Sheng-Li Du
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ran Miao
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Le-Feng Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China. .,Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
66
|
Noonan syndrome: genetic and clinical update and treatment options. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.anpede.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
67
|
Carcavilla A, Suárez-Ortega L, Rodríguez Sánchez A, Gonzalez-Casado I, Ramón-Krauel M, Labarta JI, Quinteiro Gonzalez S, Riaño Galán I, Ezquieta Zubicaray B, López-Siguero JP. [Noonan syndrome: genetic and clinical update and treatment options]. An Pediatr (Barc) 2020; 93:61.e1-61.e14. [PMID: 32493603 DOI: 10.1016/j.anpedi.2020.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Noonan syndrome (NS) is a relatively common genetic condition characterised by short stature, congenital heart defects, and distinctive facial features. NS and other clinically overlapping conditions such as NS with multiple lentigines (formerly called LEOPARD syndrome), cardiofaciocutaneous syndrome, or Costello syndrome, are caused by mutations in genes encoding proteins of the RAS-MAPKinases pathway. Because of this shared mechanism, these conditions have been collectively termed «RASopathies». Despite the recent advances in molecular genetics, nearly 20% of patients still lack a genetic cause, and diagnosis is still made mainly on clinical grounds. NS is a clinically and genetically heterogeneous condition, with variable expressivity and a changing phenotype with age, and affects multiple organs and systems. Therefore, it is essential that physicians involved in the care of these patients are familiarised with their manifestations and the management recommendations, including management of growth and development. Data on growth hormone treatment efficacy are sparse, and show a modest response in height gains, similar to that observed in Turner syndrome. The role of RAS/MAPK hyper-activation in the pathophysiology of this group of disorders offers a unique opportunity for the development of targeted approaches.
Collapse
Affiliation(s)
- Atilano Carcavilla
- Servicio de Endocrinología Pediátrica, Hospital Universitario La Paz, Madrid, España
| | - Larisa Suárez-Ortega
- Servicio de Endocrinología Pediátrica, Hospital Sant Joan de Déu, Esplugues del Llobregat, Barcelona, España
| | | | | | - Marta Ramón-Krauel
- Servicio de Endocrinología Pediátrica, Hospital Sant Joan de Déu, Esplugues del Llobregat, Barcelona, España
| | | | - Sofia Quinteiro Gonzalez
- Servicio de Endocrinología Pediátrica, Complejo Universitario Insular, Gran Canaria, Las Palmas de Gran Canaria, España
| | - Isolina Riaño Galán
- Servicio de Endocrinología Pediátrica, Hospital Central de Asturias, Oviedo/Uviéu, España
| | | | - Juan Pedro López-Siguero
- Servicio de Endocrinología Pediátrica, Hospital Regional Universitario de Málaga, Málaga, España.
| |
Collapse
|
68
|
Kruszka P, Beaton A. The state of congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:5-6. [PMID: 32083375 DOI: 10.1002/ajmg.c.31776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022]
Abstract
In this special issue of the American Journal of Medical Genetics Part C, we focus on the "State of Congenital Heart Disease." We anticipate that after viewing this journal, the reader will be up-to-date on the epidemiology of congenital heart disease (CHD), the genetic basis of CHD, ethical concerns, and the global impact of CHD. And most importantly, we are confident that this special issue conveys the message that CHD is complex and that much work is still needed in genetic and genomic research.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea Beaton
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio.,University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|