51
|
Ahmad T, Khan S, Ullah N. Recent Advances in the Catalytic Asymmetric Friedel-Crafts Reactions of Indoles. ACS OMEGA 2022; 7:35446-35485. [PMID: 36249392 PMCID: PMC9558610 DOI: 10.1021/acsomega.2c05022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Functionalized chiral indole derivatives are privileged and versatile organic frameworks encountered in numerous pharmaceutically active agents and biologically active natural products. The catalytic asymmetric Friedel-Crafts reaction of indoles, catalyzed by chiral metal complexes or chiral organocatalysts, is one of the most powerful and atom-economical approaches to access optically active indole derivatives. Consequently, a wide range of electrophilic partners including α,β-unsaturated ketones, esters, amides, imines, β,γ-unsaturated α-keto- and α-ketiminoesters, ketimines, nitroalkenes, and many others have been successfully employed to achieve a plethora of functionalized chiral indole moieties. In particular, strategies for C-H functionalization in the phenyl of indoles require incorporation of a directing or blocking group in the phenyl or azole ring of indole. The discovery of chiral catalysts which can control enantiodiscrimination has gained a great deal of attention in recent years. This review will provide an updated account on the application of the asymmetric Friedel-Crafts reaction of indoles in the synthesis of diverse chiral indole derivatives, covering the timeframe from 2011 to today.
Collapse
Affiliation(s)
- Tauqir Ahmad
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Nisar Ullah
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
- The
Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
52
|
Zhang J, Zhang B, He J, Shi H, Du Y. Divergent synthesis of 2-methylthioindole and 2-unsubstituted indole derivatives mediated by SOCl 2 and dimethyl/diethyl sulfoxides. Org Biomol Chem 2022; 20:7886-7890. [PMID: 36169012 DOI: 10.1039/d2ob01580c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free divergent synthesis of indole compounds dependent on a reagent via intramolecular C(sp2)-H amination was described. The reaction of 2-vinylanilines with DMSO/SOCl2 at 70 °C was found to give 2-thiomethylindoles, while replacing DMSO with diethyl sulfoxide afforded 2-unsubstituted indoles in a highly selective manner.
Collapse
Affiliation(s)
- Jingran Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Beibei Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiaxin He
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Haofeng Shi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
53
|
Chen N, Deng TT, Li JQ, Cui XY, Sun WW, Wu B. Hypervalent Iodine(III)-Mediated Umpolung Dialkoxylation of N-Substituted Indoles. J Org Chem 2022; 87:12759-12771. [PMID: 36170012 DOI: 10.1021/acs.joc.2c01326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report dialkoxylation of N-substituted indoles through a hypervalent iodine-mediated umpolung strategy, affording trans-2,3-dimethoxyindolines with up to 95% yield. In addition, C5-selective bromination of 2,3-dialkoxyindoline via NBS-mediated rearomatization was achieved. DFT calculation of the sequence of electrophilic addition and nucleophilic substitution pathway of N-substituted indoles has also been investigated.
Collapse
Affiliation(s)
- Na Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ting-Ting Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jin-Quan Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xin-Yue Cui
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Wu Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.,Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
54
|
Wang JM, Zhao Y, Yao CS, Zhang K. Stereoselective synthesis of C3-tetrasubstituted oxindoles via copper catalyzed asymmetric propargylation. RSC Adv 2022; 12:26727-26732. [PMID: 36320842 PMCID: PMC9490778 DOI: 10.1039/d2ra04603b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, a copper catalyzed asymmetric propargylation of 2-oxindole-3-carboxylate esters with terminal propargylic esters is described. This strategy successfully provides a direct approach to constructing a broad range of chiral C3-tetrasubstituted oxindoles with contiguous tertiary and quaternary carbon stereocenters in high yields and excellent enantioselectivities (16 examples, up to 99% yield and 98% ee). Moreover, the diastereoisomers of the two newly formed stereocenters can be separated by silica gel chromatography, thereby providing a valuable stereoselective access to all four possible stereoisomers of C3-tetrasubstituted oxindoles.
Collapse
Affiliation(s)
- Jiao-Mei Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology Xuzhou 221018 P. R. China
| | - Yu Zhao
- College of Chemistry and Chemical Engineering, Yan'an University Yan'an Shaanxi 716000 P. R. China
| | - Chang-Sheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 P. R. China
| |
Collapse
|
55
|
Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Abbas Ashraf G. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
56
|
Qian C, Huang T, Sun J, Li P. Catalyst-Controlled Divergent Reactions of 2,3-Disubstituted Indoles with Propargylic Alcohols: Synthesis of 3 H-Benzo[ b]azepines and Axially Chiral Tetrasubstituted Allenes. Org Lett 2022; 24:6472-6476. [PMID: 36040372 DOI: 10.1021/acs.orglett.2c02642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Catalyst-controlled divergent reactions of 2,3-disubstituted indoles with propargylic alcohols were developed for the first time. In the presence of TsOH or B(C6F5)3 as catalyst, 2,3-disubstituted indoles reacted smoothly with 3-alkynyl-3-hydroxyisoindolinones to afford 3H-benzo[b]azepines by selective C2(sp2)-C3(sp2) ring expansion of indoles. In contrast, decreasing the catalyst strength (e.g., with chiral phosphoric acid) interrupted the cascade reactions, affording axially chiral tetrasubstituted allenes bearing an adjacent chiral quaternary carbon stereocenter. Control experiments provided insights into the reaction mechanism.
Collapse
Affiliation(s)
- Chenxiao Qian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Tingting Huang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
57
|
Recent advances in theoretical studies on transition-metal-catalyzed regioselective C-H functionalization of indoles. J Mol Model 2022; 28:267. [PMID: 35994132 DOI: 10.1007/s00894-022-05265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Indole compounds are widely found in natural products and drug candidates. The transition-metal-catalyzed regioselective C-H bond functionalization of indoles as the most efficient method for the synthesis of various functionalized indoles has been extensively studied in the past two decades due to its advantages of step economy and atom economy. In general, the catalysts included the transition-metals (Pd, Rh, Ru, Cu, Co, Fe, Zn, and Ga) and these reactions were accomplished with a remarkably wide range of coupling reagents for construction of various C-C and C-X (X = N, O, S) bonds. However, the general and important rules of the regioselectivity are not clear to date. Therefore, a comprehensive analysis through previous reported theoretical studies on transition-metal-catalyzed regioselective C-H bond functionalization of indoles was crucial and significant. In this review, we found that when the C-H bond activation process was the rate-determining step, the regioselectivity ordinarily occurred at the C7 or C4 positions (on benzene ring), and otherwise, the regioselectivity often occurred at C2 position (on pyrrole ring). For indoline substrates, the C-H bond functionalization occurred at the benzene ring. General rules of the regioselectivities for transition-metal-catalyzed C-H bond functionalization of indoles. This review collects major advances in the transition-metal-catalyzed C-H bond functionalization of indoles and indolines.
Collapse
|
58
|
Bhatt S, Wang YN, Pham H, Hull KL. Palladium-Catalyzed Oxidative Amination of α-Olefins with Indoles. Org Lett 2022; 24:5746-5750. [PMID: 35905441 PMCID: PMC9807023 DOI: 10.1021/acs.orglett.2c02190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein we report the use of indoles, one of the most common nitrogen-containing heterocycles in FDA-approved drugs, as nucleophiles in the Pd-catalyzed aza-Wacker reaction. This N-functionalization of indoles is a Markovnikov selective olefin functionalization of simple alkenes using catalytic Pd(NPhth)2(PhCN)2 and O2 as the terminal oxidant in the presence of catalytic Bu4NBr. Various substituted indoles and alkenes are found to participate; 21 examples are presented with yields ranging from 41 to 97% isolated yield. Additionally, lactams and oxazolidinones are shown to participate under the reaction conditions. Mechanistic investigations suggest that the phthalimide ligand and Bu4NBr additive slow undesired side reactions: indole decomposition and olefin isomerization, respectively.
Collapse
|
59
|
Paul T, Basak S, Punniyamurthy T. Weak Chelation-Assisted C4-Selective Alkylation of Indoles with Cyclopropanols via Sequential C-H/C-C Bond Activation. Org Lett 2022; 24:6000-6005. [PMID: 35947032 DOI: 10.1021/acs.orglett.2c02265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Rh-catalyzed weak chelation-guided C4-alkylation of indoles has been accomplished using cyclopropanols as an alkylating agent via the cascade C-H and C-C bond activation. The substrate scope, functional group tolerance, and late-stage mutation of drug molecules are the important practical features.
Collapse
Affiliation(s)
- Tripti Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Shubhajit Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
60
|
Wang F, Chen C, Zhang F, Meng Q. Comprehensive Theoretical Study of Nickel‐NHC‐catalyzed Enantioselective Intramolecular Indole C‐H Cyclization: Reaction Mechanism, Reactivity, Regioselectivity, and Electronic Processes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fen Wang
- College of Chemistry and Chemical Engineering, Taishan University Taian Shandong China
| | - Changbao Chen
- College of Chemistry and Material Science, Shandong Agricultural University Taian Shandong People’s Republic of China
- Key Laboratory of Agricultural Film Application, Ministry of Agriculture and Rural Affairs China
| | - Feng Zhang
- Technology Center, China Tobacco Fujian Industrial Co., Ltd. Xiamen Fujian China
| | - Qingxi Meng
- College of Chemistry and Material Science, Shandong Agricultural University Taian Shandong People’s Republic of China
- Key Laboratory of Agricultural Film Application, Ministry of Agriculture and Rural Affairs China
| |
Collapse
|
61
|
Ma C, Li C, Bai J, Xiao J, Zhai Y, Guo Y, Ma S. Rhodium-Catalyzed Intermolecular Stereoselective Allylation of Indoles with Allenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chaoyan Ma
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, People’s Republic of China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, People’s Republic of China
| | - Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, People’s Republic of China
| | - Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, People’s Republic of China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, People’s Republic of China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, People’s Republic of China
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, People’s Republic of China
| |
Collapse
|
62
|
Huang J, Chen LL, Chen ZM. Palladium-Catalyzed Three-Component Cross-Coupling of Conjugated Dienes with Indoles Using Ethynylbenziodazolones as Electrophilic Alkynylating Reagents. Org Lett 2022; 24:5777-5781. [PMID: 35912967 DOI: 10.1021/acs.orglett.2c02275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed regioselective 1,2-alkynyl-carbonalization of conjugated dienes with ethynylbenziodazolone (EBZ) and indoles has been developed for the first time. Various molecules containing alkenyl, alkynyl, and indole groups were readily obtained. Moreover, the resulting products can be applied to various derivatizations. This protocol uses EBZ as an electrophilic alkynylating reagent, avoiding the byproduct of dimerization of alkynes.
Collapse
Affiliation(s)
- Jie Huang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ling-Ling Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
63
|
Wang Z, Cheng Y, Yue Z, Chen X, Li P, Li W. Organocatalytic Asymmetric 3‐Allenylation of Indoles via Remote Stereocontrolled 1,10‐Additions of Alkynyl Indole Imine Methides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ziyang Wang
- Qingdao University Department of Chemistry Qingdao CHINA
| | - Yuyu Cheng
- Southern University of Science and Technology Department of Chemistry Shenzhen CHINA
| | - Zhibin Yue
- Qingdao University Department of Chemistry Qingdao CHINA
| | - Xuling Chen
- Southern University of Science and Technology Department of Chemistry Shenzhen CHINA
| | - Pengfei Li
- Southern University of Science and Technology Department of Chemistry 1088 Xueyuan Blvd., Nanshan district 518055 Shenzhen CHINA
| | - Wenjun Li
- Qingdao University Department of Chemistry Qingdao CHINA
| |
Collapse
|
64
|
Tyagi A, Khan J, Yadav N, Mahato R, Hazra CK. Catalyst-Switchable Divergent Synthesis of Bis(indolyl)alkanes and 3-Alkylated Indoles from Styrene Oxides. J Org Chem 2022; 87:10229-10240. [PMID: 35856651 DOI: 10.1021/acs.joc.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and effective Brønsted acid-catalyzed chemoselective synthesis of bis(indolyl)alkanes and 3-alkyl indoles is reported. The selectivity of two significant indole derivatives is attained by allowing the same substrates to go through divergent reaction routes catalyzed by different catalysts. Furthermore, this mild approach is applicable to a wide range of substrates and has high efficacy in large-scale reactions. A plausible mechanism is provided based on the control experiments and spectroscopic studies.
Collapse
Affiliation(s)
- Aparna Tyagi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jabir Khan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naveen Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rina Mahato
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chinmoy Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
65
|
Abe T, Yamashiro T, Shimizu K, Sawada D. Indole Editing Enabled by HFIP-Mediated Ring-Switch Reactions of 3-Amino-2-Hydroxyindolines. Chemistry 2022; 28:e202201113. [PMID: 35438809 DOI: 10.1002/chem.202201113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/26/2022]
Abstract
This work reports the novel reactivity of hemiaminal as a precursor for indole editing at the multi-site. The HFIP-promoted indole editing of indoline hemiaminals affords 2-arylindoles through a ring-switch sequence. The key to success of this transformation is to use a cyclic hemiaminal as an α-amino aldehyde surrogate under transient tautomeric control. This transformation features mild reaction conditions and good yields with broad functional group tolerance. The utility of this transformation is presented through the one-pot protocol and the synthesis of isocryptolepine.
Collapse
Affiliation(s)
- Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Toshiki Yamashiro
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Kaho Shimizu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama, 7008530, Japan
| |
Collapse
|
66
|
Lu H, Zhou C, Wang Z, Kato T, Liu Y, Maruoka K. Fe-Catalyzed Three-Component Coupling Reaction of α,β,γ,δ-Unsaturated Carbonyl Compounds and Conjugate Dienes with Alkylsilyl Peroxides and Nucleophiles. J Org Chem 2022; 87:8824-8834. [PMID: 35731735 DOI: 10.1021/acs.joc.2c00885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An Fe(OTf)2-catalyzed three-component coupling reaction of α,β,γ,δ-unsaturated carbonyl compounds with alkylsilyl peroxides in the presence of certain heteronucleophiles (ROH and indole) is realized under mild reaction conditions. A variety of α,β,γ,δ-diene carbonyl substrates with different substituents were successfully employable via combination with several different alkylsilyl peroxides. This new approach is also applicable to the double functionalization of diene substrates.
Collapse
Affiliation(s)
- Hanbin Lu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Canhua Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhe Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo 606-8501, Kyoto, Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo 606-8501, Kyoto, Japan
| |
Collapse
|
67
|
Wang YH, Zhang YQ, Zhou CF, Jiang YQ, Xu Y, Zeng X, Liu GQ. Iodine pentoxide-mediated oxidative selenation and seleno/thiocyanation of electron-rich arenes. Org Biomol Chem 2022; 20:5463-5469. [PMID: 35772180 DOI: 10.1039/d2ob00892k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A simple and efficient method for the regioselective selenation of electron-rich arenes by employing non-metal inorganic iodine pentoxide (I2O5) as a reaction promoter under ambient conditions has been developed. The present protocol showed broad functional group tolerance and easy-to-operate and time-economical features. Additionally, this protocol also allows access to 3-seleno and 3-thiocyanoindoles by the use of readily available selenocyanate and thiocyanate salts. A mechanistic study indicated that the transformation operated through selenenyl iodide-induced electrophilic substitution processes.
Collapse
Affiliation(s)
- Yong-Hao Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Yun-Qian Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Chen-Fan Zhou
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - You-Qin Jiang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Yue Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Xiaobao Zeng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Gong-Qing Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| |
Collapse
|
68
|
Zhao M, Li X, Zhang X, Shao Z. Efficient Synthesis of C3-Alkylated and Alkenylated Indoles via Manganese-Catalyzed Dehydrogenation. Chem Asian J 2022; 17:e202200483. [PMID: 35771722 DOI: 10.1002/asia.202200483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/15/2022] [Indexed: 11/10/2022]
Abstract
The catalytic dehydrogenation of alcohols is essential for the sustainable production of valuable products. This provids a new strategy for green organic synthesis in chemical industries. Herein, we describe a manganese-based catalytic system that enables the efficient synthesis of C3-alkylated indoles from benzyl alcohols and indoles via the borrowing hydrogen process. Furthermore, dehydrogenative coupling of 2-arylethanols and indoles yields C3-alkenylated indoles. Meanwhile, reacting 2-aminophenethanol instead of indoles can also obtain the corresponding indole products with high selectivity under the same conditions.
Collapse
Affiliation(s)
- Mingqin Zhao
- Henan University, College of Tobacco Science, CHINA
| | - Xinyan Li
- Henan Agricultural University, College of Tobacco Science, CHINA
| | - Xiaoyu Zhang
- Henan Agricultural University, College of Tobacco Science, CHINA
| | - Zhihui Shao
- Henan Agricultural University, College of Tobacco Science, Wenhua Road, 450002, Zhengzhou, CHINA
| |
Collapse
|
69
|
Synthesis of Indole-Coupled KYNA Derivatives via C–N Bond Cleavage of Mannich Bases. Int J Mol Sci 2022; 23:ijms23137152. [PMID: 35806158 PMCID: PMC9266300 DOI: 10.3390/ijms23137152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
KYNAs, a compound with endogenous neuroprotective functions and an indole that is a building block of many biologically active compounds, such as a variety of neurotransmitters, are reacted in a transformation building upon Mannich bases. The reaction yields triarylmethane derivatives containing two biologically potent skeletons, and it may contribute to the synthesis of new, specialised neuroprotective compounds. The synthesis has been investigated via two procedures and the results were compared to those of previous studies. A possible alternative reaction route through acid catalysis has been established.
Collapse
|
70
|
Wang Z, Liu Z, Sun A, Wang KK. Recent advances of three‐component reactions of simple indoles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhanyong Wang
- Xinxiang University chemistry and chemical engineering Xinxiang 453000 Xinxiang CHINA
| | | | - Aili Sun
- Xinxiang University School of Pharmacy CHINA
| | | |
Collapse
|
71
|
Hisana KN, Afsina CMA, Anilkumar G. Copper-catalyzed N-arylation of indoles. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220527140651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Over the past decades, the N-arylation of indoles has gained an inevitable role in the fields of material science, pharmaceuticals, and agrochemical industries. They are the basic core skeleton of many natural products. Their synthesis by Ullmann-type C–N coupling reaction of indole derivatives with aryl halides through various catalytic protocols is well explored. Transition metal catalysis was the best method for synthesizing 1-aryl indoles, and copper catalysis is the leading among them. This review comprehends the recent developments in the copper-catalyzed C–N cross-coupling of indoles with aryl halides from 2010 to 2022.
Collapse
Affiliation(s)
| | - C M A Afsina
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, INDIA
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, INDIA
| |
Collapse
|
72
|
Taskesenligil Y, Aslan M, Cogurcu T, Saracoglu N. Directed C-H Functionalization of C3-Aldehyde, Ketone, and Acid/Ester-Substituted Free (NH) Indoles with Iodoarenes via a Palladium Catalyst System. J Org Chem 2022; 88:1299-1318. [PMID: 35609297 PMCID: PMC9903333 DOI: 10.1021/acs.joc.2c00716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pd(II)-catalyzed C-H arylations of free (NH) indoles including different carbonyl directing groups on C3-position with aryl iodides are demonstrated. Importantly, the reactions are carried out using the same catalyst system without any additional transient directing group (TDG). In this study, the formyl group as a directing group gave the C4-arylated indoles versus C2-arylation. Using this catalyst system, C-H functionalization of 3-acetylindoles provided domino C4-arylation/3,2-carbonyl migration products. This transformation involves the unusual migration of the acetyl group to the C2-position following C4-arylation in one pot. Meanwhile, migration of the acetyl group could be simply controlled and N-protected 3-acetylindoles afforded C4-arylation products without migration of the acetyl group. Functionalization of indole-3-carboxylic acid (or methyl ester) with aryl iodides using the present Pd(II)-catalyst system resulted in decarboxylation followed by the formation of C2-arylated indoles. Based on the control experiments and the literature, plausible mechanisms are proposed. The synthetic utilities of these acetylindole derivatives have also been demonstrated. Remarkably, C4-arylated acetylindoles have allowed the construction of functionalized pityiacitrin (a natural product).
Collapse
|
73
|
Unhale RA, Sadhu MM, Singh VK. Chiral Brønsted Acid Catalyzed Enantioselective Synthesis of Spiro-Isoindolinone-Indolines via Formal [3 + 2] Cycloaddition. Org Lett 2022; 24:3319-3324. [PMID: 35507765 DOI: 10.1021/acs.orglett.2c00748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel organocatalytic asymmetric formal [3 + 2] cycloaddition of 3-substituted 1H-indoles with in situ generated 3-hydroxy-isoindolinone-derived β,γ-alkynyl-α-ketimines has been developed. A variety of biologically relevant chiral spiro-isoindolinone-indolines were achieved with excellent yields (up to 99%) and enantioselectivity (up to 99% ee) under mild conditions. The gram-scale reaction of this methodology and several interesting transformations of the products have been demonstrated.
Collapse
Affiliation(s)
- Rajshekhar A Unhale
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Milon M Sadhu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
74
|
Shi J, Wang RA, Wu W, Song JR, Chi Q, Pan WD, Ren H. Copper-Catalyzed Aerobic Selective Oxidation of Tetrahydrocarbolines. Org Lett 2022; 24:3358-3362. [PMID: 35503733 DOI: 10.1021/acs.orglett.2c01059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a safe and convenient open-flask copper-catalyzed selective oxidation/functionalization methodology for tetrahydrocarbolines and tetrahydro-β-carbolines that employs atmospheric O2 as the terminal oxidant. The system is applicable to oxidative rearrangement of tetrahydro-β-carbolines, tetrahydrocarboline oxidation to α-alkoxy carbazoles and spirooxindoles, and Witkop oxidation. Mechanistic experiments indicated that a single-electron oxidation process is responsible for the tunable selectivity control. This copper-catalysis protocol represents a significant advance in the field of indole oxidation.
Collapse
Affiliation(s)
- Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, 550014, China
| | - Rui-An Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, 550014, China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, 550014, China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, 550014, China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, 550014, China
| | - Wei-Dong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, 550014, China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang, 550014, China
| |
Collapse
|
75
|
Solid acid-catalyzed one-pot multi-step cascade reaction: Multicomponent synthesis of indol-3-yl acetates and indol-3-yl acetamides in water. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
76
|
Li H, Zhu Y, Jiang C, Wei J, Liu P, Sun P. HOAc catalyzed three-component reaction for the synthesis of 3,3'-(arylmethylene)bis(1 H-indoles). Org Biomol Chem 2022; 20:3365-3374. [PMID: 35355039 DOI: 10.1039/d2ob00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient HOAc catalyzed three-component reaction of 2-(arylethynyl)anilines with arylaldehydes has been achieved, which leads to the generation of 3,3'-(arylmethylene)bis(1H-indoles) with good to excellent yields and high regioselectivity under transition-metal-free conditions. Four new C-C and C-N bonds were effectively formed in a one-pot procedure. Subsequent research on the reaction mechanism indicated that the reaction likely involved the processes of intramolecular cyclization and cascade intermolecular dehydration condensation.
Collapse
Affiliation(s)
- Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Wei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
77
|
Das A. LED Light Sources in Organic Synthesis: An Entry to a Novel Approach. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210916164132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally
friendly, and sustainable technology. Compared to other light sources in photochemical reaction,
LEDs have advantages in terms of efficiency, power, compatibility, and environmentally friendly
nature. This review highlights the most recent advances in LED-induced photochemical reactions. The
effect of white and blue LEDs in reactions such as oxidation, reduction, cycloaddition, isomerization,
and sensitization is discussed in detail. No other reviews have been published on the importance of
white and blue LED sources in the photocatalysis of organic compounds. Considering all the facts, this
review is highly significant and timely.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin
Fahd University, Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
78
|
Zhen G, Jiang K, Yin B. Progress in Organocatalytic Dearomatization Reactions Catalyzed by Heterocyclic Carbenes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangjin Zhen
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Kai Jiang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Biaolin Yin
- South China University of Technology Dept. of Chenistry and chemical engineering Wushan Street 510640 Guangzhou CHINA
| |
Collapse
|
79
|
Gao D, Jiao L. Divergent Synthesis of Indolenine and Indoline Ring Systems by Palladium‐Catalyzed Asymmetric Dearomatization of Indoles**. Angew Chem Int Ed Engl 2022; 61:e202116024. [DOI: 10.1002/anie.202116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Dong Gao
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
80
|
Salah K, Blanco‐López E, Sirvent A, Behloul C, Nájera C, De Gracia Retamosa M, Sansano JM, Yus M, Foubelo F. Stereoselective Synthesis of Biheterocycles Containing Indole and 5,6‐Dihydropyridin‐2(1H)‐one or α‐Methylene‐β‐butyrolactam Scaffolds. ChemistrySelect 2022. [DOI: 10.1002/slct.202104245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kennouche Salah
- Laboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique Université Frères Mentouri-Constantine 1 25000 Constantine Algeria
| | - Ester Blanco‐López
- Departamento de Química Orgánica - Facultad de Ciencias and Instituto de Síntesis Orgánica Universidad de Alicante Apdo. Ciudad de México, 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - Ana Sirvent
- Departamento de Química Orgánica - Facultad de Ciencias and Instituto de Síntesis Orgánica Universidad de Alicante Apdo. Ciudad de México, 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - Cherif Behloul
- Laboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique Université Frères Mentouri-Constantine 1 25000 Constantine Algeria
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - M. De Gracia Retamosa
- Departamento de Química Orgánica - Facultad de Ciencias and Instituto de Síntesis Orgánica Universidad de Alicante Apdo. Ciudad de México, 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - José M. Sansano
- Departamento de Química Orgánica - Facultad de Ciencias and Instituto de Síntesis Orgánica Universidad de Alicante Apdo. Ciudad de México, 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - Francisco Foubelo
- Departamento de Química Orgánica - Facultad de Ciencias and Instituto de Síntesis Orgánica Universidad de Alicante Apdo. Ciudad de México, 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| |
Collapse
|
81
|
Singh A, Dey A, Pal K, Dash OP, Volla CMR. Pd(II)-Catalyzed Transient Directing Group-Assisted Regioselective Diverse C4-H Functionalizations of Indoles. Org Lett 2022; 24:1941-1946. [PMID: 35261251 DOI: 10.1021/acs.orglett.2c00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of a rational strategy for achieving site-selective C4-H halogenation of indoles is an appealing yet challenging task. Herein, we disclose a Pd(II)-catalyzed transient directing group (TDG)-assisted methodology for realizing C4 chlorination/bromination of indoles employing glycine as the TDG and NFSI as a bystanding oxidant. The use of inexpensive and commercially available CuX2 as the halide source is the key highlight of this protocol. Furthermore, the TDG methodology was also extended to accessing C4 acetoxylated indoles employing acetic acid as the acetate source and 1-fluoro-2,4,6-trimethylpyridinium triflate as the oxidant.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kuntal Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Om Prakash Dash
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
82
|
Mondal A, Sharma R, Dutta B, Pal D, Srimani D. Well-Defined NNS-Mn Complex Catalyzed Selective Synthesis of C-3 Alkylated Indoles and Bisindolylmethanes Using Alcohols. J Org Chem 2022; 87:3989-4000. [PMID: 35258302 DOI: 10.1021/acs.joc.1c02702] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we demonstrated Mn-catalyzed selective C-3 functionalization of indoles with alcohols. The developed catalyst can also furnish bis(indolyl)methanes from the same set of substrates under slightly modified reaction conditions. Mechanistic studies reveal that the C-3 functionalization of indoles is going via a borrowing hydrogen pathway. To highlight the practical utility, a diverse range of substrates including nine structurally important drug molecules are synthesized. Furthermore, we also introduced a one-pot cascade strategy for synthesizing C-3 functionalized indoles directly from 2-aminophenyl ethanol and alcohol.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Rahul Sharma
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Bishal Dutta
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
83
|
Zhong Y, Hong G, Tang Z, Yang P, Wang Q, Gong Y, Wang L. PFOA‐Catalyzed Regioselective Alkylation of Indolylmethanols with 2‐Alkylazaarenes**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Zhong
- Key Laboratory for Advanced Materials Institute of Fine Chemicals and School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Gang Hong
- Key Laboratory for Advanced Materials Institute of Fine Chemicals and School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Zhicong Tang
- Key Laboratory for Advanced Materials Institute of Fine Chemicals and School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Peng Yang
- Key Laboratory for Advanced Materials Institute of Fine Chemicals and School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Qi Wang
- Key Laboratory for Advanced Materials Institute of Fine Chemicals and School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yu Gong
- Key Laboratory for Advanced Materials Institute of Fine Chemicals and School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials Institute of Fine Chemicals and School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
84
|
Pan X, Liu Q, Nong Y. 2-Alkylation of 3-Alkyindoles With Unactivated Alkenes. Front Chem 2022; 10:860764. [PMID: 35281568 PMCID: PMC8907451 DOI: 10.3389/fchem.2022.860764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 11/23/2022] Open
Abstract
An acid-catalyzed 2-alkylation of indole molecules is developed. Only catalytic amount of the commercially available, inexpensive and traceless HI is used as the sole reaction promoter. 2,3-Disubstituted indole molecules bearing congested tertiary carbon centers are afforded as the final products in moderate to excellent yields.
Collapse
|
85
|
Esezobor OZ, Zeng W, Niederegger L, Grübel M, Hess CR. Co-Mabiq Flies Solo: Light-Driven Markovnikov-Selective C- and N-Alkylation of Indoles and Indazoles without a Cocatalyst. J Am Chem Soc 2022; 144:2994-3004. [PMID: 35157421 DOI: 10.1021/jacs.1c10930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Indoles and indazoles are common moieties in pharmaceuticals and naturally occurring bioactive compounds. The development of light-driven methods using earth-abundant transition-metal catalysts offers an attractive route for functionalization of such compounds. Herein, we report a visible-light-induced method for the C3- and N-alkylation of indoles and indazoles with styrenes, catalyzed by Co complexes based on the macrocyclic Mabiq ligand (Mabiq = 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N6). The photochemical behavior of two CoIII catalysts was examined: Co(Mabiq)Cl2 and the newly synthesized Co(MabiqBr)Cl2, which contains the Br-modified ligand. Both complexes undergo visible-light-induced homolysis that is significant to their activity but exhibit differences in reactivity. The alkylation reactions are regioselective, furnishing the alkylated indole and indazole products in a Markovnikov fashion with excellent yields of up to 96% across a broad range of substrates. Notably, in contrast to dual-transition-metal and photoredox-catalyzed cross-coupling reactions, our studies reveal that the Co complex plays a dual role─as a photosensitizer and catalytically active metal center with the Mabiq ligand offering regiocontrol.
Collapse
Affiliation(s)
- Oaikhena Zekeri Esezobor
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Wenyi Zeng
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Lukas Niederegger
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael Grübel
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Corinna R Hess
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
86
|
Lin J, Zhu Y, Cai W, Huang Y. Phosphine-Mediated Sequential [2+4]/[2+3] Annulation to Construct Pyrroloquinolines. Org Lett 2022; 24:1593-1597. [PMID: 35179034 DOI: 10.1021/acs.orglett.1c04388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A domino [2+4]/[2+3] sequential annulation reaction of MBH carbonates with N-unprotected indoles has been developed to provide various pyrroloquinoline derivatives in ≤94% yield and 20:1 dr. The reaction could be either mediated by stoichiometric PCy3 or catalyzed by R3PO via PIII/PV═O redox cycling in the presence of phenylsilane. This method assembles polycyclic 1,7-fused indoles in one step diastereoselectively.
Collapse
Affiliation(s)
- Junhui Lin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yannan Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Cai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
87
|
Boice G, Patrick BO, Hicks RG. Diindolylamine Preparation and Stability Investigations. ACS OMEGA 2022; 7:5197-5205. [PMID: 35187335 PMCID: PMC8851611 DOI: 10.1021/acsomega.1c06289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The synthesis of diindolylamines via the palladium-catalyzed cross-coupling of aminoindoles and bromoindoles has been investigated, and efficient coupling conditions using BrettPhos, Pd(OAc)2, K2CO3, and tBuOH have been identified. The diindolylamines were found to be unstable in ambient conditions. Blocking the reactive 3-position of the bromoindole coupling partner with a tert-butyl group results in a diindolylamine with improved air stability. NMR, CV, and UV-vis studies on an asymmetrically substituted 3-tert-butyl-3'H-diindolylamine indicate that the instability of the diindolylamine substrates is likely due to oxidative oligomerization. Literature conditions used for the preparation of 3-tert-butylindoles afforded only the indole tetramer. The presence of water during the alkylation reaction was identified as the cause of the formation of the tetramer. Replacing hygroscopic tBuOH with nonhygroscopic tBuCl as the alkylating reagent provided access to 7-bromo-3-tert-butyl indole.
Collapse
Affiliation(s)
- Geneviève
N. Boice
- Department
of Chemistry, University of Victoria, Victoria, BC V8W2Y2, Canada
| | - Brian O. Patrick
- Crystallography
Laboratory, Department of Chemistry, University
of British Columbia, Vancouver, BC V6T1Z1, Canada
| | - Robin G. Hicks
- Department
of Chemistry, University of Victoria, Victoria, BC V8W2Y2, Canada
| |
Collapse
|
88
|
Gao D, Jiao L. Divergent Synthesis of Indolenine and Indoline Ring Systems by Palladium‐Catalyzed Asymmetric Dearomatization of Indoles**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong Gao
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
89
|
Chen D, Lu H, Liu Y, Deng W, Qiu R, Xiang J. One-Pot Three-Component Coupling Reaction of α-Amino Aryl Ketones, Indoles, and Perbromomethane Under Mild Conditions. Front Chem 2022; 10:825772. [PMID: 35186884 PMCID: PMC8855049 DOI: 10.3389/fchem.2022.825772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
A simple and efficient one-pot three-component cascade reaction of α-amino aryl ketones, indoles, and CBr4 in moderate to good yields has been developed. This new strategy exhibits excellent mild reaction conditions and step-economy, easily accessible reactants, and simultaneous construction of three different new bonds (C=N, C–C, and N-Br) in a single step. It is worth noting that the protocol developed provides a simple and practical tool for the construction of diverse indole-containing heterocyclic frameworks, indicating its potential applications in medicinal and material chemistry.
Collapse
Affiliation(s)
| | | | | | - Wei Deng
- *Correspondence: Wei Deng, ; Renhua Qiu, ; Jiannan Xiang,
| | - Renhua Qiu
- *Correspondence: Wei Deng, ; Renhua Qiu, ; Jiannan Xiang,
| | - Jiannan Xiang
- *Correspondence: Wei Deng, ; Renhua Qiu, ; Jiannan Xiang,
| |
Collapse
|
90
|
Huang WB, Yang M, He LN. Metal-Free Hydroxymethylation of Indole Derivatives with Formic Acid as an Alternative Way to Indirect Utilization of CO 2. J Org Chem 2022; 87:3775-3779. [PMID: 35084854 DOI: 10.1021/acs.joc.1c02831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selective N-alkylation of indole substrates remains an ongoing research challenge for the relative attenuated nucleophilicity toward nitrogen. Herein, we developed the hydroxymethylation of indole derivatives to afford N-alkylated indole products with formic acid. This metal-free process was promoted by the organic base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) using phenylsilane as the reductant under mild conditions. Besides, this strategy represents an alternative way for indirect utilization of CO2, considering the facile hydrogenation of CO2 to produce HCOOH.
Collapse
Affiliation(s)
- Wen-Bin Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Meng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
91
|
Fu Y, Sun P, Li G, He R, Shi L, Xing N. Recent advances in the synthetic method and mechanism for the important N‐heterocyclic compound of 3‐methylindole. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Fu
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Pinghui Sun
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Gong Li
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Riyang He
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Lei Shi
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| | - Na Xing
- College of Chemistry and Chemical Engineering Liaoning Normal University Dalian China
| |
Collapse
|
92
|
Yang Y, Zhu Y, Yin L, Cheng L, Wang C, Li Y. Brønsted-Acid-Promoted Selective C2-N1 Ring-Expansion Reaction of Indoles toward Cyclopenta[ b]quinolines. Org Lett 2022; 24:966-970. [PMID: 35044190 DOI: 10.1021/acs.orglett.1c04332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel Brønsted-acid-promoted selective C2-N1 ring-expansion reaction of indoles has been developed that provides a rapid and efficient protocol for the preparation of fused quinolines. A variety of corresponding quinolines were obtained in high yields. Controlled experiments revealed that C2-spiroindolenines might be intermediates of this C2-N1 ring-expansion reaction. The notable advantages of this process include excellent yields, good functional group tolerance, and operational simplicity.
Collapse
Affiliation(s)
- Yajie Yang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yilin Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Liqiang Yin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chengyu Wang
- School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong 276000, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.,Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
93
|
Synthesis of Indoles by Palladium-Catalyzed Reductive Cyclization of β-Nitrostyrenes with Phenyl Formate as a CO Surrogate. Catalysts 2022. [DOI: 10.3390/catal12010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The reductive cyclization of suitably substituted organic nitro compounds by carbon monoxide is a very appealing technique for the synthesis of heterocycles because of its atom efficiency and easiness of separation of the only stoichiometric byproduct CO2, but the need for pressurized CO has hampered its diffusion. We have recently reported on the synthesis of indoles by reductive cyclization of o-nitrostyrenes using phenyl formate as a CO surrogate, using a palladium/1,10-phenanthroline complex as catalyst. However, depending on the desired substituents on the structure, the use of β-nitrostyrenes as alternative reagents may be advantageous. We report here the results of our study on the possibility to use phenyl formate as a CO surrogate in the synthesis of indoles by reductive cyclization of β-nitrostyrenes, using PdCl2(CH3CN)2 + phenanthroline as the catalyst. It turned out that good results can be obtained when the starting nitrostyrene bears an aryl substituent in the alpha position. However, when no such substituent is present, only fair yield of indole can be obtained because the base required to decompose the formate also catalyzes an oligo-polymerization of the starting styrene. The reaction can be performed in a single glass pressure tube, a cheap and easily available piece of equipment.
Collapse
|
94
|
Huang W, Chen Z, Li‐Xia L, Zhou Y, Bo W, Jiang G. A Facile Synthesis of Pyrrolo[2,3‐
j
]phenanthridines
via
the Cascade Reaction of Indoleanilines and Aldehydes. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Jun Huang
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Zhi‐Peng Chen
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Liu Li‐Xia
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Yong‐Gui Zhou
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Wu Bo
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian China
| | - Guo‐Fang Jiang
- Advanced Catalytic Engineer Research Center of Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| |
Collapse
|
95
|
Leclair A, Wang Q, Zhu J. Two-Carbon Ring Expansion of Cyclobutanols to Cyclohexenones Enabled by Indole Radical Cation Intermediate: Development and Application to a Total Synthesis of Uleine. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexandre Leclair
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
96
|
Zhou N, Yu J, LiyuanHou, Wu X, Ruan Z, Feng P. Electro‐Oxidative Coupling of Azoles with 2‐ and 3‐Haloindoles/Thiophenes Providing Access to 2/3‐Halo(Azol‐1‐Yl)Indoles/Thiophenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Naifu Zhou
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 People's Republic of China
| | - Jianchao Yu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 People's Republic of China
| | - LiyuanHou
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 People's Republic of China
| | - Xing Wu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 People's Republic of China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Science & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Pengju Feng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 People's Republic of China
| |
Collapse
|
97
|
Rodriguez J, Vesseur D, Tabey A, Mallet-Ladeira S, Miqueu K, Bourissou D. Au(I)/Au(III) Catalytic Allylation Involving π-Allyl Au(III) Complexes. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jessica Rodriguez
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - David Vesseur
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Alexis Tabey
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| | - Karinne Miqueu
- CNRS/Université de Pau et des Pays de l’Adour, E2S-UPPA Institut des Sciences Analytiques et Physico-Chimie pour l’Environnement et les Matériaux (IPREM, UMR 5254) Hélioparc, 2 Avenue du Président Angot, 64053 Cedex 09, Pau, France
| | - Didier Bourissou
- Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR 5069) CNRS/Université Paul Sabatier 118 Route de Narbonne, 31062 Cedex 09, Toulouse, France
| |
Collapse
|
98
|
Mansaray JK, Huang Y, Li K, Sun X, Zha Z, Wang Z. Efficient Enantioselective Synthesis of Trisubstituted γ-Lactam via Michael Addition Reaction of 2, 3-dioxopyrrolidine with Indole in Aqueous Media. Org Biomol Chem 2022; 20:5510-5514. [DOI: 10.1039/d2ob00959e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient enantioselective Michael addition reaction of 2,3-dioxopyrrolidine with indole in aqueous media was developed by virtue of a chiral copper complex. This reaction features air tolerance, broad substrate scope...
Collapse
|
99
|
Zhang H, Shi F. Advances in Catalytic Asymmetric Reactions Using 2-Indolylmethanols as Platform Molecules. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
100
|
Wu W, Jiang Q, Tan Y, Zhou Y, Chen J, Tang B, Zhu R, Zheng S. Synthesis and fungicidal activity of novel pyrroloindole scaffolds and their derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj01670b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The key scaffold of a pyrroloindole ring is a very important structure, which is isolated from plants and fungi with a variety of medical and fungicidal activities.
Collapse
Affiliation(s)
- Wenbin Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Qiaoju Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Yi Tan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Yujie Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Jinfeng Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Bing Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Rui Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
| |
Collapse
|