51
|
Yadav J, Chaudhary RP. A review on advances in synthetic methodology and biological profile of spirothiazolidin‐4‐ones. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jyoti Yadav
- Department of Chemistry Sant Longowal Institute of Engineering & Technology Longowal (Sangrur) India
| | - Ram Pal Chaudhary
- Department of Chemistry Sant Longowal Institute of Engineering & Technology Longowal (Sangrur) India
| |
Collapse
|
52
|
Abdalkareem Jasim S, Eshmamatovich Zhumanov Z, Catalan Opulencia MJ, Kadhim MM, Ahmed Hamza T, Abed Hussein S, Sharma H, Thaeer Hammid A. Tribromide Immobilized on Amino-Functionalized Magnetic Nanoparticles: A Active Magnetically Recoverable Catalyst for the Synthesis of Heterocycles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2094422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | | | | | - Mustafa M. Kadhim
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Thulfeqar Ahmed Hamza
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Himanshu Sharma
- Department of Computer Engineering and Applications, GLA University, Mathura, India
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| |
Collapse
|
53
|
Nickel Supported MCM-Functionalized 1,2,3-Triazol-4-ylmethanamine: An Efficient Nano-particle-Heterogeneous Catalyst Activate for Suzuki Reaction. Catal Letters 2022. [DOI: 10.1007/s10562-021-03802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
54
|
Nanosized calcined mixed oxides-supported alkali metal (K2O/Al2O3–CaO) as solid base catalyst: preparation and investigation of its catalytic efficiency in the synthesis of benzylidene malononitriles/barbiturates and in pyrano[2,3-d]pyrimidines. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
55
|
Han G, Li M, Liu H, Zhang W, He L, Tian F, Liu Y, Yu Y, Yang W, Guo S. Short-Range Diffusion Enables General Synthesis of Medium-Entropy Alloy Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202943. [PMID: 35613477 DOI: 10.1002/adma.202202943] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Medium-entropy alloy aerogels (MEAAs) with the advantages of both multimetallic alloys and aerogels are promising new materials in catalytic applications. However, limited by the immiscible behavior of different metals, achieving single-phase MEAAs is still a grand challenge. Herein, a general strategy for preparing ultralight 3D porous MEAAs with the lowest density of 39.3 mg cm-3 among the metal materials is reported, through combining auto-combustion and subsequent low-temperature reduction procedures. The homogenous mixing of precursors at the ionic level makes the short-range diffusion of metal atoms possible to drive the formation of single-phase MEAAs. As a proof of concept in catalysis, as-synthesized Ni50 Co15 Fe30 Cu5 MEAAs exhibit a high mass activity of 1.62 A mg-1 and specific activity of 132.24 mA cm-2 toward methanol oxidation reactions, much higher than those of the low-entropy counterparts. In situ Fourier transform infrared and NMR spectroscopies reveal that MEAAs can enable highly selective conversion of methanol to formate. Most importantly, a methanol-oxidation-assisted MEAAs-based water electrolyzer can achieve a low cell voltage of 1.476 V at 10 mA cm-2 for making value-added formate at the anode and H2 at the cathode, 173 mV lower than that of traditional alkaline water electrolyzers.
Collapse
Affiliation(s)
- Guanghui Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hu Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Weiyu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Lin He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Fenyang Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yequn Liu
- Analytical Instrumentation Center, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
56
|
Karami K, Abedanzadeh S, Afroomand M, Hervés P, Bayat P. Heterogeneous Copper-Free Sonogashira Cross-Coupling Reactions Catalyzed by a Recyclable Orthopalladated Azo-Complex. Catal Letters 2022. [DOI: 10.1007/s10562-022-04059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
57
|
FaniMoghadam H, Dekamin MG, Rostami N. Para-Aminobenzoic acid grafted on silica-coated magnetic nanoparticles: a highly efficient and synergistic organocatalyst for on-water synthesis of 2,3-dihydroquinazolin-4(1H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04736-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
58
|
Jasim SA, Riadi Y, Majdi HS, Altimari US. Nanomagnetic macrocyclic Schiff-base-Mn(ii) complex: an efficient heterogeneous catalyst for click approach synthesis of novel β-substitued-1,2,3-triazoles. RSC Adv 2022; 12:17905-17918. [PMID: 35765316 PMCID: PMC9202600 DOI: 10.1039/d2ra02587f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/03/2022] [Indexed: 12/25/2022] Open
Abstract
In the present work, a novel symmetrical 15-membered macrocyclic Schiff base complex of manganese was prepared using the reaction of the synthetic 2,6-diacetylpyridine functionalized Fe3O4 MNPs with 2,2-(piperazine-1,4-diyl)dianiline and Mn(ii) bromide salt via a template approach. The resulting [Fe3O4@PAM-Schiff-base-Mn][ClO4] heterogenized complex was characterized using FT-IR, XRD, BET, TGA, EDX, Xray-mapping, SEM, TEM and VSM analysis. To demonstrate proof of concept, Huisgen 1,3-dipolar cycloaddition synthesis of 1,2,3-triazoles was selected to evaluate the activity and reusability of the catalyst. The ethanol as a green solvent proved to be an excellent reaction medium for this synthesis. Yields of up to 100% were obtained in some cases. Significantly, as demonstrated, [Fe3O4@PAM-Schiff-base-Mn][ClO4] catalyst was recycled for 8 cycles without losing catalytic activity under the optimized reaction conditions. The hot filtration and ICP-OES tests ratified that there was no leaching of metal during the catalytic reaction, indicating the heterogeneous manner of the catalyst.
Collapse
Affiliation(s)
| | - Yassine Riadi
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Hasan Sh Majdi
- Department Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College 51001 Iraq
| | - Usama S Altimari
- Department of Pharmaceutics, Al-Nisour University College Baghdad Iraq
| |
Collapse
|
59
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Ni II NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC Adv 2022; 12:16454-16478. [PMID: 35754864 PMCID: PMC9171750 DOI: 10.1039/d1ra08454b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
In the present study, a new l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu) nanocomposite was prepared through a convenient one-pot multi-component sequential strategy. Then, nickelII nanoparticles (NiII NPs) were entrapped within a matrix of the mentioned nanocomposite. Afterward, the structure of the as-prepared Fe3O4/f-MWCNT-CS-Glu/NiII nanosystem was elucidated by various techniques, including FT-IR, PXRD, SEM, TEM, SEM-based EDX and elemental mapping, ICP-OES, TGA/DTA, and VSM. In the next part of this research, the catalytic applications of the mentioned nickelII-containing magnetic nanocomposite were assessed upon green one-pot synthesis of diverse heterocyclic frameworks, including bis-coumarins (3a-n), 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones (5a-r), 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones (7a-n), and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (9a-n). The good-to-excellent yields of the desired products, satisfactory reaction rates, use of water solvent or solvent-free reaction medium, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), along with comfortable recoverability and satisfying reusability of the as-prepared nanocatalyst for at least eight successive runs, and also easy work-up and purification procedures are some of the advantages of the current synthetic protocols.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
60
|
Fazl F, Torabi M, Yarie M, Zolfigol MA. Synthesis and application of novel urea-benzoic acid functionalized magnetic nanoparticles for the synthesis of 2,3-disubstituted thiazolidin-4-ones and hexahydroquinolines. RSC Adv 2022; 12:16342-16353. [PMID: 35747527 PMCID: PMC9158513 DOI: 10.1039/d2ra02205b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
In this work, we reported the synthesis and application of a new urea-benzoic acid containing ligand [(OEt)3Si(CH2)3-urea-benzoic acid] for the functionalization of silica coated magnetic nanoparticles. The resulting structure, namely Fe3O4@SiO2@(CH2)3-urea-benzoic acid, was characterized through different techniques including FT-IR, SEM, EDX-Mapping, VSM and TGA/DTG analysis. Then, Fe3O4@SiO2@(CH2)3-urea-benzoic acid was applied as a heterogeneous dual acidic and hydrogen bonding catalyst for the synthesis of 2,3-disubstituted thiazolidin-4-ones and hexahydroquinolines under mild and green reaction conditions. More importantly, all of the desired products were obtained with relatively good yields. Also, the catalyst was recovered and reused for four successive runs without significant reduction in yield of the model reaction.
Collapse
Affiliation(s)
- Fazlulhaq Fazl
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
61
|
A Novel and Versatile Copper-Nanomagnetic Catalyst for Synthesis of Propargylamines and Diaryl Sulfides. Catal Letters 2022. [DOI: 10.1007/s10562-022-04029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
62
|
Kundu M, Mondal B, Das D, Roy UK. Synthesis and Reactivity of Copper and Copper Containing Magnetically Separable Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202104543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mousumi Kundu
- Department of Chemistry Kazi Nazrul University Asansol India- 713340
| | - Bibhas Mondal
- Department of Chemistry Kazi Nazrul University Asansol India- 713340
| | - Debjit Das
- Department of Chemistry Triveni Devi Bholatia College Raniganj India
| | - Ujjal Kanti Roy
- Department of Chemistry Kazi Nazrul University Asansol India- 713340
| |
Collapse
|
63
|
Ghoochani SH, Heshmati A, Hosseini HA, Darroudi M. Adsorption and photocatalytic properties of porphyrin loaded MIL-101 (Cr) in methylene blue degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34406-34418. [PMID: 35038101 DOI: 10.1007/s11356-022-18640-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
In this study for the very first time, zinc tetraphenylporphyrin (ZnTPP) was loaded into MIL-101 (Zn[TPP]@MIL-101) to perform an adsorptive and photocatalytic dye removal. The physicochemical attributes of the catalyst were thoroughly determined by the usage of XRD, FTIR, FESEM, BET, UV-vis, and inductively coupled plasma (ICP). The obtained XRD pattern exhibited the phase purity of MIL-101 and its structural stability. The solid-phase diameter of the catalyst was observed to be ~ 270.76 ± 119.95 nm, while its gas adsorption data was indicative of a decrease in the specific surface area after the loading of ZnTPP. The ICP analysis displayed the amount of encapsulated Zn[TPP] (~ 17%) in MIL-101. The UV-vis confirmed the presence of Zn[TPP] in MIL-101 with the lack of any interferences or overlaps with the λmax of methylene blue (MB) with the support. The dye removal of MB was investigated under dark conditions (adsorption) and UV light (photodegradation). The observed adsorption under dark conditions using Zn[TPP]@MIL-101 (99.27% yield) demonstrated a superior dye removal in comparison to the cases of photodegradation of MB by MIL-101 and Zn[TPP]@MIL-101 or adsorption by MIL-101. In conformity to the gathered results, [ZnTPP] was able to increase the adsorption capacity at pH = 7 at room temperature.
Collapse
Affiliation(s)
| | - Abbas Heshmati
- Chemistry Department, Payame Noor University, 19395-4697, Tehran, Iran
| | | | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
64
|
Moradi P, Hajjami M. Stabilization of ruthenium on biochar-nickel magnetic nanoparticles as a heterogeneous, practical, selective, and reusable nanocatalyst for the Suzuki C-C coupling reaction in water. RSC Adv 2022; 12:13523-13534. [PMID: 35520120 PMCID: PMC9067317 DOI: 10.1039/d1ra09350a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/15/2022] [Indexed: 01/12/2023] Open
Abstract
Waste recycling and the use of recyclable and available catalysts are important principles in green chemistry in science and industrial research. Therefore in this study, biochar nanoparticles were prepared from biomass pyrolysis. Then, they were magnetized with nickel nanoparticles to improve their recycling. Further, the magnetic biochar nanoparticles (biochar-Ni MNPs) were modified by dithizone ligand and then applied for the fabrication of a ruthenium catalyst (Ru-dithizone@biochar-Ni MNPs). This nanocatalyst was characterized by high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), wavelength dispersive X-ray spectroscopy (WDX), N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM) techniques. The XRD studies of Ru in the nanocatalyst showed that the crystalline structure of ruthenium in the Ru-dithizone@biochar-Ni MNPs was hcp. Another principle of green chemistry is the use of safe and inexpensive solvents, the most suitable of which is water. Therefore, the catalytic activity of this catalyst was investigated as a practical, selective, and recyclable nanocatalyst in the Suzuki carbon-carbon coupling reaction in aqueous media. The VSM curve of this catalyst showed that it could be easily recovered using an external magnet, and recycled multiple times. Also, VSM analysis of the recovered catalyst indicated the good magnetic stability of this catalyst after repeated use.
Collapse
Affiliation(s)
- Parisa Moradi
- Department of Chemistry, Faculty of Science, Ilam University P. O. Box 69315516 Ilam Iran
| | - Maryam Hajjami
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University 6517838683 Hamedan Iran
| |
Collapse
|
65
|
Guo X, Li M, Wang J, Li C, Hu X, Jin L, Sun N, Hu B, Shen Z. Heterogeneous Catalysis for Oxidation of Alcohol via 1‐Methyl‐2‐azaadamanane
N
‐oxyl Immobilized on Magnetic Polystyrene Nanosphere. ChemistrySelect 2022. [DOI: 10.1002/slct.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaqun Guo
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang Province 310014 China
| | - Meichao Li
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang Province 310014 China
| | - Jianli Wang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang Province 310014 China
| | - Chunmei Li
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang Province 310014 China
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process School of Chemistry and Chemical Engineering Shaoxing University Shaoxing Zhejiang Province 312000 China
| | - Xinquan Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang Province 310014 China
| | - Liqun Jin
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang Province 310014 China
| | - Nan Sun
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang Province 310014 China
| | - Baoxiang Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang Province 310014 China
| | - Zhenlu Shen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou Zhejiang Province 310014 China
| |
Collapse
|
66
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Diverse and efficient catalytic applications of new cockscomb flower-like Fe 3O 4@SiO 2@KCC-1@MPTMS@Cu II mesoporous nanocomposite in the environmentally benign reduction and reductive acetylation of nitroarenes and one-pot synthesis of some coumarin compounds. RSC Adv 2022; 12:11164-11189. [PMID: 35479105 PMCID: PMC9020196 DOI: 10.1039/d1ra08763k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In this research, Fe3O4@SiO2@KCC-1@MPTMS@CuII as a new cockscomb flower-like mesoporous nanocomposite was prepared and characterized by various techniques including Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) spectroscopy, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis/differential thermal analysis (TGA/DTA), vibrating sample magnetometry (VSM), UV-Vis spectroscopy, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses. The as-prepared Fe3O4@SiO2@KCC-1@MPTMS@CuII mesoporous nanocomposite exhibited satisfactory catalytic activity in the reduction and reductive acetylation of nitroarenes in a water medium and solvent-free one-pot synthesis of some coumarin compounds including 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones) (namely, bis-coumarins) (3a-n) and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (6a-n) along with acceptable turnover numbers (TONs) and turnover frequencies (TOFs). Furthermore, the mentioned CuII-containing mesoporous nanocatalyst was conveniently recovered by a magnet from reaction environments and reused for at least seven cycles without any significant loss in activity, which confirms its good stability.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
67
|
Fabrication of a new magnetic CoFe2O4/ZrMCM-41 nanocomposite: Simple construction and application for fast reduction of Cr(IV) and nitroaromatic compounds. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
68
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
69
|
New bifunctional amphiphilic oxyethylimidazolium derivatives of calix[4]arene containing alkynyl/azide fragments: regularities of aggregation and polymerization under azide/alkyne cycloaddition conditions. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3386-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
70
|
Tahmasbi M, Koukabi N, Armandpour O. Sono and nano: A perfect synergy for eco-compatible Biginelli reaction. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
In this study, we evaluated the performance of nano-γ-Fe2O3–SO3H catalyst in the Biginelli reaction and synthesized 3,4-dihydropyrimidine-2-(1H)-ones. This reaction was carried out under solvent-free and ultrasonic irradiation conditions and belonged to one-pot multicomponent reactions (MCRs) with an adopted aromatic aldehyde, ethyl acetoacetate, and urea as starting materials for the beginning of the reaction. The synthesized materials were efficient in synthesizing 3,4-dihydropyrimidine-2-(1H)-ones via the Biginelli reaction under reaction conditions. Thus, the advantages of using nano-γ-Fe2O3–SO3H in the Biginelli reaction are short reaction time, high efficiency, green method, solvent free, and cost-effective. Furthermore, nano-γ-Fe2O3–SO3H as a heterogeneous catalyst can be recycled five times without significantly reducing catalytic activity.
Collapse
Affiliation(s)
- Marzieh Tahmasbi
- Department of Chemistry, Semnan University , Semnan , 35131-19111 , Iran
| | - Nadiya Koukabi
- Department of Chemistry, Semnan University , Semnan , 35131-19111 , Iran
| | - Ozra Armandpour
- Department of Chemistry, Semnan University , Semnan , 35131-19111 , Iran
| |
Collapse
|
71
|
Fe3O4@SiO2@Methotrexate as efficient and nanomagnetic catalyst for the synthesis of 9-(aryl)thiazolo [4,5-d] [1,2,4]triazolo [1,5-a]pyrimidin-2(3H)-ones via a cooperative anomeric based oxidation: A joint experimental and computational mechanistic study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
72
|
Deep-hydrogenation of aviation turbine fuel over highly active and robust magneto-sensitive nanocatalyst. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-021-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
73
|
Pranyoto N, Dewi Susanti Y, Joseph Ondang I, Angkawijaya AE, Edi Soetaredjo F, Santoso SP, Yuliana M, Ismadji S, Budi Hartono S. Facile Synthesis of Silane-Modified Mixed Metal Oxide as Catalyst in Transesterification Processes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:245. [PMID: 35055261 PMCID: PMC8778014 DOI: 10.3390/nano12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
The fast depletion of fossil fuels has attracted researchers worldwide to explore alternative biofuels, such as biodiesel. In general, the production of biodiesel is carried out via transesterification processes of vegetable oil with the presence of a suitable catalyst. A mixed metal oxide has shown to be a very attractive heterogeneous catalyst with a high performance. Most of the mixed metal oxide is made by using the general wetness impregnation method. A simple route to synthesize silane-modified mixed metal oxide (CaO-CuO/C6) catalysts has been successfully developed. A fluorocarbon surfactant and triblock copolymers (EO)106(PO)70(EO)106 were used to prevent the crystal agglomeration of carbonate salts (CaCO3-CuCO3) as the precursor to form CaO-CuO with a definite size and morphology. The materials show high potency as a catalyst in the transesterification process to produce biodiesel. The calcined co-precipitation product has a high crystallinity form, as confirmed by the XRD analysis. The synthesized catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The mechanism of surface modification and the effects of the catalytic activity were also discussed. The biodiesel purity of the final product was analyzed by gas chromatography. The optimum biodiesel yield was 90.17% using the modified mixed metal oxide CaO-CuO/C6.
Collapse
Affiliation(s)
- Nugroho Pranyoto
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (N.P.); (Y.D.S.); (I.J.O.); (F.E.S.); (S.P.S.); (M.Y.); (S.I.)
| | - Yuni Dewi Susanti
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (N.P.); (Y.D.S.); (I.J.O.); (F.E.S.); (S.P.S.); (M.Y.); (S.I.)
| | - Immanuel Joseph Ondang
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (N.P.); (Y.D.S.); (I.J.O.); (F.E.S.); (S.P.S.); (M.Y.); (S.I.)
| | - Artik Elisa Angkawijaya
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 1067, Taiwan;
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (N.P.); (Y.D.S.); (I.J.O.); (F.E.S.); (S.P.S.); (M.Y.); (S.I.)
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (N.P.); (Y.D.S.); (I.J.O.); (F.E.S.); (S.P.S.); (M.Y.); (S.I.)
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (N.P.); (Y.D.S.); (I.J.O.); (F.E.S.); (S.P.S.); (M.Y.); (S.I.)
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (N.P.); (Y.D.S.); (I.J.O.); (F.E.S.); (S.P.S.); (M.Y.); (S.I.)
| | - Sandy Budi Hartono
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (N.P.); (Y.D.S.); (I.J.O.); (F.E.S.); (S.P.S.); (M.Y.); (S.I.)
| |
Collapse
|
74
|
Facile Synthesis of Chitosan-ZnO-α-Fe2O3 as Hybrid Nanocatalyst and Their Application in Nitrothiopheneacetate Reduction and Cyclization of Aminothiopheneacetate. Top Catal 2022. [DOI: 10.1007/s11244-021-01544-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
75
|
Jacob GA, Prabhakaran SPS, Swaminathan G, Joseyphus RJ. Thermal kinetic analysis of mustard biomass with equiatomic iron-nickel catalyst and its predictive modeling. CHEMOSPHERE 2022; 286:131901. [PMID: 34449323 DOI: 10.1016/j.chemosphere.2021.131901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Mustard waste briquettes are commercially used as a fuel for power production in boilers, whereas the thermal kinetics of the biomass plays a vital role in deciding the process parameters. The pyrolysis process converts biomass to value-added products such as biochar, bio-oil, and hydrocarbon gases based on the heating rates and temperature. To enhance the pyrolytic activity of mustard biomass, magnetically separable and reusable FeNi alloy catalyst is investigated. The thermo-conversion properties are studied under variable heating rates with 2 and 10% FeNi particles prepared through a facile chemical reduction technique. Thermal kinetics is computed using Flynn-Wall-Ozawa (FOW) and Kissinger-Akahira-Sunose (KAS) methods. The activation energies calculated using FOW and KAS methods increase with FeNi addition in mustard while the calorific value decreases. The FeNi alloy particles with the spike-like morphology provide better metal-biomass binding resulting in higher activation energy and facilitates the easy decomposition of lignin. The 10% FeNi -mustard shows uniform conversion independent of heating rates, suitable for magnetically recoverable catalytic pyrolysis. Response surface methodology analysis predicts optimum conversion for 10% FeNi added mustard and less significance for the heating rates in concurrence with the experiments. Artificial neural network utilized to predict and validate mass loss for mustard biomass exhibits best fit for the three neural hidden layer and one output layered topology.
Collapse
Affiliation(s)
- G Antilen Jacob
- Magnetic Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, India
| | - S P Sathiya Prabhakaran
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli, 620015, India
| | - G Swaminathan
- Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, 620015, India
| | - R Justin Joseyphus
- Magnetic Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, India.
| |
Collapse
|
76
|
Arif M, Shahid M, Irfan A, Nisar J, Wu W, Farooqi ZH, Begum R. Polymer microgels for the stabilization of gold nanoparticles and their application in the catalytic reduction of nitroarenes in aqueous media. RSC Adv 2022; 12:5105-5117. [PMID: 35425556 PMCID: PMC8981384 DOI: 10.1039/d1ra09380k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
Polymer microgels containing a polystyrene core and poly(N-isopropylmethacrylamide) shell were synthesized in aqueous media following a free radical precipitation polymerization. Au nanoparticles were fabricated into the shell region of the core–shell microgels denoted as P(STY@NIPM) by the in situ reduction of chloroauric acid with sodium borohydride. Various characterization techniques such as transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV-visible) and Fourier transform infrared spectroscopy (FTIR) were used for the characterization of Au–P(STY@NIPM). The catalytic potential of Au–P(STY@NIPM) toward the reductive reaction of 4-nitrophenol (4NP) under various reaction conditions was evaluated. The Arrhenius and Eyring parameters for the catalytic reduction of 4NP were determined to explore the process of catalysis. A variety of nitroarenes were converted successfully into their corresponding aminoarenes with good to excellent yields in the presence of the Au–P(STY@NIPM) system using NaBH4 as a reductant. The Au–P(STY@NIPM) system was found to be an efficient and recyclable catalyst with no significant loss in its catalytic efficiency. A core–shell microgel system was synthesized and used as a micro-reactor for the synthesis of gold nanoparticles. The resulting hybrid system has the ability to catalyze the reduction of various nitroarenes in aqueous media.![]()
Collapse
Affiliation(s)
- Muhammad Arif
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Shahid
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Jan Nisar
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zahoor H. Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|
77
|
Primitivo L, Sappino C, De Angelis M, Righi F, Iannoni M, Lucci G, Luzzitelli G, Suber L, Leonelli F, Ricelli A, Righi G. Preparation and Asymmetric Induction Evaluation of the First Ephedrine-Based Ligands Immobilized on Magnetic Nanoparticles. ACS OMEGA 2021; 6:35641-35648. [PMID: 34984295 PMCID: PMC8717543 DOI: 10.1021/acsomega.1c05514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Herein, the synthesis and catalytic activity of two ephedrine-based catalysts and two ephedrine-based magnetic nanoparticle-supported catalysts are reported. All catalysts developed were tested in the addition of diethylzinc to aromatic aldehydes and in the Henry reaction. The homogeneous catalysts showed moderate catalytic activity in the organozinc addition and good activity in the Henry reaction, whereas in the case of the nanocatalyst, it was not effective in the addition of diethylzinc to aldehydes and gave reasonable results in the Henry reaction. Moreover, the nanocatalyst remained unchanged over the course of up to three catalytic cycles. To the best of our knowledge, the proposed system is the first recyclable ephedrine-based magnetic nanocatalyst employed in an enantioselective reaction.
Collapse
Affiliation(s)
- Ludovica Primitivo
- Dip.
Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | - Carla Sappino
- Dip.
Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | - Martina De Angelis
- Dip.
Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | - Francesco Righi
- Dip.
Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | - Marika Iannoni
- Dip.
Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | - Giulia Lucci
- Dip.
Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | | | - Lorenza Suber
- CNR-ISM, Via, Salaria km 29,300, Monterotondo Scalo, 00015 Roma, Italy
| | - Francesca Leonelli
- Dip.
Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | - Alessandra Ricelli
- CNR-IBPM-
c/o Dip. Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| | - Giuliana Righi
- CNR-IBPM-
c/o Dip. Chimica, Sapienza Università di Roma, p.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
78
|
Synthesis and DFT studies of 1,2-disubstituted benzimidazoles using expeditious and magnetically recoverable CoFe2O4/Cu(OH)2 nanocomposite under solvent-free condition. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
79
|
Guo Y, Wang WD, Li S, Zhu Y, Wang X, Liu X, Zhang Y. A TEMPO-Functionalized Ordered Mesoporous Polymer as a Highly Active and Reusable Organocatalyst. Chem Asian J 2021; 16:3689-3694. [PMID: 34519415 DOI: 10.1002/asia.202100854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/12/2021] [Indexed: 11/12/2022]
Abstract
The properties of high stability, periodic porosity, and tunable nature of ordered mesoporous polymers make these materials ideal catalytic nanoreactors. However, their application in organocatalysis has been rarely explored. We report herein for the first time the incorporation of a versatile organocatalyst, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), into the pores of an FDU-type mesoporous polymer via a pore surface engineering strategy. The resulting FDU-15-TEMPO possesses a highly ordered mesoporous organic framework and enhanced stability, and shows excellent catalytic activity in the selective oxidation of alcohols and aerobic oxidative synthesis of 2-substituted benzoxazoles, benzimidazoles and benzothiazoles. Moreover, the catalyst can be easily recovered and reused for up to 7 consecutive cycles.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Shengyu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
80
|
Affiliation(s)
- Prateek Rai
- Amity Institute of Applied Sciences, Amity University, Noida, India
| | - Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, India
| |
Collapse
|
81
|
Yu H, Ji Y, Hanas M. Based on C–O bond activation: Palladium catalysts in cross-coupling reactions. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1955931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Yu
- Zhejiang College of Construction, Hangzhou, China
| | - Yanchen Ji
- Zhejiang College of Construction, Hangzhou, China
| | - Martyan Hanas
- Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
82
|
Sun M, Liu W, Wu W, Li Q, Song D, Yan L, Mohammadnia M. Synthesis and characterization of Pd supported on methane diamine (propyl silane) functionalized Fe 3O 4 nanoparticles as a magnetic catalyst for synthesis of α-aminonitriles and 2-methoxy-2-phenylacetonitrile derivative via Strecker-type reaction under ambient and solvent-free conditions. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1977819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mingzhe Sun
- College of Food and Biology, Changchun Polytechnic, Changchun, Jilin, China
| | - Wei Liu
- College of Computer Science, Jilin Normal University, Siping, Jilin, China
| | - Wei Wu
- College of Food and Biology, Changchun Polytechnic, Changchun, Jilin, China
| | - Qun Li
- College of Food and Biology, Changchun Polytechnic, Changchun, Jilin, China
| | - Di Song
- College of Food and Biology, Changchun Polytechnic, Changchun, Jilin, China
| | - Li Yan
- College of Chemistry, Jilin Normal University, Siping, Jilin, China
| | | |
Collapse
|
83
|
Tran VV, Nu TTV, Jung HR, Chang M. Advanced Photocatalysts Based on Conducting Polymer/Metal Oxide Composites for Environmental Applications. Polymers (Basel) 2021; 13:3031. [PMID: 34577932 PMCID: PMC8470106 DOI: 10.3390/polym13183031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 01/12/2023] Open
Abstract
Photocatalysts provide a sustainable method of treating organic pollutants in wastewater and converting greenhouse gases. Many studies have been published on this topic in recent years, which signifies the great interest and attention that this topic inspires in the community, as well as in scientists. Composite photocatalysts based on conducting polymers and metal oxides have emerged as novel and promising photoactive materials. It has been demonstrated that conducting polymers can substantially improve the photocatalytic efficiency of metal oxides owing to their superior photocatalytic activities, high conductivities, and unique electrochemical and optical properties. Consequently, conducting polymer/metal oxide composites exhibit a high photoresponse and possess a higher surface area allowing for visible light absorption, low recombination of charge carriers, and high photocatalytic performance. Herein, we provide an overview of recent advances in the development of conducting polymer/metal oxide composite photocatalysts for organic pollutant degradation and CO2 conversion through photocatalytic processes.
Collapse
Affiliation(s)
- Vinh Van Tran
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
| | - Truong Thi Vu Nu
- Advanced Institute of Science and Technology, University of Danang, Danang 50000, Vietnam;
| | - Hong-Ryun Jung
- Industry-University Cooperation Foundation, Chonnam National University, Gwangju 61186, Korea
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea;
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
84
|
Norouzi FH, Foroughifar N, Khajeh-Amiri A, Pasdar H. A novel superparamagnetic powerful guanidine-functionalized γ-Fe 2O 3 based sulfonic acid recyclable and efficient heterogeneous catalyst for microwave-assisted rapid synthesis of quinazolin-4(3 H)-one derivatives in Green media. RSC Adv 2021; 11:29948-29959. [PMID: 35480261 PMCID: PMC9040894 DOI: 10.1039/d1ra05560g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
The novel organic–inorganic nanohybrid superparamagnetic (γ-Fe2O3@CPTMS–guanidine@SO3H) nanocatalyst modified with sulfonic acid represents an efficient and green catalyst for the one-pot synthesis of quinazolin-4(3H)-one derivatives via three-component condensation reaction between anthranilic acid, acetic anhydride and different amines under microwave irradiation and solvent-free conditions (4a–q). XRD, FT-IR, FE-SEM, TGA, VSM and EDX were used to characterize this new magnetic organocatalyst. Outstanding performance, short response time (15–30 min), simple operation, easy work-up procedure, and avoidance of toxic catalysts can be regarded as its significant advantages. Moreover, it can be easily separated from the reaction solution through magnetic decantation using an external magnet, and recycled at least six times without notable reduction in its activity. A novel organic–inorganic nanohybrid superparamagnetic nanocatalyst (γ-Fe2O3@CPTMS–guanidine@SO3H) represents an efficient and green catalyst for the one-pot synthesis of quinazolin-4(3H)-one derivatives via a three-component condensation reaction.![]()
Collapse
Affiliation(s)
- Fateme Haji Norouzi
- Department of Chemistry, Tehran North Branch, Islamic Azad University Tehran Iran
| | - Naser Foroughifar
- Department of Chemistry, Tehran North Branch, Islamic Azad University Tehran Iran
| | | | - Hoda Pasdar
- Department of Chemistry, Tehran North Branch, Islamic Azad University Tehran Iran
| |
Collapse
|
85
|
Marzbali MH, Kundu S, Halder P, Patel S, Hakeem IG, Paz-Ferreiro J, Madapusi S, Surapaneni A, Shah K. Wet organic waste treatment via hydrothermal processing: A critical review. CHEMOSPHERE 2021; 279:130557. [PMID: 33894517 DOI: 10.1016/j.chemosphere.2021.130557] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
There are several recent reviews published in the literature on hydrothermal carbonization, liquefaction and supercritical water gasification of lignocellulosic biomass and algae. The potential of hydrochar, bio-oil or synthesis gas production and applications have also been reviewed individually. The comprehensive review on the hydrothermal treatment of wet wastes (such as municipal solid waste, food waste, sewage sludge, algae) covering carbonization, liquefaction and supercritical water gasification, however, is missing in the literature which formed the basis of the current review paper. The current paper critically reviews the literature around the full spectrum of hydrothermal treatment for wet wastes and establishes a good comparison of the different hydrothermal treatment options for managing wet waste streams. Also, the role of catalysts as well as synthesis of catalysts using hydrothermal treatment of biomass has been critically reviewed. For the first time, efforts have also been made to summarize findings on modelling works as well as techno-economic assessments in the area of hydrothermal treatments of wet wastes. The study concludes with key findings, knowledge gaps and future recommendations to improve the productivity of hydrothermal treatment of wet wastes, helping improve the commercial viability and environmental sustainability.
Collapse
Affiliation(s)
- Mojtaba Hedayati Marzbali
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Sazal Kundu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Pobitra Halder
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Savankumar Patel
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Ibrahim Gbolahan Hakeem
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Jorge Paz-Ferreiro
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Srinivasan Madapusi
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Aravind Surapaneni
- South East Water, Frankston, Victoria, 3199, Australia; ARC Training Centre on Advance Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, 3083, Australia
| | - Kalpit Shah
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; ARC Training Centre on Advance Transformation of Australia's Biosolids Resources, RMIT University, Bundoora, 3083, Australia.
| |
Collapse
|
86
|
Immobilizing Pd nanoparticles on Fe3O4@tris (hydroxymethyl) aminomethane MNPs as a novel catalyst for the synthesis of bis (pyrazolyl)methane derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
87
|
Torabi M, Zolfigol MA, Yarie M, Notash B, Azizian S, Azandaryani MM. Synthesis of triarylpyridines with sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation. Sci Rep 2021; 11:16846. [PMID: 34413326 PMCID: PMC8377147 DOI: 10.1038/s41598-021-95830-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, novel magnetic nanoparticles with pyridinium bridges namely Fe3O4@SiO2@PCLH-TFA through a multi-step pathway were designed and synthesized. The desired catalyst and its corresponding precursors were characterized with different techniques such as Fourier transform infrared (FT-IR) spectroscopy, 1H NMR, 13C NMR, Mass spectroscopy, energy dispersive X-ray (EDX) analysis, thermogravimetric/derivative thermogravimetry (TG/DTG) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM). In addition, the catalytic application of the prepared catalyst in the synthesis of new series of triarylpyridines bearing sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation was highlighted. The current trend revealed that the mentioned catalyst shows high recoverability in the reported synthesis.
Collapse
Affiliation(s)
- Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran.
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Behrouz Notash
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, Evin, Tehran, Iran
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Mina Mirzaei Azandaryani
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| |
Collapse
|
88
|
Ovejero JG, Gallo-Cordova A, Roca AG, Morales MP, Veintemillas-Verdaguer S. Reproducibility and Scalability of Magnetic Nanoheater Synthesis. NANOMATERIALS 2021; 11:nano11082059. [PMID: 34443890 PMCID: PMC8402135 DOI: 10.3390/nano11082059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023]
Abstract
The application of magnetic nanoparticles requires large amounts of materials of reproducible quality. This work explores the scaled-up synthesis of multi-core iron oxide nanoparticles through the use of thermal decomposition in organic media and kilograms of reagents. To this end, we check the effect of extending the high temperature step from minutes to hours. To address the intrinsic variability of the colloidal crystallization nucleation process, the experiments were repeated and analyzed statistically. Due to the simultaneity of the nuclei growth and agglomeration steps, the nanostructure of the samples produced was a combination of single- and multi-core nanoparticles. The main characteristics of the materials obtained, as well as the reaction yields, were analyzed and compared. As a general rule, yield, particle size, and reproducibility increase when the time at high temperature is prolonged. The samples obtained were ranked in terms of the reproducibility of different structural, colloidal, and magnetic features. The capability of the obtained materials to act as nanoheaters in magnetic hyperthermia was assessed, showing a strong dependence on the crystallite size (calculated by X-ray diffraction), reflecting the nanoparticle volume with a coherent magnetization reversal.
Collapse
|
89
|
Nano-magnetic-iron Oxides@choline Acetate as a Heterogeneous Catalyst for the Synthesis of 1,2,3-Triazoles. Catal Letters 2021. [DOI: 10.1007/s10562-021-03739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
90
|
Zarour A, Omar S, Abu-Reziq R. Preparation of Poly(ethylene glycol)@Polyurea Microcapsules Using Oil/Oil Emulsions and Their Application as Microreactors. Polymers (Basel) 2021; 13:polym13152566. [PMID: 34372169 PMCID: PMC8348332 DOI: 10.3390/polym13152566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
The development process of catalytic core/shell microreactors, possessing a poly(ethylene glycol) (PEG) core and a polyurea (PU) shell, by implementing an emulsion-templated non-aqueous encapsulation method, is presented. The microreactors' fabrication process begins with an emulsification process utilizing an oil-in-oil (o/o) emulsion of PEG-in-heptane, stabilized by a polymeric surfactant. Next, a reaction between a poly(ethylene imine) (PEI) and a toluene-2,4-diisocyanate (TDI) takes place at the boundary of the emulsion droplets, resulting in the creation of a PU shell through an interfacial polymerization (IFP) process. The microreactors were loaded with palladium nanoparticles (NPs) and were utilized for the hydrogenation of alkenes and alkynes. Importantly, it was found that PEG has a positive effect on the catalytic performance of the developed microreactors. Interestingly, besides being an efficient green reaction medium, PEG plays two crucial roles: first, it reduces the palladium ions to palladium NPs; thus, it avoids the unnecessary use of additional reducing agents. Second, it stabilizes the palladium NPs and prevents their aggregation, allowing the formation of highly reactive palladium NPs. Strikingly, in one sense, the suggested system affords highly reactive semi-homogeneous catalysis, whereas in another sense, it enables the facile, rapid, and inexpensive recovery of the catalytic microreactor by simple centrifugation. The durable microreactors exhibit excellent activity and were recycled nine times without any loss in their reactivity.
Collapse
Affiliation(s)
| | | | - Raed Abu-Reziq
- Correspondence: ; Tel.: +972-2-6586097; Fax: +972-2-6585469
| |
Collapse
|
91
|
Akbayrak S, Özkar S. Magnetically Isolable Pt 0/Co 3O 4 Nanocatalysts: Outstanding Catalytic Activity and High Reusability in Hydrolytic Dehydrogenation of Ammonia Borane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34341-34348. [PMID: 34255473 DOI: 10.1021/acsami.1c08362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of a new platinum nanocatalyst to maximize the catalytic efficiency of the precious noble metal catalyst in releasing hydrogen from ammonia borane (AB) is reported. Platinum(0) nanoparticles are impregnated on a reducible cobalt(II,III) oxide surface, forming magnetically isolable Pt0/Co3O4 nanocatalysts, which have (i) superb catalytic activity providing a record turnover frequency (TOF) of 4366 min-1 for hydrogen evolution from the hydrolysis of AB at room temperature and (ii) excellent reusability, retaining the complete catalytic activity even after the 10th run of hydrolysis reaction. The outstanding activity and stability of the catalyst can be ascribed to the strong interaction between the platinum(0) nanoparticles and reducible cobalt oxide, which is supported by the results of XPS analysis. Pt0/Co3O4 exhibits the highest TOF among the reported platinum-nanocatalysts developed for hydrogen generation from the hydrolysis of AB.
Collapse
Affiliation(s)
- Serdar Akbayrak
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
- Department of Chemistry, Sinop University, 57000 Sinop, Turkey
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Saim Özkar
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
92
|
Antenucci A, Marra F, Dughera S. Silica gel-immobilised chiral 1,2-benzenedisulfonimide: a Brønsted acid heterogeneous catalyst for enantioselective multicomponent Passerini reaction. RSC Adv 2021; 11:26083-26092. [PMID: 35479468 PMCID: PMC9037113 DOI: 10.1039/d1ra05297g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
A chiral heterogeneous catalyst derivative of (−)-4,5-dimethyl-3,6-bis(1-naphthyl)-1,2-benzenedisulfonimide is proven here to be efficient in a three-component asymmetric Passerini protocol, carried out in a deep eutectic solvent. Reaction conditions are mild and green, while enantioselectivity is excellent. The catalyst was easily recovered and reused with no decrease in its catalytic activity. A chiral heterogeneous catalyst derivative of (−)-4,5-dimethyl-3,6-bis(1-naphthyl)-1,2-benzenedisulfonimide is proven here to be efficient in a three-component asymmetric Passerini protocol, carried out in a deep eutectic solvent.![]()
Collapse
Affiliation(s)
- Achille Antenucci
- Dipartimnto di Chimica, Università di Torino C.so Massimo d'Azeglio 48 10125 Torino Italy.,NIS Interdepartmental Centre, Reference Centre for INSTM, Università di Torino via Gioacchino Quarello 15/A 10135 Torino Italy
| | - Francesco Marra
- Dipartimnto di Chimica, Università di Torino C.so Massimo d'Azeglio 48 10125 Torino Italy
| | - Stefano Dughera
- Dipartimnto di Chimica, Università di Torino C.so Massimo d'Azeglio 48 10125 Torino Italy
| |
Collapse
|
93
|
Özkar S. A review on platinum(0) nanocatalysts for hydrogen generation from the hydrolysis of ammonia borane. Dalton Trans 2021; 50:12349-12364. [PMID: 34259283 DOI: 10.1039/d1dt01709h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review reports a survey on the progress in developing highly efficient platinum nanocatalysts for the hydrolytic dehydrogenation of ammonia borane (AB). After a short prelude emphasizing the importance of increasing the atom efficiency of high cost, precious platinum nanoparticles (NPs) which are known to be one of the highest activity catalysts for hydrogen generation from the hydrolysis of AB, this article reviews all the available reports on the use of platinum-based catalysts for this hydrolysis reaction covering (i) early tested platinum catalysts, (ii) platinum(0) NPs supported on oxides, (iii) platinum(0) NPs supported on carbonaceous materials, (iv) supported platinum single-atom catalysts, (v) bimetallic- and (vi) multimetallic-platinum NP nanocatalysts, and (vii) magnetically separable platinum-based catalysts. All the reported results are tabulated along with the important parameters used in the platinum-catalyzed hydrolysis of AB. In the section "Concluding remarks and a look towards the future" a discussion is devoted to the approaches for making high cost, precious platinum catalysts as efficient as possible, ultimately lowering the cost, including the suggestions for the future research in this field.
Collapse
Affiliation(s)
- Saim Özkar
- Department of Chemistry, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
94
|
Singh R, Sindhu J, Devi M, Kumar A, Kumar R, Hussain K, Kumar P. Solid‐Supported Materials‐Based Synthesis of 2‐Substituted Benzothiazoles: Recent Developments and Sanguine Future. ChemistrySelect 2021. [DOI: 10.1002/slct.202101368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rahul Singh
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| | - Jayant Sindhu
- Department of Chemistry COBS&H CCS Haryana Agricultural University Hisar 125004 INDIA
| | - Meena Devi
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science and Technology Hisar 125001 INDIA
| | - Ramesh Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| | - Khalid Hussain
- Department of Applied Sciences and Humanities Mewat Engineering College Nuh 122107 INDIA
| | - Parvin Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 INDIA
| |
Collapse
|
95
|
Ghamari Kargar P, Ravanjamjah A, Bagherzade G. A novel
water‐dispersible
and magnetically recyclable nickel nanoparticles for the one‐pot
reduction‐Schiff
base condensation of nitroarenes in pure water. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Asiye Ravanjamjah
- Department of Chemistry, College of Sciences University of Birjand Birjand Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, College of Sciences University of Birjand Birjand Iran
| |
Collapse
|
96
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
97
|
Shafiei N, Nasrollahzadeh M, Baran T, Baran NY, Shokouhimehr M. Pd nanoparticles loaded on modified chitosan-Unye bentonite microcapsules: A reusable nanocatalyst for Sonogashira coupling reaction. Carbohydr Polym 2021; 262:117920. [PMID: 33838799 DOI: 10.1016/j.carbpol.2021.117920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 12/27/2022]
Abstract
This work investigates the preparation of a catalytic complex of palladium nanoparticles supported on novel Schiff base modified chitosan-Unye bentonite microcapsules (Pd NPs@CS-UN). The complex has been characterized by FT-IR, EDS, XRD, TEM, HRTEM, Raman, ICP-OES and elemental mapping analyses. Pd NPs@CS-UN was used as a catalyst for Sonogashira coupling reactions between aryl halides and acetylenes, employing K2CO3 as the base and EtOH as a green solvent under aerobic conditions in which it showed high efficacy. Pd NPs@CS-UN was regenerated by filtration after the completion of the reaction. This catalytic process has many advantages including simple methodology, high yields, and easy work-up. The catalytic performance does not notably change even after five consecutive runs.
Collapse
Affiliation(s)
- Nasrin Shafiei
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran.
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Nuray Yılmaz Baran
- Aksaray University, Technical Vocational School, Department of Chemistry Technology, 68100, Aksaray, Turkey
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
98
|
Banga I, Paul A, Sardesai AU, Muthukumar S, Prasad S. ZEUS (ZIF-based electrochemical ultrasensitive screening) device for isopentane analytics with focus on lung cancer diagnosis. RSC Adv 2021; 11:20519-20528. [PMID: 35479925 PMCID: PMC9033977 DOI: 10.1039/d1ra03093k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 01/28/2023] Open
Abstract
Breath analytics is currently being explored for the development of point-of-care devices in non-invasive disease detection. It is based on the measurement of volatile organic compounds (VOCs) and gases that are produced by the body because of the metabolic pathways. The levels of these metabolites vary due to alteration in the endogenous oxidative stress-related metabolic pathways and can be correlated to understand the underlying disease condition. The levels of exhaled hydrocarbons in human breath can be used to design a rapid, easy to use method for lung cancer detection. This work outlines the development of an electrochemical sensing platform that can be used for the non-invasive diagnosis of lung cancer by monitoring isopentane levels in breath. This electrochemical sensor platform involves the use of [BMIM]BF4@ZIF-8 for sensing the target analyte. This synthesized nanocomposite offers advantages for gas sensing applications as it possesses unique properties such as an electrochemically active Room Temperature Ionic Liquid (RTIL) and a crosslinking Metal Organic Framework (MOF) that provides increased surface area for gas absorption. This is the first report of a hydrocarbon-based sensor platform developed for lung cancer diagnosis. The developed sensor platform displays sensitivity and specificity for the detection of isopentane up to 600 parts-per-billion. We performed structural and morphological characterization of the synthesized nanocomposite using various analytical techniques such as PXRD, FESEM, FTIR, and DLS. We further analyzed the electrochemical activity of the synthesized nanocomposite using a standard glassy carbon electrode. The application of the nanocomposite for isopentane sensing was done using a commercially available carbon screen printed electrode. The results so obtained helped in strengthening our hypothesis and serve as a proof-of-concept for the development of a breathomics-enabled electrochemical strategy. We illustrated the specificity of the developed nanocomposite by cross-reactivity studies. We envision that the detection platform will allow sensitive and specific sensing of isopentane levels such that it can used for point of care applications in noninvasive and early diagnosis of lung cancer, thereby leading to its early treatment and decrease in mortality rate.
Collapse
Affiliation(s)
- Ivneet Banga
- Department of Bioengineering, University of Texas at Dallas Richardson Texas 75080 USA
| | - Anirban Paul
- Department of Bioengineering, University of Texas at Dallas Richardson Texas 75080 USA
| | - Abha Umesh Sardesai
- Department of Bioengineering, University of Texas at Dallas Richardson Texas 75080 USA
| | - Sriram Muthukumar
- Department of Bioengineering, University of Texas at Dallas Richardson Texas 75080 USA
- EnLiSense LLC 1813 Audubon Pond Way Allen TX 75013 USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas Richardson Texas 75080 USA
- EnLiSense LLC 1813 Audubon Pond Way Allen TX 75013 USA
| |
Collapse
|
99
|
Sulfonic acid-functionalized core-shell Fe3O4@carbon microspheres as magnetically recyclable solid acid catalysts. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
100
|
Sagandira MB, Sagandira CR, Watts P. Continuous flow synthesis of xylidines via biphasic nitration of xylenes and nitro-reduction. J Flow Chem 2021. [DOI: 10.1007/s41981-020-00134-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|