51
|
Whitmarsh-Everiss T, Olsen AH, Laraia L. Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterol-Inspired Compound Collection. Angew Chem Int Ed Engl 2021; 60:26755-26761. [PMID: 34626154 DOI: 10.1002/anie.202111639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Cholesterol transport proteins regulate a vast array of cellular processes including lipid metabolism, vesicular and non-vesicular trafficking, organelle contact sites, and autophagy. Despite their undoubted importance, the identification of selective modulators of this class of proteins has been challenging due to the structural similarities in the cholesterol-binding site. Herein we report a general strategy for the identification of selective inhibitors of cholesterol transport proteins via the synthesis of a diverse sterol-inspired compound collection. Fusion of a primary sterol fragment to an array of secondary privileged scaffolds led to the identification of potent and selective inhibitors of the cholesterol transport protein Aster-C, which displayed a surprising preference for the unnatural-sterol AB-ring stereochemistry and new inhibitors of Aster-A. We propose that this strategy can and should be applied to any therapeutically relevant sterol-binding protein.
Collapse
Affiliation(s)
- Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| | - Asger Hegelund Olsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
52
|
Whitmarsh‐Everiss T, Olsen AH, Laraia L. Identification of Inhibitors of Cholesterol Transport Proteins Through the Synthesis of a Diverse, Sterol‐Inspired Compound Collection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas Whitmarsh‐Everiss
- Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| | - Asger Hegelund Olsen
- Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| | - Luca Laraia
- Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| |
Collapse
|
53
|
Kim KE, Kim AN, McCormick CJ, Stoltz BM. Late-Stage Diversification: A Motivating Force in Organic Synthesis. J Am Chem Soc 2021; 143:16890-16901. [PMID: 34614361 PMCID: PMC9285880 DOI: 10.1021/jacs.1c08920] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interest in therapeutic discovery typically drives the preparation of natural product analogs, but these undertakings contribute significant advances for synthetic chemistry as well. The need for a highly efficient and scalable synthetic route to a complex molecular scaffold for diversification frequently inspires new methodological development or unique application of existing methods on structurally intricate systems. Additionally, synthetic planning with an aim toward late-stage diversification can provide access to otherwise unavailable compounds or facilitate preparation of complex molecules with diverse patterns of substitution around a shared carbon framework. For these reasons among others, programs dedicated to the diversification of natural product frameworks and other complex molecular scaffolds have been increasing in popularity, a trend likely to continue given their fruitfulness and breadth of impact. In this Perspective, we discuss our experience using late-stage diversification as a guiding principle for the synthesis of natural product analogs and reflect on the impact such efforts have on the future of complex molecule synthesis.
Collapse
Affiliation(s)
- Kelly E Kim
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Alexia N Kim
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Carter J McCormick
- Sciences and Mathematics Division, School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, Washington 98402, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
54
|
Li Z, Lu Y, Tian YP, Han XX, Liu XW, Zhou Y, Liu XL. Diastereoselective construction of structurally diverse trifluoromethyl bispiro-[oxindole-pyrrolidine-chromanone]s through [3+2] cycloaddition reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
55
|
Liu J, Flegel J, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Combination of Pseudo-Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudo-Sesquiterpenoid Alkaloids. Angew Chem Int Ed Engl 2021; 60:21384-21395. [PMID: 34297473 PMCID: PMC8518946 DOI: 10.1002/anie.202106654] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/28/2022]
Abstract
We describe the synthesis and biological evaluation of a new natural product-inspired compound class obtained by combining the conceptually complementary pseudo-natural product (pseudo-NP) design strategy and a formal adaptation of the complexity-to-diversity ring distortion approach. Fragment-sized α-methylene-sesquiterpene lactones, whose scaffolds can formally be viewed as related to each other or are obtained by ring distortion, were combined with alkaloid-derived pyrrolidine fragments by means of highly selective stereocomplementary 1,3-dipolar cycloaddition reactions. The resulting pseudo-sesquiterpenoid alkaloids were found to be both chemically and biologically diverse, and their biological performance distinctly depends on both the structure of the sesquiterpene lactone-derived scaffolds and the stereochemistry of the pyrrolidine fragment. Biological investigation of the compound collection led to the discovery of a novel chemotype inhibiting Hedgehog-dependent osteoblast differentiation.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Jana Flegel
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Felix Otte
- Technical University DortmundFaculty of ChemistryInorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Compound Management and Screening CenterDortmundGermany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Compound Management and Screening CenterDortmundGermany
| | - Carsten Strohmann
- Technical University DortmundFaculty of ChemistryInorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of ChemistryChemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
56
|
Liu J, Flegel J, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Combination of Pseudo‐Natural Product Design and Formal Natural Product Ring Distortion Yields Stereochemically and Biologically Diverse Pseudo‐Sesquiterpenoid Alkaloids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Jana Flegel
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Felix Otte
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Carsten Strohmann
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
57
|
Greiner LC, Inuki S, Arichi N, Oishi S, Suzuki R, Iwai T, Sawamura M, Hashmi ASK, Ohno H. Access to Indole-Fused Benzannulated Medium-Sized Rings through a Gold(I)-Catalyzed Cascade Cyclization of Azido-Alkynes. Chemistry 2021; 27:12992-12997. [PMID: 34110644 DOI: 10.1002/chem.202101824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 02/05/2023]
Abstract
Because benzannulated and indole-fused medium-sized rings are found in many bioactive compounds, combining these fragments might lead to unexplored areas of biologically relevant and uncovered chemical space. Herein is shown that α-imino gold carbene chemistry can play an important role in solving the difficulty in the formation of medium-sized rings. Namely, phenylene-tethered azido-alkynes undergo arylative cyclization through the formation of a gold carbene intermediate to afford benzannulated indole-fused medium-sized tetracycles. The reactions allow a range of different aryl substitution patterns and efficient access to these otherwise difficult-to-obtain medium-sized rings. This study also demonstrates the feasibility of the semihollow-shaped C-dtbm ligand for the construction of a nine-membered ring.
Collapse
Affiliation(s)
- Luca C Greiner
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Current Address: Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yashima-ku, Kyoto, 607-8412, Japan
| | - Rikito Suzuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Current Address: Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
58
|
Greiner LC, Matsuoka J, Inuki S, Ohno H. Azido-Alkynes in Gold(I)-Catalyzed Indole Syntheses. CHEM REC 2021; 21:3897-3910. [PMID: 34498385 DOI: 10.1002/tcr.202100202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Indexed: 12/20/2022]
Abstract
The exploitation of nitrogen-functionalized reactive intermediates plays an important role in the synthesis of biologically relevant scaffolds in the field of pharmaceutical sciences. Those based on gold carbenes carry a strong potential for the design of highly efficient cascade processes toward the synthesis of compounds containing a fused indole core structure. This personal account gives a detailed explanation of our contribution to this sector, and embraces the reaction development of efficient gold-catalyzed cascade processes based on diversely functionalized azido-alkynes. Challenging cyclizations and their subsequent application in the synthesis of pharmaceutically relevant scaffolds and natural products conducted in an intra- or intermolecular fashion are key features of our research.
Collapse
Affiliation(s)
- Luca C Greiner
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junpei Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan.,Current address: Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, 610-0395, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
59
|
Norwood VM, Murillo-Solano C, Goertzen MG, Brummel BR, Perry DL, Rocca JR, Chakrabarti D, Huigens RW. Ring Distortion of Vincamine Leads to the Identification of Re-Engineered Antiplasmodial Agents. ACS OMEGA 2021; 6:20455-20470. [PMID: 34395993 PMCID: PMC8359148 DOI: 10.1021/acsomega.1c02480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 05/10/2023]
Abstract
There is a significant need for new agents to combat malaria, which resulted in ∼409,000 deaths globally in 2019. We utilized a ring distortion strategy to create complex and diverse compounds from vincamine with the goal of discovering molecules with re-engineered biological activities. We found compound 8 (V3b) to target chloroquine-resistant Plasmodium falciparum Dd2 parasites (EC50 = 1.81 ± 0.09 μM against Dd2 parasites; EC50 > 40 μM against HepG2 cells) and established structure-activity relationships for 25 related analogues. New analogue 30 (V3ss, Dd2, EC50 = 0.25 ± 0.004 μM; HepG2, EC50 > 25 μM) was found to demonstrate the most potent activity, which prevents exit on the parasite from the schizont stage of intraerythrocytic development and requires >24 h to kill P. falciparum Dd2 cells. These findings demonstrate the potential that vincamine ring distortion has toward the discovery of novel antimalarial agents and other therapies significant to human health.
Collapse
Affiliation(s)
- Verrill M. Norwood
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Claribel Murillo-Solano
- Division
of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Michael G. Goertzen
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Beau R. Brummel
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - David L. Perry
- Division
of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - James R. Rocca
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- McKnight
Brain Institute, J H Miller Health Center, University of Florida, P.O. Box 100015, Gainesville, Florida 32610, United States
| | - Debopam Chakrabarti
- Division
of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
- . Phone: (407) 882-2256
| | - Robert William Huigens
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- . Phone: (352) 273-7718
| |
Collapse
|
60
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products-Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021; 60:15705-15723. [PMID: 33644925 PMCID: PMC8360037 DOI: 10.1002/anie.202016575] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 01/05/2023]
Abstract
Pseudo-natural products (PNPs) combine natural product (NP) fragments in novel arrangements not accessible by current biosynthesis pathways. As such they can be regarded as non-biogenic fusions of NP-derived fragments. They inherit key biological characteristics of the guiding natural product, such as chemical and physiological properties, yet define small molecule chemotypes with unprecedented or unexpected bioactivity. We iterate the design principles underpinning PNP scaffolds and highlight their syntheses and biological investigations. We provide a cheminformatic analysis of PNP collections assessing their molecular properties and shape diversity. We propose and discuss how the iterative analysis of NP structure, design, synthesis, and biological evaluation of PNPs can be regarded as a human-driven branch of the evolution of natural products, that is, a chemical evolution of natural product structure.
Collapse
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: Department of ChemistryTechnical University of Denmark, kemitorvet 2072800 Kgs.LyngbyDenmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| |
Collapse
|
61
|
|
62
|
Umedera K, Morita T, Yoshimori A, Yamada K, Katoh A, Kouji H, Nakamura H. Synthesis of Three-Dimensional (Di)Azatricyclododecene Scaffold and Its Application to Peptidomimetics. Chemistry 2021; 27:11888-11894. [PMID: 34060167 DOI: 10.1002/chem.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 11/07/2022]
Abstract
A novel sp3 carbon-rich tricyclic 3D scaffold-based peptide mimetic compound library was constructed to target protein-protein interactions. Tricyclic framework 7 was synthesized from 9-azabicyclo[3,3,1]nonan-3-one (11) via a gold(I)-catalyzed Conia-ene reaction. The electron-donating group on the pendant alkyne of cyclization precursor 12 b-e was the key to forming 6-endo-dig cyclized product 7 with complete regioselectivity. Using the synthetic strategy for regioselective construction of bridged tricyclic framework 7, a diazatricyclododecene 3D-scaffold 8 a, which enables the introduction of substituents into the scaffold to mimic amino acid side chains, was designed and synthesized. The peptide mimetics 21 a-u were synthesized via step-by-step installation of three substituents on diazatricyclododecene scaffold 8 a. Compounds 21 a-h were synthesized as α-helix peptide mimics of hydrophobic ZZxxZ and ZxxZZ sequences (Z=Leu or Phe) and subjected to cell-based assays: antiproliferative activity, HIF-1 transcriptional activity which is considered to affect cancer malignancy, and antiviral activity against rabies virus. Compound 21 a showed the strongest inhibitory activity of HIF-1 transcriptional activity (IC50 =4.1±0.8 μM), whereas compounds 21 a-g showed antiviral activity with IC50 values of 4.2-12.4 μM, suggesting that the 3D-scaffold 8 a has potential as a versatile peptide mimic skeleton.
Collapse
Affiliation(s)
- Kohei Umedera
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Taiki Morita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, 251-0012, Japan
| | - Kentaro Yamada
- Faculty of Agriculture Department of Veterinary Sciences, University of Miyazaki, Miyazaki, 889-2192, Japan.,Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, 879-5593, Japan
| | - Akira Katoh
- Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, 879-5593, Japan.,Institute of Advanced Medcine, Inc., Oita University, 17-20, Higashi kasuga-machi, Oita-city, Oita, 870-0037, Japan
| | - Hiroyuki Kouji
- Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu-city, Oita, 879-5593, Japan.,Institute of Advanced Medcine, Inc., Oita University, 17-20, Higashi kasuga-machi, Oita-city, Oita, 870-0037, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503, Japan
| |
Collapse
|
63
|
Agnieszka Z, Hamid M, Nuno R, Johnny V, Sylvie C, Frédéric B, Sylvain R. Synthesis of γ-carboline N-oxide under gold(I)-catalysis and C-1 amino and fluoro γ-carboline. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
64
|
Green AI, Burslem GM. Focused Libraries for Epigenetic Drug Discovery: The Importance of Isosteres. J Med Chem 2021; 64:7231-7240. [PMID: 34042449 DOI: 10.1021/acs.jmedchem.1c00592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic drug discovery provides a wealth of opportunities for the discovery of new therapeutics but has been hampered by low hit rates, frequent identification of false-positives, and poor synthetic tractability. A key reason for this is that few screening collections consider the unique requirements of epigenetic targets despite significant medicinal chemistry interest. Here we analyze the suitability of some commercially available screening collections in the context of epigenetic drug discovery, with a particular focus on lysine post-translational modifications, and show that even privileged motifs found in U.S. Food and Drug Administration (FDA)-approved drugs are not present in these collections. We propose that the incorporation of epigenetic bioisosteres should become central in the design of new focused screening collections and highlight some opportunities for the development of synthetic methods which may improve the tractability of hit molecules.
Collapse
Affiliation(s)
- Adam I Green
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
65
|
Shang Y, Wu C, Gao Q, Liu C, Li L, Zhang X, Cheng HG, Liu S, Zhou Q. Diversity-oriented functionalization of 2-pyridones and uracils. Nat Commun 2021; 12:2988. [PMID: 34016986 PMCID: PMC8137914 DOI: 10.1038/s41467-021-23058-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Heterocycles 2-pyridone and uracil are privileged pharmacophores. Diversity-oriented synthesis of their derivatives is in urgent need in medicinal chemistry. Herein, we report a palladium/norbornene cooperative catalysis enabled dual-functionalization of iodinated 2-pyridones and uracils. The success of this research depends on the use of two unique norbornene derivatives as the mediator. Readily available alkyl halides/tosylates and aryl bromides are utilized as ortho-alkylating and -arylating reagents, respectively. Widely accessible ipso-terminating reagents, including H/DCO2Na, boronic acid/ester, terminal alkene and alkyne are compatible with this protocol. Thus, a large number of valuable 2-pyridone derivatives, including deuterium/CD3-labeled 2-pyridones, bicyclic 2-pyridones, 2-pyridone-fenofibrate conjugate, axially chiral 2-pyridone (97% ee), as well as uracil and thymine derivatives, can be quickly prepared in a predictable manner (79 examples reported), which will be very useful in new drug discovery.
Collapse
Affiliation(s)
- Yong Shang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Chenggui Wu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qianwen Gao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Chang Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Lisha Li
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Xinping Zhang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Shanshan Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, and The Institute for Advanced Studies, Wuhan, China.
| |
Collapse
|
66
|
Lenci E, Baldini L, Trabocchi A. Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries. Bioorg Med Chem 2021; 41:116218. [PMID: 34030087 DOI: 10.1016/j.bmc.2021.116218] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
DNA-encoded libraries (DEL) represent a powerful technology for generating compound collections for drug discovery campaigns, that have allowed for the selection of many hit compounds over last three decades. However, the application of split-and-pool combinatorial methodologies, as well as the limitation imposed by DNA-compatible chemistry, has often brought to a limited exploration of the chemical space, with an over-representation of flat aromatic or peptide-like structures, whereas a higher scaffold complexity is generally associated with a more successful biological activity of the library. In this context, the application of Diversity-Oriented Synthesis, capable of creating sp3-rich molecular entities even starting from simple flat building blocks, can represent an efficient strategy to significantly broaden the chemical space explored by DELs. In this review, we present selected examples of DNA-compatible complexity-generating reactions that can be applied for the generation of DNA-encoded DOS libraries, including: (i) multicomponent reactions; (ii) C-H/C-X functionalization; (iii) tandem approaches; (iv) cycloadditions; (v) reactions introducing privileged elements. Also, selected case studies on the generation of DELs with high scaffold diversity are discussed, reporting their application in drug discovery programs.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Baldini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Viale Morgagni 85, 50134 Florence, Italy.
| |
Collapse
|
67
|
Ohno H, Inuki S. Nonbiomimetic total synthesis of indole alkaloids using alkyne-based strategies. Org Biomol Chem 2021; 19:3551-3568. [PMID: 33908430 DOI: 10.1039/d0ob02577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic natural product synthesis is generally straightforward and efficient because of its established feasibility in nature and utility in comprehensive synthesis, and the cost-effectiveness of naturally derived starting materials. On the other hand, nonbiomimetic strategies can be an important option in natural product synthesis since (1) nonbiomimetic synthesis offers more flexibility and can demonstrate the originality of chemists, and (2) the structures of derivatives accessible by nonbiomimetic synthesis can be considerably different from those that are synthesised in nature. This review summarises nonbiomimetic total syntheses of indole alkaloids using alkyne chemistry for constructing core structures, including ergot alkaloids, monoterpene indole alkaloids (mainly corynanthe, aspidosperma, strychnos, and akuammiline), and pyrroloindole and related alkaloids. To clarify the differences between alkyne-based strategies and biosynthesis, the alkynes in nature and the biosyntheses of indole alkaloids are also outlined.
Collapse
Affiliation(s)
- Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
68
|
Perera S, Fernando A, Dallman J, Weeramange C, Lansakara A, Nguyen T, Rafferty RJ. Construction and Biological Evaluation of Small Libraries Based on the Intermediates within the Total Synthesis of Uvaretin. ChemMedChem 2021; 16:1631-1639. [PMID: 33491867 DOI: 10.1002/cmdc.202001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 11/12/2022]
Abstract
Discovering therapeutic agents: New bioactive agents, either as sole or combinational agents, have been constructed through the synthetic manipulation of the intermediates within the total synthesis of the uvaretin class of natural products. It was found that increasing the hydrophobic character of the phenolic core correlates to a decrease in sole agent cytotoxicity. The synthesis of new, small chemical screening libraries (CSL) constructed from the intermediates of our total synthesis route of the uvaretin class of natural products is demonstrated herein. Numerous chalcone-based CSLs with various substitution on the phenolic groups within the chalcone core were assembled. Through cytotoxicity investigations, it was found that the level of hydrophobicity of the phenolic core of the chalcones gives biases: less cytotoxicity with more hydrophobic cores. In addition, it was observed that the potentiation, evaluated with 6-thiopurine in the pancreatic cancer cell line MIA PaCa-2, is tunable by the inclusion of less-hydrophobic character on the phenolic core. The role of the o-hydroxybenzyl group, present within the uvaretin family, was revealed to be cytotoxic in character. Merging all of the structure-activity relationship studies performed on the CSLs constructed in this effort led to the construction of a new chalcone hybrid possessing both a cytotoxic enone group and a small-molecule-potentiating, reduced enone group.
Collapse
Affiliation(s)
- Shashika Perera
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Asantha Fernando
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Johnathan Dallman
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Chamitha Weeramange
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Ashabha Lansakara
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Thi Nguyen
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Ryan J Rafferty
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| |
Collapse
|
69
|
Mkrtchyan S, Iaroshenko VO. Arylation of ortho-Hydroxyarylenaminones by Sulfonium Salts and Arenesulfonyl Chlorides: An Access to Isoflavones. J Org Chem 2021; 86:4896-4916. [PMID: 33721488 DOI: 10.1021/acs.joc.0c02294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we disclose three new methods for the straightforward and efficient synthesis of 3-arylchromones following the arylation of ortho-hydroxyarylenaminones by vast diversities of bench-stable and easy-to-use sulfonium salts and arenesulfonyl chlorides. Both developed methods, namely the light-mediated photoredox and electrophilic arylation, showed good efficiency, and are feasible for the preparation of 3-arylchromones in good-to-excellent yields. This work showcases the first described attempt where the sulfonium salts and arenesulfonyl chlorides were successfully utilized for the construction of the chromone heterocycle system.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland
| | - Viktor O Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland.,Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II, 84084, Fisciano (SA), Italy.,Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|
70
|
Galván J, Piro O, Echeverria G, Molina R, Arena M, Aguilar EC, Ulic S, Tuttolomondo M, Altabef AB. Synthesis, characterization and crystal structure of bis-(methylsulfonylmethyl) sulfone, a symmetric acyclic trisulfone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
71
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Current address: School of Physical and Chemical Sciences University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Current address: Department of Chemistry Technical University of Denmark, kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Strasse 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
72
|
Chai XN, Ludwig FA, Müglitz A, Schaefer M, Yin HY, Brust P, Regenthal R, Krügel U. Validation of an LC-MS/MS Method to Quantify the New TRPC6 Inhibitor SH045 (Larixyl N-methylcarbamate) and Its Application in an Exploratory Pharmacokinetic Study in Mice. Pharmaceuticals (Basel) 2021; 14:ph14030259. [PMID: 33805686 PMCID: PMC8000919 DOI: 10.3390/ph14030259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
TRPC6 (transient receptor potential cation channels; canonical subfamily C, member 6) is widespread localized in mammalian tissues like kidney and lung and associated with progressive proteinuria and pathophysiological pulmonary alterations, e.g., reperfusion edema or lung fibrosis. However, the understanding of TRPC6 channelopathies is still at the beginning stages. Recently, by chemical diversification of (+)-larixol originating from Larix decidua resin traditionally used for inhalation, its methylcarbamate congener, named SH045, was obtained and identified in functional assays as a highly potent, subtype-selective inhibitor of TRPC6. To pave the way for use of SH045 in animal disease models, this study aimed at developing a capable bioanalytical method and to provide exploratory pharmacokinetic data for this promising derivative. According to international guidelines, a robust and selective LC-MS/MS method based on MRM detection in positive ion mode was established and validated for quantification of SH045 in mice plasma, whereby linearity and accuracy were demonstrated for the range of 2–1600 ng/mL. Applying this method, the plasma concentration time course of SH045 following single intraperitoneal administration (20 mg/kg body weight) revealed a short half-life of 1.3 h. However, the pharmacological profile of SH045 is promising, as five hours after administration, plasma levels still remained sufficiently higher than published low nanomolar IC50 values. Summarizing, the LC-MS/MS method and exploratory pharmacokinetic data provide essential prerequisites for experimental pharmacological TRPC6 modulation and translational treatment of TRPC6 channelopathies.
Collapse
Affiliation(s)
- Xiao-Ning Chai
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
- Acupuncture and Tuina School, Chengdu University of Traditional, Chinese Medicine, Chengdu 610075, China;
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (F.-A.L.); (P.B.)
| | - Anne Müglitz
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
| | - Michael Schaefer
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
| | - Hai-Yan Yin
- Acupuncture and Tuina School, Chengdu University of Traditional, Chinese Medicine, Chengdu 610075, China;
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 04318 Leipzig, Germany; (F.-A.L.); (P.B.)
| | - Ralf Regenthal
- Clinical Pharmacology, Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany;
| | - Ute Krügel
- Rudolf Boehm Institute for Pharmacology and Toxicology, Leipzig University, 04107 Leipzig, Germany; (X.-N.C.); (A.M.); (M.S.)
- Correspondence:
| |
Collapse
|
73
|
Liu Y, Zhang Y, Huang Q, Gou C, Li Q, Dai Q, Leng H, Li J. Organocatalytic Enantioselective Synthesis of Tetrahydro‐Furanyl Spirooxindoles via [3+2] Annulations of 3‐Hydroxyoxindoles and Cyclic Ketolactams. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Ying Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Qian‐Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Chuan Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Qing‐Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Qing‐Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Hai‐Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Jun‐Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| |
Collapse
|
74
|
Nelson A, Karageorgis G. Natural product-informed exploration of chemical space to enable bioactive molecular discovery. RSC Med Chem 2021; 12:353-362. [PMID: 34046620 PMCID: PMC8130614 DOI: 10.1039/d0md00376j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022] Open
Abstract
The search for new bioactive molecules remains an open challenge limiting our ability to discover new drugs to treat disease and chemical probes to comprehensively study biological processes. The vastness of chemical space renders its exploration unfeasible by synthesis alone. Historically, chemists have tended to explore chemical space unevenly without committing to systematic frameworks for navigation. This minireview covers a range of approaches that take inspiration from the structure or origin of natural products, and help focus molecular discovery on biologically-relevant regions of chemical space. All these approaches have enabled the discovery of distinctive and novel bioactive small molecules such as useful chemical probes of biological mechanisms. This minireview comments on how such approaches may be developed into more general frameworks for the systematic identification of currently unexplored regions of biologically-relevant chemical space, a challenge that is central to both chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Adam Nelson
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds Woodhouse Lane LS2 9JT UK
| | - George Karageorgis
- School of Chemistry, University of Leeds Woodhouse Lane LS2 9JT UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds Woodhouse Lane LS2 9JT UK
| |
Collapse
|
75
|
Liu J, Cremosnik GS, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Design, Synthesis, and Biological Evaluation of Chemically and Biologically Diverse Pyrroquinoline Pseudo Natural Products. Angew Chem Int Ed Engl 2021; 60:4648-4656. [PMID: 33200868 PMCID: PMC7986669 DOI: 10.1002/anie.202013731] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/27/2022]
Abstract
Natural product (NP) structures are a rich source of inspiration for the discovery of new biologically relevant chemical matter. In natural product inspired pseudo‐NPs, NP‐derived fragments are combined de novo in unprecedented arrangements. Described here is the design and synthesis of a 155‐member pyrroquinoline pseudo‐NP collection in which fragments characteristic of the tetrahydroquinoline and pyrrolidine NP classes are combined with eight different connectivities and regioisomeric arrangements. Cheminformatic analysis and biological evaluation of the compound collection by means of phenotyping in the morphological “cell painting” assay followed by principal component analysis revealed that the pseudo‐NP classes are chemically diverse and that bioactivity patterns differ markedly, and are dependent on connectivity and regioisomeric arrangement of the fragments.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Gregor S Cremosnik
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Felix Otte
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Compound Management and Screening Center, Dortmund, Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Compound Management and Screening Center, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technical University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| |
Collapse
|
76
|
Liu J, Cremosnik GS, Otte F, Pahl A, Sievers S, Strohmann C, Waldmann H. Design, Synthesis, and Biological Evaluation of Chemically and Biologically Diverse Pyrroquinoline Pseudo Natural Products. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Gregor S. Cremosnik
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Felix Otte
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Compound Management and Screening Center Dortmund Germany
| | - Carsten Strohmann
- Technical University Dortmund Faculty of Chemistry Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
77
|
Yuan WC, Lei CW, Zhao JQ, Wang ZH, You Y. Organocatalytic Asymmetric Cyclopropanation of 3-Acylcoumarins with 3-Halooxindoles: Access to Spirooxindole-cyclopropa[ c]coumarin Compounds. J Org Chem 2021; 86:2534-2544. [PMID: 33423494 DOI: 10.1021/acs.joc.0c02653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A highly diastereo- and enantioselective cyclopropanation reaction of 3-acylcoumarins with 3-halooxindoles catalyzed by an organocatalyst through a [2 + 1] Michael/intramolecular cyclization process was developed. This scenario provides a facile strategy to access spirooxindole-cyclopropa[c]coumarin compounds bearing three continuous stereocenters, including two vicinal quaternary all-carbon stereocenters with high to excellent diastereo- and enantioselectivities. The HRMS study revealed the vital importance of the ammonium ylide intermediate in the catalytic process.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Chuan-Wen Lei
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
78
|
Zhao JQ, Zhou S, Wang ZH, You Y, Chen S, Liu XL, Zhou MQ, Yuan WC. Catalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5 H-thiazol-4-ones: stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Org Chem Front 2021. [DOI: 10.1039/d1qo01061a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones is developed for the construction of dihydrobenzofuran-bridged polycyclic skeletons with good results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shuang Chen
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiong-Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
79
|
Lin S, Liu H, Svenningsen EB, Wollesen M, Jacobsen KM, Andersen FD, Moyano-Villameriel J, Pedersen CN, Nørby P, Tørring T, Poulsen TB. Expanding the antibacterial selectivity of polyether ionophore antibiotics through diversity-focused semisynthesis. Nat Chem 2020; 13:47-55. [PMID: 33353970 PMCID: PMC7610524 DOI: 10.1038/s41557-020-00601-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Polyether ionophores are complex natural products capable of transporting cations across biological membranes. Many polyether ionophores possess potent antimicrobial activity and a few selected compounds have ability to target aggressive cancer cells. Nevertheless, ionophore function is believed to be associated with idiosyncratic cellu-lar toxicity and, consequently, human clinical development has not been pursued. Here, we demonstrate that structurally novel polyether ionophores can be efficiently constructed by recycling components of highly abundant polyethers to afford analogues with enhanced anti-bacterial selectivity compared to a panel of natural polyether ionophores. We used classic degradation reactions of the natural polyethers lasalocid and monensin and combined the resulting fragments with building blocks provided by total synthesis, including halogen-functionalized tetronic acids as cation-binding groups. Our results suggest that structural optimization of polyether ionophores is possible and that this area represents a potential opportunity for future methodological innovation.
Collapse
Affiliation(s)
- Shaoquan Lin
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Han Liu
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | | | | | - Frederikke D Andersen
- Department of Engineering-Microbial Biosynthesis, Aarhus University, Aarhus, Denmark
| | | | | | - Peter Nørby
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Thomas Tørring
- Department of Engineering-Microbial Biosynthesis, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
80
|
Varun BV, Vaithegi K, Yi S, Park SB. Nature-inspired remodeling of (aza)indoles to meta-aminoaryl nicotinates for late-stage conjugation of vitamin B 3 to (hetero)arylamines. Nat Commun 2020; 11:6308. [PMID: 33298909 PMCID: PMC7726565 DOI: 10.1038/s41467-020-19610-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of numerous routes to substituted nicotinates based on the Bohlmann–Rahtz pyridine synthesis, the existing methods have several limitations, such as the inevitable ortho-substitutions and the inability to conjugate vitamin B3 to other pharmaceutical agents. Inspired by the biosynthesis of nicotinic acid (a form of vitamin B3) from tryptophan, we herein report the development of a strategy for the synthesis of meta-aminoaryl nicotinates from 3-formyl(aza)indoles. Our strategy is mechanistically different from the reported routes and involves the transformation of (aza)indole scaffolds into substituted meta-aminobiaryl scaffolds via Aldol-type addition and intramolecular cyclization followed by C–N bond cleavage and re-aromatization. Unlike previous synthetic routes, this biomimetic method utilizes propiolates as enamine precursors and thus allows access to ortho-unsubstituted nicotinates. In addition, the synthetic feasibility toward the halo-/boronic ester-substituted aminobiaryls clearly differentiates the present strategy from other cross-coupling strategies. Most importantly, our method enables the late-stage conjugation of bioactive (hetero)arylamines with nicotinates and nicotinamides and allows access to the previously unexplored chemical space for biomedical research. Vitamin B3 derivatives display a range of biological activities. Here, the authors report the synthesis of meta-aminoaryl nicotinates, derivatives of vitamin B3, and their late-stage conjugation with (hetero)arylamines, ultimately expanding the chemical space for biomedical research.
Collapse
Affiliation(s)
- Begur Vasanthkumar Varun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kannan Vaithegi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sihyeong Yi
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
81
|
Aziz AA, Siddiqui RA, Amtul Z. Engineering of fluorescent or photoactive Trojan probes for detection and eradication of β-Amyloids. Drug Deliv 2020; 27:917-926. [PMID: 32597244 PMCID: PMC8216438 DOI: 10.1080/10717544.2020.1785048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/04/2022] Open
Abstract
Trojan horse technology institutes a potentially promising strategy to bring together a diagnostic or cell-based drug design and a delivery platform. It provides the opportunity to re-engineer a novel multimodal, neurovascular detection probe, or medicine to fuse with blood-brain barrier (BBB) molecular Trojan horse. In Alzheimer's disease (AD) this could allow the targeted delivery of detection or therapeutic probes across the BBB to the sites of plaques and tangles development to image or decrease amyloid load, enhance perivascular Aβ clearance, and improve cerebral blood flow, owing principally to the significantly improved cerebral permeation. A Trojan horse can also be equipped with photosensitizers, nanoparticles, quantum dots, or fluorescent molecules to function as multiple targeting theranostic compounds that could be activated following changes in disease-specific processes of the diseased tissue such as pH and protease activity, or exogenous stimuli such as, light. This concept review theorizes the use of receptor-mediated transport-based platforms to transform such novel ideas to engineer systemic and smart Trojan detection or therapeutic probes to advance the neurodegenerative field.
Collapse
Affiliation(s)
- Amal A. Aziz
- Sir Wilfrid Laurier Secondary School, Thames Valley District School Board, London, Canada
| | - Rafat A. Siddiqui
- Nutrition Science and Food Chemistry Laboratory, Agricultural Research Station, Virginia State University, Petersburg, VA, USA
| | - Zareen Amtul
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| |
Collapse
|
82
|
Chen Y, Kirchmair J. Cheminformatics in Natural Product-based Drug Discovery. Mol Inform 2020; 39:e2000171. [PMID: 32725781 PMCID: PMC7757247 DOI: 10.1002/minf.202000171] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
This review seeks to provide a timely survey of the scope and limitations of cheminformatics methods in natural product-based drug discovery. Following an overview of data resources of chemical, biological and structural information on natural products, we discuss, among other aspects, in silico methods for (i) data curation and natural products dereplication, (ii) analysis, visualization, navigation and comparison of the chemical space, (iii) quantification of natural product-likeness, (iv) prediction of the bioactivities (virtual screening, target prediction), ADME and safety profiles (toxicity) of natural products, (v) natural products-inspired de novo design and (vi) prediction of natural products prone to cause interference with biological assays. Among the many methods discussed are rule-based, similarity-based, shape-based, pharmacophore-based and network-based approaches, docking and machine learning methods.
Collapse
Affiliation(s)
- Ya Chen
- Center for Bioinformatics (ZBH)Department of Computer ScienceFaculty of MathematicsInformatics and Natural SciencesUniversität Hamburg20146HamburgGermany
| | - Johannes Kirchmair
- Center for Bioinformatics (ZBH)Department of Computer ScienceFaculty of MathematicsInformatics and Natural SciencesUniversität Hamburg20146HamburgGermany
- Department of Pharmaceutical ChemistryFaculty of Life SciencesUniversity of Vienna1090ViennaAustria
| |
Collapse
|
83
|
DMAP-catalyzed decarboxylative [3+2] cycloadditions: A strategy for diastereoselective synthesis of trifluoromethylated chromanone-fused pyrrolidinyl spirooxindoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
84
|
Motika SE, Hergenrother PJ. Re-engineering natural products to engage new biological targets. Nat Prod Rep 2020; 37:1395-1403. [PMID: 33034322 PMCID: PMC7720426 DOI: 10.1039/d0np00059k] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020 Natural products have a long history in drug discovery, with their inherent biological activity often tailored by medicinal chemists to arrive at the final drug product. This process is illustrated by numerous examples, including the conversion of epothilone to ixabepilone, erythromycin to azithromycin, and lovastatin to simvastatin. However, natural products are also fruitful starting points for the creation of complex and diverse compounds, especially those that are markedly different from the parent natural product and accordingly do not retain the biological activity of the parent. The resulting products have physiochemical properties that differ considerably when compared to traditional screening collections, thus affording an opportunity to discover novel biological activity. The synthesis of new structural frameworks from natural products thus yields value-added compounds, as demonstrated in the last several years with multiple biological discoveries emerging from these collections. This Highlight details a handful of these studies, describing new compounds derived from natural products that have biological activity and cellular targets different from those evoked/engaged by the parent. Such re-engineering of natural products offers the potential for discovering compounds with interesting and unexpected biological activity.
Collapse
Affiliation(s)
- Stephen E Motika
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA.
| | - Paul J Hergenrother
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
85
|
Vonteddu NR, Solanke PR, Nayani K, Chandrasekhar S. Cation Triggered Domino Aza-Piancatelli Rearrangement/Friedel-Crafts Alkylation of Indole-Tethered Furfuyl Alcohols to Access Cycloocta[ b]indole Core of Alkaloids. Org Lett 2020; 22:8555-8560. [PMID: 33079545 DOI: 10.1021/acs.orglett.0c03155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A domino approach to bridged cycloocta[b]indolone through a cascade of aza-Piancatelli rearrangement/Friedel-Crafts alkylation is developed. This transformation has been realized by reaction of an indole-tethered 2-furylcarbinol and substituted aniline in the presence of a Lewis acid to initiate aza-Piancatelli rearrangement followed by an in situ intramolecular Friedel-Crafts alkylation to access bridged tetracyclic frameworks in one pot.
Collapse
Affiliation(s)
- Nagarjuna Reddy Vonteddu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Cipla Ltd, MIDC Patalganga, Rasayani, Maharashtra 410220, India
| | - Pooja R Solanke
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
86
|
Abstract
Covering: 1986 to 2020Natural products are an enduring source of chemical information useful for probing biologically relevant chemical space. Toward gathering further structure-activity relationship (SAR) information for a particular natural product, synthetic chemists traditionally proceeded first by a total synthesis effort followed by the synthesis of simplified derivatives. While this approach has proven fruitful, it often does not incorporate hypotheses regarding structural features necessary for bioactivity at the synthetic planning stage, but rather focuses on the rapid assembly of the targeted natural product; a goal that often supersedes the opportunity to gather SAR information en route to the natural product. Furthermore, access to simplified variants of a natural product possessing only the proposed essential structural features necessary for bioactivity, typically at lower oxidation states overall, is sometimes non-trivial from the original established synthetic route. In recent years, several synthetic design strategies were described to streamline the process of finding bioactive molecules in concert with fathering further SAR studies for targeted natural products. This review article will briefly discuss traditional retrosynthetic strategies and contrast them to selected examples of recent synthetic strategies for the investigation of biologically relevant chemical space revealed by natural products. These strategies include: diversity-oriented synthesis (DOS), biology-oriented synthesis (BIOS), diverted-total synthesis (DTS), analogue-oriented synthesis (AOS), two-phase synthesis, function-oriented synthesis (FOS), and computed affinity/dynamically ordered retrosynthesis (CANDOR). Finally, a description of pharmacophore-directed retrosynthesis (PDR) developed in our laboratory and initial applications will be presented that was initially inspired by a retrospective analysis of our synthetic route to pateamine A completed in 1998.
Collapse
Affiliation(s)
- Nathanyal J Truax
- Department of Chemistry & Biochemistry, Baylor University, Waco, Texas 76710, USA.
| | | |
Collapse
|
87
|
Fox KA, Chadda R, Cardona F, Barron S, McArdle P, Murphy PV. Building blocks from monosaccharides for synthesis of scaffolds, including macrocycles. Application of allylic azide rearrangement, azide-alkyne cycloaddition and ring closing metathesis. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
88
|
Silva LJ, Crevelin EJ, Souza DT, Lacerda-Júnior GV, de Oliveira VM, Ruiz ALTG, Rosa LH, Moraes LAB, Melo IS. Actinobacteria from Antarctica as a source for anticancer discovery. Sci Rep 2020; 10:13870. [PMID: 32807803 PMCID: PMC7431910 DOI: 10.1038/s41598-020-69786-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023] Open
Abstract
Although many advances have been achieved to treat aggressive tumours, cancer remains a leading cause of death and a public health problem worldwide. Among the main approaches for the discovery of new bioactive agents, the prospect of microbial secondary metabolites represents an effective source for the development of drug leads. In this study, we investigated the actinobacterial diversity associated with an endemic Antarctic species, Deschampsia antarctica, by integrated culture-dependent and culture-independent methods and acknowledged this niche as a reservoir of bioactive strains for the production of antitumour compounds. The 16S rRNA-based analysis showed the predominance of the Actinomycetales order, a well-known group of bioactive metabolite producers belonging to the Actinobacteria phylum. Cultivation techniques were applied, and 72 psychrotolerant Actinobacteria strains belonging to the genera Actinoplanes, Arthrobacter, Kribbella, Mycobacterium, Nocardia, Pilimelia, Pseudarthrobacter, Rhodococcus, Streptacidiphilus, Streptomyces and Tsukamurella were identified. The secondary metabolites were screened, and 17 isolates were identified as promising antitumour compound producers. However, the bio-guided assay showed a pronounced antiproliferative activity for the crude extracts of Streptomyces sp. CMAA 1527 and Streptomyces sp. CMAA 1653. The TGI and LC50 values revealed the potential of these natural products to control the proliferation of breast (MCF-7), glioblastoma (U251), lung/non-small (NCI-H460) and kidney (786-0) human cancer cell lines. Cinerubin B and actinomycin V were the predominant compounds identified in Streptomyces sp. CMAA 1527 and Streptomyces sp. CMAA 1653, respectively. Our results suggest that the rhizosphere of D. antarctica represents a prominent reservoir of bioactive actinobacteria strains and reveals it as an important environment for potential antitumour agents.
Collapse
Affiliation(s)
- Leonardo Jose Silva
- College of Agriculture "Luiz de Queiroz", University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Eduardo José Crevelin
- Laboratory of Mass Spectrometry Applied To Natural Products Chemistry, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Danilo Tosta Souza
- Laboratory of Mass Spectrometry Applied To Natural Products Chemistry, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Gileno Vieira Lacerda-Júnior
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation (EMBRAPA) - Embrapa Environment, Jaguariúna, SP, Brazil
| | - Valeria Maia de Oliveira
- Microbial Resourses Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Luiz Henrique Rosa
- Department of Microbiology, Biological Sciences Institute - Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Alberto Beraldo Moraes
- Laboratory of Mass Spectrometry Applied To Natural Products Chemistry, Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Itamar Soares Melo
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation (EMBRAPA) - Embrapa Environment, Jaguariúna, SP, Brazil.
| |
Collapse
|
89
|
Ren P, Miao X, Tang T, Wu Y, Wang J, Zeng Y, Li Y, Gao K, Yang YL. Construction of a meroterpenoid-like compound collection by precursor-assisted biosynthesis. Org Biomol Chem 2020; 18:5850-5856. [PMID: 32692341 DOI: 10.1039/d0ob01235a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural products (NPs) and their derivatives play a pivotal role in drug discovery due to their complexity and diversity. The strategies to rapidly generate NP-like compounds offer unique opportunities to access bioactive compounds. Here we present a new approach, precursor-assisted biosynthesis (PAB), for the creation of NP-like compounds by combination of artificial supplementation of common precursors and divergent post-modifications of precursor-deficient fungi. This method was applied to construct a meroterpenoid-like compound collection containing 43 compounds with diverse molecular scaffolds. Extensive bioactive screening of the collection revealed novel STING (stimulator of interferon genes) inhibitors, cytotoxic and antifungal compounds. This result indicates that PAB is an effective methodology for producing compound collections for the purpose of drug discovery.
Collapse
Affiliation(s)
- Panlong Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Xinyu Miao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Ting Tang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yueting Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Jing Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yan-Long Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
90
|
Troelsen NS, Clausen MH. Library Design Strategies To Accelerate Fragment‐Based Drug Discovery. Chemistry 2020; 26:11391-11403. [DOI: 10.1002/chem.202000584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Nikolaj S. Troelsen
- Center for Nanomedicine and Theranostics Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| | - Mads H. Clausen
- Center for Nanomedicine and Theranostics Department of Chemistry Technical University of Denmark Kemitorvet 207 2800 Kongens Lyngby Denmark
| |
Collapse
|
91
|
Foley DJ, Zinken S, Corkery D, Laraia L, Pahl A, Wu Y, Waldmann H. Phenotyping Reveals Targets of a Pseudo-Natural-Product Autophagy Inhibitor. Angew Chem Int Ed Engl 2020; 59:12470-12476. [PMID: 32108411 PMCID: PMC7383971 DOI: 10.1002/anie.202000364] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Pseudo-natural-product (NP) design combines natural product fragments to provide unprecedented NP-inspired compounds not accessible by biosynthesis, but endowed with biological relevance. Since the bioactivity of pseudo-NPs may be unprecedented or unexpected, they are best evaluated in target agnostic cell-based assays monitoring entire cellular programs or complex phenotypes. Here, the Cinchona alkaloid scaffold was merged with the indole ring system to synthesize indocinchona alkaloids by Pd-catalyzed annulation. Exploration of indocinchona alkaloid bioactivities in phenotypic assays revealed a novel class of azaindole-containing autophagy inhibitors, the azaquindoles. Subsequent characterization of the most potent compound, azaquindole-1, in the morphological cell painting assay, guided target identification efforts. In contrast to the parent Cinchona alkaloids, azaquindoles selectively inhibit starvation- and rapamycin-induced autophagy by targeting the lipid kinase VPS34.
Collapse
Affiliation(s)
- Daniel J. Foley
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- Current address: School of Physical and Chemical SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Sarah Zinken
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundDortmundGermany
| | - Dale Corkery
- Department of ChemistryUmeå Centre for Microbial ResearchUmeå UniversityUmeåSweden
| | - Luca Laraia
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- Current address: Department of ChemistryTechnical University of DenmarkCopenhagenDenmark
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- Compound Management and Screening CentreDortmundGermany
| | - Yao‐Wen Wu
- Department of ChemistryUmeå Centre for Microbial ResearchUmeå UniversityUmeåSweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- Faculty of Chemistry and Chemical BiologyTechnical University DortmundDortmundGermany
| |
Collapse
|
92
|
Utaka Y, Kashiwazaki G, Tsuchida N, Fukushima M, Takahashi I, Kawai Y, Kitayama T. Remarkable Potential of Zerumbone to Generate a Library with Six Natural Product-like Skeletons by Natural Material-Related Diversity-Oriented Synthesis. J Org Chem 2020; 85:8371-8386. [PMID: 32524816 DOI: 10.1021/acs.joc.0c00689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diversity-oriented synthesis (DOS) is an effective strategy for the quick creation of diverse and high three-dimensional compounds from simple starting materials. The selection of a starting material is the key to constructing useful, chemically diverse compound libraries for the development of new drugs. Here, we report a novel, general, and facile strategy for the creation of diverse compounds with high structural diversity from readily available natural products, such as zerumbone, as the synthetic starting material. Zerumbone is the major component of the essential oil from wild ginger, Zingiber zerumbet Smith. It is noteworthy that zerumbone has a powerful latent reactivity, partly because of its three double bonds, two conjugated and one isolated, and a double conjugated carbonyl group in an 11-membered ring structure. In fact, zerumbone has been shown to be a successful example of natural material-related DOS (NMRDOS). We will report that zerumbone can be converted in one chemical step from four zerumbone derivatives into rare and markedly different scaffolds by transannulation.
Collapse
Affiliation(s)
- Yoshimi Utaka
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Gengo Kashiwazaki
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Noriko Tsuchida
- Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Miyuki Fukushima
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Issei Takahashi
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Yasushi Kawai
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Takashi Kitayama
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
93
|
Grigalunas M, Burhop A, Christoforow A, Waldmann H. Pseudo-natural products and natural product-inspired methods in chemical biology and drug discovery. Curr Opin Chem Biol 2020; 56:111-118. [PMID: 32362382 DOI: 10.1016/j.cbpa.2019.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022]
Abstract
Through evolution, nature has provided natural products (NPs) as a rich source of diverse bioactive material. Many drug discovery programs have used nature as an inspiration for the design of NP-like compound classes. These concepts are guided by the prevalidated biological relevance of NPs while going beyond the limitations of nature to produce chemical matter that could have unexpected or novel bioactivities. Herein, we discuss, compare, and highlight recent examples of NP-inspired methods with a focus on the pseudo-NP concept.
Collapse
Affiliation(s)
- Michael Grigalunas
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Annina Burhop
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| | - Andreas Christoforow
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany.
| |
Collapse
|
94
|
Mkrtchyan S, Iaroshenko VO. Photoredox Functionalization of 3-Halogenchromones, 3-Formylchromones, and Chromone-3-carboxylic Acids: Routes to 3-Acylchromones. J Org Chem 2020; 85:7152-7174. [DOI: 10.1021/acs.joc.0c00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Łodź, Poland
| |
Collapse
|
95
|
Laroche B, Bouvarel T, Louis-Sylvestre M, Nay B. Diversity-oriented synthesis of 17-spirosteroids. Beilstein J Org Chem 2020; 16:880-887. [PMID: 32461769 PMCID: PMC7214869 DOI: 10.3762/bjoc.16.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/17/2020] [Indexed: 01/04/2023] Open
Abstract
A diversity-oriented synthesis (DOS) approach has been used to functionalize 17-ethynyl-17-hydroxysteroids through a one-pot procedure involving a ring-closing enyne metathesis (RCEYM) and a Diels–Alder reaction on the resulting diene, under microwave irradiations. Taking advantage of the propargyl alcohol moiety present on commercially available steroids, this classical strategy was applied to mestranol and lynestrenol, giving a collection of new complex 17-spirosteroids.
Collapse
Affiliation(s)
- Benjamin Laroche
- Unité Molécules de Communication et Adaptations des Micro-organismes (MCAM), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Thomas Bouvarel
- Unité Molécules de Communication et Adaptations des Micro-organismes (MCAM), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Martin Louis-Sylvestre
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau Cedex, France
| | - Bastien Nay
- Unité Molécules de Communication et Adaptations des Micro-organismes (MCAM), Muséum National d'Histoire Naturelle, CNRS, Paris, France.,Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau Cedex, France
| |
Collapse
|
96
|
Foley DJ, Zinken S, Corkery D, Laraia L, Pahl A, Wu Y, Waldmann H. Phenotyping Reveals Targets of a Pseudo‐Natural‐Product Autophagy Inhibitor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000364] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel J. Foley
- Max Planck Institute of Molecular Physiology Dortmund Germany
- Current address: School of Physical and Chemical Sciences University of Canterbury Christchurch New Zealand
| | - Sarah Zinken
- Max Planck Institute of Molecular Physiology Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Dortmund Germany
| | - Dale Corkery
- Department of Chemistry Umeå Centre for Microbial Research Umeå University Umeå Sweden
| | - Luca Laraia
- Max Planck Institute of Molecular Physiology Dortmund Germany
- Current address: Department of Chemistry Technical University of Denmark Copenhagen Denmark
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology Dortmund Germany
- Compound Management and Screening Centre Dortmund Germany
| | - Yao‐Wen Wu
- Department of Chemistry Umeå Centre for Microbial Research Umeå University Umeå Sweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Dortmund Germany
- Faculty of Chemistry and Chemical Biology Technical University Dortmund Dortmund Germany
| |
Collapse
|
97
|
Bischoff M, Mayer P, Meyners C, Hausch F. Enantioselective Synthesis of a Tricyclic, sp 3 -Rich Diazatetradecanedione: an Amino Acid-Based Natural Product-Like Scaffold. Chemistry 2020; 26:4677-4681. [PMID: 31846111 PMCID: PMC7187416 DOI: 10.1002/chem.201905144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/06/2019] [Indexed: 01/21/2023]
Abstract
6-, 7-, and 8-membered rings are assembled from a linear precursor by successive cyclisation reactions to construct a tricyclic diazatricyclo[6.5.1.04, 9 ]-tetradecanedione scaffold. Advanced building blocks based on d-aspartic acid and l-pyroglutamic acid were combined by a sp3 -sp2 Negishi coupling. A carbamate-guided syn-diastereoselective epoxidation followed by an intramolecular epoxide opening allowed the construction of the piperidine ring. An efficient one-pot hydroxyl-group protection twofold deprotection reaction prepared the ground for the cyclisation to the bicycle. A final deprotection of the orthogonal protecting groups and lactamisation led to the novel, sp3 -rich tricycle. The final compound is a substrate mimic of peptidyl-prolyl cis-trans isomerases featuring a locked trans-amide bond. Cheminformatic analysis of 179 virtual derivatives indicates favourable physicochemical properties and drug-like characteristics. As proof of concept we, show a low micromolar activity in a fluorescence polarisation assay towards the FK506-binding protein 12.
Collapse
Affiliation(s)
- Matthias Bischoff
- Compound Management and Screening Center (COMAS)Max Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Peter Mayer
- Department of ChemistryLudwig-Maximilians-University MünchenButenandtstrasse 5–1381377MünchenGermany
| | - Christian Meyners
- Department of ChemistryInstitute of Chemistry and BiochemistryDarmstadt University of TechnologyAlarich-Weiss-Strasse 464287DarmstadtGermany
| | - Felix Hausch
- Department of ChemistryInstitute of Chemistry and BiochemistryDarmstadt University of TechnologyAlarich-Weiss-Strasse 464287DarmstadtGermany
| |
Collapse
|
98
|
Zhang CB, Dou PH, Zhao JQ, Yuan WC. Organocatalyzed asymmetric cascade Mannich/cyclization of 3-isothiocyanato oxindoles with cyclic ketimines for the synthesis of polycyclic spiro-thioimidazolidine-oxindoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
99
|
Feyaerts AF, Luyten W, Van Dijck P. Striking essential oil: tapping into a largely unexplored source for drug discovery. Sci Rep 2020; 10:2867. [PMID: 32071337 PMCID: PMC7028914 DOI: 10.1038/s41598-020-59332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Essential oils (EOs) have been used therapeutically for centuries. In recent decades, randomized controlled (clinical) trials have supported efficacy in specific therapeutic indications for a few of them. Some EOs, their components or derivatives thereof have been approved as drugs. Nevertheless, they are still considered products that are mainly used in complementary and alternative medicine. EO components occupy a special niche in chemical space, that offers unique opportunities based on their unusual physicochemical properties, because they are typically volatile and hydrophobic. Here we evaluate selected physicochemical parameters, used in conventional drug discovery, of EO components present in a range of commercially available EOs. We show that, contrary to generally held belief, most EO components meet current-day requirements of medicinal chemistry for good drug candidates. Moreover, they also offer attractive opportunities for lead optimization or even fragment-based drug discovery. Because their therapeutic potential is still under-scrutinized, we propose that this be explored more vigorously with present-day methods.
Collapse
Affiliation(s)
- Adam F Feyaerts
- VIB Center for Microbiology, KU Leuven, 3001, Leuven, Belgium.
- Laboratory of Molecular Cell Biology, KU Leuven, 3001, Leuven, Belgium.
| | - Walter Luyten
- Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Patrick Van Dijck
- VIB Center for Microbiology, KU Leuven, 3001, Leuven, Belgium.
- Laboratory of Molecular Cell Biology, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
100
|
Paciaroni NG, Perry DL, Norwood VM, Murillo-Solano C, Collins J, Tenneti S, Chakrabarti D, Huigens RW. Re-Engineering of Yohimbine's Biological Activity through Ring Distortion: Identification and Structure-Activity Relationships of a New Class of Antiplasmodial Agents. ACS Infect Dis 2020; 6:159-167. [PMID: 31913597 DOI: 10.1021/acsinfecdis.9b00380] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Select natural products are ideal starting points for ring distortion, or the dramatic altering of inherently complex molecules through short synthetic pathways, to generate an array of novel compounds with diverse skeletal architectures. A major goal of our ring distortion approach is to re-engineer the biological activity of indole alkaloids to identify new compounds with diverse biological activities in areas of significance to human health and medicine. In this study, we re-engineered the biological activity of the indole alkaloid yohimbine through ring rearrangement and ring cleavage synthesis pathways to discover new series of antiplasmodial agents. One new compound, Y7j, was found to demonstrate good potency against chloroquine-resistant Plasmodium falciparum Dd2 cells (EC50 = 0.33 μM) without eliciting cytotoxicity against HepG2 cells (EC50 > 40 μM). Y7j demonstrated stage-specific action against parasites at the late ring/trophozoite stage. A series of analogues was synthesized to gain structure-activity relationship insights, and we learned that both benzyl groups of Y7j are required for activity and fine-tuning of antiplasmodial activities could be accomplished by changing substitution patterns on the benzyl moieties. This study demonstrates the potential for ring distortion to drive new discoveries and change paradigms in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Nicholas G. Paciaroni
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - David L. Perry
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Verrill M. Norwood
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Claribel Murillo-Solano
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jennifer Collins
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Srinivasarao Tenneti
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Debopam Chakrabarti
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Robert W. Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|