51
|
Zhang J, Li X. The effect of water-mediated catalysis on the intramolecular proton-transfer reactions of the isomers of 5-chlorouracil: a theoretical study. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:554-561. [PMID: 31062712 DOI: 10.1107/s2053229619004856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/09/2019] [Indexed: 11/10/2022]
Abstract
The geometrical structures and thermal energies (E), enthalpies (H) and Gibbs free energies (G) of 13 isomers of 5-chlorouracil (5ClU) in the gas and water phases were investigated using the density functional theory (DFT) method at the M06-2X/6-311++g(3df,3pd) level. The isomers of 5ClU can be microhydrated at different molecular target sites. The mono- and dihydrated forms are the most stable in both the gas and water phases, and, because of the intermolecular interactions, the hydrations lead to a degree of change in the stability trend. Two types of isomerizations were considered: the internal H-O bond rotations in which the H atom rotates 180° around the C-O bond and the intramolecular proton-transfer reactions in which an H atom is transferred between an O atom and a neighbouring N atom. The forward and backward energy barriers for isomerizations of nonhydrated 5ClU were calculated. In addition, 16 optimized transition-state structures for water-mediated catalysis on isomerizations of 5ClU were investigated. The forward and backward proton-transfer energy barriers of water-mediated catalysis on isomerizations of 5ClU were obtained. The results indicate that the catalytic effect of two H2O molecules is much greater than that of one H2O molecule in isomerizations of 5ClU.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| | - Xiu Li
- School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
| |
Collapse
|
52
|
Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation. Genes (Basel) 2018; 10:genes10010017. [PMID: 30597824 PMCID: PMC6356944 DOI: 10.3390/genes10010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023] Open
Abstract
The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution. Here, we present the strategies that have been utilized to fundamentally alter the genetic code in its decoding rules or its molecular representation and anticipate future avenues in the pursuit of robust biocontainment.
Collapse
|
53
|
Mamián-López MB, Temperini MLA. On the Cooperativity Effect in Watson and Crick and Wobble Pairs for a Halouracil Series and Its Potential Quantitative Application Studied through Surface-Enhanced Raman Spectroscopy. Anal Chem 2018; 90:14165-14172. [PMID: 30457840 DOI: 10.1021/acs.analchem.8b02188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nature of the cooperativity effect of hydrogen bonds in Watson and Crick and wobble base pairs formed with thymine, uracil, and its 5-halogenated derivatives (5-fluoro, -chloro, and -bromouracil) has been studied through SERS and by using chemometric tools to process data and extract relevant information. Remarkable differences between the two kinds of pairs were clearly observed, and the behavior correlated to the withdrawing character of different substituents at the 5-position of uracil was verified. Multivariate analyses have also unveiled information about the pair's stability, and a stronger cooperativity effect seems to rule the Watson and Crick pairs when compared to wobble pairs. Defined patterns in the behavior of Watson and Crick pairs allowed the design of an indirect methodology for quantifying 5-bromouracil using a partial least squares (PLS) method with variable selection. Limit of detection (LOD) values of 0.037 and 0.112 mmol L-1 in the absence and presence of structurally similar interferences were reached, while its direct surface-enhanced Raman spectroscopy (SERS) quantification is only possible at ∼45 mmol L-1.
Collapse
Affiliation(s)
- Mónica B Mamián-López
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , São Paulo 03178-200 , Brazil
| | - Marcia L A Temperini
- Department of Fundamental Chemistry, Institute of Chemistry , University of São Paulo , São Paulo 03178-200 , Brazil
| |
Collapse
|
54
|
Non canonical genetic material. Curr Opin Biotechnol 2018; 57:25-33. [PMID: 30554069 DOI: 10.1016/j.copbio.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 01/20/2023]
Abstract
To increase the scope of natural biosystem, nucleic acids have been intensively modified. One direction includes the development of a synthetic alternative to the native DNA and RNA, denoted Xenobiotic nucleic acids (XNAs) that are able to store and transfer genetic information either by base-modification or backbone-modification. Another line of research aims to develop alternative third base pair additional to natural A:T and G:C. These unnatural base pairs (UBPs) can store increased information content encoded in three base pairs. This review outlines the recent progress made towards XNA and UBP applications as new components of the genomic DNA as well as biostable aptamers. New achievements in the replacement of a bacterial genome by unnatural non-canonical nucleotides are also described.
Collapse
|
55
|
Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN, Cozetto DA. Engineering Microbial Living Therapeutics: The Synthetic Biology Toolbox. Trends Biotechnol 2018; 37:100-115. [PMID: 30318171 DOI: 10.1016/j.tibtech.2018.09.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022]
Abstract
Microbes can be engineered to act like living therapeutics designed to perform specific actions in the human body. From fighting and preventing infections to eliminating tumors and treating metabolic disorders, engineered living systems are the next generation of therapeutics. In recent years, synthetic biologists have greatly expanded the genetic toolbox for microbial living therapeutics, adding sensors, regulators, memory circuits, delivery devices, and kill switches. These advances have paved the way for successful engineering of fully functional living therapeutics, with sensing, production, and biocontainment devices. However, some important tools are still missing from the box. In this review, we cover the most recent biological parts and approaches developed and describe the missing tools needed to build robust living therapeutics.
Collapse
Affiliation(s)
- Danielle B Pedrolli
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology, 14800-903 Araraquara, Brazil; Members of Team AQA Unesp at iGEM 2017.
| | - Nathan V Ribeiro
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology, 14800-903 Araraquara, Brazil; Members of Team AQA Unesp at iGEM 2017
| | - Patrick N Squizato
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology, 14800-903 Araraquara, Brazil; Members of Team AQA Unesp at iGEM 2017
| | - Victor N de Jesus
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology, 14800-903 Araraquara, Brazil; Members of Team AQA Unesp at iGEM 2017
| | - Daniel A Cozetto
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess and Biotechnology, 14800-903 Araraquara, Brazil; Members of Team AQA Unesp at iGEM 2017
| | | |
Collapse
|
56
|
d’Oelsnitz S, Ellington A. Continuous directed evolution for strain and protein engineering. Curr Opin Biotechnol 2018; 53:158-163. [DOI: 10.1016/j.copbio.2017.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
57
|
Döring V, Darii E, Yishai O, Bar-Even A, Bouzon M. Implementation of a Reductive Route of One-Carbon Assimilation in Escherichia coli through Directed Evolution. ACS Synth Biol 2018; 7:2029-2036. [PMID: 30106273 DOI: 10.1021/acssynbio.8b00167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endowing biotechnological platform organisms with new carbon assimilation pathways is a key challenge for industrial biotechnology. Here we report progress toward the construction of formatotrophic Escherichia coli strains. Glycine and serine, universal precursors of one-carbon compounds oxidized during heterotrophic growth, are produced from formate and CO2 through a reductive route. An adaptive evolution strategy was applied to optimize the enzymatic steps of this route in appropriate selection strains. Metabolic labeling experiments with 13C-formate confirm the redirected carbon-flow. These results demonstrate the high plasticity of the central carbon metabolism of E. coli and the applicative potential of directed evolution for implementing synthetic pathways in microorganisms.
Collapse
Affiliation(s)
- Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Oren Yishai
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
58
|
Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng 2018; 12:13. [PMID: 30123321 PMCID: PMC6090650 DOI: 10.1186/s13036-018-0105-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer. MAIN BODY Physical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of 'kill switches' controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in 'self-destruction' of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A 'minimal genome' approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system. CONCLUSION Here we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition.
Collapse
Affiliation(s)
| | - Saskia Dymek
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Denise Kerkhoff
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Camilla März
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Olga Schmidt
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maximilian Edich
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Droste
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Boas Pucker
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Present address: Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
59
|
Karalkar NB, Benner SA. The challenge of synthetic biology. Synthetic Darwinism and the aperiodic crystal structure. Curr Opin Chem Biol 2018; 46:188-195. [PMID: 30098527 DOI: 10.1016/j.cbpa.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022]
Abstract
'Grand Challenges' offer ways to discover flaws in existing theory without first needing to guess what those flaws are. Our grand challenge here is to reproduce the Darwinism of terran biology, but on molecular platforms different from standard DNA. Access to Darwinism distinguishes the living from the non-living state. However, theory suggests that any biopolymer able to support Darwinism must (a) be able to form Schrödinger's `aperiodic crystal', where different molecular components pack into a single crystal lattice, and (b) have a polyelectrolyte backbone. In 1953, the descriptive biology of Watson and Crick suggested DNA met Schrödinger's criertion, forming a linear crystal with geometrically similar building blocks supported on a polyelectrolye backbone. At the center of genetics were nucleobase pairs that fit into that crystal lattice by having both size complementarity and hydrogen bonding complementarity to enforce a constant geometry. This review covers experiments that show that by adhering to these two structural rules, the aperiodic crystal structure is maintained in DNA having 6 (or more) components. Further, this molecular system is shown to support Darwinism. Together with a deeper understanding of the role played in crystal formation by the poly-charged backbone and the intervening scaffolding, these results define how we might search for Darwinism, and therefore life, on Mars, Europa, Enceladus, and other watery lagoons in our Solar System.
Collapse
Affiliation(s)
- Nilesh B Karalkar
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, United States
| | - Steven A Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, United States; Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, FL 32615, United States.
| |
Collapse
|
60
|
Pezo V, Hassan C, Louis D, Sargueil B, Herdewijn P, Marlière P. Metabolic Recruitment and Directed Evolution of Nucleoside Triphosphate Uptake in Escherichia coli. ACS Synth Biol 2018; 7:1565-1572. [PMID: 29746092 DOI: 10.1021/acssynbio.8b00048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design and elaboration of a selection protocol for importing a canonical substrate of DNA polymerase, thymidine triphosphate (dTTP) in Escherichia coli. Bacterial strains whose growth depend on dTTP uptake, through the action of an algal plastid transporter expressed from a synthetic gene inserted in the chromosome, were constructed and shown to withstand the simultaneous loss of thymidylate synthase and thymidine kinase. Such thyA tdk dual deletant strains provide an experimental model of tight nutritional containment for preventing dissemination of microbial GMOs. Our strains transported the four canonical dNTPs, in the following order of preference: dCTP > dATP ≥ dGTP > dTTP. Prolonged cultivation under limitation of exogenous dTTP led to the enhancement of dNTP transport by adaptive evolution. We investigated the uptake of dCTP analogues with altered sugar or nucleobase moieties, which were found to cause a loss of cell viability and an increase of mutant frequency, respectively. E. coli strains equipped with nucleoside triphosphate transporters should be instrumental for evolving organisms whose DNA genome is morphed chemically by fully substituting its canonical nucleotide components.
Collapse
Affiliation(s)
- Valérie Pezo
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
| | | | | | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l’Observatoire, 75006 Paris, France
| | - Piet Herdewijn
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
| | - Philippe Marlière
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
- TESSSI, 81 rue Réaumur, 75002 Paris, France
| |
Collapse
|
61
|
Next-generation biocontainment systems for engineered organisms. Nat Chem Biol 2018; 14:530-537. [PMID: 29769737 DOI: 10.1038/s41589-018-0056-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
The increasing use of engineered organisms for industrial, clinical, and environmental applications poses a growing risk of spreading hazardous biological entities into the environment. To address this biosafety issue, significant effort has been invested in creating ways to confine these organisms and transgenic materials. Emerging technologies in synthetic biology involving genetic circuit engineering, genome editing, and gene expression regulation have led to the development of novel biocontainment systems. In this perspective, we highlight recent advances in biocontainment and suggest a number of approaches for future development, which may be applied to overcome remaining challenges in safeguard implementation.
Collapse
|
62
|
Liu C, Cozens C, Jaziri F, Rozenski J, Maréchal A, Dumbre S, Pezo V, Marlière P, Pinheiro VB, Groaz E, Herdewijn P. Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers. J Am Chem Soc 2018; 140:6690-6699. [DOI: 10.1021/jacs.8b03447] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chao Liu
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | - Faten Jaziri
- iSSB, Genopole, CNRS, UEVE, Université Paris-Saclay, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | - Shrinivas Dumbre
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Valérie Pezo
- iSSB, Genopole, CNRS, UEVE, Université Paris-Saclay, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Philippe Marlière
- iSSB, Genopole, CNRS, UEVE, Université Paris-Saclay, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Vitor B. Pinheiro
- University College London, Gower Street, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, U.K
| | - Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- iSSB, Genopole, CNRS, UEVE, Université Paris-Saclay, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| |
Collapse
|
63
|
Schmidt M, Pei L, Budisa N. Xenobiology: State-of-the-Art, Ethics, and Philosophy of New-to-Nature Organisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:301-315. [PMID: 28567486 DOI: 10.1007/10_2016_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The basic chemical constitution of all living organisms in the context of carbon-based chemistry consists of a limited number of small molecules and polymers. Until the twenty-first century, biology was mainly an analytical science and has now reached a point where it merges with engineering science, paving the way for synthetic biology. One of the objectives of synthetic biology is to try to change the chemical compositions of living cells, that is, to create an artificial biological diversity, which in turn fosters a new sub-field of synthetic biology, xenobiology. In particular, the genetic code in living systems is based on highly standardized chemistry composed of the same "letters" or nucleotides as informational polymers (DNA, RNA) and the 20 amino acids which serve as basic building blocks for proteins. The universality of the genetic code enables not only vertical gene transfer within the same species but also horizontal gene transfer across biological taxa, which require a high degree of standardization and interconnectivity. Although some minor alterations of the standard genetic code are found in nature (e.g., proteins containing non-conical amino acids exist in nature, and some organisms use alternated coding systems), all structurally deep chemistry changes within living systems are generally lethal, making the creation of artificial biological system an extremely difficult challenge.In this context, one of the great challenges for bioscience is the development of a strategy for expanding the standard basic chemical repertoire of living cells. Attempts to alter the meaning of the genetic information stored in DNA as an informational polymer by changing the chemistry of the polymer (i.e., xeno-nucleic acids) or by changes in the genetic code have already yielded successful results. In the future this should enable the partial or full redirection of the biological information flow to generate "new" version(s) of the genetic code derived from the "old" biological world.In addition to the scientific challenges, the attempt to increase biochemical diversity also raises important ethical and philosophical issues. Although promotors of this branch of synthetic biology highlight the many potential applications to come (e.g., novel tools for diagnostics and fighting infection diseases), such developments could also bring risks affecting social, political, and other structures of nearly all societies.
Collapse
Affiliation(s)
- Markus Schmidt
- Biofaction KG, Kundmanngasse 39/12, Vienna, 1030, Austria.
| | - Lei Pei
- Biofaction KG, Kundmanngasse 39/12, Vienna, 1030, Austria
| | - Nediljko Budisa
- AK Biokatalyse, Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623, Berlin, Germany
| |
Collapse
|
64
|
Pei L, Schmidt M. Synthetic Biology: From Genetic Engineering 2.0 to Responsible Research and Innovation. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Lei Pei
- Biofaction KG, Technology Assessment; Kundmanngasse 39/12 Wien 1030 Austria
| | - Markus Schmidt
- Biofaction KG, Technology Assessment; Kundmanngasse 39/12 Wien 1030 Austria
| |
Collapse
|
65
|
Gasse C, Zaarour M, Noppen S, Abramov M, Marlière P, Liekens S, De Strooper B, Herdewijn P. Modulation of BACE1 Activity by Chemically Modified Aptamers. Chembiochem 2018; 19:754-763. [PMID: 29327496 DOI: 10.1002/cbic.201700461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/10/2018] [Indexed: 11/10/2022]
Abstract
A modified DNA aptamer that binds BACE1, a therapeutic target involved in Alzheimer's disease has been developed. This ssXNA not only tightly binds to BACE1 but also inhibits its protease activity in vitro in the same range as a previously described unmodified aptamer. We report the in vitro selection of functional oligonucleotides incorporating two nucleobase modifications: 5-chlorouracil and 7-deazaadenine. The nucleoside analogue 5-chloro-2'-deoxyuridine has already been explored as a replacement for thymidine in a chemically modified genome of a bacterium. Thus, 5-chlorouracil modification is a good candidate to support genetic transfer in vivo as well as functional activity.
Collapse
Affiliation(s)
- Cécile Gasse
- Univ Evry, CNRS-UMR8030-Laboratoire iSSB, CEA, DRF, IG, Genoscope, Université Paris-Saclay, 5 rue Henri Desbruères, Évry, 91030, France
| | - Marwa Zaarour
- Univ Evry, CNRS-UMR8030-Laboratoire iSSB, CEA, DRF, IG, Genoscope, Université Paris-Saclay, 5 rue Henri Desbruères, Évry, 91030, France
| | - Sam Noppen
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Postbus 1043, 3000, Leuven, Belgium
| | - Mikhail Abramov
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Philippe Marlière
- The European Syndicate of Synthetic Scientists and Industrialists (TESSI), 81 rue Réaumur, 75002, Paris, France
| | - Sandra Liekens
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Postbus 1043, 3000, Leuven, Belgium
| | - Bart De Strooper
- VIB, Center for Brain & Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Dementia Research Institute (UK), University College London, Gower Street, WC1E 6BT, London, UK
| | - Piet Herdewijn
- Univ Evry, CNRS-UMR8030-Laboratoire iSSB, CEA, DRF, IG, Genoscope, Université Paris-Saclay, 5 rue Henri Desbruères, Évry, 91030, France.,Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
66
|
Kubyshkin V, Acevedo-Rocha CG, Budisa N. On universal coding events in protein biogenesis. Biosystems 2018; 164:16-25. [DOI: 10.1016/j.biosystems.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
|
67
|
Feldman AW, Fischer EC, Ledbetter MP, Liao JY, Chaput JC, Romesberg FE. A Tool for the Import of Natural and Unnatural Nucleoside Triphosphates into Bacteria. J Am Chem Soc 2018; 140:1447-1454. [PMID: 29338214 DOI: 10.1021/jacs.7b11404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleoside triphosphates play a central role in biology, but efforts to study these roles have proven difficult because the levels of triphosphates are tightly regulated in a cell and because individual triphosphates can be difficult to label or modify. In addition, many synthetic biology efforts are focused on the development of unnatural nucleoside triphosphates that perform specific functions in the cellular environment. In general, both of these efforts would be facilitated by a general means to directly introduce desired triphosphates into cells. Previously, we demonstrated that recombinant expression of a nucleoside triphosphate transporter from Phaeodactylum tricornutum (PtNTT2) in Escherichia coli functions to import triphosphates that are added to the media. Here, to explore the generality and utility of this approach, we report a structure-activity relationship study of PtNTT2. Using a conventional competitive uptake inhibition assay, we characterize the effects of nucleobase, sugar, and triphosphate modification, and then develop an LC-MS/MS assay to directly measure the effects of the modifications on import. Lastly, we use the transporter to import radiolabeled or 2'-fluoro-modified triphosphates and quantify their incorporation into DNA and RNA. The results demonstrate the general utility of the PtNTT2-mediated import of natural or modified nucleoside triphosphates for different molecular or synthetic biology applications.
Collapse
Affiliation(s)
- Aaron W Feldman
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Emil C Fischer
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael P Ledbetter
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jen-Yu Liao
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
68
|
Abstract
The central dogma processes of DNA replication, transcription, and translation are responsible for the maintenance and expression of every gene in an organism. An orthogonal central dogma may insulate genetic programs from host regulation and allow expansion in the roles of these processes within the cell.
Collapse
Affiliation(s)
- Chang C. Liu
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Chemistry, Cambridge University, Cambridge, UK
| | - Chris A. Voigt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
69
|
Bouzon M, Perret A, Loreau O, Delmas V, Perchat N, Weissenbach J, Taran F, Marlière P. A Synthetic Alternative to Canonical One-Carbon Metabolism. ACS Synth Biol 2017; 6:1520-1533. [PMID: 28467058 DOI: 10.1021/acssynbio.7b00029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One-carbon metabolism is an ubiquitous metabolic pathway that encompasses the reactions transferring formyl-, hydroxymethyl- and methyl-groups bound to tetrahydrofolate for the synthesis of purine nucleotides, thymidylate, methionine and dehydropantoate, the precursor of coenzyme A. An alternative cyclic pathway was designed that substitutes 4-hydroxy-2-oxobutanoic acid (HOB), a compound absent from known metabolism, for the amino acids serine and glycine as one-carbon donors. It involves two novel reactions, the transamination of l-homoserine and the transfer of a one-carbon unit from HOB to tetrahydrofolate releasing pyruvate as coproduct. Since canonical reactions regenerate l-homoserine from pyruvate by carboxylation and subsequent reduction, every one-carbon moiety made available for anabolic reactions originates from CO2. The HOB-dependent pathway was established in an Escherichia coli auxotroph selected for prototrophy using long-term cultivation protocols. Genetic, metabolic and biochemical evidence support the emergence of a functional HOB-dependent one-carbon pathway achieved with the recruitment of the two enzymes l-homoserine transaminase and HOB-hydroxymethyltransferase and of HOB as an essential metabolic intermediate. Escherichia coli biochemical reprogramming was achieved by minimally altering canonical metabolism and leveraging on natural selection mechanisms, thereby launching the resulting strain on an evolutionary trajectory diverging from all known extant species.
Collapse
Affiliation(s)
- Madeleine Bouzon
- CEA, Genoscope, 2 rue Gaston
Crémieux, 91000 Evry, France
- CNRS UMR8030 Génomique Métabolique, 2 rue Gaston Crémieux, 91000 Evry, France
- Université Evry Val d’Essone, 91000 Evry, France
- Université Paris-Saclay, 91000 Evry, France
| | - Alain Perret
- CEA, Genoscope, 2 rue Gaston
Crémieux, 91000 Evry, France
- CNRS UMR8030 Génomique Métabolique, 2 rue Gaston Crémieux, 91000 Evry, France
- Université Evry Val d’Essone, 91000 Evry, France
- Université Paris-Saclay, 91000 Evry, France
| | | | - Valérie Delmas
- CEA, Genoscope, 2 rue Gaston
Crémieux, 91000 Evry, France
- CNRS UMR8030 Génomique Métabolique, 2 rue Gaston Crémieux, 91000 Evry, France
- Université Evry Val d’Essone, 91000 Evry, France
- Université Paris-Saclay, 91000 Evry, France
| | - Nadia Perchat
- CEA, Genoscope, 2 rue Gaston
Crémieux, 91000 Evry, France
- CNRS UMR8030 Génomique Métabolique, 2 rue Gaston Crémieux, 91000 Evry, France
- Université Evry Val d’Essone, 91000 Evry, France
- Université Paris-Saclay, 91000 Evry, France
| | - Jean Weissenbach
- CEA, Genoscope, 2 rue Gaston
Crémieux, 91000 Evry, France
- CNRS UMR8030 Génomique Métabolique, 2 rue Gaston Crémieux, 91000 Evry, France
- Université Evry Val d’Essone, 91000 Evry, France
- Université Paris-Saclay, 91000 Evry, France
| | | | - Philippe Marlière
- Institute of Systems and Synthetic Biology, Génopole, 5 rue Desbruères, 91030 Evry Cedex, France
| |
Collapse
|
70
|
Abstract
Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code.
Collapse
|
71
|
Kubyshkin V, Budisa N. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how? Biotechnol J 2017; 12. [PMID: 28671771 DOI: 10.1002/biot.201600097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/19/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022]
Abstract
The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Germany
| | - Nediljko Budisa
- Biocatalysis group, Institute of Chemistry, Technical University of Berlin, Germany
| |
Collapse
|
72
|
Eremeeva E, Abramov M, Margamuljana L, Herdewijn P. Base-Modified Nucleic Acids as a Powerful Tool for Synthetic Biology and Biotechnology. Chemistry 2017; 23:9560-9576. [PMID: 28513881 DOI: 10.1002/chem.201700679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/10/2022]
Abstract
The ability of various nucleoside triphosphate analogues of deoxyguanosine and deoxycytidine with 7-deazadeoxyadenosine (A1 ) and 5-chlorodeoxyuridine (T1 ) to serve as substrates for Taq DNA polymerase was evaluated. The triphosphate set composed of A1 , T1 , and 7-deazadeoxyguanosine with either 5-methyldeoxycytidine or 5-fluorodeoxycytidine was successfully employed in the polymerase chain reaction (PCR) of 1.5 kb fragments as well as random oligonucleotide libraries. Another effective combination of triphosphates for the synthesis of a 1 kb PCR product was A1 , T1 , deoxyinosine, and 5-bromodeoxycytidine. In vivo experiments using an antibiotic-resistant gene containing the latter set demonstrated that the bacterial machinery accepts fully modified sequences as genetic templates. Moreover, the ability of the base-modified segments to selectively protect DNA from cleavage by restriction endonucleases was shown. This approach can be used to regulate the endonuclease cleavage pattern.
Collapse
Affiliation(s)
- Elena Eremeeva
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 box 1041, 3000, Leuven, Belgium
| | - Michail Abramov
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 box 1041, 3000, Leuven, Belgium
| | - Lia Margamuljana
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 box 1041, 3000, Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49 box 1041, 3000, Leuven, Belgium.,Université d'évry, CNRS-UMR8030/ Laboratoire iSSB, CEA, DRF, IG, Genoscope, Université Paris-Saclay, évry, 91000, Paris, France
| |
Collapse
|
73
|
Diafa S, Evéquoz D, Leumann CJ, Hollenstein M. Enzymatic Synthesis of 7',5'-Bicyclo-DNA Oligonucleotides. Chem Asian J 2017; 12:1347-1352. [PMID: 28371464 DOI: 10.1002/asia.201700374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/30/2017] [Indexed: 01/06/2023]
Abstract
The selection of artificial genetic polymers with tailor-made properties for their application in synthetic biology requires the exploration of new nucleosidic scaffolds that can be used in selection experiments. Herein, we describe the synthesis of a bicyclo-DNA triphosphate (i.e., 7',5'-bc-TTP) and show its potential to serve for the generation of new xenonucleic acids (XNAs) based on this scaffold. 7',5'-bc-TTP is a good substrate for Therminator DNA polymerase, and up to seven modified units can be incorporated into a growing DNA chain. In addition, this scaffold sustains XNA-dependent DNA synthesis and potentially also XNA-dependent XNA synthesis. However, DNA-dependent XNA synthesis on longer templates is hampered by competitive misincorporation of deoxyadenosine triphosphate (dATP) caused by the slow rate of incorporation of 7',5'-bc-TTP.
Collapse
Affiliation(s)
- Stella Diafa
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Damien Evéquoz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
74
|
Evéquoz D, Leumann CJ. Probing the Backbone Topology of DNA: Synthesis and Properties of 7',5'-Bicyclo-DNA. Chemistry 2017; 23:7953-7968. [PMID: 28262999 DOI: 10.1002/chem.201700435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Indexed: 01/18/2023]
Abstract
We describe the synthesis and pairing properties of the novel DNA analogue 7',5'-bicyclo(bc)-DNA. In this analogue, the point of attachment of the connecting phosphodiester group is switched from the 3' to the 7' position of the underlying bicyclic sugar unit and is thus in a topological position that is inaccessible in natural DNA. The corresponding phosphoramidite building blocks carrying all natural nucleobases were synthesized and incorporated into oligonucleotides. From Tm experiments of duplexes with complementary DNA and RNA we find that single modifications are generally well tolerated with some variability as to the nature of the nucleobase. Fully modified oligonucleotides show low affinity for RNA and DNA complements. However, they form antiparallel homo-duplexes with similar thermal stability as DNA. CD spectra of the homo-duplexes show distinct changes in the helix conformation compared to natural DNA. A conformational analysis at the ab initio level of the mononucleosides revealed two minimal energy structures which primarily deviate in the conformation of the cyclopentane ring. Molecular dynamics simulation of a 7',5'-bc-DNA homo-duplex revealed a right-handed structure with a smaller helical rise and a significantly wider minor groove compared to DNA. Interestingly, this duplex is characterized by an atypical, alternating 6'-endo/6'-exo conformational pattern of consecutive nucleotides which seems to be responsible for the poor binding to natural nucleic acids.
Collapse
Affiliation(s)
- Damien Evéquoz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
75
|
Future of the Genetic Code. Life (Basel) 2017; 7:life7010010. [PMID: 28264473 PMCID: PMC5370410 DOI: 10.3390/life7010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 11/17/2022] Open
Abstract
The methods for establishing synthetic lifeforms with rewritten genetic codes comprising non-canonical amino acids (NCAA) in addition to canonical amino acids (CAA) include proteome-wide replacement of CAA, insertion through suppression of nonsense codon, and insertion via the pyrrolysine and selenocysteine pathways. Proteome-wide reassignments of nonsense codons and sense codons are also under development. These methods enable the application of NCAAs to enrich both fundamental and applied aspects of protein chemistry and biology. Sense codon reassignment to NCAA could incur problems arising from the usage of anticodons as identity elements on tRNA, and possible misreading of NNY codons by UNN anticodons. Evidence suggests that the problem of anticodons as identity elements can be diminished or resolved through removal from the tRNA of all identity elements besides the anticodon, and the problem of misreading of NNY codons by UNN anticodon can be resolved by the retirement of both the UNN anticodon and its complementary NNA codon from the proteome in the event that a restrictive post-transcriptional modification of the UNN anticodon by host enzymes to prevent the misreading cannot be obtained.
Collapse
|
76
|
Winiger CB, Shaw RW, Kim MJ, Moses JD, Matsuura MF, Benner SA. Expanded Genetic Alphabets: Managing Nucleotides That Lack Tautomeric, Protonated, or Deprotonated Versions Complementary to Natural Nucleotides. ACS Synth Biol 2017; 6:194-200. [PMID: 27648724 DOI: 10.1021/acssynbio.6b00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
2,4-Diaminopyrimidine (trivially K) and imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (trivially X) form a nucleobase pair with Watson-Crick geometry as part of an artificially expanded genetic information system (AEGIS). Neither K nor X can form a Watson-Crick pair with any natural nucleobase. Further, neither K nor X has an accessible tautomeric form or a protonated/deprotonated state that can form a Watson-Crick pair with any natural nucleobase. In vitro experiments show how DNA polymerase I from E. coli manages replication of DNA templates with one K:X pair, but fails with templates containing two adjacent K:X pairs. In analogous in vivo experiments, E. coli lacking dKTP/dXTP cannot rescue chloramphenicol resistance from a plasmid containing two adjacent K:X pairs. These studies identify bacteria able to serve as selection environments for engineering cells that replicate AEGIS pairs that lack forms that are Watson-Crick complementary to any natural nucleobase.
Collapse
Affiliation(s)
- Christian B. Winiger
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| | - Mariko F. Matsuura
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd. Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd. Box 7, Alachua, Florida 32615, United States
| |
Collapse
|
77
|
Röthlisberger P, Levi-Acobas F, Hollenstein M. New synthetic route to ethynyl-dUTP: A means to avoid formation of acetyl and chloro vinyl base-modified triphosphates that could poison SELEX experiments. Bioorg Med Chem Lett 2017; 27:897-900. [PMID: 28089700 DOI: 10.1016/j.bmcl.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/10/2023]
Abstract
5-Ethynyl-2'-deoxyuridine is a common base-modified nucleoside analogue that has served in various applications including selection experiments for potent aptamers and in biosensing. The synthesis of the corresponding triphosphates involves a mild acidic deprotection step. Herein, we show that this deprotection leads to the formation of other nucleoside analogs which are easily converted to triphosphates. The modified nucleoside triphosphates are excellent substrates for numerous DNA polymerases under both primer extension and PCR conditions and could thus poison selection experiments by blocking sites that need to be further modified. The formation of these nucleoside analogs can be circumvented by application of a new synthetic route that is described herein.
Collapse
Affiliation(s)
- Pascal Röthlisberger
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR3523 Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
78
|
Eremeeva E, Abramov M, Marlière P, Herdewijn P. The 5-chlorouracil:7-deazaadenine base pair as an alternative to the dT:dA base pair. Org Biomol Chem 2017; 15:168-176. [DOI: 10.1039/c6ob02274j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 5-Cl-dU:7-deaza-dA base pair can be a substitute for the dT:dA base pair in an enzymatic replication process of 2 kb DNA.
Collapse
Affiliation(s)
- E. Eremeeva
- KU Leuven
- Rega Institute for Medical Research
- Medicinal Chemistry
- BE-3000 Leuven
- Belgium
| | - M. Abramov
- KU Leuven
- Rega Institute for Medical Research
- Medicinal Chemistry
- BE-3000 Leuven
- Belgium
| | | | - P. Herdewijn
- KU Leuven
- Rega Institute for Medical Research
- Medicinal Chemistry
- BE-3000 Leuven
- Belgium
| |
Collapse
|
79
|
Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem 2016; 60:393-410. [PMID: 27903826 PMCID: PMC5264511 DOI: 10.1042/ebc20160013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.
Collapse
Affiliation(s)
- Leticia Torres
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
| | - Antje Krüger
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Eszter Csibra
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Edoardo Gianni
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Vitor B Pinheiro
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
- Birkbeck, Department of Biological Sciences, University of London, Malet Street, WC1E 7HX, U.K
| |
Collapse
|
80
|
Mehta AP, Li H, Reed SA, Supekova L, Javahishvili T, Schultz PG. Replacement of 2'-Deoxycytidine by 2'-Deoxycytidine Analogues in the E. coli Genome. J Am Chem Soc 2016; 138:14230-14233. [PMID: 27762133 DOI: 10.1021/jacs.6b09661] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several modified bases have been observed in the genomic DNA of bacteriophages, prokaryotes, and eukaryotes that play a role in restriction systems and/or epigenetic regulation. In our efforts to understand the consequences of replacing a large fraction of a canonical nucleoside with a modified nucleoside, we previously replaced around 75% of thymidine (T) with 5'-hydroxymethyl-2'-deoxyuridine (5hmU) in the Escherichia coli genome. In this study, we engineered the pyrimidine nucleotide biosynthetic pathway using T4 bacteriophage genes to achieve approximately 63% replacement of 2'-deoxycytidine (dC) with 5-hydroxymethyl-2'-deoxycytidine (5hmC) in the E. coli genome and approximately 71% replacement in plasmids. We further engineered the glucose metabolic pathway to transform the 5hmC into glucosyl-5-hydroxymethyl-2'-deoxycytidine (5-gmC) and achieved 20% 5-gmC in the genome and 45% 5-gmC in plasmid DNA.
Collapse
Affiliation(s)
- Angad P Mehta
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Han Li
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sean A Reed
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lubica Supekova
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tsotne Javahishvili
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter G Schultz
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
81
|
Abstract
Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment.
Collapse
Affiliation(s)
- Anna J Simon
- Department of Chemistry & Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew D Ellington
- Department of Chemistry & Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
82
|
Chen T, Hongdilokkul N, Liu Z, Thirunavukarasu D, Romesberg FE. The expanding world of DNA and RNA. Curr Opin Chem Biol 2016; 34:80-87. [PMID: 27565457 DOI: 10.1016/j.cbpa.2016.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/04/2016] [Indexed: 01/07/2023]
Abstract
DNA and RNA are remarkable because they can both encode information and possess desired properties, including the ability to bind specific targets or catalyze specific reactions. Nucleotide modifications that do not interfere with enzymatic synthesis are now being used to bestow DNA or RNA with properties that further increase their utility, including phosphate and sugar modifications that increase nuclease resistance, nucleobase modifications that increase the range of activities possible, and even whole nucleobase replacement that results in selective pairing and the creation of unnatural base pairs that increase the information content. These modifications are increasingly being applied both in vitro and in vivo, including in efforts to create semi-synthetic organisms with altered or expanded genetic alphabets.
Collapse
Affiliation(s)
- Tingjian Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Narupat Hongdilokkul
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Zhixia Liu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Deepak Thirunavukarasu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA.
| |
Collapse
|
83
|
Danchin A, Fang G. Unknown unknowns: essential genes in quest for function. Microb Biotechnol 2016; 9:530-40. [PMID: 27435445 PMCID: PMC4993169 DOI: 10.1111/1751-7915.12384] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 01/18/2023] Open
Abstract
The experimental design of a minimal synthetic genome revealed the presence of a large number of genes without ascribed function, in part because the abstract laws of life must be implemented within ad hoc material contraptions. Creating a function needs recruitment of some pre‐existing structure and this reveals kludges in their set‐up and history. Here, we show that looking for functions as an engineer would help in discovery of a significant number of those, proposed together with conceptual handles allowing investigators to pursue this endeavour in other contexts.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, CHU Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Gang Fang
- Department of Biology, New York University Shanghai Campus, 1555 Century Avenue, Pudong New Area, Shanghai, 200122, China
| |
Collapse
|
84
|
Winiger CB, Kim MJ, Hoshika S, Shaw RW, Moses JD, Matsuura MF, Gerloff DL, Benner SA. Polymerase Interactions with Wobble Mismatches in Synthetic Genetic Systems and Their Evolutionary Implications. Biochemistry 2016; 55:3847-50. [DOI: 10.1021/acs.biochem.6b00533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian B. Winiger
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Shuichi Hoshika
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Mariko F. Matsuura
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Dietlind L. Gerloff
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation for
Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 7, Alachua, Florida 32615, United States
- Firebird Biomolecular
Sciences LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
85
|
Bar-Even A. Formate Assimilation: The Metabolic Architecture of Natural and Synthetic Pathways. Biochemistry 2016; 55:3851-63. [PMID: 27348189 DOI: 10.1021/acs.biochem.6b00495] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formate may become an ideal mediator between the physicochemical and biological realms, as it can be produced efficiently from multiple available sources, such as electricity and biomass, and serve as one of the simplest organic compounds for providing both carbon and energy to living cells. However, limiting the realization of formate as a microbial feedstock is the low diversity of formate-fixing enzymes and thereby the small number of naturally occurring formate-assimilation pathways. Here, the natural enzymes and pathways supporting formate assimilation are presented and discussed together with proposed synthetic routes that could permit growth on formate via existing as well as novel formate-fixing reactions. By considering such synthetic routes, the diversity of metabolic solutions for formate assimilation can be expanded dramatically, such that different host organisms, cultivation conditions, and desired products could be matched with the most suitable pathway. Astute application of old and new formate-assimilation pathways may thus become a cornerstone in the development of sustainable strategies for microbial production of value-added chemicals.
Collapse
Affiliation(s)
- Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology , Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
86
|
Mehta AP, Li H, Reed SA, Supekova L, Javahishvili T, Schultz PG. Replacement of Thymidine by a Modified Base in the Escherichia coli Genome. J Am Chem Soc 2016; 138:7272-5. [PMID: 27213685 DOI: 10.1021/jacs.6b03904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prokaryotic and eukaryotic genomic DNA is comprised of the four building blocks A, G, C, and T. We have begun to explore the consequences of replacing a large fraction or all of a nucleoside in genomic DNA with a modified nucleoside. As a first step we have investigated the possibility of replacement of T by 2'-deoxy-5-(hydroxymethyl)uridine (5hmU) in the genomic DNA of Escherichia coli. Metabolic engineering with phage genes followed by random mutagenesis enabled us to achieve approximately 75% replacement of T by 5hmU in the E. coli genome and in plasmids.
Collapse
Affiliation(s)
- Angad P Mehta
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Han Li
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sean A Reed
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lubica Supekova
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tsotne Javahishvili
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter G Schultz
- The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
87
|
Eremeeva E, Abramov M, Margamuljana L, Rozenski J, Pezo V, Marlière P, Herdewijn P. Chemical Morphing of DNA Containing Four Noncanonical Bases. Angew Chem Int Ed Engl 2016; 55:7515-9. [PMID: 27159019 DOI: 10.1002/anie.201601529] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/04/2023]
Abstract
The ability of alternative nucleic acids, in which all four nucleobases are substituted, to replicate in vitro and to serve as genetic templates in vivo was evaluated. A nucleotide triphosphate set of 5-chloro-2'-deoxyuridine, 7-deaza-2'-deoxyadenosine, 5-fluoro-2'-deoxycytidine, and 7-deaza-2'deoxyguanosine successfully underwent polymerase chain reaction (PCR) amplification using templates of different lengths (57 or 525mer) and Taq or Vent (exo-) DNA polymerases as catalysts. Furthermore, a fully morphed gene encoding a dihydrofolate reductase was generated by PCR using these fully substituted nucleotides and was shown to transform and confer trimethoprim resistance to E. coli. These results demonstrated that fully modified templates were accurately read by the bacterial replication machinery and provide the first example of a long fully modified DNA molecule being functional in vivo.
Collapse
Affiliation(s)
- Elena Eremeeva
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Michail Abramov
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Lia Margamuljana
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Valerie Pezo
- ISSB, Génopole, Genavenir 6, Equipe Xénome, 5 rue Henri Desbruères, 91030, Evry Cedex, France
| | - Philippe Marlière
- ISSB, Génopole, Genavenir 6, Equipe Xénome, 5 rue Henri Desbruères, 91030, Evry Cedex, France
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega, Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium. .,ISSB, Génopole, Genavenir 6, Equipe Xénome, 5 rue Henri Desbruères, 91030, Evry Cedex, France.
| |
Collapse
|
88
|
Eremeeva E, Abramov M, Margamuljana L, Rozenski J, Pezo V, Marlière P, Herdewijn P. Chemical Morphing of DNA Containing Four Noncanonical Bases. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Elena Eremeeva
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Michail Abramov
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Lia Margamuljana
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Jef Rozenski
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Valerie Pezo
- ISSB; Génopole; Genavenir 6; Equipe Xénome; 5 rue Henri Desbruères 91030 Evry Cedex France
| | - Philippe Marlière
- ISSB; Génopole; Genavenir 6; Equipe Xénome; 5 rue Henri Desbruères 91030 Evry Cedex France
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega; Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
- ISSB; Génopole; Genavenir 6; Equipe Xénome; 5 rue Henri Desbruères 91030 Evry Cedex France
| |
Collapse
|
89
|
Coevolution Theory of the Genetic Code at Age Forty: Pathway to Translation and Synthetic Life. Life (Basel) 2016; 6:life6010012. [PMID: 26999216 PMCID: PMC4810243 DOI: 10.3390/life6010012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 11/17/2022] Open
Abstract
The origins of the components of genetic coding are examined in the present study. Genetic information arose from replicator induction by metabolite in accordance with the metabolic expansion law. Messenger RNA and transfer RNA stemmed from a template for binding the aminoacyl-RNA synthetase ribozymes employed to synthesize peptide prosthetic groups on RNAs in the Peptidated RNA World. Coevolution of the genetic code with amino acid biosynthesis generated tRNA paralogs that identify a last universal common ancestor (LUCA) of extant life close to Methanopyrus, which in turn points to archaeal tRNA introns as the most primitive introns and the anticodon usage of Methanopyrus as an ancient mode of wobble. The prediction of the coevolution theory of the genetic code that the code should be a mutable code has led to the isolation of optional and mandatory synthetic life forms with altered protein alphabets.
Collapse
|
90
|
Schmidt M, de Lorenzo V. Synthetic bugs on the loose: containment options for deeply engineered (micro)organisms. Curr Opin Biotechnol 2016; 38:90-6. [PMID: 26874261 DOI: 10.1016/j.copbio.2016.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
Synthetic Biology (SynBio) has brought up again questions on the environmental fate of microorganisms carrying genetic modifications. The growing capacity of editing genomes for deployment of man-made programs opens unprecedented biotechnological opportunities. But the same exacerbate concerns regarding fortuitous or deliberate releases to the natural medium. Most approaches to tackle these worries involve endowing SynBio agents with containment devices for halting horizontal gene transfer and survival of the live agents only at given times and places. Genetic circuits and trophic restraint schemes have been proposed to this end in the pursuit of complete containment. The most promising include adoption of alternative genetic codes and/or dependency on xenobiotic amino acids and nucleotides. But the field has to still overcome serious bottlenecks.
Collapse
Affiliation(s)
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Cantoblanco-Madrid, Spain.
| |
Collapse
|
91
|
Abstract
Active containment systems are a major tool for reducing the uncertainty associated with the introduction of monocultures, genetically engineered or not, into target habitats for a large number of biotechnological applications (e.g., bioremediation, bioleaching, biopesticides, biofuels, biotransformations, live vaccines, etc.). While biological containment reduces the survival of the introduced organism outside the target habitat and/or upon completion of the projected task, gene containment strategies reduce the lateral spread of the key genetic determinants to indigenous microorganisms. In fundamental research, suicide circuits become relevant tools to address the role of gene transfer, mainly plasmid transfer, in evolution and how this transfer contributes to genome plasticity and to the rapid adaptation of microbial communities to environmental changes. Many lethal functions and regulatory circuits have been used and combined to design efficient containment systems. As many new genomes are being sequenced, novel lethal genes and regulatory elements are available, e.g., new toxin-antitoxin modules, and they could be used to increase further the current containment efficiencies and to expand containment to other organisms. Although the current containment systems can increase the predictability of genetically modified organisms in the environment, containment will never be absolute, due to the existence of mutations that lead to the appearance of surviving subpopulations. In this sense, orthogonal systems (xenobiology) appear to be the solution for setting a functional genetic firewall that will allow absolute containment of recombinant organisms.
Collapse
|
92
|
Matern H, Ried J, Braun M, Dabrock P. Living Machines. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-658-10988-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
93
|
Verseux CN, Paulino-Lima IG, Baqué M, Billi D, Rothschild LJ. Synthetic Biology for Space Exploration: Promises and Societal Implications. ETHICS OF SCIENCE AND TECHNOLOGY ASSESSMENT 2016. [DOI: 10.1007/978-3-319-21088-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
94
|
Abstract
Osmotic pressure influences cellular shape. In a growing cell, chemical reactions and dilution induce changes in osmolarity, which in turn influence the cellular shape. Using a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, we find that when the membrane is so flexible that its shape adjusts itself quasi-instantaneously to balance the osmotic pressure, the protocell either grows filamentous or fails to grow. This behavior is consistent with a mathematical proof. This suggests that filamentation may be a primitive growth mode resulting from the simple physical property of balanced osmotic pressure. We also find that growth is favored if some chemical species are only present inside the protocell, but not in the outside growth medium. Such an insulation requires specific chemical schemes. Modern evolved cells such as E. coli meet these requirements through active transport mechanisms such as the phosphotransferase system.
Collapse
Affiliation(s)
- Erwan Bigan
- Laboratoire d'Informatique (LIX), École Polytechnique, F-91128 Palaiseau Cedex, France. Laboratoire Matière et Systèmes Complexes, UMR7057 CNRS, Université Paris Diderot, F-75205 Paris Cedex 13, France
| | | | | |
Collapse
|
95
|
Anosova I, Kowal EA, Dunn MR, Chaput JC, Van Horn WD, Egli M. The structural diversity of artificial genetic polymers. Nucleic Acids Res 2015; 44:1007-21. [PMID: 26673703 PMCID: PMC4756832 DOI: 10.1093/nar/gkv1472] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space.
Collapse
Affiliation(s)
- Irina Anosova
- The Biodesign Institute, Virginia G. Piper Center for Personalized Diagnostics, School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Ewa A Kowal
- Department of Biochemistry, Center for Structural Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, School of Medicine, Nashville, TN 37232-0146, USA
| | - Matthew R Dunn
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - Wade D Van Horn
- The Biodesign Institute, Virginia G. Piper Center for Personalized Diagnostics, School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ 85287-5001, USA
| | - Martin Egli
- Department of Biochemistry, Center for Structural Biology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|
96
|
|
97
|
Acevedo-Rocha CG, Schulze-Makuch D. How Many Biochemistries Are Available To Build a Cell? Chembiochem 2015; 16:2137-9. [DOI: 10.1002/cbic.201500379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Carlos G. Acevedo-Rocha
- Max-Planck-Institut für Terrestrische Mikrobiologie; Small Prokaryotic RNA Biology Group; Karl-von-Frisch-Strasse 10 35043 Marburg Germany
- Landes-Offensive zur Entwicklung Wissenschafltich-Ökonomischer Exzellenz (LOEWE); Zentrum für Synthetische Mikrobiologie (SYNMIKRO); Philipps-Universität Marburg; Hans-Meerwein-Strasse 6 35042 Marburg Germany
| | - Dirk Schulze-Makuch
- School of the Environment; Washington State University; Webster Hall 1148 Pullman WA 99163 USA
- Beyond Center; Arizona State University; P. O. Box 871504 Tempe AZ 85827 USA
- Center for Astronomy and Astrophysics; Technical University Berlin; Hardenbergstrasse 36 10623 Berlin Germany
| |
Collapse
|
98
|
Affiliation(s)
- Kristin Hagen
- EA European Academy of Technology and Innovation Assessment GmbH, Bad Neuenahr-Ahrweiler, Germany
| | - Margret Engelhard
- EA European Academy of Technology and Innovation Assessment GmbH, Bad Neuenahr-Ahrweiler, Germany
| | - Georg Toepfer
- Center for Literary and Cultural Research Berlin, Berlin, Germany
| |
Collapse
|
99
|
Hoesl MG, Oehm S, Durkin P, Darmon E, Peil L, Aerni HR, Rappsilber J, Rinehart J, Leach D, Söll D, Budisa N. Chemical Evolution of a Bacterial Proteome. Angew Chem Int Ed Engl 2015; 54:10030-4. [PMID: 26136259 PMCID: PMC4782924 DOI: 10.1002/anie.201502868] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 11/09/2022]
Abstract
We have changed the amino acid set of the genetic code of Escherichia coli by evolving cultures capable of growing on the synthetic noncanonical amino acid L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa) as a sole surrogate for the canonical amino acid L-tryptophan (Trp). A long-term cultivation experiment in defined synthetic media resulted in the evolution of cells capable of surviving Trp→[3,2]Tpa substitutions in their proteomes in response to the 20,899 TGG codons of the E. coli W3110 genome. These evolved bacteria with new-to-nature amino acid composition showed robust growth in the complete absence of Trp. Our experimental results illustrate an approach for the evolution of synthetic cells with alternative biochemical building blocks.
Collapse
Affiliation(s)
- Michael Georg Hoesl
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin (Germany)
| | - Stefan Oehm
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin (Germany)
| | - Patrick Durkin
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin (Germany)
| | - Elise Darmon
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh (UK)
| | - Lauri Peil
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, 4.17 Michael Swann Building, Edinburgh EH9 3BF (UK)
| | - Hans-Rudolf Aerni
- Systems Biology Institute, Yale University, West Haven, CT 06516 (USA)
| | - Juri Rappsilber
- Institut für Biotechnolgie, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin (Germany)
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, 4.17 Michael Swann Building, Edinburgh EH9 3BF (UK)
| | - Jesse Rinehart
- Systems Biology Institute, Yale University, West Haven, CT 06516 (USA)
| | - David Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh (UK)
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University, New Haven, CT 06520 (USA)
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin (Germany).
| |
Collapse
|
100
|
Hoesl MG, Oehm S, Durkin P, Darmon E, Peil L, Aerni HR, Rappsilber J, Rinehart J, Leach D, Söll D, Budisa N. Chemische Evolution eines bakteriellen Proteoms. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|