51
|
Jiang Y, Yang M, Wu Y, López-Arteaga R, Rogers CR, Weiss EA. Chemo- and Stereoselective Intermolecular [2+2] Photocycloaddition of Conjugated Dienes using Colloidal Nanocrystal Photocatalysts. CHEM CATALYSIS 2021; 1:106-116. [PMID: 34337591 DOI: 10.1016/j.checat.2021.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The use of visible-light photosensitizers to power [2+2] photocycloadditions that produce complex tetrasubstituted cyclobutanes is a true success of photochemistry, but the scope of this reaction has been limited to activated α, β-unsaturated carbonyls. This paper describes selective intermolecular homo- and hetero-[2+2] photocycloadditions of terminal and internal aryl conjugated dienes - substrates historically unsuited for this reaction because of their multiple possible reaction pathways and product configurations - through triplet-triplet energy transfer from CdSe nanocrystal photocatalysts, to generate valuable and elusive syn-trans aryl vinylcyclobutanes. The negligible singlet-triplet splitting of nanocrystals' excited states allows them to drive the [2+2] pathway over the competing [4+2] photoredox pathway, a chemoselectivity not achievable with any known molecular photosensitizer. Reversible tethering of the cyclobutane product to the nanocrystal surface results in near quantitative yield of the syn-trans product. Flat colloidal CdSe nanoplatelets produce cyclobutanes coupled at the terminal alkenes of component dienes with up to 89% regioselectivity.
Collapse
Affiliation(s)
- Yishu Jiang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Muwen Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Yue Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Rafael López-Arteaga
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Cameron R Rogers
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA.,Lead contact
| |
Collapse
|
52
|
Zhang JL, Ye WL, Zhang J, Hu XQ, Xu PF. Enantioselective Construction of Polycyclic Indazole Skeletons Bearing Five Consecutive Chiral Centers through an Asymmetric Triple-Reaction Sequence. Org Lett 2021; 23:5033-5038. [PMID: 34138570 DOI: 10.1021/acs.orglett.1c01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel approach for the asymmetric construction of polycyclic indazole skeletons via enamine-imine activation and PCET activation was developed by merging organocatalysis with photocatalysis through an asymmetric triple-reaction sequence. In this process, five C-X bonds and five consecutive chiral centers were efficiently constructed. Differently substituted polycyclic indazole deriatives were successfully constructed with satisfactory results under mild conditions.
Collapse
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wen-Long Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
53
|
Sicignano M, Rodríguez RI, Alemán J. Recent Visible Light and Metal Free Strategies in [2+2] and [4+2] Photocycloadditions. European J Org Chem 2021; 2021:3303-3321. [PMID: 34248414 PMCID: PMC8252406 DOI: 10.1002/ejoc.202100518] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Indexed: 01/17/2023]
Abstract
When aiming to synthesize molecules with elevated molecular complexity starting from relatively simple starting materials, photochemical transformations represent an open avenue to circumvent analogous multistep procedures. Specifically, light-mediated cycloadditions remain as powerful tools to generate new bonds begotten from non-very intuitive disconnections, that alternative thermal protocols would not offer. In response to the current trend in both industrial and academic research pointing towards green and sustainable processes, several strategies that meet these requirements are currently available in the literature. This Minireview summarizes [2+2] and [4+2] photocycloadditions that do not require the use of metal photocatalysts by means of alternative strategies. It is segmented according to the cycloaddition type in order to give the reader a friendly approach and we primarily focus on the most recent developments in the field carried out using visible light, a general overview of the mechanism in each case is offered as well.
Collapse
Affiliation(s)
- Marina Sicignano
- Organic Chemistry DepartmentMódulo 1Universidad Autónoma de Madrid28049MadridSpain
| | - Ricardo I. Rodríguez
- Organic Chemistry DepartmentMódulo 1Universidad Autónoma de Madrid28049MadridSpain
| | - José Alemán
- Organic Chemistry DepartmentMódulo 1Universidad Autónoma de Madrid28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| |
Collapse
|
54
|
Barday M, Bouillac P, Coquerel Y, Amatore M, Constantieux T, Rodriguez J. Enantioselective Organocatalytic Syntheses and Ring‐Expansions of Cyclobutane Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Manuel Barday
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Pierre Bouillac
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Yoann Coquerel
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Muriel Amatore
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| | | | - Jean Rodriguez
- Aix-Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
55
|
Photocatalytic three-component asymmetric sulfonylation via direct C(sp 3)-H functionalization. Nat Commun 2021; 12:2377. [PMID: 33888721 PMCID: PMC8062459 DOI: 10.1038/s41467-021-22690-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/25/2021] [Indexed: 01/27/2023] Open
Abstract
The direct and selective C(sp3)-H functionalization of cycloalkanes and alkanes is a highly useful process in organic synthesis owing to the low-cost starting materials, the high step and atom economy. Its application to asymmetric catalysis, however, has been scarcely explored. Herein, we disclose our effort toward this goal by incorporation of dual asymmetric photocatalysis by a chiral nickel catalyst and a commercially available organophotocatalyst with a radical relay strategy through sulfur dioxide insertion. Such design leads to the development of three-component asymmetric sulfonylation involving direct functionalization of cycloalkanes, alkanes, toluene derivatives or ethers. The photochemical reaction of a C(sp3)-H precursor, a SO2 surrogate and a common α,β-unsaturated carbonyl compound proceeds smoothly under mild conditions, delivering a wide range of biologically interesting α-C chiral sulfones with high regio- and enantioselectivity (>50 examples, up to >50:1 rr and 95% ee). This method is applicable to late-stage functionalization of bioactive molecules, and provides an appealing access to enantioenriched compounds starting from the abundant hydrocarbon compounds.
Collapse
|
56
|
Zhang JL, Liu JY, Xu GQ, Luo YC, Lu H, Tan CY, Hu XQ, Xu PF. One-Pot Enantioselective Construction of Polycyclic Tetrahydroquinoline Scaffolds through Asymmetric Organo/Photoredox Catalysis via Triple-Reaction Sequence. Org Lett 2021; 23:3287-3293. [DOI: 10.1021/acs.orglett.1c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Yu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Chang-Yin Tan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
57
|
Martínez-Gualda AM, Domingo-Legarda P, Rigotti T, Díaz-Tendero S, Fraile A, Alemán J. Asymmetric [2+2] photocycloaddition via charge transfer complex for the synthesis of tricyclic chiral ethers. Chem Commun (Camb) 2021; 57:3046-3049. [PMID: 33625423 DOI: 10.1039/d1cc00035g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The asymmetric synthesis of chiral polycyclic ethers by an intramolecular [2+2] photocycloaddition is described. This process proceeded through a photocatalytically active iminium ion-based charge transfer (CT) complex under visible light irradiation. In this way a stereocontrolled [2+2] photocycloaddition is enabled leading to tricyclic products with good enantiomeric ratios.
Collapse
|
58
|
Li X, Großkopf J, Jandl C, Bach T. Enantioselective, Visible Light Mediated Aza Paternò–Büchi Reactions of Quinoxalinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
59
|
Bach T, Li X, Jandl C. Synthesis of Azocane- and Oxocane-Annulated Furans by a [2+2] Photocycloaddition–Ring-Opening Cascade. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1705957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe title compounds were synthesized from readily available quinolone and coumarin derivatives by a cascade reaction (12 examples, 90–98% yield). The cascade comprised a [2+2] photocycloaddition which occurred upon sensitized irradiation at λ = 420 nm (or direct UV irradiation at λ = 366 nm) and a subsequent acid-catalyzed ring-opening reaction. A variety of substituents are compatible with the conditions and a 3-alkyl group in the coumarin (or quinolone) is crucial to achieve a high chemoselectivity. Key to the success of the ring opening is the formation of a 4,5,5a-trihydrocyclobuta-2H-furan containing a strained bridgehead double bond which stems from the allenyl group tethered to the 4-position of the starting materials.
Collapse
Affiliation(s)
- Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München
| | | | | |
Collapse
|
60
|
Liu J, Wei Y, Shi M. Mechanistic Studies on Propargyl
Alcohol‐Tethered
Alkylidenecyclopropane with Aryldiazonium Salt Initiated by Visible Light. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen Guangdong 518000 China
| |
Collapse
|
61
|
Zhou TP, Zhong F, Wu Y, Liao RZ. Regioselectivity and stereoselectivity of intramolecular [2 + 2] photocycloaddition catalyzed by chiral thioxanthone: a quantum chemical study. Org Biomol Chem 2021; 19:1532-1540. [DOI: 10.1039/d0ob02330b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chiral photosensitizer-catalyzed stereoselective olefin cyclization has shown its significance in organic synthesis.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Fangrui Zhong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Yuzhou Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Rong-Zhen Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| |
Collapse
|
62
|
Xie X, Pan H, Zhou TP, Han MY, Wang L, Geng X, Ma Y, Liao RZ, Wang ZM, Yang J, Li P. ortho-Ethynyl group assisted regioselective and diastereoselective [2 + 2] cross-photocycloaddition of alkenes under photocatalyst-, additive-, and solvent-free conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo01017d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A highly regioselective and diastereoselective [2 + 2]-cross-photocycloaddition between electron-poor and electron-rich/electron-neutral alkenes under visible-light irradiation without a photocatalyst, additive and solvent was developed.
Collapse
Affiliation(s)
- Xiaofei Xie
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hong Pan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Tai-Ping Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Man-Yi Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Xiao Geng
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhi-Ming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
63
|
Gong L, Li Y, Ye Z, Cai J. Visible-Light-Promoted Asymmetric Catalysis by Chiral Complexes of First-Row Transition Metals. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/a-1344-2473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractThis short review presents an overview of visible-light-driven asymmetric catalysis by chiral complexes of first-row transition metals. The processes described here include dual catalysis by a chiral complex of copper, nickel, cobalt, or chromium and an additional photoredox or energy-transfer catalyst, and bifunctional catalysis by a single chiral copper or nickel catalyst. These methods allow valuable transformations with high functional group compatibility. They provide stereoselective construction of carbon–carbon or carbon–heteroatom bonds under mild conditions, and produce a diverse range of previously unknown enantioenriched compounds.1 Introduction2 Nickel-Based Photocatalytic Asymmetric Catalysis3 Copper-Based Photocatalytic Asymmetric Catalysis4 Photocatalytic Asymmetric Catalysis by Chiral Complexes of Cobalt or Chromium5 Conclusion
Collapse
|
64
|
Li X, Großkopf J, Jandl C, Bach T. Enantioselective, Visible Light Mediated Aza Paternò-Büchi Reactions of Quinoxalinones. Angew Chem Int Ed Engl 2020; 60:2684-2688. [PMID: 33084097 PMCID: PMC7898282 DOI: 10.1002/anie.202013276] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 02/04/2023]
Abstract
3-Substituted quinoxalin-2(1H)-ones and various aryl-substituted or tethered olefins underwent an enantioselective, inter- or intramolecular aza Paternò-Büchi reaction upon irradiation at λ=420 nm in the presence of a chiral sensitizer (10 mol %). For the intermolecular reaction with 1-arylethenes as olefin components, the scope of the reaction was studied (14 examples, 50-99 % yield, 86-98 % ee). The absolute and relative configuration of the products were elucidated by single-crystal X-ray crystallography. The reaction is suggested to occur by triplet energy transfer in a hydrogen-bonded 1:1 complex between the imine substrate and the catalyst. The intramolecular cycloaddition, consecutive reactions of the product azetidines, and an alternative reaction mode of quinoxalinones were investigated in preliminary experiments.
Collapse
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
65
|
Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Photochemically Induced Ring Opening of Spirocyclopropyl Oxindoles: Evidence for a Triplet 1,3‐Diradical Intermediate and Deracemization by a Chiral Sensitizer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Roger J. Kutta
- Institut für Physikalische und Theoretische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Andreas Bauer
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
66
|
Semakin AN, Nelyubina YV, Ioffe SL, Sukhorukov AY. 2,4,9‐Triazaadamantanes with “Clickable” Groups: Synthesis, Structure and Applications as Tripodal Platforms. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Artem N. Semakin
- Laboratory of organic and metal‐organic nitrogen‐oxygen systems N. D. Zelinsky Institute of Organic Chemistry Leninsky prospect, 47 119991 Moscow Russia
| | - Yulia V. Nelyubina
- Center for molecular composition studies A. N. Nesmeyanov Institute of Organoelement Compounds Vavilov str. 28 119991 Moscow Russia
| | - Sema L. Ioffe
- Laboratory of organic and metal‐organic nitrogen‐oxygen systems N. D. Zelinsky Institute of Organic Chemistry Leninsky prospect, 47 119991 Moscow Russia
| | - Alexey Yu. Sukhorukov
- Laboratory of organic and metal‐organic nitrogen‐oxygen systems N. D. Zelinsky Institute of Organic Chemistry Leninsky prospect, 47 119991 Moscow Russia
- Department of Innovational Materials and Technologies Chemistry Plekhanov Russian University of Economics Stremyanny per. 36 117997 Moscow Russia
| |
Collapse
|
67
|
Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat Chem 2020; 12:990-1004. [DOI: 10.1038/s41557-020-00561-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/03/2020] [Indexed: 01/28/2023]
|
68
|
Prentice C, Morrisson J, Smith AD, Zysman-Colman E. Recent developments in enantioselective photocatalysis. Beilstein J Org Chem 2020; 16:2363-2441. [PMID: 33082877 PMCID: PMC7537410 DOI: 10.3762/bjoc.16.197] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023] Open
Abstract
Enantioselective photocatalysis has rapidly grown into a powerful tool for synthetic chemists. This review describes the various strategies for creating enantioenriched products through merging enantioselective catalysis and photocatalysis, with a focus on the most recent developments and a particular interest in the proposed mechanisms for each. With the aim of understanding the scope of each strategy, to help guide and inspire further innovation in this field.
Collapse
Affiliation(s)
- Callum Prentice
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| | - James Morrisson
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK102NA, United Kingdom
| | - Andrew D Smith
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| |
Collapse
|
69
|
Lyu J, Claraz A, Vitale MR, Allain C, Masson G. Preparation of Chiral Photosensitive Organocatalysts and Their Application for the Enantioselective Synthesis of 1,2-Diamines. J Org Chem 2020; 85:12843-12855. [PMID: 32957790 DOI: 10.1021/acs.joc.0c01931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chiral phosphoric acid based organocatalysis and visible-light photocatalysis have both emerged as promising technologies for the sustainable production of fine chemicals. In this context, we have envisioned the design and the synthesis of a new class of chimeric catalytic entities that would feature both catalytic capabilities. Given their multitask nature, such catalysts would be particularly attractive for the development of new catalytic transformations, tandem processes in particular. Toward this goal, several BINOL-based chiral phosphoric acid backbones presenting one or two visible-light-sensitive thioxanthone moieties have been prepared and studied. The utility of these new photoactive chiral organocatalysts is then demonstrated in the enantioselective tandem three-component electrophilic amination of enecarbamates. Of note, the C1-symmetric organo/photocatalyst has shown a better catalytic activity than those presenting a C2 symmetry.
Collapse
Affiliation(s)
- Jiyuan Lyu
- Institut de Chimie des Substances Naturelles, Université Paris Saclay, CNRS, UPR2301, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198 Cedex, France.,Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles, Université Paris Saclay, CNRS, UPR2301, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| | - Maxime R Vitale
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Clémence Allain
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, Université Paris Saclay, CNRS, UPR2301, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| |
Collapse
|
70
|
Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Photochemically Induced Ring Opening of Spirocyclopropyl Oxindoles: Evidence for a Triplet 1,3-Diradical Intermediate and Deracemization by a Chiral Sensitizer. Angew Chem Int Ed Engl 2020; 59:21640-21647. [PMID: 32757341 PMCID: PMC7756555 DOI: 10.1002/anie.202008384] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/23/2020] [Indexed: 12/17/2022]
Abstract
The photochemical deracemization of spiro[cyclopropane‐1,3′‐indolin]‐2′‐ones (spirocyclopropyl oxindoles) was studied. The corresponding 2,2‐dichloro compound is configurationally labile upon direct irradiation at λ=350 nm and upon irradiation at λ=405 nm in the presence of achiral thioxanthen‐9‐one as the sensitizer. The triplet 1,3‐diradical intermediate generated in the latter reaction was detected by transient absorption spectroscopy and its lifetime determined (τ=22 μs). Using a chiral thioxanthone or xanthone, with a lactam hydrogen bonding site as a photosensitizer, allowed the deracemization of differently substituted chiral spirocyclopropyl oxindoles with yields of 65–98 % and in 50–85 % ee (17 examples). Three mechanistic contributions were identified to co‐act favorably for high enantioselectivity: the difference in binding constants to the chiral thioxanthone, the smaller molecular distance in the complex of the minor enantiomer, and the lifetime of the intermediate 1,3‐diradical.
Collapse
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Roger J Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Andreas Bauer
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
71
|
Cage-confined photocatalysis for wide-scope unusually selective [2 + 2] cycloaddition through visible-light triplet sensitization. Nat Commun 2020; 11:4675. [PMID: 32938933 PMCID: PMC7494878 DOI: 10.1038/s41467-020-18487-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Light-induced [2 + 2] cycloaddition is the most straightforward way to generate cyclobutanes, which are core structures of many natural products, drugs and bioactive compounds. Despite continuous advances in selective [2 + 2] cycloaddition research, general method for intermolecular photocatalysis of acyclic olefins with specific regio- and diastereoselectivity, for example, syn-head-to-head (syn-HH) cyclobutane derivatives, is still lack of development but highly desired. Herein, we report a cage-confined photocatalytic protocol to enable unusual intermolecular [2 + 2] cycloaddition for α,β-unsaturated carbonyl compounds. The syn-HH diastereomers are readily generated with diastereoselectivity up to 99%. The cage-catalyst is highly efficient and robust, covering a diverse substrate range with excellent substituent tolerance. The mimic-enzyme catalysis is proposed through a host-guest mediated procedure expedited by aqueous phase transition of reactant and product, where the supramolecular cage effect plays an important role to facilitate substrates inclusion and pre-orientation, offering a promising avenue for general and eco-friendly cycloaddition photocatalysis with special diastereoselectivity. Light-induced [2 + 2] cycloaddition is the most efficient way to generate cyclobutanes, while suffering from limitations of specific selectivity. Here the authors report a cage-confined photocatalytic [2 + 2] cycloaddition to enable the unusual production of syn-head-to-head cyclobutane derivatives selectively.
Collapse
|
72
|
Chen Y, Wang Y, Wang S, Ma YY, Zhao DG, Zhan R, Huang H. Asymmetric Construction of Cyclobutanes via Direct Vinylogous Michael Addition/Cyclization of β,γ-Unsaturated Amides. Org Lett 2020; 22:7135-7140. [DOI: 10.1021/acs.orglett.0c02488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yuzhen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yichen Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shuzhong Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan-Yan Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Deng-Gao Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huicai Huang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
73
|
Yakubov S, Barham JP. Photosensitized direct C-H fluorination and trifluoromethylation in organic synthesis. Beilstein J Org Chem 2020; 16:2151-2192. [PMID: 32952732 PMCID: PMC7476599 DOI: 10.3762/bjoc.16.183] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The importance of fluorinated products in pharmaceutical and medicinal chemistry has necessitated the development of synthetic fluorination methods, of which direct C-H fluorination is among the most powerful. Despite the challenges and limitations associated with the direct fluorination of unactivated C-H bonds, appreciable advancements in manipulating the selectivity and reactivity have been made, especially via transition metal catalysis and photochemistry. Where transition metal catalysis provides one strategy for C-H bond activation, transition-metal-free photochemical C-H fluorination can provide a complementary selectivity via a radical mechanism that proceeds under milder conditions than thermal radical activation methods. One exciting development in C-F bond formation is the use of small-molecule photosensitizers, allowing the reactions i) to proceed under mild conditions, ii) to be user-friendly, iii) to be cost-effective and iv) to be more amenable to scalability than typical photoredox-catalyzed methods. In this review, we highlight photosensitized C-H fluorination as a recent strategy for the direct and remote activation of C-H (especially C(sp3)-H) bonds. To guide the readers, we present the developing mechanistic understandings of these reactions and exemplify concepts to assist the future planning of reactions.
Collapse
Affiliation(s)
- Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
74
|
Elliott LD, Kayal S, George MW, Booker-Milburn K. Rational Design of Triplet Sensitizers for the Transfer of Excited State Photochemistry from UV to Visible. J Am Chem Soc 2020; 142:14947-14956. [PMID: 32786778 DOI: 10.1021/jacs.0c05069] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time Dependent Density Functional Theory has been used to assist the design and synthesis of a series thioxanthone triplet sensitizers. Calculated energies of the triplet excited state (ET) informed both the type and position of auxochromes placed on the thioxanthone core, enabling fine-tuning of the UV-vis absorptions and associated triplet energies. The calculated results were highly consistent with experimental observation in both the order of the λmax and ET values. The synthesized compounds were then evaluated for their efficacies as triplet sensitizers in a variety of UV and visible light preparative photochemical reactions. The results of this study exceeded expectations; in particular [2 + 2] cycloaddition chemistry that had previously been sensitized in the UV was found to undergo cycloaddition at 455 nm (blue) with a 2- to 9-fold increase in productivity (g/h) relative to input power. This study demonstrates the ability of powerful modern computational methods to aid in the design of successful and productive triplet sensitized photochemical reactions.
Collapse
Affiliation(s)
- Luke D Elliott
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Surajit Kayal
- School of Chemistry, University of Nottingham, University Park,Nottingham NG7 2RD, United Kingdom
| | - Michael W George
- School of Chemistry, University of Nottingham, University Park,Nottingham NG7 2RD, United Kingdom.,Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Kevin Booker-Milburn
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
75
|
Jiang Y, Weiss EA. Colloidal Quantum Dots as Photocatalysts for Triplet Excited State Reactions of Organic Molecules. J Am Chem Soc 2020; 142:15219-15229. [DOI: 10.1021/jacs.0c07421] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yishu Jiang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Emily A. Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
76
|
Thioxanthone Derivatives as a New Class of Organic Photocatalysts for Photopolymerisation Processes and the 3D Printing of Photocurable Resins under Visible Light. Catalysts 2020. [DOI: 10.3390/catal10080903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the present paper, novel thioxanthone-based compounds were synthesised and evaluated as a component of photoredox catalysts/photoinitiating systems for the free-radical polymerisation (FRP) of acrylates and the ring-opening cationic polymerisation (CP) of epoxy monomers. The performance of the obtained thioxanthones in two- and three-component photoinitiating systems, in combination with amines, iodonium or sulphonium salt, as well as with alkyl halide, for photopolymerisation processes upon exposure to light emitting diodes (LEDs) with a maximum emission of 405 nm and 420 nm, was investigated. The studied compounds act also as one-component free-radical photoinitiators. Fourier transform real-time infrared spectroscopy was used to monitor the kinetics of disappearance of the functional groups of the monomers during photoinitiated polymerisation. Excellent photoinitiating efficiency and high final conversions of functional groups were observed. Moreover, the influence of thioxanthone skeleton substitution on photoinitiating efficiency was discussed. The photochemical mechanism was also investigated through cyclic voltammetry. It was discovered that thioxanthone derivatives can be used as a metal-free photoredox catalyst active for both oxidative and reductive cycles. Furthermore, a photopolymerizable system based on novel thioxanthone derivatives in a stereolithography three-dimensional (3D) printing technology under visible sources of light was used. The effects of photoinitiator type system and monomer type in photoresins during 3D printing processes were explored. The outcome of this research is the development of high-performance visible photosensitive resins with improved photosensitivity obtained thanks to the development of entirely novel photoinitiating systems specifically adapted for this application.
Collapse
|
77
|
|
78
|
Plaza M, Jandl C, Bach T. Photochemical Deracemization of Allenes and Subsequent Chirality Transfer. Angew Chem Int Ed Engl 2020; 59:12785-12788. [PMID: 32390291 PMCID: PMC7537568 DOI: 10.1002/anie.202004797] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 12/29/2022]
Abstract
Trisubstituted allenes with a 3-(1'-alkenylidene)-pyrrolidin-2-one motif were successfully deracemized (13 examples, 86-98 % ee) employing visible light (λ=420 nm) and a chiral triplet sensitizer as the catalyst (2.5 mol %). The photocatalyst likely operates by selective recognition of one allene enantiomer via hydrogen bonds and by a triplet-sensitized racemization process. Even a tetrasubstituted allene (45 % ee) and a seven-membered 3-(1'-alkenylidene)-azepan-2-one (62 % ee) could be enantiomerically enriched under the chosen conditions. It was shown that the axial chirality of the allenes can be converted into point chirality by a Diels-Alder (94-97 % ee) or a bromination reaction (91 % ee). Ring opening of the five-membered pyrrolidin-2-one was achieved without significantly compromising the integrity of the chirality axis (92 % ee).
Collapse
Affiliation(s)
- Manuel Plaza
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| |
Collapse
|
79
|
Saha D. Catalytic Enantioselective Radical Transformations Enabled by Visible Light. Chem Asian J 2020; 15:2129-2152. [PMID: 32463981 DOI: 10.1002/asia.202000525] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Visible light has been recognized as an economical and environmentally benign source of energy that enables chemoselective molecular activation of chemical reactions and hence reveal a new horizon for the design and discovery of novel chemical transformations. On the other hand, asymmetric catalysis represents an economic method to satisfy the increasing need for enantioenriched compounds in the chemical and pharmaceutical industries. Therefore, combining visible light photocatalysis with asymmetric catalysis creates a wider range of opportunities for the development of mechanistically unique reaction schemes. However, there arise two main problems like undesirable photochemical background reactions and difficulties in controlling the stereochemistry with highly reactive photochemical intermediates which can pose a serious challenge to the development of asymmetric visible light photocatalysis. In recent years, several methods have been developed to overcome these challenges. This review summarizes the recent advances in visible light-induced enantioselective reactions. We divide our discussion into four categories: Asymmetric photoredox organocatalysis, asymmetric transition metal photoredox catalysis, asymmetric photoredox Lewis acid catalysis and asymmetric photoinduced energy transfer catalysis. Special emphasis has been given to different catalytic activation modes that enable the construction of challenging carbon-carbon and carbon-heteroatom bond in an enantioselective fashion. A brief analysis of substrate scope and limitation as well as reaction mechanism of these reactions has been included.
Collapse
Affiliation(s)
- Debajyoti Saha
- Department of Chemistry, Krishnagar Govt. College, Krishnagar, Nadia, 741101, India
| |
Collapse
|
80
|
Plaza M, Jandl C, Bach T. Photochemical Deracemization of Allenes and Subsequent Chirality Transfer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Manuel Plaza
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
81
|
Amos SGE, Garreau M, Buzzetti L, Waser J. Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis. Beilstein J Org Chem 2020; 16:1163-1187. [PMID: 32550931 PMCID: PMC7277890 DOI: 10.3762/bjoc.16.103] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Organic dyes have emerged as a reliable class of photoredox catalysts. Their great structural variety combined with the easy fine-tuning of their electronic properties has unlocked new possibilities for the generation of reactive intermediates. In this review, we provide an overview of the available approaches to access reactive intermediates that employ organophotocatalysis. Our contribution is not a comprehensive description of the work in the area but rather focuses on key concepts, accompanied by a few selected illustrative examples. The review is organized along the type of reactive intermediates formed in the reaction, including C(sp3) and C(sp 2 ) carbon-, nitrogen-, oxygen-, and sulfur-centered radicals, open-shell charged species, and sensitized organic compounds.
Collapse
Affiliation(s)
- Stephanie G E Amos
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne, Switzerland
| | - Marion Garreau
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne, Switzerland
| | - Luca Buzzetti
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne, Switzerland
| |
Collapse
|
82
|
Hong BC. Enantioselective synthesis enabled by visible light photocatalysis. Org Biomol Chem 2020; 18:4298-4353. [PMID: 32458948 DOI: 10.1039/d0ob00759e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Enantioselective photoreaction has been a synthetic challenge for decades. With the continuous development of modern visible light photocatalysis and asymmetric catalysis, remarkable advances have been achieved through the synergistic action of these catalytic reactions, allowing the construction of various enantiomerically enriched molecules that were once inaccessible using photocatalytic reactions. This review presents some of the contemporary developments in enantioselective visible-light photocatalysis reactions, covering the period from 2008 to March 2020, with the contents classified by catalysis type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, 621, Taiwan, Republic of China.
| |
Collapse
|
83
|
Xu D, Li H, Pan G, Huang P, Oberkofler J, Reich RM, Kühn FE, Guo H. Visible-Light-Induced Dehydrohalogenative Coupling for Intramolecular α-Alkenylation: A Way to Build Seven- and Eight-Membered Rings. Org Lett 2020; 22:4372-4377. [DOI: 10.1021/acs.orglett.0c01391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dawen Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Han Li
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Guangxing Pan
- Academic for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai, 200438, P.R. China
| | - Pan Huang
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Jens Oberkofler
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Robert M. Reich
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Fritz E. Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P.R. China
| |
Collapse
|
84
|
Li X, Jandl C, Bach T. Visible-Light-Mediated Enantioselective Photoreactions of 3-Alkylquinolones with 4-O-Tethered Alkenes and Allenes. Org Lett 2020; 22:3618-3622. [DOI: 10.1021/acs.orglett.0c01065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
85
|
Pecho F, Zou Y, Gramüller J, Mori T, Huber SM, Bauer A, Gschwind RM, Bach T. A Thioxanthone Sensitizer with a Chiral Phosphoric Acid Binding Site: Properties and Applications in Visible Light-Mediated Cycloadditions. Chemistry 2020; 26:5190-5194. [PMID: 32065432 PMCID: PMC7216904 DOI: 10.1002/chem.202000720] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 11/06/2022]
Abstract
A chiral phosphoric acid with a 2,2'-binaphthol core was prepared that displays two thioxanthone moieties at the 3,3'-position as light-harvesting antennas. Despite its relatively low triplet energy, the phosphoric acid was found to be an efficient catalyst for the enantioselective intermolecular [2+2] photocycloaddition of β-carboxyl-substituted cyclic enones (e.r. up to 93:7). Binding of the carboxylic acid to the sensitizer is suggested by NMR studies and by DFT calculations to occur by means of two hydrogen bonds. The binding event not only enables an enantioface differentiation but also modulates the triplet energy of the substrates.
Collapse
Affiliation(s)
- Franziska Pecho
- Department of Chemistry and Catalysis Research Center (CRC)Technical University MunichLichtenbergstr. 485747GarchingGermany
| | - You‐Quan Zou
- Department of Chemistry and Catalysis Research Center (CRC)Technical University MunichLichtenbergstr. 485747GarchingGermany
| | - Johannes Gramüller
- Faculty of Chemistry and PharmacyInstitute of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| | - Tadashi Mori
- Department of Applied ChemistryGraduate School of EngineeringOsaka University2-1 Yamada-okaSuita, Osaka565-871Japan
| | - Stefan M. Huber
- Faculty for Chemistry and Biochemistry, Organic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Andreas Bauer
- Department of Chemistry and Catalysis Research Center (CRC)Technical University MunichLichtenbergstr. 485747GarchingGermany
| | - Ruth M. Gschwind
- Faculty of Chemistry and PharmacyInstitute of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| | - Thorsten Bach
- Department of Chemistry and Catalysis Research Center (CRC)Technical University MunichLichtenbergstr. 485747GarchingGermany
| |
Collapse
|
86
|
Rigotti T, Mas-Ballesté R, Alemán J. Enantioselective Aminocatalytic [2 + 2] Cycloaddition through Visible Light Excitation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01413] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Thomas Rigotti
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
87
|
Chen Y, Hu J, Ding A. Synthesis of an anthraquinone-containing polymeric photosensitizer and its application in aerobic photooxidation of thioethers. RSC Adv 2020; 10:10661-10665. [PMID: 35492936 PMCID: PMC9050403 DOI: 10.1039/d0ra00880j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022] Open
Abstract
Work on the synthesis of a polymeric photosensitizer and its application in the photooxidation of thioethers is reported herein. Firstly, the polymeric photosensitizer was designed and synthesized by the reaction of anthraquinone-2-carbonyl chloride (AQ-2-COCl) with poly(2-hydroxyethyl methacrylate) (PHEMA). Then, the visible light-induced photooxidation of thioethers under aerobic conditions was investigated. The results revealed that the reaction yielded sulfoxides highly chemoselectively in excellent yields with good substrate tolerance. Importantly, AQ-PHEMA could be easily recovered and reused more than 20 times without significant loss of the catalytic activity. Work on the synthesis of a polymeric photosensitizer and its application in the photooxidation of thioethers is reported herein.![]()
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China +86-21-31242888 +86-21-55665280
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China +86-21-31242888 +86-21-55665280
| | - Aishun Ding
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 P. R. China +86-21-31249190 +86-21-31249190
| |
Collapse
|
88
|
Jung H, Keum H, Kweon J, Chang S. Tuning Triplet Energy Transfer of Hydroxamates as the Nitrene Precursor for Intramolecular C(sp3)–H Amidation. J Am Chem Soc 2020; 142:5811-5818. [DOI: 10.1021/jacs.0c00868] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyeyun Keum
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jeonguk Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
89
|
Abstract
We report here a mild, safe, and user-friendly bromine radical catalysis system that enables efficient [3 + 2] cycloaddition of diversely substituted vinyl- and ethynylcyclopropanes with a broad range of alkenes, including drug-like molecules and pharmaceuticals. Key to the success is the use of photosensitizing triplet-state β-fragmentation of a judiciously selected precatalyst, cinnamyl bromide, to generate bromine radicals in a controlled manner using parts per million-level photocatalyst (i.e., 4CzIPN) loading.
Collapse
Affiliation(s)
- Dian-Feng Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Cameron H Chrisman
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
90
|
Zhang Y, Sun Y, Chen B, Xu M, Li C, Zhang D, Zhang G. Copper-Catalyzed Photoinduced Enantioselective Dual Carbofunctionalization of Alkenes. Org Lett 2020; 22:1490-1494. [DOI: 10.1021/acs.orglett.0c00071] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yajing Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Youwen Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bin Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Meichen Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Chen Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Dayong Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
91
|
Wen KG, Peng YY, Zeng XP. Advances in the catalytic asymmetric synthesis of quaternary carbon containing cyclobutanes. Org Chem Front 2020. [DOI: 10.1039/d0qo00685h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The advances in the catalytic asymmetric synthesis of quaternary carbon containing cyclobutanes are described.
Collapse
Affiliation(s)
- Kai-Ge Wen
- Key Laboratory of Small Functional Organic Molecule
- Ministry of Education and Jiangxi Key Laboratory of Green Chemistry
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
| | - Yi-Yuan Peng
- Key Laboratory of Small Functional Organic Molecule
- Ministry of Education and Jiangxi Key Laboratory of Green Chemistry
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
| | - Xing-Ping Zeng
- Key Laboratory of Small Functional Organic Molecule
- Ministry of Education and Jiangxi Key Laboratory of Green Chemistry
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang
| |
Collapse
|
92
|
Takagi R, Tabuchi C. Enantioselective intramolecular [2 + 2] photocycloaddition using phosphoric acid as a chiral template. Org Biomol Chem 2020; 18:9261-9267. [PMID: 33150919 DOI: 10.1039/d0ob02054k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective intramolecular [2 + 2] photocycloaddition of 4-bishomoally-2-quinolone (quinolinone) using phosphoric acid as a chiral template has been developed. Mechanistic studies using several NMR measurement techniques and density functional theory (DFT) calculations indicate that π-π interactions between the phenyl ring on phosphoric acid and quinolinone play important roles in the enantioselectivity.
Collapse
Affiliation(s)
- Ryukichi Takagi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Chihiro Tabuchi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
93
|
Rigotti T, Alemán J. Visible light photocatalysis – from racemic to asymmetric activation strategies. Chem Commun (Camb) 2020; 56:11169-11190. [DOI: 10.1039/d0cc03738a] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The most significant contributions towards enantioselective photocatalysis have been described with a special emphasis on the various activation strategies.
Collapse
Affiliation(s)
- Thomas Rigotti
- Organic Chemistry Department
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - José Alemán
- Organic Chemistry Department
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)
| |
Collapse
|
94
|
Chen Y, Hu J, Ding A. Aerobic photooxidative hydroxylation of boronic acids catalyzed by anthraquinone-containing polymeric photosensitizer. RSC Adv 2020; 10:7927-7932. [PMID: 35492190 PMCID: PMC9049903 DOI: 10.1039/d0ra00176g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/17/2020] [Indexed: 11/21/2022] Open
Abstract
We report herein the synthesis of a polymeric photosensitizer and its application in aerobic photooxidative hydroxylation of boronic acids.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- PR China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- PR China
| | - Aishun Ding
- Department of Chemistry
- Fudan University
- Shanghai 200438
- PR China
| |
Collapse
|
95
|
Pirenne V, Traboulsi I, Rouvière L, Lusseau J, Massip S, Bassani DM, Robert F, Landais Y. p-Anisaldehyde-Photosensitized Sulfonylcyanation of Chiral Cyclobutenes: Enantioselective Access to Cyclic and Acyclic Systems Bearing All-Carbon Quaternary Stereocenters. Org Lett 2019; 22:575-579. [DOI: 10.1021/acs.orglett.9b04345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Vincent Pirenne
- CNRS, Bordeaux
INP, ISM, UMR 5255, University of Bordeaux, F-33400 Talence, France
| | - Iman Traboulsi
- CNRS, Bordeaux
INP, ISM, UMR 5255, University of Bordeaux, F-33400 Talence, France
| | - Lisa Rouvière
- CNRS, Bordeaux
INP, ISM, UMR 5255, University of Bordeaux, F-33400 Talence, France
| | - Jonathan Lusseau
- CNRS, Bordeaux
INP, ISM, UMR 5255, University of Bordeaux, F-33400 Talence, France
| | - Stéphane Massip
- European Institute of Chemistry and Biology (IECB), University of Bordeaux, 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Dario M. Bassani
- CNRS, Bordeaux
INP, ISM, UMR 5255, University of Bordeaux, F-33400 Talence, France
| | - Frédéric Robert
- CNRS, Bordeaux
INP, ISM, UMR 5255, University of Bordeaux, F-33400 Talence, France
| | - Yannick Landais
- CNRS, Bordeaux
INP, ISM, UMR 5255, University of Bordeaux, F-33400 Talence, France
| |
Collapse
|
96
|
He X, Yao XY, Chen KH, He LN. Metal-Free Photocatalytic Synthesis of exo-Iodomethylene 2-Oxazolidinones: An Alternative Strategy for CO 2 Valorization with Solar Energy. CHEMSUSCHEM 2019; 12:5081-5085. [PMID: 31671246 DOI: 10.1002/cssc.201902417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/11/2019] [Indexed: 06/10/2023]
Abstract
A visible-light-promoted metal-free carboxylative cyclization of propargylic amines with CO2 was shown to offer exo-iodomethylene 2-oxazolidinones. Incorporation of both CO2 and iodo moieties into these compounds was realized efficiently. The mechanism study revealed that this carboxylative cyclization proceeds through a radical pathway. Notably, the iodine-functionalized 2-oxazolidinone as a platform molecule could be easily converted into a wide range of value-added chemicals through Buchwald-Hartwig, Suzuki, Sonogashira, photocatalytic ene, and photoreduction reactions. As a result, the plentiful downstream transformations remarkably enhance the range of chemicals derived from CO2 and open a potential avenue for CO2 functionalization to circumvent energy challenges in this field.
Collapse
Affiliation(s)
- Xing He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Xiang-Yang Yao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Kai-Hong Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Liang-Nian He
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
97
|
Reid J, Proctor RSJ, Sigman MS, Phipps RJ. Predictive Multivariate Linear Regression Analysis Guides Successful Catalytic Enantioselective Minisci Reactions of Diazines. J Am Chem Soc 2019; 141:19178-19185. [PMID: 31710210 PMCID: PMC6900758 DOI: 10.1021/jacs.9b11658] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 01/01/2023]
Abstract
The Minisci reaction is one of the most direct and versatile methods for forging new carbon-carbon bonds onto basic heteroarenes: a broad subset of compounds ubiquitous in medicinal chemistry. While many Minisci-type reactions result in new stereocenters, control of the absolute stereochemistry has proved challenging. An asymmetric variant was recently realized using chiral phosphoric acid catalysis, although in that study the substrates were limited to quinolines and pyridines. Mechanistic uncertainties and nonobvious enantioselectivity trends made the task of extending the reaction to important new substrate classes challenging and time-intensive. Herein, we describe an approach to address this problem through rigorous analysis of the reaction landscape guided by a carefully designed reaction data set and facilitated through multivariate linear regression (MLR) analysis. These techniques permitted the development of mechanistically informative correlations providing the basis to transfer enantioselectivity outcomes to new reaction components, ultimately predicting pyrimidines to be particularly amenable to the protocol. The predictions of enantioselectivity outcomes for these valuable, pharmaceutically relevant motifs were remarkably accurate in most cases and resulted in a comprehensive exploration of scope, significantly expanding the utility and versatility of this methodology. This successful outcome is a powerful demonstration of the benefits of utilizing MLR analysis as a predictive platform for effective and efficient reaction scope exploration across substrate classes.
Collapse
Affiliation(s)
- Jolene
P. Reid
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Rupert S. J. Proctor
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Robert J. Phipps
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| |
Collapse
|
98
|
Steinlandt PS, Zuo W, Harms K, Meggers E. Bis-Cyclometalated Indazole Chiral-at-Rhodium Catalyst for Asymmetric Photoredox Cyanoalkylations. Chemistry 2019; 25:15333-15340. [PMID: 31541505 PMCID: PMC6916287 DOI: 10.1002/chem.201903369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/02/2019] [Indexed: 01/23/2023]
Abstract
A new class of bis‐cyclometalated rhodium(III) catalysts containing two inert cyclometalated 6‐tert‐butyl‐2‐phenyl‐2H‐indazole ligands and two labile acetonitriles is introduced. Single enantiomers (>99 % ee) were obtained through a chiral‐auxiliary‐mediated approach using a monofluorinated salicyloxazoline. The new chiral‐at‐metal complex is capable of catalyzing the visible‐light‐induced enantioselective α‐cyanoalkylation of 2‐acyl imidazoles in which it serves a dual function as the chiral Lewis acid catalyst for the asymmetric radical chemistry and at the same time as the photoredox catalyst for the visible‐light‐induced redox chemistry (up to 80 % yield, 4:1 d.r., and 95 % ee, 12 examples).
Collapse
Affiliation(s)
- Philipp S Steinlandt
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Wei Zuo
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Klaus Harms
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| |
Collapse
|
99
|
Becker MR, Richardson AD, Schindler CS. Functionalized azetidines via visible light-enabled aza Paternò-Büchi reactions. Nat Commun 2019; 10:5095. [PMID: 31704919 PMCID: PMC6841681 DOI: 10.1038/s41467-019-13072-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 01/26/2023] Open
Abstract
Azetidines are four-membered nitrogen-containing heterocycles that hold great promise in current medicinal chemistry due to their desirable pharmacokinetic effects. However, a lack of efficient synthetic methods to access functionalized azetidines has hampered their incorporation into pharmaceutical lead structures. As a [2+2] cycloaddition reaction between imines and alkenes, the aza Paternò-Büchi reaction arguably represents the most direct approach to functionalized azetidines. Hampered by competing reaction paths accessible upon photochemical excitation of the substrates, the current synthetic utility of these transformations is greatly restricted. We herein report the development of a visible light-enabled aza Paternò-Büchi reaction that surmounts existing limitations and represents a mild solution for the direct formation of functionalized azetidines from imine and alkene containing precursors.
Collapse
Affiliation(s)
- Marc R Becker
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alistair D Richardson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Corinna S Schindler
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
100
|
Tang X, Zhao J, Wu Y, Feng S, Yang F, Yu Z, Meng Q. Visible‐Light‐Driven Enantioselective Aerobic Oxidation of β‐Dicarbonyl Compounds Catalyzed by Cinchona‐Derived Phase Transfer Catalysts in Batch and Semi‐Flow. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao‐Fei Tang
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Jing‐Nan Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Yu‐Feng Wu
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Shi‐Hao Feng
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Fan Yang
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Zong‐Yi Yu
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| | - Qing‐Wei Meng
- State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of Technology Dalian 116024 People's Republic of China
| |
Collapse
|