51
|
Tamanoi F, Matsumoto K, Doan TLH, Shiro A, Saitoh H. Studies on the Exposure of Gadolinium Containing Nanoparticles with Monochromatic X-rays Drive Advances in Radiation Therapy. NANOMATERIALS 2020; 10:nano10071341. [PMID: 32660093 PMCID: PMC7408070 DOI: 10.3390/nano10071341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
While conventional radiation therapy uses white X-rays that consist of a mixture of X-ray waves with various energy levels, a monochromatic X-ray (monoenergetic X-ray) has a single energy level. Irradiation of high-Z elements such as gold, silver or gadolinium with a synchrotron-generated monochromatic X-rays with the energy at or higher than their K-edge energy causes a photoelectric effect that includes release of the Auger electrons that induce DNA damage—leading to cell killing. Delivery of high-Z elements into cancer cells and tumor mass can be facilitated by the use of nanoparticles. Various types of nanoparticles containing high-Z elements have been developed. A recent addition to this growing list of nanoparticles is mesoporous silica-based nanoparticles (MSNs) containing gadolinium (Gd–MSN). The ability of Gd–MSN to inhibit tumor growth was demonstrated by evaluating effects of irradiating tumor spheroids with a precisely tuned monochromatic X-ray.
Collapse
Affiliation(s)
- Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan;
- Department of Microbio., Immunol. & Molec. Genet., University of California, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +81-75-753-9856
| | - Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan;
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures (INOMAR), Vietnam National University-Ho Chi Minh City, Ho Chi Minh City 721337, Vietnam;
| | - Ayumi Shiro
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Hyogo 679-0198, Japan; (A.S.); (H.S.)
| | - Hiroyuki Saitoh
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Hyogo 679-0198, Japan; (A.S.); (H.S.)
| |
Collapse
|
52
|
Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 2020; 156:188-213. [PMID: 32610061 PMCID: PMC8559718 DOI: 10.1016/j.addr.2020.06.020] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023]
Abstract
Inorganic nanoparticles provide multipurpose platforms for a broad range of delivery applications. Intrinsic nanoscopic properties provide access to unique magnetic and optical properties. Equally importantly, the structural and functional diversity of gold, silica, iron oxide, and lanthanide-based nanocarriers provide unrivalled control of nanostructural properties for effective transport of therapeutic cargos, overcoming biobarriers on the cellular and organismal level. Taken together, inorganic nanoparticles provide a key addition to the arsenal of delivery vectors for fighting disease and improving human health.
Collapse
Affiliation(s)
- David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
53
|
Barui S, Cauda V. Multimodal Decorations of Mesoporous Silica Nanoparticles for Improved Cancer Therapy. Pharmaceutics 2020; 12:E527. [PMID: 32521802 PMCID: PMC7355899 DOI: 10.3390/pharmaceutics12060527] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors. The controlled release of drugs to the disease site without any leakage to healthy tissues can be achieved by employing environment responsive gatekeepers for the end-capping of MSN. To achieve precise cancer chemotherapy, the most desired delivery system should possess high loading efficiency, site-specificity and capacity of controlled release. In this review we will focus on multimodal decorations of MSN, which is the most demanding ongoing approach related to MSN application in cancer therapy. Herein, we will report about the recently tried efforts for multimodal modifications of MSN, exploiting both the active targeting and stimuli responsive behavior simultaneously, along with individual targeted delivery and stimuli responsive cancer therapy using MSN.
Collapse
Affiliation(s)
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy;
| |
Collapse
|
54
|
Wang Y, Shahi PK, Xie R, Zhang H, Abdeen AA, Yodsanit N, Ma Z, Saha K, Pattnaik BR, Gong S. A pH-responsive silica-metal-organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries. J Control Release 2020; 324:194-203. [PMID: 32380204 DOI: 10.1016/j.jconrel.2020.04.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Efficient delivery of hydrophilic drugs, nucleic acids, proteins, and any combination thereof is essential for various biomedical applications. Herein, we report a straightforward, yet versatile approach to efficiently encapsulate and deliver various hydrophilic payloads using a pH-responsive silica-metal-organic framework hybrid nanoparticle (SMOF NP) consisting of both silica and zeolitic imidazole framework (ZIF). This unique SMOF NP offers a high loading content and efficiency, excellent stability, and robust intracellular delivery of a variety of payloads, including hydrophilic small molecule drugs (e.g., doxorubicin hydrochloride), nucleic acids (e.g., DNA and mRNA), and genome-editing machineries (e.g., Cas9-sgRNA ribonucleoprotein (RNP), and RNP together with donor DNA (e.g., RNP + ssODN)). The superior drug delivery/gene transfection/genome-editing efficiencies of the SMOF NP are attributed to its pH-controlled release and endosomal escape capabilities due to the proton sponge effect enabled by the imidazole moieties in the SMOF NPs. Moreover, the surface of the SMOF NP can be easily customized (e.g., PEGylation and ligand conjugation) via various functional groups incorporated into the silica component. RNP-loaded SMOF NPs induced efficient genome editing in vivo in murine retinal pigment epithelium (RPE) tissue via subretinal injection, providing a highly promising nanoplatform for the delivery of a wide range of hydrophilic payloads.
Collapse
Affiliation(s)
- Yuyuan Wang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Pawan K Shahi
- Department of Pediatrics, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Huilong Zhang
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Nisakorn Yodsanit
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin - Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
55
|
Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. NANOMATERIALS 2020; 10:nano10050847. [PMID: 32354008 PMCID: PMC7711922 DOI: 10.3390/nano10050847] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Polymer-based nanocapsules have been widely studied as a potential drug delivery system in recent years. Nanocapsules-as one of kind nanoparticle-provide a unique nanostructure, consisting of a liquid/solid core with a polymeric shell. This is of increasing interest in drug delivery applications. In this review, nanocapsules delivery systems studied in last decade are reviewed, along with nanocapsule formulation, characterizations of physical/chemical/biologic properties and applications. Furthermore, the challenges and opportunities of nanocapsules applications are also proposed.
Collapse
|
56
|
Mai NXD, Birault A, Matsumoto K, Ta HKT, Intasa‐ard SG, Morrison K, Thang PB, Doan TLH, Tamanoi F. Biodegradable Periodic Mesoporous Organosilica (BPMO) Loaded with Daunorubicin: A Promising Nanoparticle-Based Anticancer Drug. ChemMedChem 2020; 15:593-599. [PMID: 32020745 PMCID: PMC7187469 DOI: 10.1002/cmdc.201900595] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/30/2020] [Indexed: 11/28/2022]
Abstract
Biodegradable periodic mesoporous organosilica (BPMO) nanoparticles have emerged as a promising type of nanocarrier for drug delivery, given the biodegradable feature is advantageous for clinical translation. In this paper, we report synthesis and characterization of daunorubicin (DNR) loaded BPMO. DNR was loaded onto rhodamine B-labeled BPMO that contain tetrasulfide bonds. Tumor spheroids and chicken egg tumor models were used to characterize the activity in biological settings. In the first experiment we examined the uptake of BPMO into tumor spheroids prepared from ovarian cancer cells. BPMO were efficiently taken up into tumor spheroids and inhibited their growth. In the chicken egg tumor model, intravenous injection of DNR-loaded BPMO led to the elimination of ovarian tumor. Lack of adverse effect on organs such as lung appears to be due to excellent tumor accumulation of BPMO. Thus, DNR-loaded BPMO represents a promising nanodrug compared with free DNR currently used in cancer therapy. OK.
Collapse
Affiliation(s)
- Ngoc Xuan Dat Mai
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University-Ho Chi Minh CityHo Chi Minh City721337Vietnam
- Faculty of Physics and Engineering Physics, University of ScienceVietnam National UniversityHo Chi Minh City700000Vietnam
| | - Albane Birault
- Institute for Integrated Cell-Material Sciences (ICeMS)Institute for Advanced Study Kyoto UniversityKyoto606 8501Japan
| | - Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences (ICeMS)Institute for Advanced Study Kyoto UniversityKyoto606 8501Japan
| | - Hanh Kieu Thi Ta
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University-Ho Chi Minh CityHo Chi Minh City721337Vietnam
- Faculty of Materials Science and Technology, University of ScienceVietnam National UniversityHo Chi Minh City700000Vietnam
| | - Soontaree Grace Intasa‐ard
- Institute for Integrated Cell-Material Sciences (ICeMS)Institute for Advanced Study Kyoto UniversityKyoto606 8501Japan
| | - Kendall Morrison
- TAE Life SciencesDrug Development DivisionSanta Monica, CA90404USA
| | - Phan Bach Thang
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University-Ho Chi Minh CityHo Chi Minh City721337Vietnam
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures (INOMAR)Vietnam National University-Ho Chi Minh CityHo Chi Minh City721337Vietnam
| | - Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences (ICeMS)Institute for Advanced Study Kyoto UniversityKyoto606 8501Japan
| |
Collapse
|
57
|
Zhu X, Tang R, Wang S, Chen X, Hu J, Lei C, Huang Y, Wang H, Nie Z, Yao S. Protein@Inorganic Nanodumpling System for High-Loading Protein Delivery with Activatable Fluorescence and Magnetic Resonance Bimodal Imaging Capabilities. ACS NANO 2020; 14:2172-2182. [PMID: 31990525 DOI: 10.1021/acsnano.9b09024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient protein delivery into the target cell is highly desirable for protein therapeutics. Current approaches for protein delivery commonly suffer from low-loading protein capacity, poor specificity for target cells, and invisible protein release. Herein, we report a protein@inorganic nanodumpling (ND) system as an intracellular protein delivery platform. Similar to a traditional Chinese food, the dumpling, ND consists of a protein complex "filling" formed by metal-ion-directed self-assembly of protein cargos fused to histidine-rich green fluorescent proteins (H39GFPs), which are further encapsulated by an external surface "wrapper" of manganese dioxide (MnO2) via in situ biomineralization. This ND structure allows for a high loading capacity (>63 wt %) for protein cargos with enhanced stability. NDs can be targeted and internalized into cancer cells specifically through folic acid receptors by surface-tailored folic acid. The protein cargo release is in a bistimuli-responsive manner, triggered by an either reductive or acidic intracellular microenvironment. Moreover, the MnO2 nanowrapper is an efficient fluorescence quencher for inner fused GFPs and also a "switch-on" magnetic resonance imaging (MRI) agent via triggered release of Mn2+ ions, which enables activatable fluorescence/MRI bimodal imaging of protein release. Finally, the ND is highly potent and specific to deliver functional protein ribonuclease A (RNase A) into cultured target cells and the tumor site in a xenografted mouse model, eliminating the tumor cells with high therapeutic efficacy. Our approach provides a promising alternative to advance protein-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiaohua Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P. R. China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Shigong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Xiaoye Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Jiajun Hu
- College of Biology , Hunan University , Changsha 410082 , P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Honghui Wang
- College of Biology , Hunan University , Changsha 410082 , P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| |
Collapse
|
58
|
Peng SY, Zou MZ, Zhang CX, Ma JB, Zeng X, Xiao W. Fabrication of rapid-biodegradable nano-vectors for endosomal-triggered drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
59
|
Jo SM, Wurm FR, Landfester K. Oncolytic Nanoreactors Producing Hydrogen Peroxide for Oxidative Cancer Therapy. NANO LETTERS 2020; 20:526-533. [PMID: 31789526 DOI: 10.1021/acs.nanolett.9b04263] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In situ generation of anticancer agents at the place of the disease is a new paradigm for cancer therapy. The production of highly potent drugs by nanoreactors through a facile synthesis pathway is demanded. We report an oncolytic nanoreactor platform loaded with the enzyme glucose oxidase (GOX) to produce hydrogen peroxide. For the first time, we realized a core-shell structure with encapsulated GOX under mild synthetic conditions, which ensured high remaining activity of GOX inside of the nanoreactor. Moreover, the nanoreactor protected the loaded GOX from proteolysis and contributed to increased thermal stability of the enzyme. The nanoreactors were effectively taken up into different cancer cells, in which they produced hydrogen peroxide by consuming intracellular glucose and oxygen, thereby leading to effective death of the cancer cells. In summary, our robust nanoreactors are a promising platform for effective anticancer therapy and sustained enzyme utilization.
Collapse
Affiliation(s)
- Seong-Min Jo
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
60
|
Liang L, Yan W, Qin X, Peng X, Feng H, Wang Y, Zhu Z, Liu L, Han Y, Xu Q, Qu J, Liu X. Designing Sub‐2 nm Organosilica Nanohybrids for Far‐Field Super‐Resolution Imaging. Angew Chem Int Ed Engl 2020; 59:746-751. [DOI: 10.1002/anie.201912404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Liangliang Liang
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xian Qin
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Han Feng
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research InstituteInterdisciplinary Graduate ProgrammeNanyang Technological University Singapore 637141 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
- Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Ziyu Zhu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Lingmei Liu
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Yu Han
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Qinghua Xu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
| |
Collapse
|
61
|
Calcium-doped mesoporous silica nanoparticles as a lysosomolytic nanocarrier for amine-free loading and cytosolic delivery of siRNA. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.08.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Liang L, Yan W, Qin X, Peng X, Feng H, Wang Y, Zhu Z, Liu L, Han Y, Xu Q, Qu J, Liu X. Designing Sub‐2 nm Organosilica Nanohybrids for Far‐Field Super‐Resolution Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liangliang Liang
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xian Qin
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Han Feng
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research InstituteInterdisciplinary Graduate ProgrammeNanyang Technological University Singapore 637141 Singapore
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
- Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Ziyu Zhu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Lingmei Liu
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Yu Han
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials Center Thuwal Saudi Arabia
| | - Qinghua Xu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore Singapore 117543 Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen University Shenzhen 518060 China
| |
Collapse
|
63
|
Zheng F, Wang C, Meng T, Zhang Y, Zhang P, Shen Q, Zhang Y, Zhang J, Li J, Min Q, Chen J, Zhu JJ. Outer-Frame-Degradable Nanovehicles Featuring Near-Infrared Dual Luminescence for in Vivo Tracking of Protein Delivery in Cancer Therapy. ACS NANO 2019; 13:12577-12590. [PMID: 31657911 DOI: 10.1021/acsnano.9b03424] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In vivo monitoring of cargo protein delivery is critical for understanding the pharmacological efficacies and mechanisms during cancer therapy, but it still remains a formidable challenge because of the difficulty in observing nonfluorescent proteins at high resolution and sensitivity. Here we report an outer-frame-degradable nanovehicle featuring near-infrared (NIR) dual luminescence for real-time tracking of protein delivery in vivo. Upconversion nanoparticles (UCNPs) and fluorophore-doped degradable macroporous silica (DS) with spectral overlap were coupled to form a core-shell nanostructure as a therapeutic protein nanocarrier, which was eventually enveloped with a hyaluronic acid (HA) shell to prevent protein leakage and for recognizing tumor sites. The DS layer served as both a container to accommodate the therapeutic proteins and a filter to attenuate upconversion luminescence (UCL) of the inner UCNPs. After the nanovehicles selectively accumulated at tumor sites and entered cancer cells, intracellular hyaluronidase (HAase) digested the outermost HA protective shell and initiated the outer frame degradation-induced protein release and UCL restoration of UCNPs in the intracellular environment. Significantly, the biodistribution of the nanovehicles can be traced at the 710 nm NIR fluorescence channel of DS, whereas the protein release can be monitored at the 660 nm NIR fluorescence channel of UCNPs. Real-time tracking of protein delivery and release was achieved in vitro and in vivo by NIR fluorescence imaging. Moreover, in vitro and in vivo studies manifest that the protein cytochrome c-loaded nanovehicles exhibited excellent cancer therapeutic efficacy. This nanoplatform assembled by the outer-frame-degradable nanovehicles featuring NIR dual luminescence not only advances our understanding of where, when, and how therapeutic proteins take effect in vivo but also provides a universal route for visualizing the translocation of other bioactive macromolecules in cancer treatment and intervention.
Collapse
Affiliation(s)
- Fenfen Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- School of Environmental & Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang , Jiangsu 212003 , China
| | - Chen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Tiantian Meng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yuqian Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Penghui Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Yuchao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Jianxin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jiangning Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
64
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
65
|
Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Mitochondria‐Targeting, Intracellular Delivery of Native Proteins Using Biodegradable Silica Nanoparticles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901699] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peiyan Yuan
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat-sen University Guangzhou 510275 China
| | - Xin Mao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xiaofeng Wu
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Si Si Liew
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Lin Li
- Institute of Advanced Materials (IAM)Nanjing Tech University 30 South Puzhu Road Nanjing 21816 China
| | - Shao Q. Yao
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
66
|
Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Mitochondria-Targeting, Intracellular Delivery of Native Proteins Using Biodegradable Silica Nanoparticles. Angew Chem Int Ed Engl 2019; 58:7657-7661. [PMID: 30994955 DOI: 10.1002/anie.201901699] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Indexed: 01/06/2023]
Abstract
Mitochondria are key organelles in mammalian cells whose dysfunction is linked to various diseases. Drugs targeting mitochondrial proteins provide a highly promising strategy for potential therapeutics. Methods for the delivery of small-molecule drugs to the mitochondria are available, but these are not suitable for macromolecules, such as proteins. Herein, we report the delivery of native proteins and antibodies to the mitochondria using biodegradable silica nanoparticles (BS-NPs). The modification of the nanoparticle surface with triphenylphosphonium (TPP) and cell-penetrating poly(disulfide)s (CPD) facilitated their rapid intracellular uptake with minimal endolysosomal trapping, providing sufficient time for effective mitochondrial localization followed by glutathione-triggered biodegradation and of native, functional proteins into the mitochondria.
Collapse
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Mao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaofeng Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Si Si Liew
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Lin Li
- Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21816, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
67
|
Degradable Protein-loaded Polymer Capsules Fabricated by Thiol-disulfide Cross-linking Reaction at Liquid-liquid Interface. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
68
|
Loading of PNA and Other Molecular Payloads on Inorganic Nanostructures for Theranostics. Methods Mol Biol 2019; 1811:65-77. [PMID: 29926446 DOI: 10.1007/978-1-4939-8582-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Peptide Nucleic Acids (PNAs) are oligonucleotide mimics that can be used as drugs as they can interact with DNA and RNA targets in organisms. Loading PNAs into inorganic nanocarriers can improve their cellular uptake and co-delivering them together with drugs can improve the therapy efficacy by synergic effects. Furthermore, the functionalization of the carriers with labels allows theranostics, and the possibility to monitor the efficacy of the therapy in real time. The present protocol describes the synthesis of Zeolites-L nanocrystals and mesoporous silica nanoparticles and their loading with cationic PNAs and other smaller molecular weight payloads towards theranostics applications.
Collapse
|
69
|
Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019; 143:68-96. [PMID: 31022434 DOI: 10.1016/j.addr.2019.04.008] [Citation(s) in RCA: 506] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticle-based therapeutics and diagnostics are commonly referred to as nanomedicine and may significantly impact the future of healthcare. However, the clinical translation of these technologies is challenging. One of these challenges is the efficient delivery of nanoparticles to specific cell populations and subcellular targets in the body to elicit desired biological and therapeutic responses. It is critical for researchers to understand the fundamental concepts of how nanoparticles interact with biological systems to predict and control in vivo nanoparticle transport for improved clinical benefit. In this overview article, we review and discuss cellular internalization pathways, summarize the field`s understanding of how nanoparticle physicochemical properties affect cellular interactions, and explore and discuss intracellular nanoparticle trafficking and kinetics. Our overview may provide a valuable resource for researchers and may inspire new studies to expand our current understanding of nanotechnology-biology interactions at cellular and subcellular levels with the goal to improve clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Nathan D Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Handan Acar
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States; Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, United States.
| |
Collapse
|
70
|
Ramalingam S, Le Bourdon G, Pouget E, Scalabre A, Rao JR, Perro A. Adsorption of Proteins on Dual Loaded Silica Nanocapsules. J Phys Chem B 2019; 123:1708-1717. [DOI: 10.1021/acs.jpcb.8b12028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sathya Ramalingam
- Inorganic and Physical Chemistry Laboratory, Council of Scientific & Industrial Research-Central Leather Research Institute, Adyar, Chennai-6000 20, India
| | - Gwenaelle Le Bourdon
- Institut des Sciences Moléculaires (ISM) - CNRS - Université de Bordeaux - Bordeaux INP, UMR 5255, 351 cours de la libération, 33405 Talence, France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets (CBMN), CNRS - Université Bordeaux - Bordeaux INP, UMR 5248, Allée St Hilaire, Bat B14, 33607 Pessac, France
| | - Antoine Scalabre
- Chimie et Biologie des Membranes et des Nanoobjets (CBMN), CNRS - Université Bordeaux - Bordeaux INP, UMR 5248, Allée St Hilaire, Bat B14, 33607 Pessac, France
| | - Jonnalagadda Raghava Rao
- Inorganic and Physical Chemistry Laboratory, Council of Scientific & Industrial Research-Central Leather Research Institute, Adyar, Chennai-6000 20, India
| | - Adeline Perro
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| |
Collapse
|
71
|
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 2018; 109:1100-1111. [PMID: 30551360 DOI: 10.1016/j.biopha.2018.10.167] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Based on unique intrinsic properties of mesoporous silica nanoparticles (MSNs) such as high surface area, large pore size, good biocompatibility and biodegradability, stable aqueous dispersion, they have received much attention in the recent decades for their applications as a promising platform in the biomedicine field. These porous structures possess a pore size ranging from 2 to 50 nm which make them excellent candidates for various biomedical applications. Herein, at first we described the common approaches of cargo loading and release processes from MSNs. Then, the intracellular uptake, safety and cytotoxicity aspects of MSNs are discussed as well. This review also highlights the most recent advances in the biomedical applications of MSNs, including 1) MSNs-based carriers, 2) MSNs as bioimaging agents, 3) MSNs-based biosensors, 4) MSNs as therapeutic agents (photodynamic therapy), 5) MSN based quantum dots, 6) MSNs as platforms for upconverting nanoparticles, and 6) MSNs in tissue engineering.
Collapse
Affiliation(s)
- Samira Jafari
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Loghman Alaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
72
|
Alonci G, Fiorini F, Riva P, Monroy F, López-Montero I, Perretta S, De Cola L. Injectable Hybrid Hydrogels, with Cell-Responsive Degradation, for Tumor Resection. ACS APPLIED BIO MATERIALS 2018; 1:1301-1310. [DOI: 10.1021/acsabm.8b00189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Giuseppe Alonci
- Institut de Science et d’Ingénierie Supramoléculaires, CNRS, UMR 7006, Université de Strasbourg, 8 rue Gaspard Monge, 67000 Strasbourg, France
| | - Federica Fiorini
- Institut de Science et d’Ingénierie Supramoléculaires, CNRS, UMR 7006, Université de Strasbourg, 8 rue Gaspard Monge, 67000 Strasbourg, France
| | - Pietro Riva
- IHU, Strasbourg 1 place de l’Hôpital, 67000 Strasbourg, France
| | - Francisco Monroy
- Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Córdoba s/n, 28041 Madrid, Spain
| | - Ivan López-Montero
- Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Córdoba s/n, 28041 Madrid, Spain
| | | | - Luisa De Cola
- Institut de Science et d’Ingénierie Supramoléculaires, CNRS, UMR 7006, Université de Strasbourg, 8 rue Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
73
|
Jo SM, Wurm FR, Landfester K. Biomimetic Cascade Network between Interactive Multicompartments Organized by Enzyme-Loaded Silica Nanoreactors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34230-34237. [PMID: 30212628 DOI: 10.1021/acsami.8b11198] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Physical separation of reactions by interactive multicompartments in biological cells is an attractive motif to design efficient microreactors that create biomimetic cascade reactions. We present an aqueous compartment with three different subcompartments that comprise of silica nanoreactors with encapsulated enzymes, namely, β-glucosidase, glucose oxidase, and peroxidase, providing a model cascade reaction in confinement. The encapsulated enzymes retain their activity as the substrate can reach the active site and the silica shell further protects the enzymes from external stresses, such as heat and proteolytic degradation. We demonstrate the biomimetic cascade reaction in between the compartments ("organelles") inside of an additional microconfinement (water-in-oil emulsion). This strategy will allow us to design efficient multicompartmentalized reactors for further biological and organic reactions.
Collapse
Affiliation(s)
- Seong-Min Jo
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| |
Collapse
|
74
|
Yang W, Wei Y, Yang L, Zhang J, Zhong Z, Storm G, Meng F. Granzyme B-loaded, cell-selective penetrating and reduction-responsive polymersomes effectively inhibit progression of orthotopic human lung tumor in vivo. J Control Release 2018; 290:141-149. [PMID: 30312720 DOI: 10.1016/j.jconrel.2018.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
The clinical use of protein therapeutics with intracellular targets is hampered by its in vivo fragility and low cell permeability. Here, we report that cell-selective penetrating and reduction-responsive polymersomes (CPRPs) mediate high-efficiency targeted delivery of granzyme B (GrB) to orthotopic human lung tumor in vivo. Model protein studies using FITC-labeled cytochrome C (FITC-CC) revealed efficient and high protein loading up to 17.2 wt% for CPRPs. FITC-CC-loaded CPRPs exhibited a small size of 82-90 nm, reduction-responsive protein release, as well as greatly enhanced internalization and cytoplasmic protein release in A549 lung cancer cells compared with the non-targeted FITC-CC-loaded RPs control. GrB-loaded CPRPs showed a high potency toward A549 lung cancer cells with a half maximal inhibitory concentration (IC50) of 20.7 nM. Under the same condition, free GrB was essentially non-toxic. Importantly, installing cell-selective penetrating peptide did not alter the circulation time but did enhance tumor accumulation of RPs. Orthotopic A549-Luc lung tumor-bearing nude mice administered with GrB-loaded CPRPs at a dosage of 2.88 nmol GrB equiv./kg showed complete tumor growth inhibition with little body weight loss throughout the treatment period, resulting in significantly improved survival rate over the non-targeted and non-treated controls. These cell-selective penetrating and reduction-responsive polymersomes provide a targeted protein therapy for cancers.
Collapse
Affiliation(s)
- Weijing Yang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China; Department of Targeted Therapeutics, MIRA Institute for Biological Technology and Technical Medicine, University of Twente, PO Box 217, Enschede 7500AE, The Netherlands
| | - Liang Yang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Gert Storm
- Department of Targeted Therapeutics, MIRA Institute for Biological Technology and Technical Medicine, University of Twente, PO Box 217, Enschede 7500AE, The Netherlands
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
75
|
Yao P, Zhang Y, Meng H, Sun H, Zhong Z. Smart Polymersomes Dually Functionalized with cRGD and Fusogenic GALA Peptides Enable Specific and High-Efficiency Cytosolic Delivery of Apoptotic Proteins. Biomacromolecules 2018; 20:184-191. [DOI: 10.1021/acs.biomac.8b01243] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Peili Yao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hao Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
76
|
Cheng L, Yang L, Meng F, Zhong Z. Protein Nanotherapeutics as an Emerging Modality for Cancer Therapy. Adv Healthc Mater 2018; 7:e1800685. [PMID: 30240152 DOI: 10.1002/adhm.201800685] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/31/2018] [Indexed: 12/22/2022]
Abstract
Protein drugs are a unique and versatile class of biotherapeutics that have not only high biological activity but also superb specificity. This rapidly evolving biotechnology has rendered it possible to produce various proteins in a large scale and reproducible way. Many proteins have demonstrated striking anticancer activities and have emerged as advanced alternatives to cytotoxic chemotherapeutic agents for cancer therapy. The clinical translation of anticancer proteins with intracellular targets is, nevertheless, severely hindered by their fast degradation in vivo, poor cell penetration, and inefficient intracellular transportation. The past few years have witnessed tremendous effort and progress in developing polymeric protein delivery nanosystems, ranging from nanoparticles, nanocapsules, nanogels, micelles, to polymersomes, for the treatment of different tumors such as lung tumors, breast tumors, ovarian cancers, and glioblastoma. These proof-of-concept studies point out that protein nanotherapeutics, with rationally designed nanovehicles, are able to overcome the extracellular barriers, cell membrane barriers, and intracellular barriers, and systemically deliver proteins into targeted cancer cells, resulting in effective cancer protein therapy. Protein nanotherapeutics appear to be a novel modality for safe and efficient cancer treatment.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Liang Yang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
77
|
Croissant JG, Brinker CJ. Biodegradable Silica-Based Nanoparticles: Dissolution Kinetics and Selective Bond Cleavage. Enzymes 2018; 43:181-214. [PMID: 30244807 DOI: 10.1016/bs.enz.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Silica-based nanomaterials are extensively used in industrial applications and academic biomedical research, thus properly assessing their toxicity and biodegradability is essential for their safe and effective formulation and use. Unfortunately, there is often a lot of confusion in the literature with respect to the toxicity and biodegradability of silica since various studies have yielded contradictory results. In this contribution, we first endeavor to underscore that the simplistic model of silica should be discarded in favor of a more realistic model recognizing that all silicas are not created equal and should thus be considered in the plural as silicas and silica hybrids, which indeed hold various biocompatibility and biodegradability profiles. We then demonstrated that all silicas are-as displayed in Nature-degradable in water by dissolution, as governed by the laws of kinetics. Lastly, we explore the vast potential of tuning the degradability of silica by materials design using various silica hybrids for redox-, pH-, enzymatic-, and biochelation-mediated lysis mechanisms.
Collapse
Affiliation(s)
- Jonas G Croissant
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States; Center for Micro-Engineered Materials, Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM, United States.
| | - C Jeffrey Brinker
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States; Center for Micro-Engineered Materials, Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
78
|
Chen TT, Yi JT, Zhao YY, Chu X. Biomineralized Metal–Organic Framework Nanoparticles Enable Intracellular Delivery and Endo-Lysosomal Release of Native Active Proteins. J Am Chem Soc 2018; 140:9912-9920. [DOI: 10.1021/jacs.8b04457] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ting-Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Jin-Tao Yi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Yan-Yan Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| |
Collapse
|
79
|
Scaletti F, Hardie J, Lee YW, Luther DC, Ray M, Rotello VM. Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem Soc Rev 2018. [PMID: 29537040 DOI: 10.1039/c8cs00008e] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The delivery of proteins into cells is a potential game changer for a wide array of therapeutic purposes, including cancer therapy, immunomodulation and treatment of inherited diseases. In this review, we present recently developed nanoassemblies for protein delivery that utilize strategies that range from direct assembly, encapsulation and composite formation. We will discuss factors that affect the efficacy of nanoassemblies for delivery from the perspective of both nanoparticles and proteins. Challenges in the field, particularly achieving effective cytosolar protein delivery through endosomal escape or evasion are discussed.
Collapse
Affiliation(s)
- Federica Scaletti
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Sci Rep 2018; 8:8524. [PMID: 29867159 PMCID: PMC5986798 DOI: 10.1038/s41598-018-25573-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/23/2018] [Indexed: 01/02/2023] Open
Abstract
New therapy development is critically needed for ovarian cancer. We used the chicken egg CAM assay to evaluate efficacy of anticancer drug delivery using recently developed biodegradable PMO (periodic mesoporous organosilica) nanoparticles. Human ovarian cancer cells were transplanted onto the CAM membrane of fertilized eggs, resulting in rapid tumor formation. The tumor closely resembles cancer patient tumor and contains extracellular matrix as well as stromal cells and extensive vasculature. PMO nanoparticles loaded with doxorubicin were injected intravenously into the chicken egg resulting in elimination of the tumor. No significant damage to various organs in the chicken embryo occurred. In contrast, injection of free doxorubicin caused widespread organ damage, even when less amount was administered. The lack of toxic effect of nanoparticle loaded doxorubicin was associated with specific delivery of doxorubicin to the tumor. Furthermore, we observed excellent tumor accumulation of the nanoparticles. Lastly, a tumor could be established in the egg using tumor samples from ovarian cancer patients and that our nanoparticles were effective in eliminating the tumor. These results point to the remarkable efficacy of our nanoparticle based drug delivery system and suggests the value of the chicken egg tumor model for testing novel therapies for ovarian cancer.
Collapse
|
81
|
Omar H, Moosa B, Alamoudi K, Anjum DH, Emwas AH, El Tall O, Vu B, Tamanoi F, AlMalik A, Khashab NM. Impact of Pore-Walls Ligand Assembly on the Biodegradation of Mesoporous Organosilica Nanoparticles for Controlled Drug Delivery. ACS OMEGA 2018; 3:5195-5201. [PMID: 31458733 PMCID: PMC6641955 DOI: 10.1021/acsomega.8b00418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/19/2018] [Indexed: 05/20/2023]
Abstract
Porous materials with molecular-scale ordering have attracted major attention mainly because of the possibility to engineer their pores for selective applications. Periodic mesoporous organosilica is a class of hybrid materials where self-assembly of the organic linkers provides a crystal-like pore wall. However, unlike metal coordination, specific geometries cannot be predicted because of the competitive and dynamic nature of noncovalent interactions. Herein, we study the influence of competing noncovalent interactions in the pore walls on the biodegradation of organosilica frameworks for drug delivery application. These results support the importance of studying self-assembly patterns in hybrid frameworks to better engineer the next generation of dynamic or "soft" porous materials.
Collapse
Affiliation(s)
- Haneen Omar
- Smart Hybrid Materials Laboratory, Advanced Membranes, and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials Laboratory, Advanced Membranes, and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kholod Alamoudi
- Smart Hybrid Materials Laboratory, Advanced Membranes, and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dalaver H Anjum
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia
| | - Omar El Tall
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia
| | - Binh Vu
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California 90095-1489, United States
| | - Fuyu Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, California 90095-1489, United States
| | - Abdulaziz AlMalik
- Life Sciences and Environment Research Institute, Center of Excellence in Nanomedicine (CENM), King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory, Advanced Membranes, and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
82
|
Shao D, Li M, Wang Z, Zheng X, Lao YH, Chang Z, Zhang F, Lu M, Yue J, Hu H, Yan H, Chen L, Dong WF, Leong KW. Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801198. [PMID: 29808576 DOI: 10.1002/adma.201801198] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/06/2018] [Indexed: 05/20/2023]
Abstract
Controlled delivery of protein therapeutics remains a challenge. Here, the inclusion of diselenide-bond-containing organosilica moieties into the framework of silica to fabricate biodegradable mesoporous silica nanoparticles (MSNs) with oxidative and redox dual-responsiveness is reported. These diselenide-bridged MSNs can encapsulate cytotoxic RNase A into the 8-10 nm internal pores via electrostatic interaction and release the payload via a matrix-degradation controlled mechanism upon exposure to oxidative or redox conditions. After surface cloaking with cancer-cell-derived membrane fragments, these bioinspired RNase A-loaded MSNs exhibit homologous targeting and immune-invasion characteristics inherited from the source cancer cells. The efficient in vitro and in vivo anti-cancer performance, which includes increased blood circulation time and enhanced tumor accumulation along with low toxicity, suggests that these cell-membrane-coated, dual-responsive degradable MSNs represent a promising platform for the delivery of bio-macromolecules such as protein and nucleic acid therapeutics.
Collapse
Affiliation(s)
- Dan Shao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Zheng Wang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xiao Zheng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Fan Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mengmeng Lu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Juan Yue
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Huize Yan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical, Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Kam W Leong
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
83
|
Jin R, Liu Z, Bai Y, Zhou Y, Chen X. Multiple-Responsive Mesoporous Silica Nanoparticles for Highly Accurate Drugs Delivery to Tumor Cells. ACS OMEGA 2018; 3:4306-4315. [PMID: 30023891 PMCID: PMC6044978 DOI: 10.1021/acsomega.8b00427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/09/2018] [Indexed: 05/25/2023]
Abstract
A core-shell nanocarrier with triple layers, where each layer is sensitive to one specific physiological stimulus, has been fabricated for highly accurate cancer therapy. The nanocarrier consists of mesoporous silica nanoparticles (core structure for drug loading), fluorescein isothiocyanate-labeled hyaluronan (FITC-HA, first shell for imaging with enzymatic response), disulfide bond-embedded silica (SiO2, second layer with glutathione response), and switchable zwitterionic surface (third layer with pH response). The nanocarrier decorated with zwitterionic surface is able to offer long blood circulation time due to the weak nonspecific protein absorption. After these nanocarriers were gradually gathered around tumor cells through enhanced permeability and retention effect, the zwitterionic surface could switch to positive charge in low-pH environment, which was in favor of cellular uptake due to the strengthened positive nanocarrier-negative cellular membrane interaction. Once internalized into tumor cells, the high concentration of glutathione in cytoplasm could cleave disulfide bonds to remove the SiO2 shell and the HA layer would be exposed, which would be further degraded by hyaluronidase to trigger payload release. The fluorescent spectrum and images reveal that both glutathione and hyaluronidase are required for the release of preloaded drugs from these nanocarriers. By employing the multiple response, our nanocarriers could achieve effective antibiofouling ability while maintaining enhanced cellular internalization and targeted drug delivery, resulting in preferred cancer cell cytotoxicity, which is much higher than that of free doxorubicin. The in vitro data exhibited that our nanocarriers may provide an effective strategy for accurate cancer treatment.
Collapse
Affiliation(s)
- Ronghua Jin
- School
of Chemical Engineering and Technology, Shaanxi Key Laboratory of
Energy Chemical Process Intensification, Institute of Polymer Science
in Chemical Engineering, Xi’an Jiaotong
University, Xi’an 710049, P. R. China
| | - Zhongning Liu
- Department
of Prosthodontics, National Engineering Laboratory for Digital and
Material Technology of Stomatology, Beijing Key Laboratory of Digital
Stomatology, Peking University School and
Hospital of Stomatology, Beijing 100081, P. R. China
| | - Yongkang Bai
- School
of Chemical Engineering and Technology, Shaanxi Key Laboratory of
Energy Chemical Process Intensification, Institute of Polymer Science
in Chemical Engineering, Xi’an Jiaotong
University, Xi’an 710049, P. R. China
| | - Yongsheng Zhou
- Department
of Prosthodontics, National Engineering Laboratory for Digital and
Material Technology of Stomatology, Beijing Key Laboratory of Digital
Stomatology, Peking University School and
Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xin Chen
- School
of Chemical Engineering and Technology, Shaanxi Key Laboratory of
Energy Chemical Process Intensification, Institute of Polymer Science
in Chemical Engineering, Xi’an Jiaotong
University, Xi’an 710049, P. R. China
| |
Collapse
|
84
|
Croissant JG, Zink JI, Raehm L, Durand JO. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Adv Healthc Mater 2018; 7:e1701248. [PMID: 29345434 DOI: 10.1002/adhm.201701248] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Coherent two-photon-excited (TPE) therapy in the near-infrared (NIR) provides safer cancer treatments than current therapies lacking spatial and temporal selectivities because it is characterized by a 3D spatial resolution of 1 µm3 and very low scattering. In this review, the principle of TPE and its significance in combination with organosilica nanoparticles (NPs) are introduced and then studies involving the design of pioneering TPE-NIR organosilica nanomaterials are discussed for bioimaging, drug delivery, and photodynamic therapy. Organosilica nanoparticles and their rich and well-established chemistry, tunable composition, porosity, size, and morphology provide ideal platforms for minimal side-effect therapies via TPE-NIR. Mesoporous silica and organosilica nanoparticles endowed with high surface areas can be functionalized to carry hydrophobic and biologically unstable two-photon absorbers for drug delivery and diagnosis. Currently, most light-actuated clinical therapeutic applications with NPs involve photodynamic therapy by singlet oxygen generation, but low photosensitizing efficiencies, tumor resistance, and lack of spatial resolution limit their applicability. On the contrary, higher photosensitizing yields, versatile therapies, and a unique spatial resolution are available with engineered two-photon-sensitive organosilica particles that selectively impact tumors while healthy tissues remain untouched. Patients suffering pathologies such as retinoblastoma, breast, and skin cancers will greatly benefit from TPE-NIR ultrasensitive diagnosis and therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE, Suite 103 Albuquerque NM 87106 USA
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry; University of California Los Angeles; 405 Hilgard Avenue Los Angeles CA 90095 USA
| | - Laurence Raehm
- Institut Charles Gerhardt de Montpellier; UMR 5253 CNRS-UM-ENSCM; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt de Montpellier; UMR 5253 CNRS-UM-ENSCM; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| |
Collapse
|
85
|
Rampazzo E, Genovese D, Palomba F, Prodi L, Zaccheroni N. NIR-fluorescent dye doped silica nanoparticles forin vivoimaging, sensing and theranostic. Methods Appl Fluoresc 2018; 6:022002. [DOI: 10.1088/2050-6120/aa8f57] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
86
|
Fang X, Li C, Zheng L, Yang F, Chen T. Dual-Targeted Selenium Nanoparticles for Synergistic Photothermal Therapy and Chemotherapy of Tumors. Chem Asian J 2018; 13:996-1004. [DOI: 10.1002/asia.201800048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/01/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Xueyang Fang
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Chang'e Li
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Lan Zheng
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Fang Yang
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| |
Collapse
|
87
|
Croissant JG, Fatieiev Y, Almalik A, Khashab NM. Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29193848 DOI: 10.1002/adhm.201700831] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE Suite 103 Albuquerque NM 87106 USA
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| | - Abdulaziz Almalik
- Life sciences and Environment Research Institute; Center of Excellence in Nanomedicine (CENM); King Abdulaziz City for Science and Technology (KACST); Riyadh 11461 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology; Thuwal Riyadh KSA 11442 Saudi Arabia
| |
Collapse
|
88
|
Yang L, Deng W, Cheng C, Tan Y, Xie Q, Yao S. Fluorescent Immunoassay for the Detection of Pathogenic Bacteria at the Single-Cell Level Using Carbon Dots-Encapsulated Breakable Organosilica Nanocapsule as Labels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3441-3448. [PMID: 29299908 DOI: 10.1021/acsami.7b18714] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Herein, carbon dots (CDs)-encapsulated breakable organosilica nanocapsules (BONs) were facilely prepared and used as advanced fluorescent labels for ultrasensitive detection of Staphylococcus aureus. The CDs were entrapped in organosilica shells by cohydrolyzation of tetraethyl orthosilicate and bis[3-(triethoxysilyl)propyl]disulfide to form core-shell CDs@BONs, where hundreds of CDs were encapsulated in each nanocapsule. Immunofluorescent nanocapsules, i.e., anti-S. aureus antibody-conjugated CDs@BONs, were prepared to specifically recognize S. aureus. Before fluorescent detection, CDs were released from the BONs by simple NaBH4 reduction. The fluorescent signals were amplified by 2 orders of magnitude because of hundreds of CDs encapsulated in each nanocapsule, compared with a conventional immunoassay using CDs as fluorescent labels. A linear range was obtained at the S. aureus concentration from 1 to 200 CFU mL-1. CDs@BONs are also expected to expand to other systems and allow the detection of ultralow concentrations of targets.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Chang Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University , Changsha 410081, China
| |
Collapse
|
89
|
Gao Z, Hadipour Moghaddam SP, Ghandehari H, Zharov I. Synthesis of water-degradable silica nanoparticles from carbamate-containing bridged silsesquioxane precursor. RSC Adv 2018; 8:4914-4920. [PMID: 30214717 PMCID: PMC6133298 DOI: 10.1039/c7ra12377a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Silica nanoparticles (SNPs) are attractive for the delivery of drugs and as imaging agents due to their ease of synthesis and scale up, robust structure, and controllable size and composition. Degradability is one important factor that limits biomedical applications of SNPs. With this in mind, we designed, prepared and characterized novel hydrolysable organosilica nanoparticles (ICPTES–sorbitol SNPs). These particles were prepared by co-condensation of tetraethoxysilane with a bridged sorbitol-based silsesquioxane precursor containing carbamate linkages. The non-porous spherical ICPTES–sorbitol SNPs became porous after they were placed in an aqueous environment as a result of the hydrolysis of carbamate bonds and were completely degraded upon prolonged exposure to water. The rate of degradation depended on the pH of the solution, with nanoparticles degrading slower at pH 2 than at pH 4 or pH 7. The degradation was demonstrated by transmission electron microscopy, nitrogen desorption analysis and solution analytical techniques such as ICP-MS and molybdenum blue assay, which was also used to follow the dissolution of ICPTES–sorbitol SNPs. We prepared novel water hydrolysable organosilica nanoparticles by co-condensation of tetraethoxysilane with a bridged sorbitol-based silsesquioxane precursor containing carbamate linkages.![]()
Collapse
Affiliation(s)
- Zhe Gao
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Seyyed Pouya Hadipour Moghaddam
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah.,Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah.,Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah.,Department of Bioengineering, University of Utah
| | - Ilya Zharov
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
90
|
Ding L, Jiang Y, Zhang J, Klok HA, Zhong Z. pH-Sensitive Coiled-Coil Peptide-Cross-Linked Hyaluronic Acid Nanogels: Synthesis and Targeted Intracellular Protein Delivery to CD44 Positive Cancer Cells. Biomacromolecules 2018; 19:555-562. [PMID: 29284258 DOI: 10.1021/acs.biomac.7b01664] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The clinical translation of protein drugs that act intracellularly is limited by the absence of safe and efficient intracellular protein delivery vehicles. Here, pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels (HA-cNGs) were designed and investigated for targeted intracellular protein delivery to CD44 overexpressing MCF-7 breast cancer cells. HA-cNGs were obtained with a small size of 176 nm from an equivalent mixture of hyaluronic acid conjugates with GY(EIAALEK)3GC (E3) and GY(KIAALKE)3GC (K3) peptides, respectively, at pH 7.4 by nanoprecipitation. Circular dichroism (CD) proved the formation of coiled-coil structures between E3 and K3 peptides at pH 7.4 while fast uncoiling at pH 5.0. HA-cNGs showed facile loading of cytochrome C (CC) and greatly accelerated CC release under mild acidic conditions (18.4%, 76.8%, and 91.4% protein release in 24 h at pH 7.4, 6.0, and 5.0, respectively). Confocal microscopy and flow cytometry displayed efficient internalization of CC-loaded HA-cNGs and effective endosomal escape of CC in MCF-7 cancer cells. Remarkably, HA-cNGs loaded with saporin, a ribosome inactivating protein, exhibited significantly enhanced apoptotic activity to MCF-7 cells with a low IC50 of 12.2 nM. These coiled-coil peptide-cross-linked hyaluronic acid nanogels have appeared as a simple and multifunctional platform for efficient intracellular protein delivery.
Collapse
Affiliation(s)
- Lingling Ding
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Yu Jiang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Harm-Anton Klok
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China.,Laboratoire des Polymères, Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) , Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| |
Collapse
|
91
|
Qian L, Fu J, Yuan P, Du S, Huang W, Li L, Yao SQ. Intracellular Delivery of Native Proteins Facilitated by Cell-Penetrating Poly(disulfide)s. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Linghui Qian
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Jiaqi Fu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Peiyan Yuan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| |
Collapse
|
92
|
Qian L, Fu J, Yuan P, Du S, Huang W, Li L, Yao SQ. Intracellular Delivery of Native Proteins Facilitated by Cell-Penetrating Poly(disulfide)s. Angew Chem Int Ed Engl 2018; 57:1532-1536. [DOI: 10.1002/anie.201711651] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Linghui Qian
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Jiaqi Fu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Peiyan Yuan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM); Nanjing Tech University (NanjingTech); 30 South Puzhu Road Nanjing 211800 China
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| |
Collapse
|
93
|
Vilaça N, Totovao R, Prasetyanto EA, Miranda-Gonçalves V, Morais-Santos F, Fernandes R, Figueiredo F, Bañobre-López M, Fonseca AM, De Cola L, Baltazar F, Neves IC. Internalization studies on zeolite nanoparticles using human cells. J Mater Chem B 2018; 6:469-476. [PMID: 32254526 DOI: 10.1039/c7tb02534c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zeolites are crystalline porous materials with a regular framework which have non-toxic effects on a variety of human cell lines and have been explored for cell imaging and drug delivery. Understanding the interaction between zeolite nanoparticles and cells is imperative for improving their potentialities, since the process of internalization of these particles is still poorly understood. In this study, the intracellular trafficking and internalization kinetics of zeolite L into breast cancer cells and normal epithelial mammary cells were analysed using scanning electron microscopy (SEM), confocal microscopy and transmission electron microscopy (TEM). We also studied the involvement of endocytic pathways using two pharmacological inhibitors, chlorpromazine and dynasore. Zeolite nanoparticles were taken up by both cell types and the cellular uptake was fast, and started immediately after 5 min of incubation. Interestingly, the uptake was dependent on the cell type since in breast cancer cells it was faster and more efficient, with a higher number of nanoparticles being internalized by cancer cells over time, compared to that in the epithelial mammary cells. TEM results showed that the internalized nanoparticles were mainly localized in the cell vacuoles. The data obtained upon using endocytic pharmacological inhibitors suggest that the zeolite L uptake is mediated by caveolin.
Collapse
Affiliation(s)
- Natália Vilaça
- Centre of Chemistry, Chemistry Department, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Chen L, Liu Z, Jin R, Yang X, Bai Y, Liu S, Chen X. Stepwise co-delivery of an enzyme and prodrug based on a multi-responsive nanoplatform for accurate tumor therapy. J Mater Chem B 2018; 6:6262-6268. [DOI: 10.1039/c8tb01182f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We fabricated a HAase@SiO2@prodrug nanoplatform with a core–shell–corona structure for highly selective and effective tumor therapy via microenvironment-responsive sequential catalytic reactions.
Collapse
Affiliation(s)
- Li Chen
- School of Chemical Engineering and Technology
- Shaanxi Key Laboratory of Energy Chemical Process Intensification
- Institute of Polymer Science in Chemical Engineering
- Xi’an Jiao Tong University
- Xi’an
| | - Zhongning Liu
- Department of Prosthodontics
- Peking University School and Hospital of Stomatology
- National Engineering Laboratory for Digital and Material Technology of Stomatology
- Beijing Key Laboratory of Digital Stomatology
- Beijing 100081
| | - Ronghua Jin
- School of Chemical Engineering and Technology
- Shaanxi Key Laboratory of Energy Chemical Process Intensification
- Institute of Polymer Science in Chemical Engineering
- Xi’an Jiao Tong University
- Xi’an
| | - Xiaoshan Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases
- Center for Tissue Engineering
- School of Stomatology
- Fourth Military Medical University
- Xi’an
| | - Yongkang Bai
- School of Chemical Engineering and Technology
- Shaanxi Key Laboratory of Energy Chemical Process Intensification
- Institute of Polymer Science in Chemical Engineering
- Xi’an Jiao Tong University
- Xi’an
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases
- Center for Tissue Engineering
- School of Stomatology
- Fourth Military Medical University
- Xi’an
| | - Xin Chen
- School of Chemical Engineering and Technology
- Shaanxi Key Laboratory of Energy Chemical Process Intensification
- Institute of Polymer Science in Chemical Engineering
- Xi’an Jiao Tong University
- Xi’an
| |
Collapse
|
95
|
Sciortino F, Cuny J, Grasset F, Lagrost C, Lemoine P, Moréac A, Molard Y, Takei T, Cordier S, Chevance S, Gauffre F. The Ouzo effect to selectively assemble molybdenum clusters into nanomarbles or nanocapsules with increased HER activity. Chem Commun (Camb) 2018; 54:13387-13390. [DOI: 10.1039/c8cc07402j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molybdenum clusters assemble spontaneously into nanocapsules or nanomarbles depending on their solubility in a water/THF mixture.
Collapse
Affiliation(s)
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques
- IRSAMC
- Université Paul Sabatier
- 31062 Toulouse Cedex 4
- France
| | - Fabien Grasset
- CNRS
- LINK (Laboratory for Innovative Key Materials and Structures)-UMI3629
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | | | | | | | - Yann Molard
- Univ Rennes
- CNRS
- ISCR-UMR6226
- SCANMat-UMS2001
- F-35000 Rennes
| | - Toshiaki Takei
- International Center for Materials Nanoarchitectonics
- MANA
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | | | | | | |
Collapse
|
96
|
Matsumoto K, Le Hoang Doan T, Mai NXD, Nakai K, Komatsu A, Tamanoi F. Anticancer Drug Delivery Capability of Biodegradable PMO in the Chicken Egg Tumor Model. MESOPOROUS SILICA-BASED NANOMATERIALS AND BIOMEDICAL APPLICATIONS, PART B 2018; 44:103-116. [DOI: 10.1016/bs.enz.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
97
|
Zhao T, Nguyen NT, Xie Y, Sun X, Li Q, Li X. Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications. Front Chem 2017; 5:118. [PMID: 29326923 PMCID: PMC5733462 DOI: 10.3389/fchem.2017.00118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022] Open
Abstract
Mesoporous SiO2 nanoparticles (MSNs) are one of the most promising materials for bio-related applications due to advantages such as good biocompatibility, tunable mesopores, and large pore volume. However, unlike the inorganic nanocrystals with abundant physical properties, MSNs alone lack functional features. Thus, they are not sufficiently suitable for bio-applications that require special functions. Consequently, MSNs are often functionalized by incorporating inorganic nanocrystals, which provide a wide range of intriguing properties. This review focuses on inorganic nanocrystals functionalized MSNs, both their fabrication and bio-applications. Some of the most utilized methods for coating mesoporous silica (mSiO2) on nanoparticles were summarized. Magnetic, fluorescence and photothermal inorganic nanocrystals functionalized MSNs were taken as examples to demonstrate the bio-applications. Furthermore, asymmetry of MSNs and their effects on functions were also highlighted.
Collapse
Affiliation(s)
- Tiancong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry and Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, China
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD, Australia
| | - Yang Xie
- Department of Orthopedics, Changhai Hospital & Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Orthopedics, Changhai Hospital & Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD, Australia
| | - Xiaomin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry and Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, China
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
98
|
Maiolo D, Pigliacelli C, Sánchez Moreno P, Violatto MB, Talamini L, Tirotta I, Piccirillo R, Zucchetti M, Morosi L, Frapolli R, Candiani G, Bigini P, Metrangolo P, Baldelli Bombelli F. Bioreducible Hydrophobin-Stabilized Supraparticles for Selective Intracellular Release. ACS NANO 2017; 11:9413-9423. [PMID: 28806871 PMCID: PMC5618140 DOI: 10.1021/acsnano.7b04979] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the main hurdles in nanomedicine is the low stability of drug-nanocarrier complexes as well as the drug delivery efficiency in the region-of-interest. Here, we describe the use of the film-forming protein hydrophobin HFBII to organize dodecanethiol-protected gold nanoparticles (NPs) into well-defined supraparticles (SPs). The obtained SPs are exceptionally stable in vivo and efficiently encapsulate hydrophobic drug molecules. The HFBII film prevents massive release of the encapsulated drug, which, instead, is activated by selective SP disassembly triggered intracellularly by glutathione reduction of the protein film. As a consequence, the therapeutic efficiency of an encapsulated anticancer drug is highly enhanced (2 orders of magnitude decrease in IC50). Biodistribution and pharmacokinetics studies demonstrate the high stability of the loaded SPs in the bloodstream and the selective release of the payloads once taken up in the tissues. Overall, our results provide a rationale for the development of bioreducible and multifunctional nanomedicines.
Collapse
Affiliation(s)
- Daniele Maiolo
- Interdepartmental Laboratory of Nanomedicine (NanoMedLab), Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), and Fondazione Centro Europeo Nanomedicina (CEN), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano , via L. Mancinelli 7, 20131 Milan, Italy
| | - Claudia Pigliacelli
- Interdepartmental Laboratory of Nanomedicine (NanoMedLab), Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), and Fondazione Centro Europeo Nanomedicina (CEN), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano , via L. Mancinelli 7, 20131 Milan, Italy
| | - Paola Sánchez Moreno
- Interdepartmental Laboratory of Nanomedicine (NanoMedLab), Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), and Fondazione Centro Europeo Nanomedicina (CEN), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano , via L. Mancinelli 7, 20131 Milan, Italy
| | | | - Laura Talamini
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" , 20156 Milano, Italy
| | - Ilaria Tirotta
- Interdepartmental Laboratory of Nanomedicine (NanoMedLab), Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), and Fondazione Centro Europeo Nanomedicina (CEN), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano , via L. Mancinelli 7, 20131 Milan, Italy
| | - Rosanna Piccirillo
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" , 20156 Milano, Italy
| | - Massimo Zucchetti
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" , 20156 Milano, Italy
| | - Lavinia Morosi
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" , 20156 Milano, Italy
| | - Roberta Frapolli
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" , 20156 Milano, Italy
| | - Gabriele Candiani
- Interdepartmental Laboratory of Nanomedicine (NanoMedLab), Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), and Fondazione Centro Europeo Nanomedicina (CEN), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano , via L. Mancinelli 7, 20131 Milan, Italy
| | - Paolo Bigini
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" , 20156 Milano, Italy
| | - Pierangelo Metrangolo
- Interdepartmental Laboratory of Nanomedicine (NanoMedLab), Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), and Fondazione Centro Europeo Nanomedicina (CEN), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano , via L. Mancinelli 7, 20131 Milan, Italy
- VTT-Technical Research Centre of Finland Ltd , Biologinkuja 7, FI-02044 Espoo, Finland
| | - Francesca Baldelli Bombelli
- Interdepartmental Laboratory of Nanomedicine (NanoMedLab), Laboratory of Supramolecular and BioNano Materials (SupraBioNanoLab), and Fondazione Centro Europeo Nanomedicina (CEN), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano , via L. Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
99
|
Yuan P, Zhang H, Qian L, Mao X, Du S, Yu C, Peng B, Yao SQ. Intracellular Delivery of Functional Native Antibodies under Hypoxic Conditions by Using a Biodegradable Silica Nanoquencher. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Hailong Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Linghui Qian
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xin Mao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Changmin Yu
- College of Materials Science & Engineering South China University of Technology 510640 Guangzhou China
| | - Bo Peng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
100
|
Yuan P, Zhang H, Qian L, Mao X, Du S, Yu C, Peng B, Yao SQ. Intracellular Delivery of Functional Native Antibodies under Hypoxic Conditions by Using a Biodegradable Silica Nanoquencher. Angew Chem Int Ed Engl 2017; 56:12481-12485. [DOI: 10.1002/anie.201705578] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/24/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Hailong Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Linghui Qian
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xin Mao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Changmin Yu
- College of Materials Science & Engineering South China University of Technology 510640 Guangzhou China
| | - Bo Peng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|