51
|
Liu Z, Wang Y, Huo J, Li XJ, Li S, Song X. Selectfluor-Promoted Intramolecular N-S Bond Formation of α-Carbamoyl Ketene Dithioacetals in the Presence of Water: Synthesis of Multifunctionalized Isothiazolones. J Org Chem 2021; 86:5506-5517. [PMID: 33797258 DOI: 10.1021/acs.joc.0c03036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A practical and efficient protocol toward fully substituted isothiazolones through Selectfluor-mediated intramolecular oxidative annulation of α-carbamoyl ketene dithioacetals has been developed in the presence of H2O and metal-free conditions. Notably, the experimental results reveal that H2O was crucial to the formation of new N-S bonds and the elimination of alkyl group from the sulfur atom. This protocol provides readily prepared substrates and possesses good functional group tolerance, mild reaction conditions, and operational simplicity, which provides potential access to applications in the pharmaceutical chemistry.
Collapse
Affiliation(s)
- Zheng Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Youkun Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Jianfeng Huo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiao-Jun Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Shengnan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiaoning Song
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
52
|
Tian Z, Gong Q, Huang T, Liu L, Chen T. Practical Electro-Oxidative Sulfonylation of Phenols with Sodium Arenesulfinates Generating Arylsulfonate Esters. J Org Chem 2021; 86:15914-15926. [PMID: 33789426 DOI: 10.1021/acs.joc.1c00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A practical and sustainable synthesis of arylsulfonate esters has been developed through electro-oxidation. This reaction employed the stable and readily available phenols and sodium arenesulfinates as the starting materials and took place under mild reaction conditions without additional oxidants. A wide range of arylsulfonate esters including those bearing functional groups were produced in good to excellent yields. This reaction could also be conducted at a gram scale without a decrease of reaction efficiency. Those results well demonstrated the potential synthetic value of this reaction in organic synthesis.
Collapse
Affiliation(s)
- Zhibin Tian
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Qihang Gong
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
53
|
Li Y, Huang Z, Mo G, Jiang W, Zheng C, Feng P, Ruan Z. Direct Electrochemical Synthesis of
Sulfur‐Containing
Triazolium Inner Salts. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000586] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yueheng Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Zhixing Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Wei Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Chengwei Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| | - Pengju Feng
- Department of Chemistry, Jinan University Guangzhou Guangdong 510632 China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou Guangdong 511436 China
| |
Collapse
|
54
|
Chen N, Xu HC. Electrochemically Driven Radical Reactions: From Direct Electrolysis to Molecular Catalysis. CHEM REC 2021; 21:2306-2319. [PMID: 33734572 DOI: 10.1002/tcr.202100048] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Organic radicals are versatile synthetic intermediates that provide reactivities and selectivities complementary to ionic species. Despite its long history, electrochemically driven radical reactions remain limited in scope. In the past few years, there have been dramatic increase in research activity in organic electrochemistry. We have been developing electrochemical and electrophotocatalytic methods for the generation and synthetic utilization of organic radicals. In our studies, various radical species such as alkene and arene radical cations and carbon- and heteroatom-centered radicals are generated from readily available precursors through direct electrolysis, molecular electrocatalysis or molecular electrophotocatalysis. These radical species undergo various inter- and intramolecular oxidative transformations to rapidly increase molecular complexity. The simultaneous occurrence of anodic oxidation and cathodic proton reduction allows the oxidative reactions to proceed through H2 evolution without external chemical oxidants.
Collapse
Affiliation(s)
- Na Chen
- School of Medicine, Huaqiao University, Xiamen, 361021, China
| | - Hai-Chao Xu
- Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
55
|
Chen N, Xu HC. Electrochemical generation of nitrogen-centered radicals for organic synthesis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
56
|
Wang D, Wan Z, Zhang H, Lei A. Electrochemical Oxidative Functionalization of Arylalkynes: Access to α,α‐Dibromo Aryl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Wang
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| | - Zhaohua Wan
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| | - Heng Zhang
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS) College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 People's Republic of China
| |
Collapse
|
57
|
Meng Z, Feng C, Xu K. Recent Advances in the Electrochemical Formation of Carbon-Nitrogen Bonds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
58
|
Wang CN, Lu YH, Liu Y, Liu J, Yang YY, Zhao ZG. Electrochemical coupling halobenzene into biphenyl on a reusable Pd nanoparticle-coated carbon-paper electrode at ambient conditions. NEW J CHEM 2021. [DOI: 10.1039/d0nj06027e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical homo-coupling halobenzene into biphenyl compounds on the Pd/C surface.
Collapse
Affiliation(s)
- Chao-Nan Wang
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| | - Yong-Heng Lu
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| | - Yue Liu
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| | - Jun Liu
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| | - Yao-Yue Yang
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| | - Zhi-Gang Zhao
- Key Laboratory of Basic Chemistry of State Ethnic Commission
- School of Chemistry and Environment
- Southwest Minzu University
- Chengdu 610041
- China
| |
Collapse
|
59
|
Zhou Z, Kong X, Liu T. Applications of Proton-Coupled Electron Transfer in Organic Synthesis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Kehl A, Schupp N, Breising VM, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of Carbazoles by Dehydrogenative Coupling Reaction. Chemistry 2020; 26:15847-15851. [PMID: 32737905 PMCID: PMC7756279 DOI: 10.1002/chem.202003430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/14/2022]
Abstract
A constant current protocol, employing undivided cells, a remarkably low supporting electrolyte concentration, inexpensive electrode materials, and a straightforward precursor synthesis enabling a novel access to N‐protected carbazoles by anodic N,C bond formation using directly generated amidyl radicals is reported. Scalability of the reaction is demonstrated and an easy deblocking of the benzoyl protecting group is presented.
Collapse
Affiliation(s)
- Anton Kehl
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Niclas Schupp
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Valentina M Breising
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
61
|
Wang Q, Wang Q, Zhang Y, Mohamed YM, Pacheco C, Zheng N, Zare RN, Chen H. Electrocatalytic redox neutral [3 + 2] annulation of N-cyclopropylanilines and alkenes. Chem Sci 2020; 12:969-975. [PMID: 34163863 PMCID: PMC8179209 DOI: 10.1039/d0sc05665k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
Although synthetic organic electrochemistry (EC) has advanced significantly, net redox neutral electrosynthesis is quite rare. Two approaches have been employed to achieve this type of electrosynthesis. One relies on turnover of the product by the reactant in a chain mechanism. The other involves both oxidation on the anode and reduction on the cathode in which the radical cation or the radical anion of the product has to migrate between two electrodes. Herein, a home-built electrochemistry/mass spectrometry (EC/MS) platform was used to generate an N-cyclopropylaniline radical cation electrochemically and to monitor its reactivity toward alkenes by mass spectrometry (MS), which led to the discovery of a new redox neutral reaction of intermolecular [3 + 2] annulation of N-cyclopropylanilines and alkenes to provide an aniline-substituted 5-membered carbocycle via direct electrolysis (yield up to 81%). A chain mechanism, involving the regeneration of the substrate radical cation and the formation of the neutral product, is shown to be responsible for promoting such a redox neutral annulation reaction, as supported by experimental evidence of EC/MS.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Qile Wang
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville Arkansas 72701 USA
| | - Yuexiang Zhang
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Yasmine M Mohamed
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Carlos Pacheco
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| | - Nan Zheng
- Department of Chemistry and Biochemistry, University of Arkansas Fayetteville Arkansas 72701 USA
| | - Richard N Zare
- Department of Chemistry, Stanford University Stanford California 94305-5080 USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology Newark New Jersey 07102 USA
| |
Collapse
|
62
|
Kim JE, Choi S, Balamurugan M, Jang JH, Nam KT. Electrochemical C–N Bond Formation for Sustainable Amine Synthesis. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
63
|
Liu L, Ward RM, Schomaker JM. Regioselective Intramolecular Allene Amidation Enabled by an EDA Complex*. Chemistry 2020; 26:13783-13787. [PMID: 32449968 DOI: 10.1002/chem.202002533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 12/18/2022]
Abstract
The addition of radicals to unsaturated precursors is a powerful tool for the synthesis of both carbo- and heterocyclic organic building blocks. The recent advent of mild ways to generate N-centered radicals has reignited interest in exploiting highly regio-, chemo-, and stereoselective transformations that employ these reactive intermediates. While the additions of aminyl, iminyl, and amidyl radicals to alkenes and alkynes have been well-studied, analogous additions to allenes are scarce. Allenes offer several attractive features, including potential for selective amidation at three distinct sites via judicious choice of precursor or radical source, the opportunity for axial-to-point chirality transfer, and productive trapping of vinyl or allyl radical intermediates to diversify functionality in the products. In this article, we report a regioselective addition of amidyl radicals to allenes to furnish an array of valuable N-heterocycle scaffolds.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Robert M Ward
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
64
|
Phillips AMF, Pombeiro AJL. Electrochemical asymmetric synthesis of biologically active substances. Org Biomol Chem 2020; 18:7026-7055. [PMID: 32909570 DOI: 10.1039/d0ob01425g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Electrically driven oxidation and reduction reactions are well-established methods for synthesis even in the chemical industry, but asymmetric versions are still few. The mild conditions used, atom efficiency and low cost make these reactions a very attractive alternative to other methods of synthesis. Very fine tuning can be achieved based on minute changes in potentials, allowing only one functional group in a molecule to react in the presence of several others, which is ideal for applications in total synthesis. In this review, the literature in the field of asymmetric synthesis of biologically active substances over the last 10 years is surveyed.
Collapse
Affiliation(s)
- Ana Maria Faisca Phillips
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
| |
Collapse
|
65
|
Mo Y, Rughoobur G, Nambiar AMK, Zhang K, Jensen KF. A Multifunctional Microfluidic Platform for High‐Throughput Experimentation of Electroorganic Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yiming Mo
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Girish Rughoobur
- Electrical Engineering and Computer Science Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anirudh M. K. Nambiar
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Kara Zhang
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
66
|
Mo Y, Rughoobur G, Nambiar AMK, Zhang K, Jensen KF. A Multifunctional Microfluidic Platform for High‐Throughput Experimentation of Electroorganic Chemistry. Angew Chem Int Ed Engl 2020; 59:20890-20894. [DOI: 10.1002/anie.202009819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Yiming Mo
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Girish Rughoobur
- Electrical Engineering and Computer Science Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anirudh M. K. Nambiar
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Kara Zhang
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
67
|
Song L, Fu N, Ernst BG, Lee WH, Frederick MO, DiStasio RA, Lin S. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat Chem 2020; 12:747-754. [PMID: 32601407 PMCID: PMC7390704 DOI: 10.1038/s41557-020-0469-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/21/2020] [Indexed: 11/30/2022]
Abstract
Chiral nitriles and their derivatives are prevalent in pharmaceuticals and bioactive compounds. Enantioselective alkene hydrocyanation represents a convenient and efficient approach for synthesizing these molecules. However, a generally applicable method featuring a broad substrate scope and high functional group tolerance remains elusive. Here, we address this long-standing synthetic problem using dual electrocatalysis. Using this strategy, we leverage electrochemistry to seamlessly combine two canonical radical reactions—cobalt-mediated hydrogen-atom transfer and copper-promoted radical cyanation—to accomplish highly enantioselective hydrocyanation without the need for stoichiometric oxidants. We also harness electrochemistry’s unique feature of precise potential control to optimize the chemoselectivity of challenging substrates. Computational analysis uncovers the origin of enantio-induction, for which the chiral catalyst imparts a combination of attractive and repulsive non-covalent interactions to direct the enantio-determining C–CN bond formation. This work demonstrates the power of electrochemistry in accessing new chemical space and providing solutions to pertinent challenges in synthetic chemistry.
Collapse
Affiliation(s)
- Lu Song
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Niankai Fu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Wai Hang Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Michael O Frederick
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
68
|
Thobokholt EN, Larghi EL, Bracca ABJ, Kaufman TS. Isolation and synthesis of cryptosanguinolentine (isocryptolepine), a naturally-occurring bioactive indoloquinoline alkaloid. RSC Adv 2020; 10:18978-19002. [PMID: 35518305 PMCID: PMC9054090 DOI: 10.1039/d0ra03096a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022] Open
Abstract
Cryptosanguinolentine (isocryptolepine) is one of the minor naturally-occurring monomeric indoloquinoline alkaloids, isolated from the West African climbing shrub Cryptolepis sanguinolenta. The natural product displays such a simple and unique skeleton, which chemists became interested in well before it was found in Nature. Because of its structure and biological activity, the natural product has been targeted for synthesis on numerous occasions, employing a wide range of different strategies. Hence, discussed here are aspects related to the isolation of isocryptolepine, as well as the various approaches toward its total synthesis.
Collapse
Affiliation(s)
- Elida N Thobokholt
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| |
Collapse
|
69
|
Yang Z, Zhang J, Hu L, Li A, Li L, Liu K, Yang T, Zhou C. Electrochemical HI-mediated Intermolecular C–N Bond Formation to Synthesize Imidazoles from Aryl Ketones and Benzylamines. J Org Chem 2020; 85:5952-5958. [DOI: 10.1021/acs.joc.0c00316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zan Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jiaqi Zhang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Liping Hu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - An Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Lijun Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Kun Liu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Tao Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Congshan Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
70
|
Li J, Yang P, Xie X, Jiang S, Tao L, Li Z, Lu C, Liu W. Catalyst‐Free Electrosynthesis of Benzimidazolones through Intramolecular Oxidative C−N Coupling. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jiang‐Sheng Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Pan‐Pan Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Xin‐Yun Xie
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Si Jiang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Li Tao
- State Grid Hunan Electric Power Company Limited Research Institute Changsha 410004 People's Republic of China
| | - Zhi‐Wei Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Cui‐Hong Lu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Wei‐Dong Liu
- National Engineering Research Center for AgrochemicalsHunan Research Institute of Chemical Industry Changsha 410007 People's Republic of China
| |
Collapse
|
71
|
Hou Z, Xu H. Electrochemically Enabled Intramolecular Aminooxygenation of Alkynes
via
Amidyl Radical Cyclization. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900500] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhong‐Wei Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| |
Collapse
|
72
|
Huang Y, Pi C, Cui X, Wu Y. Palladium(II)‐Catalyzed Enantioselective C−H Alkenylation of Ferrocenecarboxylic Acid. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yanzhen Huang
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan UniversitiesZhengzhou University Zhengzhou 450052 People's Republic of China
| | - Chao Pi
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan UniversitiesZhengzhou University Zhengzhou 450052 People's Republic of China
| | - Xiuling Cui
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan UniversitiesZhengzhou University Zhengzhou 450052 People's Republic of China
| | - Yangjie Wu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan UniversitiesZhengzhou University Zhengzhou 450052 People's Republic of China
| |
Collapse
|
73
|
Song C, Liu K, Jiang X, Dong X, Weng Y, Chiang C, Lei A. Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. Angew Chem Int Ed Engl 2020; 59:7193-7197. [DOI: 10.1002/anie.202000226] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chunlan Song
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xu Jiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xin Dong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Yue Weng
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chien‐Wei Chiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
74
|
Song C, Liu K, Jiang X, Dong X, Weng Y, Chiang C, Lei A. Electrooxidation Enables Selective Dehydrogenative [4+2] Annulation between Indole Derivatives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chunlan Song
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xu Jiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xin Dong
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Yue Weng
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chien‐Wei Chiang
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences and The Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
75
|
Maity A, Frey BL, Hoskinson ND, Powers DC. Electrocatalytic C–N Coupling via Anodically Generated Hypervalent Iodine Intermediates. J Am Chem Soc 2020; 142:4990-4995. [DOI: 10.1021/jacs.9b13918] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Asim Maity
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brandon L. Frey
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nathanael D. Hoskinson
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
76
|
Wang Q, Wang P, Gao X, Wang D, Wang S, Liang X, Wang L, Zhang H, Lei A. Regioselective/electro-oxidative intermolecular [3 + 2] annulation for the preparation of indolines. Chem Sci 2020; 11:2181-2186. [PMID: 34123309 PMCID: PMC8150106 DOI: 10.1039/c9sc05729c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Compared with the reported intramolecular electro-oxidative cyclization of alkenyl amines or vinyl anilines for the preparation of pyrrolidines or indolines, the intermolecular version is less studied. Herein, this electrochemical intermolecular oxidative annulation of anilines and alkenes for the preparation of indolines proceeded under external oxidant-free conditions. The most noteworthy achievement of our work is the facile generation of indolines with quaternary centers at the 2-position. In addition, alkenes and anilines bearing various functional groups can be well tolerated. Remarkably, electrolyte-free conditions were used in an electrochemical flow cell, which shows the application potential of this method.
Collapse
Affiliation(s)
- Qingqing Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Pan Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Xinlong Gao
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Dan Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Xingan Liang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Liwei Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 P. R. China .,National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
77
|
Sen PP, Dagar N, Singh S, Roy VJ, Pathania V, Raha Roy S. Probing the versatility of metallo-electro hybrid catalysis: enabling access towards facile C–N bond formation. Org Biomol Chem 2020; 18:8994-9017. [DOI: 10.1039/d0ob01874k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metallo-electro catalysis has emerged as sustainable alternate to conventional transition metal methodologies. This review highlights the recent advances for the formation of C–N bonds by merging transition metal catalysis with electrosynthesis.
Collapse
Affiliation(s)
- Partha Pratim Sen
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Neha Dagar
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Swati Singh
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Vishal Jyoti Roy
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Vishali Pathania
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| | - Sudipta Raha Roy
- Department of Chemistry
- Indian Institute of Technology Delhi
- New Delhi
- India
| |
Collapse
|
78
|
Yuan Y, Lei A. Electrochemical Oxidative Cross-Coupling with Hydrogen Evolution Reactions. Acc Chem Res 2019; 52:3309-3324. [PMID: 31774271 DOI: 10.1021/acs.accounts.9b00512] [Citation(s) in RCA: 410] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative cross-coupling has proved to be one of the most straightforward strategies for forming carbon-carbon and carbon-heteroatom bonds from easily available precursors. Over the past two decades, tremendous efforts have been devoted in this field and significant advances have been achieved. However, in order to remove the surplus electrons from substrates for chemical bonds formation, stoichiometric oxidants are usually needed. Along with the development of modern sustainable chemistry, considerable efforts have been devoted to perform the oxidative cross-coupling reactions under external-oxidant-free conditions. Electrochemical synthesis is a powerful and environmentally benign approach, which can not only achieve the oxidative cross-couplings under external-oxidant-free conditions, but also release valuable hydrogen gas during the chemical bond formation. Recently, the electrochemical oxidative cross-coupling with hydrogen evolution reactions has been significantly explored. This Account presents our recent efforts toward the development of electrochemical oxidative cross-coupling with hydrogen evolution reactions. (1) We explored the oxidative cross-coupling of thiols/thiophenols with arenes, heteroarenes, and alkenes for C-S bond formation. (2) Using the strategy of electrochemical oxidative C-H/N-H cross-coupling with hydrogen evolution, we successfully realized the C-H amination of phenols, anilines, imidazopyridines, and even ethers. (3) Employing halide salts as the green halogenating reagents, we developed a clean C-H halogenation protocol under electrochemical oxidation conditions. To address the limitation that this reaction had to carry out in aqueous solvent, we also developed an alternative method that uses CBr4, CHBr3, CH2Br2, CCl3Br, and CCl4 as halogenating reagents and the mixture of acetonitrile and methanol as cosolvent. (4) We also developed an approach for constructing C-O bonds in a well-developed electrochemical oxidative cross-coupling with hydrogen evolution manner. (5) Under mild external-oxidant-free electrochemical conditions, we realized the C(sp2)-H and C(sp3)-H phosphonylation with modest to high yields. (6) We successfully achieved the S-H/S-H cross-coupling with hydrogen evolution under electrochemical oxidation conditions. By anodic oxidation instead of chemical oxidants, the overoxidation of thiols and thiophenols was well avoided. (7) The methods for constructing structurally diverse heterocyclic compounds were also developed via the electrochemical oxidative annulations. (8) We have also applied the electrochemical oxidative cross-coupling with hydrogen evolution strategy to the alkenes difunctionalization for constructing multiple bonds in one step, such as C-S/C-O bonds, C-S/C-N bonds, C-Se/C-O bonds, and C-Se/C-N bonds. We hope our studies will stimulate the research interest of chemists and pave the way for the discovery of more electrochemical oxidative cross-coupling with hydrogen evolution reactions.
Collapse
Affiliation(s)
- Yong Yuan
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, People’s Republic of China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, People’s Republic of China
| |
Collapse
|
79
|
Abstract
N-centered radicals are versatile reaction intermediates that can react with various π systems to construct C-N bonds. Current methods for generating N-centered radicals usually involve the cleavage of an N-heteroatom bond; however, similar strategies that are applicable to N-H bonds prove to be more challenging to develop and therefore are attracting increasing attention. In this Account, we summarize our recent efforts in the development of electrochemical methods for the generation and synthetic utilization of N-centered radicals. In our studies, N-aryl amidyl radical, amidinyl radical and iminyl radical cation intermediates are generated from N-H precursors through direct electrolysis or indirect electrolysis assisted by a redox catalyst. In addition, an electrocatalytic method that converts oximes to iminoxyl radicals has also been developed. The electrophilic amidyl radical intermediates can participate in 5-exo or 6-exo cyclization with alkenes and alkynes to afford C-centered radicals, which can then undergo various transformations such as H atom abstraction, single-electron transfer oxidation to a carbocation, cyclization, or aromatic substitution, leading to a diverse range of N-heterocyclic products. Furthermore, amidinyl radicals, iminyl radical cations, and iminoxyl radicals can undergo intramolecular aromatic substitution to afford various N-heteroaromatic compounds. Importantly, the electrochemical reaction can be channeled toward a specific product despite the presence of other competing pathways. For a successful electrosynthesis, it is important to take into consideration of both the electron transfer steps associated with the electrode and the nonelectrode related processes. A unique feature of electrochemistry is the simultaneous occurrence of anodic oxidation and cathodic reduction, which, as this Account demonstrates, allows the dehydrogenative transformations to proceed through H2 evolution without the need for chemical oxidants. In addition, cathodic solvent reduction can continuously generate a low concentration of base, which facilitates anodic substrate oxidation. Such a mechanistic paradigm obviates the need for stoichiometric strong bases and avoids base-promoted decomposition of sensitive substrates or products. Furthermore, electrode materials can also be adjusted to control the reaction outcome, as demonstrated by the synthesis of N-heteroaromatics and the corresponding N-oxides from biaryl ketoximes.
Collapse
Affiliation(s)
- Peng Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
80
|
Hai‐Chao Xu. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
81
|
Hai-Chao Xu. Angew Chem Int Ed Engl 2019; 58:17506. [PMID: 31762199 DOI: 10.1002/anie.201907300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
"My worst nightmare is forgetting to prepare for a class. The most exciting thing about my research is discovering new reactions …" Find out more about Hai-Chao Xu in his Author Profile.
Collapse
|
82
|
Hu X, Zhang G, Nie L, Kong T, Lei A. Electrochemical oxidation induced intermolecular aromatic C-H imidation. Nat Commun 2019; 10:5467. [PMID: 31784522 PMCID: PMC6884519 DOI: 10.1038/s41467-019-13524-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/12/2019] [Indexed: 01/05/2023] Open
Abstract
The dehydrogenative aryl C-H/N-H cross-coupling is a powerful synthetic methodology to install nitrogen functionalities into aromatic compounds. Herein, we report an electrochemical oxidation induced intermolecular cross-coupling between aromatics and sulfonimides with high regioselectivity through N-radical addition pathway under external-oxidant-free and catalyst-free conditions. A wide variety of arenes, heteroarenes, alkenes and sulfonimides are applicable scaffolds in this transformation. In addition, aryl sulfonamides or amines (aniline derivatives) can be obtained through different deprotection process. The cyclic voltammetry mechanistic study indicates that the N-centered imidyl radicals are generated via proton-coupled electron transfer event jointly mediated by tetrabutylammonium acetate and anode oxidation process. The dehydrogenative C-H/N-H cross-coupling serves to install nitrogen functionalities into arenes with the highest atom economy. Here, the authors report an electrochemical cross-coupling between aromatics and sulfonimides through an N-radical addition pathway under oxidant- and catalyst-free conditions.
Collapse
Affiliation(s)
- Xia Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Guoting Zhang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Lei Nie
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Taige Kong
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China.
| |
Collapse
|
83
|
Zhao Q, Hao WJ, Shi HN, Xu T, Tu SJ, Jiang B. Photocatalytic Annulation–Alkynyl Migration Strategy for Multiple Functionalization of Dual Unactivated Alkenes. Org Lett 2019; 21:9784-9789. [DOI: 10.1021/acs.orglett.9b04018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qi Zhao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hao-Nan Shi
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ting Xu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
84
|
Feng J, Huang Y. Phosphine-catalyzed (3+2)/(2+3) sequential annulation involving a triple nucleophilic addition reaction of γ-vinyl allenoates. Chem Commun (Camb) 2019; 55:14011-14014. [PMID: 31690906 DOI: 10.1039/c9cc07346a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A phosphine-catalyzed (3+2)/(2+3) sequential annulation involving a triple nucleophilic addition reaction of γ-vinyl allenoates was successfully developed. The reaction provided efficient and more practical access to functionalized hydropyrroloimidazolones with good to excellent yields under mild reaction conditions. Notably, γ-vinyl allenoate served as a triple-electrophilic intermediate in this protocol.
Collapse
Affiliation(s)
- Jiaxu Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
85
|
Mannisto JK, Sahari A, Lagerblom K, Niemi T, Nieger M, Sztanó G, Repo T. One‐Step Synthesis of 3,4‐Disubstituted 2‐Oxazolidinones by Base‐Catalyzed CO
2
Fixation and Aza‐Michael Addition. Chemistry 2019; 25:10284-10289. [DOI: 10.1002/chem.201902451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jere K. Mannisto
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Aleksi Sahari
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Kalle Lagerblom
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Teemu Niemi
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Martin Nieger
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Gábor Sztanó
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| | - Timo Repo
- Department of ChemistryUniversity of Helsinki, P.O. Box 55 A.I. Virtasen aukio 1 00014 Helsinki Finland
| |
Collapse
|
86
|
Xu HH, Song J, Xu HC. Electrochemical Difluoromethylation of Electron-Deficient Alkenes. CHEMSUSCHEM 2019; 12:3060-3063. [PMID: 30684294 DOI: 10.1002/cssc.201803058] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Indexed: 06/09/2023]
Abstract
Electrochemical 1,2-hydroxydifluoromethylation and C-H difluoromethylation of acrylamides were developed by using CF2 HSO2 NHNHBoc as the source of the CF2 H group. These electricity-powered oxidative alkene functionalization reactions do not need transition-metal catalysts or chemical oxidants. The reaction outcome, 1,2-difuntionalization or C-H functionalization, is determined by the substituents on the amide nitrogen atom of the acrylamides instead of by the reaction conditions.
Collapse
Affiliation(s)
- He-Huan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| |
Collapse
|
87
|
Shatskiy A, Lundberg H, Kärkäs MD. Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem 2019. [DOI: 10.1002/celc.201900435] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrey Shatskiy
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Helena Lundberg
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Markus D. Kärkäs
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| |
Collapse
|
88
|
Verschueren RH, De Borggraeve WM. Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis. Molecules 2019; 24:E2122. [PMID: 31195644 PMCID: PMC6600520 DOI: 10.3390/molecules24112122] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/05/2022] Open
Abstract
This review provides an overview of synthetic transformations that have been performed by both electro- and photoredox catalysis. Both toolboxes are evaluated and compared in their ability to enable said transformations. Analogies and distinctions are formulated to obtain a better understanding in both research areas. This knowledge can be used to conceptualize new methodological strategies for either of both approaches starting from the other. It was attempted to extract key components that can be used as guidelines to refine, complement and innovate these two disciplines of organic synthesis.
Collapse
Affiliation(s)
- Rik H Verschueren
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium.
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, box 2404, 3001 Leuven, Belgium.
| |
Collapse
|
89
|
Xu F, Long H, Song J, Xu H. De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province,iChEMCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province,iChEMCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province,iChEMCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
90
|
Xu F, Long H, Song J, Xu H. De Novo Synthesis of Highly Functionalized Benzimidazolones and Benzoxazolones through an Electrochemical Dehydrogenative Cyclization Cascade. Angew Chem Int Ed Engl 2019; 58:9017-9021. [DOI: 10.1002/anie.201904931] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Fan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province,iChEMCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Hao Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province,iChEMCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jinshuai Song
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 P. R. China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province,iChEMCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
91
|
Nguyen ST, Zhu Q, Knowles RR. PCET-Enabled Olefin Hydroamidation Reactions with N-Alkyl Amides. ACS Catal 2019; 9:4502-4507. [PMID: 32292642 DOI: 10.1021/acscatal.9b00966] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Olefin aminations are important synthetic technologies for the construction of aliphatic C-N bonds. Here we report a catalytic protocol for olefin hydroamidation that proceeds through transient amidyl radical intermediates that are formed via proton-coupled electron transfer (PCET) activation of the strong N-H bonds in N-alkyl amides by an excited-state iridium photocatalyst and a dialkyl phosphate base. This method exhibits a broad substrate scope, high functional group tolerance, and amenability to use in cascade polycyclization reactions. The feasibility of this PCET protocol in enabling the intermolecular anti-Markovnikov hydroamidation reactions of unactivated olefins is also demonstrated.
Collapse
Affiliation(s)
- Suong T. Nguyen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Qilei Zhu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
92
|
Jiang H, Studer A. Anti‐Markovnikov Radical Hydro‐ and Deuteroamidation of Unactivated Alkenes. Chemistry 2019; 25:7105-7109. [DOI: 10.1002/chem.201901566] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Heng Jiang
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
93
|
Nikolaienko P, Jentsch M, Kale AP, Cai Y, Rueping M. Electrochemical and Scalable Dehydrogenative C(sp
3
)−H Amination via Remote Hydrogen Atom Transfer in Batch and Continuous Flow. Chemistry 2019; 25:7177-7184. [DOI: 10.1002/chem.201806092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 03/09/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Pavlo Nikolaienko
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Marc Jentsch
- Institute of Organic ChemistryRWTH-Aachen University Landoltweg 1 52074 Aachen Germany
| | - Ajit P. Kale
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yunfei Cai
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Institute of Organic ChemistryRWTH-Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
94
|
Ke J, Wang H, Zhou L, Mou C, Zhang J, Pan L, Chi YR. Hydrodehalogenation of Aryl Halides through Direct Electrolysis. Chemistry 2019; 25:6911-6914. [PMID: 30950097 DOI: 10.1002/chem.201901082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 01/27/2023]
Abstract
A catalyst- and metal-free electrochemical hydrodehalogenation of aryl halides is disclosed. Our reaction by a flexible protocol is operated in an undivided cell equipped with an inexpensive graphite rod anode and cathode. Trialkylamines nBu3 N/Et3 N behave as effective reductants and hydrogen atom donors for this electrochemical reductive reaction. Various aryl and heteroaryl bromides worked effectively. The typically less reactive aryl chlorides and fluorides can also be smoothly converted. The utility of our method is demonstrated by detoxification of harmful pesticides and hydrodebromination of a dibrominated biphenyl (analogues of flame-retardants) in gram scale.
Collapse
Affiliation(s)
- Jie Ke
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hongling Wang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liejin Zhou
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Chengli Mou
- Guiyang College of Traditional Chinese Medicine, Guizhou, P.R. China
| | - Jingjie Zhang
- Guiyang College of Traditional Chinese Medicine, Guizhou, P.R. China
| | - Lutai Pan
- Guiyang College of Traditional Chinese Medicine, Guizhou, P.R. China
| | - Yonggui Robin Chi
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
95
|
Abstract
This protocol describes an electrochemical synthesis of 1,2-diazides from alkenes. Organic azides are highly versatile intermediates for synthetic chemistry, materials, and biological applications. 1,2-Diazides are commonly reduced to form 1,2-diamines, which are prevalent structural motifs in bioactive natural products, therapeutic agents, and molecular catalysts. The electrochemical formation of 1,2-diazides involves the anodic generation of an azidyl radical from sodium azide, followed by two successive additions of this N-centered radical to the alkene, and is assisted by a Mn catalyst. The electrosynthesis of 1,2-diazides can be carried out using various experimental setups comprising custom-made or commercially available reaction vessels and a direct-current power supply. Readily accessible electrode materials can be used, including carbon (made from reticulated vitreous carbon and pencil lead), nickel foam, and platinum foil. This protocol is also demonstrated using ElectraSyn, a standardized electrochemistry kit. Compared with conventional synthetic approaches, electrochemistry allows for the precise control of the anodic potential input, eliminates the need for stoichiometric and often indiscriminate oxidants, and minimizes the generation of wasteful byproducts. As such, our electrocatalytic synthesis exhibits various advantages over existing methods for alkene diamination, including sustainability, operational simplicity, substrate generality, and exceptional functional-group compatibility. The resultant 1,2-diazides can be smoothly reduced to 1,2-diamines in a single step with high chemoselectivity. To exemplify this, we include a procedure for catalytic hydrogenation using palladium on carbon. This protocol, therefore, constitutes a general approach to accessing 1,2-diazides and 1,2-diamines from alkenes.
Collapse
|
96
|
Kang JC, Tu YQ, Dong JW, Chen C, Zhou J, Ding TM, Zai JT, Chen ZM, Zhang SY. Electrochemical Semipinacol Rearrangements of Allylic Alcohols: Construction of All-Carbon Quaternary Stereocenters. Org Lett 2019; 21:2536-2540. [PMID: 30945551 DOI: 10.1021/acs.orglett.9b00263] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first examples of electrochemical trifluoromethylation and sulfonylation/semipinacol rearrangements of allylic alcohols were developed using cheap and stable RSO2Na (R = CF3, Ph) as reagents. Various β-trifluoromethyl and sulfonated ketones were obtained in moderate to excellent yields. This strategy provides a facile, direct, and complementary approach to construct all-carbon quaternary stereocenters. In addition, the reaction has the advantages of being chemical oxidant-free and metal-free and has safe and mild reaction conditions.
Collapse
Affiliation(s)
- Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Yong-Qiang Tu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Jia-Wei Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Chao Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Jian-Tao Zai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Zhi-Min Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs & School of Chemistry and Chemical Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education , Shanghai Jiao Tong University , Shanghai 200240 , P.R. China
| |
Collapse
|
97
|
Yi X, Hu X. Formal Aza‐Wacker Cyclization by Tandem Electrochemical Oxidation and Copper Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiangli Yi
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
98
|
Yi X, Hu X. Formal Aza-Wacker Cyclization by Tandem Electrochemical Oxidation and Copper Catalysis. Angew Chem Int Ed Engl 2019; 58:4700-4704. [PMID: 30698900 DOI: 10.1002/anie.201814509] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Indexed: 12/31/2022]
Abstract
In oxidative electrochemical organic synthesis, radical intermediates are often oxidized to cations on the way to final product formation. Herein, we describe an approach to transform electrochemically generated organic radical intermediates into neutral products by reaction with a metal catalyst. This approach combines electrochemical oxidation with Cu catalysis to effect formal aza-Wacker cyclization of internal alkenes. The Cu catalyst is essential for transforming secondary and primary alkyl radical intermediates into alkenes. A wide range of 5-membered N-heterocycles including oxazolidinone, imidazolidinone, thiazolidinone, pyrrolidinone, and isoindolinone can be prepared under mild conditions.
Collapse
Affiliation(s)
- Xiangli Yi
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
99
|
Wang J, Qian P, Hu K, Zha Z, Wang Z. Electrocatalytic Fixation of Carbon Dioxide with Amines and Arylketones. ChemElectroChem 2019. [DOI: 10.1002/celc.201801724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiawei Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui China
| | - Peng Qian
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui China
| | - Kangfei Hu
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui China
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials ScienceUniversity of Science and Technology of China Hefei Anhui China
| |
Collapse
|
100
|
Electrochemical Fluoroalkynylation of Aryl Alkenes with Fluoride Ions and Alkynyltrifluoroborate Salts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|