51
|
Yadav S, Singh D, Mohanty P, Sarangi PK. Biochemical and Thermochemical Routes of H
2
Production from Food Waste: A Comparative Review. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanjeev Yadav
- Shiv Nadar University Department of Chemical Engineering 201314 Gr. Noida India
| | - Dharminder Singh
- Shiv Nadar University Department of Chemical Engineering 201314 Gr. Noida India
| | - Pravakar Mohanty
- Govt. of India Department of Science and Technology 110016 New Delhi India
| | | |
Collapse
|
52
|
Guan L, Cheng G, Tan B, Jin S. Covalent triazine frameworks constructed via benzyl halide monomers showing high photocatalytic activity in biomass reforming. Chem Commun (Camb) 2021; 57:5147-5150. [PMID: 33899846 DOI: 10.1039/d1cc01102b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we report the synthesis of covalent triazine frameworks (CTFs) using benzyl halide monomers which are more cost-effective and with higher availability than previous ones. The resulting CTFs were successfully applied for efficient photocatalytic reforming of glucose for the first time, with a high hydrogen evolution rate up to 330 μmol g-1 h-1 under pH = 12. This work presented a new way to synthesize CTFs and further exhibited their potential applications in photocatalytic biomass reforming.
Collapse
Affiliation(s)
- Lijiang Guan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guang Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China. and School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| |
Collapse
|
53
|
Li J, Li J, Gong M, Peng C, Wang H, Yang X. Catalyst Design and Progresses for Urea Oxidation Electrolysis in Alkaline Media. Top Catal 2021. [DOI: 10.1007/s11244-021-01453-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
54
|
Montini T, Gombac V, Delgado JJ, Venezia AM, Adami G, Fornasiero P. Sustainable photocatalytic synthesis of benzimidazoles. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
55
|
Yang L, Hong Y, Liu E, Zhang X, Wang L, Lin X, Shi J. Significant enhancement of photocatalytic H2 production simultaneous with dye degradation over Ni2P modified In2O3 nanocomposites. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
56
|
Zhang Z, Wang M, Zhou H, Wang F. Surface Sulfate Ion on CdS Catalyst Enhances Syngas Generation from Biopolyols. J Am Chem Soc 2021; 143:6533-6541. [DOI: 10.1021/jacs.1c00830] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhe Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Min Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Hongru Zhou
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning P. R. China
| |
Collapse
|
57
|
Savateev A, Markushyna Y, Schüßlbauer CM, Ullrich T, Guldi DM, Antonietti M. Unconventional Photocatalysis in Conductive Polymers: Reversible Modulation of PEDOT:PSS Conductivity by Long-Lived Poly(Heptazine Imide) Radicals. Angew Chem Int Ed Engl 2021; 60:7436-7443. [PMID: 33259655 PMCID: PMC8048452 DOI: 10.1002/anie.202014314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Indexed: 12/03/2022]
Abstract
In photocatalysis, small organic molecules are converted into desired products using light responsive materials, electromagnetic radiation, and electron mediators. Substitution of low molecular weight reagents with redox active functional materials may increase the utility of photocatalysis beyond organic synthesis and environmental applications. Guided by the general principles of photocatalysis, we design hybrid nanocomposites composed of n-type semiconducting potassium poly(heptazine imide) (K-PHI), and p-type conducting poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as the redox active substrate. Electrical conductivity of the hybrid nanocomposite, possessing optimal K-PHI content, is reversibly modulated combining a series of external stimuli ranging from visible light under inert conditions and to dark conditions under an O2 atmosphere. Using a conductive polymer as the redox active substrate allows study of the photocatalytic processes mediated by semiconducting photocatalysts through electrical conductivity measurements.
Collapse
Affiliation(s)
- Aleksandr Savateev
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Yevheniia Markushyna
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Christoph M. Schüßlbauer
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University Erlangen-NürnbergEgerlandstraße 391058ErlangenGermany
| | - Tobias Ullrich
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University Erlangen-NürnbergEgerlandstraße 391058ErlangenGermany
| | - Dirk M. Guldi
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander University Erlangen-NürnbergEgerlandstraße 391058ErlangenGermany
| | - Markus Antonietti
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
58
|
Davis KA, Yoo S, Shuler EW, Sherman BD, Lee S, Leem G. Photocatalytic hydrogen evolution from biomass conversion. NANO CONVERGENCE 2021; 8:6. [PMID: 33635439 PMCID: PMC7910387 DOI: 10.1186/s40580-021-00256-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Biomass has incredible potential as an alternative to fossil fuels for energy production that is sustainable for the future of humanity. Hydrogen evolution from photocatalytic biomass conversion not only produces valuable carbon-free energy in the form of molecular hydrogen but also provides an avenue of production for industrially relevant biomass products. This photocatalytic conversion can be realized with efficient, sustainable reaction materials (biomass) and inexhaustible sunlight as the only energy inputs. Reported herein is a general strategy and mechanism for photocatalytic hydrogen evolution from biomass and biomass-derived substrates (including ethanol, glycerol, formic acid, glucose, and polysaccharides). Recent advancements in the synthesis and fundamental physical/mechanistic studies of novel photocatalysts for hydrogen evolution from biomass conversion are summarized. Also summarized are recent advancements in hydrogen evolution efficiency regarding biomass and biomass-derived substrates. Special emphasis is given to methods that utilize unprocessed biomass as a substrate or synthetic photocatalyst material, as the development of such will incur greater benefits towards a sustainable route for the evolution of hydrogen and production of chemical feedstocks.
Collapse
Affiliation(s)
- Kayla Alicia Davis
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Sunghoon Yoo
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi-do, 13306, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eric W Shuler
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Benjamin D Sherman
- Department of Chemistry and Biochemistry, Texas Christian University, Campus Box 298860, Fort Worth, TX, 76129, USA
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Gyu Leem
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA.
- The Michael M. Szwarc Polymer Research Institute, 1 Forestry Drive, Syracuse, NY, 13210, USA.
| |
Collapse
|
59
|
Savateev A, Markushyna Y, Schüßlbauer CM, Ullrich T, Guldi DM, Antonietti M. Unkonventionelle Photokatalyse in leitfähigen Polymeren: Reversible Modulation der Leitfähigkeit von PEDOT:PSS durch langlebige Polyheptazinimid‐Radikale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Aleksandr Savateev
- Abteilung der Kolloidchemie Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Yevheniia Markushyna
- Abteilung der Kolloidchemie Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Christoph M. Schüßlbauer
- Department Chemie und Pharmazie Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Deutschland
| | - Tobias Ullrich
- Department Chemie und Pharmazie Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Deutschland
| | - Dirk M. Guldi
- Department Chemie und Pharmazie Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 3 91058 Erlangen Deutschland
| | - Markus Antonietti
- Abteilung der Kolloidchemie Max-Planck-Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1 14476 Potsdam Deutschland
| |
Collapse
|
60
|
Milano F, Guascito MR, Semeraro P, Sawalha S, Da Ros T, Operamolla A, Giotta L, Prato M, Valli L. Nanocellulose/Fullerene Hybrid Films Assembled at the Air/Water Interface as Promising Functional Materials for Photo-electrocatalysis. Polymers (Basel) 2021; 13:243. [PMID: 33445737 PMCID: PMC7828161 DOI: 10.3390/polym13020243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 01/04/2023] Open
Abstract
Cellulose nanomaterials have been widely investigated in the last decade, unveiling attractive properties for emerging applications. The ability of sulfated cellulose nanocrystals (CNCs) to guide the supramolecular organization of amphiphilic fullerene derivatives at the air/water interface has been recently highlighted. Here, we further investigated the assembly of Langmuir hybrid films that are based on the electrostatic interaction between cationic fulleropyrrolidines deposited at the air/water interface and anionic CNCs dispersed in the subphase, assessing the influence of additional negatively charged species that are dissolved in the water phase. By means of isotherm acquisition and spectroscopic measurements, we demonstrated that a tetra-sulfonated porphyrin, which was introduced in the subphase as anionic competitor, strongly inhibited the binding of CNCs to the floating fullerene layer. Nevertheless, despite the strong inhibition by anionic molecules, the mutual interaction between fulleropyrrolidines at the interface and the CNCs led to the assembly of robust hybrid films, which could be efficiently transferred onto solid substrates. Interestingly, ITO-electrodes that were modified with five-layer hybrid films exhibited enhanced electrical capacitance and produced anodic photocurrents at 0.4 V vs Ag/AgCl, whose intensity (230 nA/cm2) proved to be four times higher than the one that was observed with the sole fullerene derivative (60 nA/cm2).
Collapse
Affiliation(s)
- Francesco Milano
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), S.P. Lecce-Monteroni, Ecotekne, 73100 Lecce, Italy;
| | - Maria Rachele Guascito
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy; (M.R.G.); (P.S.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Paola Semeraro
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy; (M.R.G.); (P.S.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Shadi Sawalha
- Dipartimento di Ingegneria dell’Innovazione, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy;
- Department of Chemical Engineering, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine
| | - Tatiana Da Ros
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Giorgieri 1, 34127 Trieste, Italy; (T.D.R.); (M.P.)
| | - Alessandra Operamolla
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Livia Giotta
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy; (M.R.G.); (P.S.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Maurizio Prato
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via Giorgieri 1, 34127 Trieste, Italy; (T.D.R.); (M.P.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Ludovico Valli
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy; (M.R.G.); (P.S.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
61
|
Li L, Zhao Y, Wang Q, Liu ZY, Wang XG, Yang EC, Zhao XJ. Boosting photocatalytic hydrogen production activity by a microporous CuII-MOF nanoribbon decorated with Pt nanoparticles. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00516b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the synergistic effect between photoactive CuII and Pt sites, the Pt(4.38 wt%)/CuII-MOF nanoribbon exhibits an enhanced hydrogen production rate, obviously higher by 4.7 and 1.9 times than those of the individual Pt nanoparticle and CuII-MOF.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry
- Tianjin Normal University
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin
- P. R. China
| | - Yan Zhao
- College of Chemistry
- Tianjin Normal University
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin
- P. R. China
| | - Qian Wang
- College of Chemistry
- Tianjin Normal University
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin
- P. R. China
| | - Zheng-Yu Liu
- College of Chemistry
- Tianjin Normal University
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin
- P. R. China
| | - Xiu-Guang Wang
- College of Chemistry
- Tianjin Normal University
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin
- P. R. China
| | - En-Cui Yang
- College of Chemistry
- Tianjin Normal University
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin
- P. R. China
| | - Xiao-Jun Zhao
- College of Chemistry
- Tianjin Normal University
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- Tianjin
- P. R. China
| |
Collapse
|
62
|
Toyooka G, Tanaka T, Kitayama K, Kobayashi N, Watanabe T, Fujita KI. Hydrogen production from cellulose catalyzed by an iridium complex in ionic liquid under mild conditions. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02419h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new and simple method for hydrogen production from cellulose using an iridium catalyst and an ionic liquid under mild conditions was developed.
Collapse
Affiliation(s)
- Genki Toyooka
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto
- Japan
| | - Toshiki Tanaka
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto
- Japan
| | | | - Naoko Kobayashi
- Research Institute for Sustainable Humanosphere
- Kyoto University
- Kyoto
- Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere
- Kyoto University
- Kyoto
- Japan
| | - Ken-ichi Fujita
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto
- Japan
| |
Collapse
|
63
|
Huang H, Zhao J, Du Y, Zhou C, Zhang M, Wang Z, Weng Y, Long J, Hofkens J, Steele JA, Roeffaers MBJ. Direct Z-Scheme Heterojunction of Semicoherent FAPbBr 3/Bi 2WO 6 Interface for Photoredox Reaction with Large Driving Force. ACS NANO 2020; 14:16689-16697. [PMID: 32573200 DOI: 10.1021/acsnano.0c03146] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal halide perovskites with direct band gap and strong light absorption are promising materials for harvesting solar energy; however, their relatively narrow band gap limits their redox ability when used as a photocatalyst. Adding a second semiconductor component with the appropriate band structure offsets can generate a Z-scheme photocatalytic system, taking full advantage of the perovskite's intrinsic properties. In this work, we develop a direct Z-scheme photocatalyst based on formamidinium lead bromide and bismuth tungstate (FAPbBr3/Bi2WO6) with strong redox ability for artificial solar-to-chemical energy conversion. With desirable band offsets and strong joint redox potential, the dual photocatalyst is shown to form a semicoherent heterointerface. Ultrafast transient infrared absorption studies employing selective excitation reveal synergetic photocarrier dynamics and demonstrate Z-scheme charge transfer mechanisms. Under simulated solar irradiation, a large driving force photoredox reaction (∼2.57 eV) of CO2 reduction coupled with benzyl alcohol oxidation to benzaldehyde is achieved on the Z-scheme FAPbBr3/Bi2WO6 photocatalyst, harnessing the full synergetic potential of the combined system.
Collapse
Affiliation(s)
- Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Yijie Du
- Laboratory of Soft Matter and Biophysics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Zhou
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Menglong Zhang
- Institute of Semiconductors, South China Normal University, Guangzhou 510631 China
| | - Zhuan Wang
- Laboratory of Soft Matter and Biophysics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuxiang Weng
- Laboratory of Soft Matter and Biophysics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Julian A Steele
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
64
|
A lignocellulose-based neutral hydrogel electrolyte for high-voltage supercapacitors with overlong cyclic stability. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
65
|
Puga AV, Barka N, Imizcoz M. Simultaneous H
2
Production and Bleaching via Solar Photoreforming of Model Dye‐polluted Wastewaters on Metal/Titania. ChemCatChem 2020. [DOI: 10.1002/cctc.202001048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Alberto V. Puga
- Instituto de Tecnología Química Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avenida de los Naranjos, s/n 46022 Valencia Spain
- Departament d'Enginyeria Química Universitat Rovira i Virgili Avinguda dels Països Catalans, 26 43007 Tarragona Spain
| | - Noureddine Barka
- Research Group in Environmental Sciences and Applied Materials (SEMA) Sultan Moulay Slimane University FP B.P. 145 25000 Khouribga Morocco
| | - Mikel Imizcoz
- Instituto de Tecnología Química Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avenida de los Naranjos, s/n 46022 Valencia Spain
- Institute for Advanced Materials and Mathematics (INAMAT2) Universidad Pública de Navarra Edificio Jerónimo de Ayanz Campus de Arrosadia 31006 Pamplona-Iruña Spain
| |
Collapse
|
66
|
Zhao H, Li CF, Liu LY, Palma B, Hu ZY, Renneckar S, Larter S, Li Y, Kibria MG, Hu J, Su BL. n-p Heterojunction of TiO 2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. J Colloid Interface Sci 2020; 585:694-704. [PMID: 33371948 DOI: 10.1016/j.jcis.2020.10.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen evolution from biomass photoreforming has been widely recognized as a promising strategy for relieving the pressure from energy crisis and environmental pollution, as it could generate sustainable H2 and value-added bioproducts simultaneously. Combining p-type semiconductors with n-type semiconductors to form n-p heterojunction is an effective strategy to improve the photocatalytic quantum efficiency by enhancing the separation of photogenerated electrons and holes, which could greatly facilitate the realization of such biomass photorefinery concept. However, the incompact contact between the n-type and p-type semiconductors often induces the aggregation of photogenerated electrons and holes. In this work, we design and synthesize an ultrafine n-p heterojunction TiO2-NiO core-shell structure to overcome the incompact contact in the n-p interface. When the n-p heterojunction photocatalysts are evaluated for photocatalytic water splitting and biomass lignin photoreforming respectively, the as-fabricated TiO2-NiO nanocomposite with 3.25% NiO demonstrates the highest hydrogen generation of 23.5 mmol h-1 g-1 from water splitting and H2 (0.45 mmol h-1 g-1) and CH4 (0.03 mmol h-1 g-1) cogeneration with reasonable amount of fatty acids (palmitic acid and stearic acid) production from lignin photoreforming. The excellent photocatalytic activity is ascribed to the synergistic effects of high crystallinity of TiO2 ultrafine nanoparticles, core-shell structure and n-p heterojunction with NiO nanoclusters. This present work demonstrates a simple and efficient method to fabricate ultrafine n-p heterojunction core-shell structure for noble-metal free catalyst for both water splitting and biomass photoreforming.
Collapse
Affiliation(s)
- Heng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Chao-Fan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Li-Yang Liu
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China
| | - Scott Renneckar
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephen Larter
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China.
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada.
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.
| |
Collapse
|
67
|
Achilleos DS, Yang W, Kasap H, Savateev A, Markushyna Y, Durrant JR, Reisner E. Solar Reforming of Biomass with Homogeneous Carbon Dots. Angew Chem Int Ed Engl 2020; 59:18184-18188. [PMID: 33448554 PMCID: PMC7589312 DOI: 10.1002/anie.202008217] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Indexed: 11/11/2022]
Abstract
A sunlight-powered process is reported that employs carbon dots (CDs) as light absorbers for the conversion of lignocellulose into sustainable H2 fuel and organics. This photocatalytic system operates in pure and untreated sea water at benign pH (2-8) and ambient temperature and pressure. The CDs can be produced in a scalable synthesis directly from biomass itself and their solubility allows for good interactions with the insoluble biomass substrates. They also display excellent photophysical properties with a high fraction of long-lived charge carriers and the availability of a reductive and an oxidative quenching pathway. The presented CD-based biomass photoconversion system opens new avenues for sustainable, practical, and renewable fuel production through biomass valorization.
Collapse
Affiliation(s)
- Demetra S. Achilleos
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Present address: School of ChemistryUniversity College DublinScience Centre South, BelfieldDublinIreland
| | - Wenxing Yang
- Molecular Sciences Research Hub and Centre for Processable ElectronicsImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Hatice Kasap
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Aleksandr Savateev
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesResearch Campus Golm14424PotsdamGermany
| | - Yevheniia Markushyna
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesResearch Campus Golm14424PotsdamGermany
| | - James R. Durrant
- Molecular Sciences Research Hub and Centre for Processable ElectronicsImperial College LondonWhite City CampusLondonW12 0BZUK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
68
|
Kohse-Höinghaus K. Combustion in the future: The importance of chemistry. PROCEEDINGS OF THE COMBUSTION INSTITUTE. INTERNATIONAL SYMPOSIUM ON COMBUSTION 2020; 38:S1540-7489(20)30501-0. [PMID: 33013234 PMCID: PMC7518234 DOI: 10.1016/j.proci.2020.06.375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
Collapse
Key Words
- 2M2B, 2-methyl-2-butene
- AFM, atomic force microscopy
- ALS, Advanced Light Source
- APCI, atmospheric pressure chemical ionization
- ARAS, atomic resonance absorption spectroscopy
- ATcT, Active Thermochemical Tables
- BC, black carbon
- BEV, battery electric vehicle
- BTL, biomass-to-liquid
- Biofuels
- CA, crank angle
- CCS, carbon capture and storage
- CEAS, cavity-enhanced absorption spectroscopy
- CFD, computational fluid dynamics
- CI, compression ignition
- CRDS, cavity ring-down spectroscopy
- CTL, coal-to-liquid
- Combustion
- Combustion chemistry
- Combustion diagnostics
- Combustion kinetics
- Combustion modeling
- Combustion synthesis
- DBE, di-n-butyl ether
- DCN, derived cetane number
- DEE, diethyl ether
- DFT, density functional theory
- DFWM, degenerate four-wave mixing
- DMC, dimethyl carbonate
- DME, dimethyl ether
- DMM, dimethoxy methane
- DRIFTS, diffuse reflectance infrared Fourier transform spectroscopy
- EGR, exhaust gas recirculation
- EI, electron ionization
- Emissions
- Energy
- Energy conversion
- FC, fuel cell
- FCEV, fuel cell electric vehicle
- FRET, fluorescence resonance energy transfer
- FT, Fischer-Tropsch
- FTIR, Fourier-transform infrared
- Fuels
- GC, gas chromatography
- GHG, greenhouse gas
- GTL, gas-to-liquid
- GW, global warming
- HAB, height above the burner
- HACA, hydrogen abstraction acetylene addition
- HCCI, homogeneous charge compression ignition
- HFO, heavy fuel oil
- HRTEM, high-resolution transmission electron microscopy
- IC, internal combustion
- ICEV, internal combustion engine vehicle
- IE, ionization energy
- IPCC, Intergovernmental Panel on Climate Change
- IR, infrared
- JSR, jet-stirred reactor
- KDE, kernel density estimation
- KHP, ketohydroperoxide
- LCA, lifecycle analysis
- LH2, liquid hydrogen
- LIF, laser-induced fluorescence
- LIGS, laser-induced grating spectroscopy
- LII, laser-induced incandescence
- LNG, liquefied natural gas
- LOHC, liquid organic hydrogen carrier
- LT, low-temperature
- LTC, low-temperature combustion
- MBMS, molecular-beam MS
- MDO, marine diesel oil
- MS, mass spectrometry
- MTO, methanol-to-olefins
- MVK, methyl vinyl ketone
- NOx, nitrogen oxides
- NTC, negative temperature coefficient
- OME, oxymethylene ether
- OTMS, Orbitrap MS
- PACT, predictive automated computational thermochemistry
- PAH, polycyclic aromatic hydrocarbon
- PDF, probability density function
- PEM, polymer electrolyte membrane
- PEPICO, photoelectron photoion coincidence
- PES, photoelectron spectrum/spectra
- PFR, plug-flow reactor
- PI, photoionization
- PIE, photoionization efficiency
- PIV, particle imaging velocimetry
- PLIF, planar laser-induced fluorescence
- PM, particulate matter
- PM10 PM2,5, sampled fractions with sizes up to ∼10 and ∼2,5 µm
- PRF, primary reference fuel
- QCL, quantum cascade laser
- RCCI, reactivity-controlled compression ignition
- RCM, rapid compression machine
- REMPI, resonance-enhanced multi-photon ionization
- RMG, reaction mechanism generator
- RON, research octane number
- Reaction mechanisms
- SI, spark ignition
- SIMS, secondary ion mass spectrometry
- SNG, synthetic natural gas
- SNR, signal-to-noise ratio
- SOA, secondary organic aerosol
- SOEC, solid-oxide electrolysis cell
- SOFC, solid-oxide fuel cell
- SOx, sulfur oxides
- STM, scanning tunneling microscopy
- SVO, straight vegetable oil
- Synthetic fuels
- TDLAS, tunable diode laser absorption spectroscopy
- TOF-MS, time-of-flight MS
- TPES, threshold photoelectron spectrum/spectra
- TPRF, toluene primary reference fuel
- TSI, threshold sooting index
- TiRe-LII, time-resolved LII
- UFP, ultrafine particle
- VOC, volatile organic compound
- VUV, vacuum ultraviolet
- WLTP, Worldwide Harmonized Light Vehicle Test Procedure
- XAS, X-ray absorption spectroscopy
- YSI, yield sooting index
Collapse
|
69
|
Wang X, Zheng X, Han H, Fan Y, Zhang S, Meng S, Chen S. Photocatalytic hydrogen evolution from biomass (glucose solution) on Au/CdS nanorods with Au3+ self-reduction. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
70
|
Achilleos DS, Yang W, Kasap H, Savateev A, Markushyna Y, Durrant JR, Reisner E. Solar Reforming of Biomass with Homogeneous Carbon Dots. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Demetra S. Achilleos
- Christian Doppler Laboratory for Sustainable SynGas Chemistry Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Present address: School of Chemistry University College Dublin Science Centre South, Belfield Dublin Ireland
| | - Wenxing Yang
- Molecular Sciences Research Hub and Centre for Processable Electronics Imperial College London White City Campus London W12 0BZ UK
| | - Hatice Kasap
- Christian Doppler Laboratory for Sustainable SynGas Chemistry Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Aleksandr Savateev
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Research Campus Golm 14424 Potsdam Germany
| | - Yevheniia Markushyna
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces Research Campus Golm 14424 Potsdam Germany
| | - James R. Durrant
- Molecular Sciences Research Hub and Centre for Processable Electronics Imperial College London White City Campus London W12 0BZ UK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
71
|
Courtois C, Walenta CA, Tschurl M, Heiz U, Friend CM. Regulating Photochemical Selectivity with Temperature: Isobutanol on TiO 2(110). J Am Chem Soc 2020; 142:13072-13080. [PMID: 32598843 DOI: 10.1021/jacs.0c04411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Selective photocatalytic transformations of chemicals derived from biomass, such as isobutanol, have been long envisioned for a sustainable chemical production. A strong temperature dependence in the reaction selectivity is found for isobutanol photo-oxidation on rutile TiO2(110). The strong temperature dependence is attributed to competition between thermal desorption of the primary photoproduct and secondary photochemical steps. The aldehyde, isobutanal, is the primary photoproduct of isobutanol. At room temperature, isobutanal is obtained selectively from photo-oxidation because of rapid thermal desorption. In contrast, secondary photo-oxidation of isobutanal to propane dominates at lower temperature (240 K) due to the persistence of isobutanal on the surface after it is formed. The byproduct of isobutanal photo-oxidation is CO, which is evolved at higher temperature as a consequence of thermal decomposition of an intermediate, such as formate. The photo-oxidation to isobutanal proceeds after thermally induced isobutoxy formation. These results have strong implications for controlling the selectivity of photochemical processes more generally, in that, selectivity is governed by competition of desorption vs secondary photoreaction of products. This competition can be exploited to design photocatalytic processes to favor specific chemical transformations of organic molecules.
Collapse
Affiliation(s)
- Carla Courtois
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Constantin A Walenta
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Martin Tschurl
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ueli Heiz
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
72
|
|
73
|
Pichler CM, Uekert T, Reisner E. Photoreforming of biomass in metal salt hydrate solutions. Chem Commun (Camb) 2020; 56:5743-5746. [PMID: 32329757 DOI: 10.1039/d0cc01686a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal salt hydrate (MSH) solutions allow for the complete solubilisation of biomass and we demonstrate its use as a reaction medium for the photocatalytic reforming of lignocellulose. Different types of photocatalysts such as TiO2 and carbon nitride can be employed in MSH to produce H2 and organic products under more benign conditions than the commonly required extreme pH aqueous solutions.
Collapse
Affiliation(s)
- Christian M Pichler
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | |
Collapse
|
74
|
Tarnowicz-Staniak N, Vázquez-Díaz S, Pavlov V, Matczyszyn K, Grzelczak M. Cellulose as an Inert Scaffold in Plasmon-Assisted Photoregeneration of Cofactor Molecules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19377-19383. [PMID: 32253909 PMCID: PMC7497628 DOI: 10.1021/acsami.9b21556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plasmonic nanoparticles exhibit excellent light-harvesting properties in the visible spectral range, which makes them a convenient material for the conversion of light into useful chemical fuel. However, the need for using surface ligands to ensure colloidal stability of nanoparticles inhibits their photochemical performance due to the insulating molecular shell hindering the carrier transport. We show that cellulose fibers, abundant in chemical functional groups, can serve as a robust substrate for the immobilization of gold nanorods, thus also providing a facile way to remove the surfactant molecules. The resulting functional composite was implemented in a bioinspired photocatalytic process involving dehydrogenation of sodium formate and simultaneous photoregeneration of cofactor molecules (NADH, nicotinamide adenine dinucleotide) using visible light as an energy source. By systematic screening of experimental parameters, we compare photocatalytic and thermocatalytic properties of the composite and evaluate the role of palladium cocatalyst.
Collapse
Affiliation(s)
- Nina Tarnowicz-Staniak
- Wrocław University
of Science and Technology, Advanced Materials
Engineering and Modelling Group, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | - Valeri Pavlov
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Katarzyna Matczyszyn
- Wrocław University
of Science and Technology, Advanced Materials
Engineering and Modelling Group, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marek Grzelczak
- Centro de Física de Materiales CSIC-UPV/EHU and Donostia International
Physics Center DIPC, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
75
|
Photo splitting of bio-polyols and sugars to methanol and syngas. Nat Commun 2020; 11:1083. [PMID: 32107386 PMCID: PMC7046649 DOI: 10.1038/s41467-020-14915-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/10/2020] [Indexed: 11/12/2022] Open
Abstract
Methanol is a clean liquid energy carrier of sunshine and a key platform chemical for the synthesis of olefins and aromatics. Herein, we report the conversion of biomass-derived polyols and sugars into methanol and syngas (CO+H2) via UV light irradiation under room temperature, and the bio-syngas can be further used for the synthesis of methanol. The cellulose and even raw wood sawdust could be converted into methanol or syngas after hydrogenolysis or hydrolysis pretreatment. We find Cu dispersed on titanium oxide nanorod (TNR) rich in defects is effective for the selective C−C bond cleavage to methanol. Methanol is obtained from glycerol with a co-production of H2. A syngas with CO selectivity up to 90% in the gas phase is obtained via controlling the energy band structure of Cu/TNR. Methanol and syngas are important fuels and chemicals, which are presently produced from fossil resources. Here, the authors report the conversion of biomass-derived polyols and sugars into methanol and syngas via UV light irradiation under room temperature.
Collapse
|
76
|
Martínez NP, Isaacs M, Nanda KK. Paired electrolysis for simultaneous generation of synthetic fuels and chemicals. NEW J CHEM 2020. [DOI: 10.1039/c9nj06133a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Replacing anodic oxygen evolution of water splitting or carbon dioxide reduction by electro-organic oxidation increases their product-value and energy efficiency.
Collapse
Affiliation(s)
- Natalia P. Martínez
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Vicuña Mackenna 4860
- Santiago
- Chile
| | - Mauricio Isaacs
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Vicuña Mackenna 4860
- Santiago
- Chile
| | - Kamala Kanta Nanda
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Vicuña Mackenna 4860
- Santiago
- Chile
| |
Collapse
|
77
|
Wu X, Luo N, Xie S, Zhang H, Zhang Q, Wang F, Wang Y. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem Soc Rev 2020; 49:6198-6223. [DOI: 10.1039/d0cs00314j] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review highlights recent advances in photocatalytic transformations of lignocellulosic biomass (polysaccharides and lignin) into chemicals (in particular organic oxygenates).
Collapse
Affiliation(s)
- Xuejiao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Nengchao Luo
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Haikun Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Feng Wang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| |
Collapse
|
78
|
Walenta CA, Tschurl M, Heiz U. Introducing catalysis in photocatalysis: What can be understood from surface science studies of alcohol photoreforming on TiO 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:473002. [PMID: 31342942 DOI: 10.1088/1361-648x/ab351a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Mechanisms in heterogeneous photocatalysis have traditionally been interpreted by the band-structure model and analogously to electrochemistry. This has led to the establishment of 'band-engineering' as a leading principle for the discovery of more efficient photocatalysts. In such a picture, mainly thermodynamic aspects are taken into account, while kinetics are often ignored. This holds in particular for chemical kinetics, which are, other than those for charge carrier dynamics, often not at all considered for the interpretation of the catalysts' photocatalytic performance. However, while being usually neglected in photocatalyis, they are a traditional and powerful tool in thermal catalysis and are still applied with great success in this field. While surface science studies made substantial contributes to thermal catalysis, analogous studies in heterogeneous photocatalysis still play only a minor role. In this review, the authors show that the photo-physics of defined materials in well-defined environments can be correlated with photochemical events on a surface, highlighting the importance of well-characterized semiconductors for the interpretation of mechanisms in heterogeneous photochemistry. The work focuses on contributions from surface science, which were obtained for the model system of a titania single crystal and alcohol photo-reforming. It is demonstrated that only surface science studies have so far enabled the elucidation of molecularly precise reaction mechanisms, the determination of reaction intermediates and assignment of reactive sites. As the identification of these properties remain major prerequisites for a breakthrough in photocatalysis research, the work also discusses the implications of the findings for applied systems. In general, the results from surface science demonstrate that photocatalytic systems shall also be approached by a perspective originating from heterogeneous catalysis rather than solely from an electrochemical point of view.
Collapse
|
79
|
Li JY, Xin X, Li YH, Zhang F, Anpo M, Xu YJ. Visible light-induced conversion of biomass-derived chemicals integrated with hydrogen evolution over 2D Ni2P–graphene–TiO2. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-04011-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
80
|
Uekert T, Kasap H, Reisner E. Photoreforming of Nonrecyclable Plastic Waste over a Carbon Nitride/Nickel Phosphide Catalyst. J Am Chem Soc 2019; 141:15201-15210. [PMID: 31462034 PMCID: PMC7007225 DOI: 10.1021/jacs.9b06872] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
With over 8 billion tons of plastic
produced since 1950, polymers
represent one of the most widely used—and most widely discarded—materials.
Ambient-temperature photoreforming offers a simple and low-energy
means for transforming plastic waste into fuel and bulk chemicals
but has previously only been reported using precious-metal- or Cd-based
photocatalysts. Here, an inexpensive and nontoxic carbon nitride/nickel
phosphide (CNx|Ni2P) photocatalyst
is utilized to successfully reform poly(ethylene terephthalate) (PET)
and poly(lactic acid) (PLA) to clean H2 fuel and a variety
of organic chemicals under alkaline aqueous conditions. Ni2P synthesized on cyanamide-functionalized carbon nitride is shown
to promote efficient charge separation and catalysis, with a photostability
of at least 5 days. The real-world applicability of photoreforming
is further verified by generating H2 and organics from
a selection of nonrecyclable waste—including microplastics
(polyester microfibers) and food-contaminated plastic—and upscaling
the system from 2 to 120 mL while maintaining its efficiency for plastic
conversion.
Collapse
Affiliation(s)
- Taylor Uekert
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Hatice Kasap
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|
81
|
Xu X, Zhang J, Wang S, Yao Z, Wu H, Shi L, Yin Y, Wang S, Sun H. Photocatalytic reforming of biomass for hydrogen production over ZnS nanoparticles modified carbon nitride nanosheets. J Colloid Interface Sci 2019; 555:22-30. [PMID: 31376766 DOI: 10.1016/j.jcis.2019.07.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Hydrogen generation from biomass reforming via solar energy utilisation has become a fascinating strategy toward future energy sustainability. In this study, ZnS nanoparticles with an average size around 10-15 nm were synthesised by a facile hydrothermal method, and then hybridised with g-C3N4 (MCN, DCN, and UCN) derived from melamine, dicyandiamide and urea, producing the heterojunctions denoted as ZMCN, ZDCN and ZUCN, respectively. Advanced characterisations were employed to investigate the physiochemical properties of the materials. ZMCN and ZDCN showed a slight red shift and better light absorbance ability. Their catalytic performances were evaluated by photocatalytic biomass reforming for hydrogen generation. The hydrogen generation rate on ZMCN, the best photocatalyst among MCN, DCN, UCN, ZDCN and ZUCN, was around 2.5 times higher than the pristine MCN. However, the photocatalytic efficiency of ZUCN experienced decrease of 36.6% compared to pure UCN. The mechanism of the photocatalytic reforming process was discussed. The photoluminescence spectra of ZMCN suggested that the introduction of ZnS for ZMCN would reduce the recombination of photoinduced carriers. It was also found that both microstructure and band structure would influence the photocatalytic reforming efficiency.
Collapse
Affiliation(s)
- Xinyuan Xu
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Jinqiang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Shuaijun Wang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Zhengxin Yao
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Hong Wu
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Lei Shi
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Yu Yin
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| |
Collapse
|
82
|
Assessment of Photocatalytic Hydrogen Production from Biomass or Wastewaters Depending on the Metal Co-Catalyst and Its Deposition Method on TiO2. Catalysts 2019. [DOI: 10.3390/catal9070584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A systematic study on the solar photocatalytic hydrogen production (photoreforming) performance of M/TiO2 (M = Au, Ag, Cu or Pt) using glucose as a model substrate, and further extended to lignocellulose hydrolysates and wastewaters, is herein presented. Three metal (M) co-catalyst loading methods were tested. Variation of the type of metal results in significantly dissimilar H2 production rates, albeit the loading method exerts an even greater effect in most cases. Deposition-precipitation (followed by hydrogenation) or photodeposition provided better results than classical impregnation (followed by calcination). Interestingly, copper as a co-catalyst performed satisfactorily as compared to Au, and slightly below Pt, thus representing a realistic inexpensive alternative to noble metals. Hydrolysates of either α-cellulose or rice husks, obtained under mild conditions (short thermal cycles at 160 °C), were rich in saccharides and thus suitable as feedstocks. Nonetheless, the presence of inhibiting byproducts hindered H2 production. A novel photocatalytic UV pre-treatment method was successful to initially remove the most recalcitrant portion of these minor products along with H2 production (17 µmol gcat−1 h−1 on Cu/TiO2). After a short UV step, simulated sunlight photoreforming was orders of magnitude more efficient than without the pre-treatment. Hydrogen production was also directly tested on two different wastewater streams, that is, a municipal influent and samples from operations in a fruit juice producing plant, with remarkable results obtained for the latter (up to 115 µmol gcat−1 h−1 using Au/TiO2).
Collapse
|
83
|
Sheng J, Dong H, Meng X, Tang H, Yao Y, Liu D, Bai L, Zhang F, Wei J, Sun X. Effect of Different Functional Groups on Photocatalytic Hydrogen Evolution in Covalent‐Organic Frameworks. ChemCatChem 2019. [DOI: 10.1002/cctc.201900058] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing‐Li Sheng
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province College of Chemical and Environmental EngineeringHarbin University of Science and Technology No. 4, Linyuan Road Harbin 150040 China
| | - Hong Dong
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province College of Chemical and Environmental EngineeringHarbin University of Science and Technology No. 4, Linyuan Road Harbin 150040 China
| | - Xiang‐Bin Meng
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province College of Chemical and Environmental EngineeringHarbin University of Science and Technology No. 4, Linyuan Road Harbin 150040 China
| | - Hong‐Liang Tang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province College of Chemical and Environmental EngineeringHarbin University of Science and Technology No. 4, Linyuan Road Harbin 150040 China
| | - Yu‐Hao Yao
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province College of Chemical and Environmental EngineeringHarbin University of Science and Technology No. 4, Linyuan Road Harbin 150040 China
| | - Dan‐Qing Liu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province College of Chemical and Environmental EngineeringHarbin University of Science and Technology No. 4, Linyuan Road Harbin 150040 China
| | - Lin‐Lu Bai
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province College of Chemical and Environmental EngineeringHarbin University of Science and Technology No. 4, Linyuan Road Harbin 150040 China
| | - Feng‐Ming Zhang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province College of Chemical and Environmental EngineeringHarbin University of Science and Technology No. 4, Linyuan Road Harbin 150040 China
| | - Jin‐Zhi Wei
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province College of Chemical and Environmental EngineeringHarbin University of Science and Technology No. 4, Linyuan Road Harbin 150040 China
| | - Xiao‐Jun Sun
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province College of Chemical and Environmental EngineeringHarbin University of Science and Technology No. 4, Linyuan Road Harbin 150040 China
| |
Collapse
|
84
|
Kampouri S, Stylianou KC. Dual-Functional Photocatalysis for Simultaneous Hydrogen Production and Oxidation of Organic Substances. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00332] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Stavroula Kampouri
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Rue de l’industrie 17, 1951 Sion, Switzerland
| | - Kyriakos C. Stylianou
- Laboratory of Molecular Simulation (LSMO), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL Valais), Rue de l’industrie 17, 1951 Sion, Switzerland
| |
Collapse
|
85
|
Kuehnel MF, Creissen CE, Sahm CD, Wielend D, Schlosser A, Orchard KL, Reisner E. ZnSe Nanorods as Visible-Light Absorbers for Photocatalytic and Photoelectrochemical H 2 Evolution in Water. Angew Chem Int Ed Engl 2019; 58:5059-5063. [PMID: 30715778 PMCID: PMC6492148 DOI: 10.1002/anie.201814265] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/02/2019] [Indexed: 11/06/2022]
Abstract
A precious-metal- and Cd-free photocatalyst system for efficient H2 evolution from aqueous protons with a performance comparable to Cd-based quantum dots is presented. Rod-shaped ZnSe nanocrystals (nanorods, NRs) with a Ni(BF4 )2 co-catalyst suspended in aqueous ascorbic acid evolve H2 with an activity up to 54±2 mmol H 2 gZnSe -1 h-1 and a quantum yield of 50±4 % (λ=400 nm) under visible light illumination (AM 1.5G, 100 mW cm-2 , λ>400 nm). Under simulated full-spectrum solar irradiation (AM 1.5G, 100 mW cm-2 ), up to 149±22 mmol H 2 gZnSe -1 h-1 is generated. Significant photocorrosion was not noticeable within 40 h and activity was even observed without an added co-catalyst. The ZnSe NRs can also be used to construct an inexpensive delafossite CuCrO2 photocathode, which does not rely on a sacrificial electron donor. Immobilized ZnSe NRs on CuCrO2 generate photocurrents of around -10 μA cm-2 in an aqueous electrolyte solution (pH 5.5) with a photocurrent onset potential of approximately +0.75 V vs. RHE. This work establishes ZnSe as a state-of-the-art light absorber for photocatalytic and photoelectrochemical H2 generation.
Collapse
Affiliation(s)
- Moritz F Kuehnel
- Christian Doppler Laboratory for Sustainable Syngas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Department of Chemistry, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Charles E Creissen
- Christian Doppler Laboratory for Sustainable Syngas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Constantin D Sahm
- Christian Doppler Laboratory for Sustainable Syngas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Dominik Wielend
- Christian Doppler Laboratory for Sustainable Syngas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Anja Schlosser
- Christian Doppler Laboratory for Sustainable Syngas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Katherine L Orchard
- Christian Doppler Laboratory for Sustainable Syngas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable Syngas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
86
|
Kuehnel MF, Creissen CE, Sahm CD, Wielend D, Schlosser A, Orchard KL, Reisner E. ZnSe Nanorods as Visible‐Light Absorbers for Photocatalytic and Photoelectrochemical H
2
Evolution in Water. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Moritz F. Kuehnel
- Christian Doppler Laboratory for Sustainable Syngas ChemistryDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Department of ChemistrySwansea University Singleton Park Swansea SA2 8PP UK
| | - Charles E. Creissen
- Christian Doppler Laboratory for Sustainable Syngas ChemistryDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Constantin D. Sahm
- Christian Doppler Laboratory for Sustainable Syngas ChemistryDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Dominik Wielend
- Christian Doppler Laboratory for Sustainable Syngas ChemistryDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Anja Schlosser
- Christian Doppler Laboratory for Sustainable Syngas ChemistryDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Katherine L. Orchard
- Christian Doppler Laboratory for Sustainable Syngas ChemistryDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable Syngas ChemistryDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
87
|
Affiliation(s)
- Charles R. Lhermitte
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Kevin Sivula
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|
88
|
Bellardita M, García-López EI, Marcì G, Nasillo G, Palmisano L. Photocatalytic Solar Light H2
Production by Aqueous Glucose Reforming. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800663] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marianna Bellardita
- “Schiavello-Grillone” Photocatalysis Group; Dipartimento di Energia, Ingegneria dell′informazione, e modelli Matematici (DEIM); Università degli Studi di Palermo; Viale delle Scienze Ed. 6 90128 Palermo Italy
| | - Elisa Isabel García-López
- “Schiavello-Grillone” Photocatalysis Group; Dipartimento di Energia, Ingegneria dell′informazione, e modelli Matematici (DEIM); Università degli Studi di Palermo; Viale delle Scienze Ed. 6 90128 Palermo Italy
| | - Giuseppe Marcì
- “Schiavello-Grillone” Photocatalysis Group; Dipartimento di Energia, Ingegneria dell′informazione, e modelli Matematici (DEIM); Università degli Studi di Palermo; Viale delle Scienze Ed. 6 90128 Palermo Italy
| | - Giorgio Nasillo
- Laboratorio di Microscopia Elettronica a Trasmissione-Advanced Technologies Network Center (ATeN); University of Palermo; Viale delle Scienze Ed. 17 90128 Palermo Italy
| | - Leonardo Palmisano
- “Schiavello-Grillone” Photocatalysis Group; Dipartimento di Energia, Ingegneria dell′informazione, e modelli Matematici (DEIM); Università degli Studi di Palermo; Viale delle Scienze Ed. 6 90128 Palermo Italy
| |
Collapse
|
89
|
Kasap H, Achilleos DS, Huang A, Reisner E. Photoreforming of Lignocellulose into H2 Using Nanoengineered Carbon Nitride under Benign Conditions. J Am Chem Soc 2018; 140:11604-11607. [DOI: 10.1021/jacs.8b07853] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hatice Kasap
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Demetra S. Achilleos
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Ailun Huang
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
90
|
Hao H, Zhang L, Wang W, Zeng S. Facile Modification of Titania with Nickel Sulfide and Sulfate Species for the Photoreformation of Cellulose into Hydrogen. CHEMSUSCHEM 2018; 11:2810-2817. [PMID: 29920974 DOI: 10.1002/cssc.201800743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/20/2018] [Indexed: 05/20/2023]
Abstract
Photocatalytic cellulose reformation is regarded as a potential and affordable route for sustainable H2 evolution. However, direct photoreformation still suffers from challenges such as the limited solubility of cellulose and the dependence on the catalytic activity of noble metals. Herein, we report a new photoreformation of cellulose into H2 over TiO2 that is modified with nickel sulfide (Nix Sy ) and chemisorbed sulfate species (SO42- ) by a one-pot approach. A significant elevation in the photocatalytic hydrogen evolution rate is achieved with a maximal value of 3.02 mmol g-1 h-1 during the first 3 h, which is almost 76-fold higher than that of P25 and comparable to that of Pt-P25. Aided by systematic investigation, it is proposed that nickel sulfide and sulfate modification contribute synergistically to the remarkably increased efficiency of biomass transformation. Specifically, Nix Sy acts as a cocatalyst for photocatalytic H2 production, and we infer that SO42- ions promote cellulose hydrolysis and the consequent accessibility of the biomass to catalysts. Further, the accumulated formate intermediates have a poisoning effect on the catalysts, the desorption of which can be controlled by tuning the aqueous alkalinity. Overall, our strategy for the modification of TiO2 with SO42- and Nix Sy provides a new perspective for the concurrent acceleration of cellulose hydrolysis and increase of the number of hydrogen evolution sites for the efficient photocatalytic reformation of cellulose into H2 .
Collapse
Affiliation(s)
- Hongchang Hao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Wenzhong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Shuwen Zeng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
91
|
Zhang FM, Sheng JL, Yang ZD, Sun XJ, Tang HL, Lu M, Dong H, Shen FC, Liu J, Lan YQ. Rational Design of MOF/COF Hybrid Materials for Photocatalytic H2
Evolution in the Presence of Sacrificial Electron Donors. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806862] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng-Ming Zhang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Jing-Li Sheng
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Zhao-Di Yang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Xiao-Jun Sun
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Hong-Liang Tang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Meng Lu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Hong Dong
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Feng-Cui Shen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| |
Collapse
|
92
|
Zhang FM, Sheng JL, Yang ZD, Sun XJ, Tang HL, Lu M, Dong H, Shen FC, Liu J, Lan YQ. Rational Design of MOF/COF Hybrid Materials for Photocatalytic H2
Evolution in the Presence of Sacrificial Electron Donors. Angew Chem Int Ed Engl 2018; 57:12106-12110. [DOI: 10.1002/anie.201806862] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Feng-Ming Zhang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Jing-Li Sheng
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Zhao-Di Yang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Xiao-Jun Sun
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Hong-Liang Tang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Meng Lu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Hong Dong
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province; College of Chemical and Environmental Engineering; Harbin University of Science and Technology; No. 4, Linyuan Road Harbin 150040 China
| | - Feng-Cui Shen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials; Jiangsu Key Laboratory of New Power Batteries; School of Chemistry and Materials Science; Nanjing Normal University; No. 1, Wenyuan Road Nanjing 210023 China
| |
Collapse
|
93
|
|
94
|
Wakerley DW, Ly KH, Kornienko N, Orchard KL, Kuehnel MF, Reisner E. Aerobic Conditions Enhance the Photocatalytic Stability of CdS/CdO x Quantum Dots. Chemistry 2018; 24:18385-18388. [PMID: 29750379 PMCID: PMC6348374 DOI: 10.1002/chem.201802353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 01/09/2023]
Abstract
Photocatalytic H2 production through water splitting represents an attractive route to generate a renewable fuel. These systems are typically limited to anaerobic conditions due to the inhibiting effects of O2 . Here, we report that sacrificial H2 evolution with CdS quantum dots does not necessarily suffer from O2 inhibition and can even be stabilised under aerobic conditions. The introduction of O2 prevents a key inactivation pathway of CdS (over-accumulation of metallic Cd and particle agglomeration) and thereby affords particles with higher stability. These findings represent a possibility to exploit the O2 reduction reaction to inhibit deactivation, rather than catalysis, offering a strategy to stabilise photocatalysts that suffer from similar degradation reactions.
Collapse
Affiliation(s)
- David W Wakerley
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Khoa H Ly
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Nikolay Kornienko
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Katherine L Orchard
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Moritz F Kuehnel
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
95
|
|
96
|
|
97
|
Schilling W, Riemer D, Zhang Y, Hatami N, Das S. Metal-Free Catalyst for Visible-Light-Induced Oxidation of Unactivated Alcohols Using Air/Oxygen as an Oxidant. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01067] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Waldemar Schilling
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Daniel Riemer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Yu Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nareh Hatami
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Shoubhik Das
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
98
|
Liu H, Li H, Lu J, Zeng S, Wang M, Luo N, Xu S, Wang F. Photocatalytic Cleavage of C–C Bond in Lignin Models under Visible Light on Mesoporous Graphitic Carbon Nitride through π–π Stacking Interaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00022] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huifang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongji Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianmin Lu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Shu Zeng
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Min Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
99
|
Abstract
Photocatalytic reforming of lignocellulosic biomass is an emerging approach to produce renewable H2 . This process combines photo-oxidation of aqueous biomass with photocatalytic hydrogen evolution at ambient temperature and pressure. Biomass conversion is less energy demanding than water splitting and generates high-purity H2 without O2 production. Direct photoreforming of raw, unprocessed biomass has the potential to provide affordable and clean energy from locally sourced materials and waste.
Collapse
Affiliation(s)
- Moritz F. Kuehnel
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of ChemistrySwansea University, College of ScienceSingleton ParkSwanseaSA2 8PPUK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas ChemistryDepartment of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
100
|
Wei Y, Xiong J, Li W, Kollarigowda RH, Cheng G. Achieving photocatalytic hydrogen production from alkaline solution upon a designed mesoporous TiO2–Ni hybrid employing commonly used paper as a sacrificial electron donor. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00621k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photocatalytic hydrogen evolution from water splitting, using paper as an electron donor, was achieved upon use of a hybrid photocatalyst of mesoporous TiO2 decorated with Ni nanoparticles.
Collapse
Affiliation(s)
- Yi Wei
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430073
- PR China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering
- Wuhan Textile University
- Wuhan 430200
- China
| | - Weijie Li
- Institute for Superconducting and Electronic Materials
- University of Wollongong
- North Wollongong
- Australia
| | | | - Gang Cheng
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430073
- PR China
| |
Collapse
|