51
|
Jiang H, Han X, Du X, Chen Z, Lu C, Li X, Zhang H, Zhao J, Han P, Cui G. A PF 6 - -Permselective Polymer Electrolyte with Anion Solvation Regulation Enabling Long-Cycle Dual-Ion Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108665. [PMID: 34951488 DOI: 10.1002/adma.202108665] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Graphitic carbon that allows reversible anion (de)intercalation is a promising cathode material for cost-efficient and high-voltage dual-ion batteries (DIBs). However, one notorious but overlooked issue is the incomplete interfacial anion desolvation, which not only reduces the oxidative stability of electrolytes, but also results in solvent co-intercalation into graphite layers. Here, an "anion-permselective" polymer electrolyte with abundant cationic quaternary ammonium motif is developed to weaken the PF6 - -solvent interaction and thus facilitates PF6 - desolvation. This strategy significantly inhibits solvent co-intercalation as well as enhances the oxidation resistance of electrolyte, ensuring the structural integrity of graphite. As a result, the as-assembled graphite||Li cell achieves a superior cyclability with an average Coulombic efficiency of 99.0% (vs 95.7% for baseline electrolyte) and 87.1% capacity retention after 2000 cycles even at a high cutoff potential of 5.4 V versus Li+ /Li. Besides, this polymer also forms a robust cathode electrolyte interface, working together to enable a long-life DIB. This strategy of tuning anion coordination environment provides a promising solution to regulate solvent co-intercalation chemistry for DIBs.
Collapse
Affiliation(s)
- Hongzhu Jiang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoqi Han
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaofan Du
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Zheng Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Chenglong Lu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xintong Li
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Huanrui Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Pengxian Han
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
52
|
Liu Y, Hu X, Li J, Zhong G, Yuan J, Zhan H, Tang Y, Wen Z. Carbon-coated MoS 1.5Te 0.5 nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries. Nat Commun 2022; 13:663. [PMID: 35115491 PMCID: PMC8814252 DOI: 10.1038/s41467-022-28176-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/10/2022] [Indexed: 01/28/2023] Open
Abstract
Sodium-based dual-ion batteries have received increased attention owing to their appealing cell voltage (i.e., >3 V) and cost-effective features. However, the development of high-performance anode materials is one of the key elements for exploiting this electrochemical energy storage system at practical levels. Here, we report a source-template synthetic strategy for fabricating a variety of nanowire-in-nanotube MSxTey@C (M = Mo, W, Re) structures with an in situ-grown carbon film coating, termed as nanocables. Among the various materials prepared, the MoS1.5Te0.5@C nanocables are investigated as negative electrode active material in combination with expanded graphite at the positive electrode and NaPF6-based non-aqueous electrolyte solutions for dual-ion storage in coin cell configuration. As a result, the dual-ion lab-scale cells demonstrate a prolonged cycling lifespan with 97% capacity retention over 1500 cycles and a reversible capacity of about 101 mAh g−1 at specific capacities (based on the mass of the anode) of 1.0 A g−1 and 5.0 A g−1, respectively. Sodium-based dual-ion batteries are promising electrochemical energy storage devices. Here, the authors report a source-template synthetic strategy to prepare carbon-coated MoS1.5Te0.5 nanocables and their use as anode active materials in Na-based dual ion cells.
Collapse
Affiliation(s)
- Yangjie Liu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiang Hu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Junwei Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Guobao Zhong
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jun Yuan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Yongbing Tang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| |
Collapse
|
53
|
Luo X, Li W, Liang H, Zhang H, Du K, Wang X, Liu X, Zhang J, Wu X. Covalent Organic Framework with Highly Accessible Carbonyls and π‐Cation Effect for Advanced Potassium‐Ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao‐Xi Luo
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Wen‐Hao Li
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun 130024 P. R. China
| | - Hao‐Jie Liang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun 130024 P. R. China
| | - Hong‐Xia Zhang
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Kai‐Di Du
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xiao‐Tong Wang
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xin‐Fang Liu
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Jing‐Ping Zhang
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xing‐Long Wu
- Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
54
|
Wang H, Wu Q, Wang Y, Lv X, Wang HG. A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries. J Colloid Interface Sci 2022; 606:1024-1030. [PMID: 34487925 DOI: 10.1016/j.jcis.2021.08.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
Currently, there is considerable interest in developing new electrode materials to construct the new-generation dual-ion batteries (DIBs) with the potential advantages of higher working voltage, good safety, low cost, and environmental friendliness. Herein, a well-known charge-transfer metal-organic compound, copper-tetracyanoquinodimethane (CuTCNQ), is synthesized and then used as an anode material, which can reversibly store Li+/Na+ ions under the lower working voltage. Consequently, the lithium/sodium-based DIBs (LDIBs/SDIBs) are constructed by coupling CuTCNQ anode with graphite cathode and their working mechanisms are also understood in detail. As expected, LDIBs exhibit a high average potential of 4.26 V, a high initial discharge capacity of 195.4 mAh g-1 at 0.1 A g-1, long cycling performance after 200 cycles with good capacity retention and excellent rate capability of 106.2 mAh g-1 at 5 A g-1. Especially, high average potential of 4.23 V and good rate capability of 34.5 mAh g-1 at 5 A g-1 could be maintained in SDIBs. These results may open a new avenue for using metal-organic compound in the field of high-performance energy-storage devices.
Collapse
Affiliation(s)
- Haidong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, 5628 Renmin Street, Changchun 130024, PR China
| | - Qiong Wu
- School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, PR China
| | - Yunong Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, PR China
| | - Xiaoling Lv
- School of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, PR China
| | - Heng-Guo Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, 5628 Renmin Street, Changchun 130024, PR China.
| |
Collapse
|
55
|
Li J, Han C, Ou X, Tang Y. Concentrated Electrolyte for High‐performance Ca‐ion Battery based on Organic Anode and Graphite Cathode. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jin Li
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Chengjun Han
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Xuewu Ou
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Advanced Energy Storage Technology Research Center CHINA
| | - Yongbing Tang
- Shenzhen institute of advanced technology Chinese Academy of Sciences Functional Thin Films Research Centre 1068 Xueyuan Avenue, Shenzhen University Town 518000 SHENZHEN CHINA
| |
Collapse
|
56
|
Dang W, Wang W, Xiao L, Ban Z, Tang X, Zhang Y. ZnNi‐MnCo2O4@CNT porous double heterojunction cage‐like structure with three‐dimensional network for superior lithium‐ion batteries and capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
57
|
Bi W, Zhang L, Chen J, Tian R, Huang H, Yao M. Lithiation Mechanism and Performance of Monoclinic ZnP 2 Anode Materials. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
58
|
Chen J, Peng Y, Yin Y, Fang Z, Cao Y, Wang Y, Dong X, Xia Y. A Desolvation-Free Sodium Dual-Ion Chemistry for High Power Density and Extremely Low Temperature. Angew Chem Int Ed Engl 2021; 60:23858-23862. [PMID: 34463020 DOI: 10.1002/anie.202110501] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 01/08/2023]
Abstract
The development of conventional rechargeable batteries based on intercalation chemistry in the fields of fast charge and low temperature is generally hindered by the sluggish cation-desolvation process at the electrolyte/electrode interphase. To address this issue, a novel desolvation-free sodium dual-ion battery (SDIB) has been proposed by using artificial graphite (AG) as anode and polytriphenylamine (PTPAn) as cathode. Combining the cation solvent co-intercalation and anion storage chemistry, such a SDIB operated with ether-based electrolyte can intrinsically eliminate the sluggish desolvation process. Hence, it can exhibit an extremely fast kinetics of 10 Ag-1 (corresponding to 100C-rate) with a high capacity retention of 45 %. Moreover, the desolvation-free mechanism endows the battery with 61 % of its room-temperature capacity at an ultra-low temperature of -70 °C. This advanced battery system will open a door for designing energy storage devices that require high power density and a wide operational temperature range.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yu Peng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yue Yin
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Zhong Fang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yongjie Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Xiaoli Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yongyao Xia
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
59
|
Chen J, Peng Y, Yin Y, Fang Z, Cao Y, Wang Y, Dong X, Xia Y. A Desolvation‐Free Sodium Dual‐Ion Chemistry for High Power Density and Extremely Low Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jiawei Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Yu Peng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Yue Yin
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Zhong Fang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Yongjie Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Xiaoli Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Yongyao Xia
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| |
Collapse
|
60
|
Wu H, Hu T, Chang S, Li L, Yuan W. Sodium-Based Dual-Ion Battery Based on the Organic Anode and Ionic Liquid Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44254-44265. [PMID: 34519196 DOI: 10.1021/acsami.1c10836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Combining the advantages of dual-ion batteries (DIBs) and sodium-ion batteries (SIBs), we herein develop a superior sodium-based dual-ion battery (Na-DIB) based on the PTCDA organic anode and ionic liquid (IL) electrolyte. The system shows the highest specific discharge capacity of 177 mAh g-1 at 0.5C and excellent capacity retention over 100% at 2C after 200 cycles. Notably, even at an ultrahigh rate of 20C, the battery still maintains a considerable capacity of 60 mAh g-1 with a coulombic efficiency (CE) close to 100 and 94% capacity retention after 1000 cycles. Moreover, the self-discharge of the system has been investigated and shown to have an extremely low value of 0.18% h-1. Consequently, this work presents an excellent Na-DIB system, which could be a promising candidate for large-scale applications.
Collapse
Affiliation(s)
- Hongzheng Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
| | - Tao Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
| | - Shuya Chang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
| | - Li Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wenhui Yuan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Advanced Insulating Coating, South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
| |
Collapse
|
61
|
Qiu H, Wan J, Zhang J, Wang X, Zhang N, Chen R, Xia Y, Huang L, Wang H. Probing Mechanistic Insights into Highly Efficient Lithium Storage of C 60 Fullerene Enabled via Three-Electron-Redox Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101759. [PMID: 34250756 PMCID: PMC8425916 DOI: 10.1002/advs.202101759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Indexed: 05/28/2023]
Abstract
Renewable organic cathodes with abundant elements show promise for sustainable rechargeable batteries. Herein, for the first time, utilizing C60 fullerene as organic cathode for room-temperature lithium-ion battery is reported. The C60 cathode shows robust electrochemical performance preferably in ether-based electrolyte. It delivers discharge capacity up to 120 mAh g-1 and specific energy exceeding 200 Wh kg-1 with high initial Coulombic efficiency of 91%. The as-fabricated battery holds a capacity of 90 mAh g-1 after 50 cycles and showcases remarkable rate performance with 77 mAh g-1 retained at 500 mA g-1 . Noteworthily, three couples of unusual flat voltage plateaus recur at ≈2.4, 1.7, and 1.5 V, respectively. Diffusion-dominated three-electron-redox reactions are revealed by cyclic voltammogram and plateau capacities. Intriguingly, it is for the first time unveiled by in situ X-ray diffraction (XRD) that the C60 cathode underwent three reversible phase transitions during lithiation/delithiation process, except for the initial discharge when irreversible polymerization in between C60 nanoclusters existed as suggested by the characteristic irreversible peak shifts in both in situ XRD pattern and in situ Raman spectra. Cs-corrected transmission electron microscope corroborated these phase evolutions. Importantly, delithiation potentials derived from density-functional-theory simulation based on proposed phase structures qualitatively consists with experimental ones.
Collapse
Affiliation(s)
- Haifa Qiu
- Shenzhen Key Laboratory of Solid State BatteriesSouthern University of Science and TechnologyShenzhen518055China
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Jing Wan
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Junxian Zhang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Xin Wang
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhen518055China
| | - Nianji Zhang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Rouxi Chen
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Yu Xia
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
| | - Li Huang
- Department of PhysicsSouthern University of Science and TechnologyShenzhen518055China
| | - Hsing‐Lin Wang
- Shenzhen Key Laboratory of Solid State BatteriesSouthern University of Science and TechnologyShenzhen518055China
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric PowerSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
62
|
Tan C, Ding R, Huang Y, Yan T, Huang Y, Yang F, Sun X, Gao P, Liu E. Conversion/insertion pseudocapacitance-driven vacancy defective perovskite fluorides K0.82Co0.43Mn0.57F2.66@reduced graphene oxide anode for powerful Na-based dual-ion batteries and capacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
63
|
Li W, Wu X. Advanced cathode materials in dual‐ion batteries: Progress and prospect. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Wen‐Hao Li
- MOE Key Laboratory for UV Light‐Emitting Materials and Technology Northeast Normal University Changchun Jilin P. R. China
| | - Xing‐Long Wu
- MOE Key Laboratory for UV Light‐Emitting Materials and Technology Northeast Normal University Changchun Jilin P. R. China
- National & Local United Engineering Laboratory for Power Batteries Faculty of Chemistry Northeast Normal University Changchun Jilin P. R. China
| |
Collapse
|
64
|
Yin H, Han C, Liu Q, Wu F, Zhang F, Tang Y. Recent Advances and Perspectives on the Polymer Electrolytes for Sodium/Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006627. [PMID: 34047049 DOI: 10.1002/smll.202006627] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Owing to the low cost of sodium/potassium resources and similar electrochemical properties of Na+ /K+ to Li+ , sodium-ion batteries (SIBs) and potassium-ion batteries (KIBs) are regarded as promising alternatives to lithium-ion batteries (LIBs) in large-scale energy storage field. However, traditional organic liquid electrolytes bestow SIBs/KIBs with serious safety concerns. In contrast, quasi-/solid-phase electrolytes including polymer electrolytes (PEs) and inorganic solid electrolytes (ISEs) show great superiority of high safety. However, the poor processibility and relatively low ionic conductivity of Na+ and K+ ions limit the further practical applications of ISEs. PEs combine some merits of both liquid-phase electrolytes and ISEs, and present great potentials in next-generation energy storage systems. Considerable efforts have been devoted to improving their overall properties. Nevertheless, there is still a lack of an in-depth and comprehensive review to get insights into mechanisms and corresponding design strategies of PEs. Herein, the advantages of different electrolytes, particularly PEs are first minutely reviewed, and the mechanism of PEs for Na+ /K+ ion transfer is summarized. Then, representative researches and recent progresses of SIBs/KIBs based on PEs are presented. Finally, some suggestions and perspectives are put forward to provide some possible directions for the follow-up researches.
Collapse
Affiliation(s)
- Hang Yin
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chengjun Han
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Qirong Liu
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fayu Wu
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
| | - Fan Zhang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Liaoning, Anshan, 114051, China
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
65
|
Liu Q, Wang Y, Yang X, Zhou D, Wang X, Jaumaux P, Kang F, Li B, Ji X, Wang G. Rechargeable anion-shuttle batteries for low-cost energy storage. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
66
|
Mu S, Liu Q, Kidkhunthod P, Zhou X, Wang W, Tang Y. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Natl Sci Rev 2021; 8:nwaa178. [PMID: 34691681 PMCID: PMC8310755 DOI: 10.1093/nsr/nwaa178] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/20/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Sodium-based dual-ion batteries (Na-DIBs) show a promising potential for large-scale energy storage applications due to the merits of environmental friendliness and low cost. However, Na-DIBs are generally subject to poor rate capability and cycling stability for the lack of suitable anodes to accommodate large Na+ ions. Herein, we propose a molecular grafting strategy to in situ synthesize tin pyrophosphate nanodots implanted in N-doped carbon matrix (SnP2O7@N-C), which exhibits a high fraction of active SnP2O7 up to 95.6 wt% and a low content of N-doped carbon (4.4 wt%) as the conductive framework. As a result, this anode delivers a high specific capacity ∼400 mAh g-1 at 0.1 A g-1, excellent rate capability up to 5.0 A g-1 and excellent cycling stability with a capacity retention of 92% after 1200 cycles under a current density of 1.5 A g-1. Further, pairing this anode with an environmentally friendly KS6 graphite cathode yields a SnP2O7@N-C||KS6 Na-DIB, exhibiting an excellent rate capability up to 30 C, good fast-charge/slow-discharge performance and long-term cycling life with a capacity retention of ∼96% after 1000 cycles at 20 C. This study provides a feasible strategy to develop high-performance anodes with high-fraction active materials for Na-based energy storage applications.
Collapse
Affiliation(s)
- Sainan Mu
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Qirong Liu
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand
| | - Xiaolong Zhou
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenlou Wang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yongbing Tang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
67
|
Zheng R, Yu H, Zhang X, Ding Y, Xia M, Cao K, Shu J, Vlad A, Su B. A TiSe
2
‐Graphite Dual Ion Battery: Fast Na‐Ion Insertion and Excellent Stability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Runtian Zheng
- School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 Zhejiang China
- Laboratory of Inorganic Materials Chemistry (CMI) University of Namur 61 rue de Bruxelles 5000 Namur Belgium
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei China
| | - Haoxiang Yu
- School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 Zhejiang China
| | - Xikun Zhang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 Zhejiang China
| | - Yang Ding
- Laboratory of Inorganic Materials Chemistry (CMI) University of Namur 61 rue de Bruxelles 5000 Namur Belgium
| | - Maoting Xia
- School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 Zhejiang China
| | - Kangzhe Cao
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Xinyang Normal University Xinyang 464000 Henan China
| | - Jie Shu
- School of Materials Science and Chemical Engineering Ningbo University Ningbo 315211 Zhejiang China
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences Université Catholique de Louvain Place Louis Pasteur 1L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Bao‐Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI) University of Namur 61 rue de Bruxelles 5000 Namur Belgium
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 Hubei China
| |
Collapse
|
68
|
Zheng R, Yu H, Zhang X, Ding Y, Xia M, Cao K, Shu J, Vlad A, Su BL. A TiSe 2 -Graphite Dual Ion Battery: Fast Na-Ion Insertion and Excellent Stability. Angew Chem Int Ed Engl 2021; 60:18430-18437. [PMID: 34038605 DOI: 10.1002/anie.202105439] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 11/07/2022]
Abstract
The sodium dual ion battery (Na-DIB) technology is proposed as highly promising alternative over lithium-ion batteries for the stationary electrochemical energy-storage devices. However, the sluggish reaction kinetics of anode materials seriously impedes their practical implementation. Herein, a Na-DIB based on TiSe2 -graphite is reported. The high diffusion coefficient of Na-ions (3.21×10-11 -1.20×10-9 cm2 s-1 ) and the very low Na-ion diffusion barrier (0.50 eV) lead to very fast electrode kinetics, alike in conventional surface capacitive storage systems. In-situ investigations reveal that the fast Na-ion diffusion involves four insertion stage compositions. A prototype cell shows a reversible capacity of 81.8 mAh g-1 at current density of 100 mA g-1 , excellent stability with 83.52 % capacity retention over 200 cycles and excellent rate performance, suggesting its potential for next-generation large scale high-performance stationary energy storage systems.
Collapse
Affiliation(s)
- Runtian Zheng
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.,Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Haoxiang Yu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xikun Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yang Ding
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Maoting Xia
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Kangzhe Cao
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Jie Shu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| |
Collapse
|
69
|
Qi X, Mao J. Current Collector-Free Reduced Graphene Oxide Aerogel Cathode for High Energy Density Dual-Ion Batteries. J Phys Chem Lett 2021; 12:5430-5435. [PMID: 34080863 DOI: 10.1021/acs.jpclett.1c01340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an important indicator to evaluate battery performance, the energy density of commercial lithium ion batteries is close to the limit. Herein, for the first time, we reported that the reduced oxide graphene (rGO) aerogel can be directly used for the cathode of a dual-ion battery to achieve a superior specific energy density by reducing the dead weight of the battery. The porous structure of an rGO aerogel facilitates the penetration of the electrolyte and provides more active sites for energy storage. At the same time, the continuous graphene network benefits the electron transport. The lithium-rGO battery shows a discharge specific capacity of 94 mA h g-1 at 1 A g-1 and a superior specific energy density of 213 W h kg-1 at 2141 W kg-1. It is worth noting that this current collector-free electrode design would promote the development and application of graphene-based batteries with a high energy density.
Collapse
Affiliation(s)
- Xiao Qi
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jian Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
70
|
Tan C, Ding R, Huang Y, Yan T, Huang Y, Yang F, Sun X, Gao P, Liu E. A vacancy-rich perovskite fluoride K 0.79Ni 0.25Co 0.36Mn 0.39F 2.83@rGO anode for advanced Na-based dual-ion batteries. Chem Commun (Camb) 2021; 57:5830-5833. [PMID: 34002733 DOI: 10.1039/d1cc01477c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel concept of Na-based dual-ion batteries (Na-DIBs) has been designed via a perovskite K0.79Ni0.25Co0.36Mn0.39F2.83@reduced graphene oxide (KNCMF@rGO) hetero-nanocrystal anode, showing surface conversion and insertion hybrid mechanisms. The KNCMF@rGO//graphite (KS6) DIBs deliver superior energy/power densities and cycling stability and have a significant impact on developing energy storage devices.
Collapse
Affiliation(s)
- Caini Tan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Yuxi Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Tong Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Yongfa Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Feng Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Ping Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.
| |
Collapse
|
71
|
Abstract
Aqueous electrolytes are the leading candidate to meet the surging demand for safe and low-cost storage batteries. Aqueous electrolytes facilitate more sustainable battery technologies due to the attributes of being nonflammable, environmentally benign, and cost effective. Yet, water's narrow electrochemical stability window remains the primary bottleneck for the development of high-energy aqueous batteries with long cycle life and infallible safety. Water's electrolysis leads to either hydrogen evolution reaction (HER) or oxygen evolution reaction (OER), which causes a series of dire consequences, including poor Coulombic efficiency, short device longevity, and safety issues. These are often showstoppers of a new aqueous battery technology besides the low energy density. Prolific progress has been made in the understanding of HER and OER from both catalysis and battery fields. Unfortunately, a systematic review on these advances from a battery chemistry standpoint is lacking. This review provides in-depth discussions on the mechanisms of water electrolysis on electrodes, where we summarize the critical influencing factors applicable for a broad spectrum of aqueous battery systems. Recent progress and existing challenges on suppressing water electrolysis are discussed, and our perspectives on the future development of this field are provided.
Collapse
Affiliation(s)
- Yiming Sui
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
72
|
Dou Q, Wu N, Yuan H, Shin KH, Tang Y, Mitlin D, Park HS. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chem Soc Rev 2021; 50:6734-6789. [PMID: 33955977 DOI: 10.1039/d0cs00721h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrochemical capacitors charge and discharge more rapidly than batteries over longer cycles, but their practical applications remain limited due to their significantly lower energy densities. Pseudocapacitors and hybrid capacitors have been developed to extend Ragone plots to higher energy density values, but they are also limited by the insufficient breadth of options for electrode materials, which require materials that store alkali metal cations such as Li+ and Na+. Herein, we report a comprehensive and systematic review of emerging anion storage materials for performance- and functionality-oriented applications in electrochemical and battery-capacitor hybrid devices. The operating principles and types of dual-ion and whole-anion storage in electrochemical and hybrid capacitors are addressed along with the classification, thermodynamic and kinetic aspects, and associated interfaces of anion storage materials in various aqueous and non-aqueous electrolytes. The charge storage mechanism, structure-property correlation, and electrochemical features of anion storage materials are comprehensively discussed. The recent progress in emerging anion storage materials is also discussed, focusing on high-performance applications, such as dual-ion- and whole-anion-storing electrochemical capacitors in a symmetric or hybrid manner, and functional applications including micro- and flexible capacitors, desalination, and salinity cells. Finally, we present our perspective on the current impediments and future directions in this field.
Collapse
Affiliation(s)
- Qingyun Dou
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 440-746, Korea.
| | | | | | | | | | | | | |
Collapse
|
73
|
Carrasco-Busturia D, Lysgaard S, Jankowski P, Vegge T, Bhowmik A, García-Lastra JM. Ab initio Molecular Dynamics Investigations of the Speciation and Reactivity of Deep Eutectic Electrolytes in Aluminum Batteries. CHEMSUSCHEM 2021; 14:2034-2041. [PMID: 33682346 DOI: 10.1002/cssc.202100163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Deep eutectic solvents (DESs) have emerged as an alternative for conventional ionic liquids in aluminum batteries. Elucidating DESs composition is fundamental to understand aluminum electrodeposition in the battery anode. Despite numerous experimental efforts, the speciation of these DESs remains elusive. This work shows how ab initio molecular dynamics (AIMD) simulations can shed light on the molecular composition of DESs. For the particular example of AlCl3 :urea, one of the most popular DESs, we carried out a systematic AIMD study, showing how an excess of AlCl3 in the AlCl3 :urea mixture promotes the stability of ionic species vs neutral ones and also favors the reactivity in the system. These two facts explain the experimentally observed enhanced electrochemical activity in salt-rich DESs. We also observe the transfer of simple [AlClx (urea)y ] clusters between different species in the liquid, giving rise to free [AlCl4 ]- units. The small size of these [AlCl4 ]- units favors the transport of ionic species towards the anode, facilitating the electrodeposition of aluminum.
Collapse
Affiliation(s)
- David Carrasco-Busturia
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Steen Lysgaard
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Piotr Jankowski
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Arghya Bhowmik
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Juan María García-Lastra
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
74
|
Gong D, Wei C, Liang Z, Tang Y. Recent Advances on Sodium‐Ion Batteries and Sodium Dual‐Ion Batteries: State‐of‐the‐Art Na
+
Host Anode Materials. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100014] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Decai Gong
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Chenyang Wei
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Zhongwang Liang
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Yongbing Tang
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Advanced Materials Processing and Mold Ministry of Education Zhengzhou University Zhengzhou 450002 China
| |
Collapse
|
75
|
Semi-coherent cation-rich Mn-Cu oxides heterostructures as cathode for novel aqueous potassium dual-ion energy storage devices. J Colloid Interface Sci 2021; 597:75-83. [PMID: 33862448 DOI: 10.1016/j.jcis.2021.03.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Abstract
In this work, combining both advantages of aqueous energy storage systems (ESS) and conventional dual-ion ESS, a novel aqueous dual-ion ESS is developed based on K+ and OH- electrochemistry by employing semi-coherent K1.33Mn8O16-CuO (sc-Mn-Cu) cathode. Profting from the elaborate design, the electrolyte and cathode simultaneously act as source of cations. In the novel aqueous dual-ion ESS configuration, the dependence of the performance on the electrolyte salt concentration is reduced and the sc-Mn-Cu cathode can host OH- with lower working potentials by conversion mechanism. Furthermore, based on the sc-Mn-Cu cathode and freestanding V2O3-VC (fs-V2O3-VC) anode, we developed a flexible quasi-solid-state device. Remarkably, it exhibits an ultrahigh energy density of ~39.9 μW h cm-2 together with high power density of carbon-based devices, which outperforms most previously reported flexible storage devices to our knowledge. These results indicating that the unique mechanism of the sc-Mn-Cu cathode opens up a promising direction for low-cost and high-performance novel aqueous ESS.
Collapse
|
76
|
Pan Q, Zheng Y, Tong Z, Shi L, Tang Y. Novel Lamellar Tetrapotassium Pyromellitic Organic for Robust High‐Capacity Potassium Storage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qingguang Pan
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Yongping Zheng
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhaopeng Tong
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Lei Shi
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Yongbing Tang
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- School of Chemical Science University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Advanced Materials Processing & Mold Ministry of Education Zhengzhou University Zhengzhou 450002 China
| |
Collapse
|
77
|
Pan Q, Zheng Y, Tong Z, Shi L, Tang Y. Novel Lamellar Tetrapotassium Pyromellitic Organic for Robust High-Capacity Potassium Storage. Angew Chem Int Ed Engl 2021; 60:11835-11840. [PMID: 33723907 DOI: 10.1002/anie.202103052] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 01/21/2023]
Abstract
Redox-active organics are investigation hotspots for metal ion storage due to their structural diversity and redox reversibility. However, they are plagued by limited storage capacity, sluggish ion diffusion kinetics, and weak structural stability, especially for K+ ion storage. Herein, we firstly reported the lamellar tetrapotassium pyromellitic (K4 PM) with four active sites and large interlayer distance for K+ ion storage based on a design strategy, where organics are constructed with the small molecular mass, multiple active sites, fast ion diffusion channels, and rigid conjugated π bonds. The K4 PM electrode delivers a high capacity up to 292 mAh g-1 at 50 mA g-1 , among the best reported organics for K+ ion storage. Especially, it achieves an excellent rate capacity and long-term cycling stability with a capacity retention of ≈83 % after 1000 cycles. Incorporating in situ and ex-situ techniques, the K+ ion storage mechanism is revealed, where conjugated carboxyls are reversibly rearranged into enolates to stably store K+ ions. This work sheds light on the rational design and optimization of organic electrodes for efficient metal ion storage.
Collapse
Affiliation(s)
- Qingguang Pan
- Functional Thin Films Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongping Zheng
- Functional Thin Films Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhaopeng Tong
- Functional Thin Films Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lei Shi
- Functional Thin Films Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- Functional Thin Films Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
78
|
Han F, Chen Y, Zhang J, Cai J, Xia X, Liu H. Realizing Ultralong-Term Cyclicability of 5 Volt-Cathode-Material Graphite Flakes by Uniformly Comodified TiO 2/Carbon Layer Inducing Stable Cathode-Electrolyte Interphase. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10101-10109. [PMID: 33619956 DOI: 10.1021/acsami.0c23070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A common issue the high-voltage cathode materials of secondary batteries suffered from is oxidative electrolyte decomposition inducing rapid capacity fading with discharge/charge cycling. Herein, a highly efficient strategy realizing stable cathode-electrolyte interphase (CEI) and ultralong-term cyclicability of 5 volt-cathode-material graphite flakes (GFs) for dual-ion batteries is demonstrated. The TiO2/carbon-comodified GF (TO/GF) cathode material with uniform distribution and tight bonding of the nanosized TiO2/carbon layer on the GF surface is synthesized, in which the GF surface is partitioned into nanodomains by the uniformly distributed TiO2 nanoparticles. Meanwhile, the amorphous carbon layer acts as a gummed tape bonding tightly the TiO2 nanoparticles on the graphite flake surface. Serial electrochemical impedance spectroscopy and structural/chemical analyses demonstrate that these unique structural characteristics of the TiO2/carbon comodification endow the TO/GF cathode material with a stable CEI layer coupled with much reduced electrolyte decomposition. Consequently, extremely high cyclicability of 10,000 stable discharge/charge cycles with an extremely low capacity fading rate of 0.0021% for anion PF6- storage is realized. This efficient strategy has a potential to be extended to other high-voltage cathode materials and further scaled to the industrial level.
Collapse
Affiliation(s)
- Fangchao Han
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuxi Chen
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jizheng Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jie Cai
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiaohong Xia
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Hongbo Liu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
79
|
Fang Z, Xu M, Li Q, Qi M, Xu T, Niu Z, Qu N, Gu J, Wang J, Wang D. Over-Reduction-Controlled Mixed-Valent Manganese Oxide with Tunable Mn 2+/Mn 3+ Ratio for High-Performance Asymmetric Supercapacitor with Enhanced Cycling Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2816-2825. [PMID: 33591771 DOI: 10.1021/acs.langmuir.0c03580] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Manganese oxides composed of various valence states Mnx+ (x = 2, 3, and 4) have attracted wide attention as promising electrode materials for asymmetric supercapacitor. However, the poor electrical conductivity limited their performance and application. Appropriate regulation content of Mnx+ in mixed-valent manganese oxide can tune the electronic structure and further improve their conductivity and performance. Herein, we prepared manganese oxides with different Mn2+/Mn3+ ratios through an over-reduction (OR) strategy for tuning the internal electron structure of mixed-valent manganese, which could make these material oxides a good platform for researching the structure-property relationships. The Mn2+/Mn3+ ratio of manganese oxide could be precisely tuned from 0.6 to 1.7 by controlling the amount of reducing agent for manipulating the redox processes, where the manganese oxide electrode with the most appropriate Mn2+/Mn3+ ratio, as 1.65 (OR4) exhibits large capacitance (274 F g-1) and the assembling asymmetric supercapacitors by combining OR4 (positive) and the commercial activated carbon (as negative) achieved large 2.0 V voltage window and high energy density of 27.7 Wh kg-1 (power density of 500 W kg-1). The cycle lifespan of the OR4//AC could keep about 92.9% after 10 000-cycle tests owing to the Jahn-Teller distortion of the Mn(III)O6 octahedron, which is more competitive compared to other work. Moreover, a red-light-emitting diode (LED) can easily be lit for 15 min by two all-solid supercapacitor devices in a series.
Collapse
Affiliation(s)
- Zixun Fang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ming Xu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Qing Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Man Qi
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tongtong Xu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhimin Niu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Nianrui Qu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jianmin Gu
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Desong Wang
- Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
80
|
Yang K, Liu Q, Zheng Y, Yin H, Zhang S, Tang Y. Locally Ordered Graphitized Carbon Cathodes for High‐Capacity Dual‐Ion Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016233] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kai Yang
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Qirong Liu
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Yongping Zheng
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Hang Yin
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Shanqing Zhang
- Center for Clean Environment and Energy School of Environment and Science Griffith University Brisbane Queensland 4222 Australia
| | - Yongbing Tang
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
- Key Laboratory of Advanced Materials Processing & Mold Ministry of Education Zhengzhou University Zhengzhou 450002 China
- School of Chemical Sciences Ministry of Education University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
81
|
Yang K, Liu Q, Zheng Y, Yin H, Zhang S, Tang Y. Locally Ordered Graphitized Carbon Cathodes for High-Capacity Dual-Ion Batteries. Angew Chem Int Ed Engl 2021; 60:6326-6332. [PMID: 33354840 DOI: 10.1002/anie.202016233] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 11/08/2022]
Abstract
Dual-ion batteries (DIBs) inherently suffer from limited energy density. Proposed here is a strategy to effectively tackle this issue by employing locally ordered graphitized carbon (LOGC) cathodes. Quantum mechanical modeling suggests that strong anion-anion repulsions and severe expansion at the deep-charging stage raise the anion intercalation voltage, therefore only part of the theoretical anion storage sites in graphite is accessible. The LOGC interconnected with disordered carbon is predicted to weaken the interlaminar van der Waals interactions, while disordered carbons not only interconnect the dispersed nanographite but also partially buffer severe anion-anion repulsion and offer extra capacitive anion storage sites. As a proof-of-concept, ketjen black (KB) with LOGC was used as a model cathode for a potassium-based DIB (KDIB). The KDIB delivers an unprecedentedly high specific capacity of 232 mAh g-1 at 50 mA g-1 , a good rate capability of 110 mAh g-1 at 2000 mA g-1 , and excellent cycling stability of 1000 cycles without obvious capacity fading.
Collapse
Affiliation(s)
- Kai Yang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Qirong Liu
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongping Zheng
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Yin
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Shanqing Zhang
- Center for Clean Environment and Energy School of Environment and Science, Griffith University, Brisbane, Queensland, 4222, Australia
| | - Yongbing Tang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China.,Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China.,School of Chemical Sciences, Ministry of Education, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
82
|
Li G, Xu S, Li B, Xia T, Yu J, Shao F, Li H, Yang Z, Su Y, Zhang Y, Ma J, Hu N. Carbon Foam Fibers with a Concentric Tube‐Core/Three‐Dimensional Nanosheet‐Sheath Structure for High‐Performance Lithium‐Sulfur Batteries. ChemElectroChem 2021. [DOI: 10.1002/celc.202001555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gang Li
- Key Laboratory of Artificial Structures and Quantum Control Ministry of Education) Shenyang National Laboratory for Materials Science School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Shiwei Xu
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Bin Li
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Tong Xia
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Jian Yu
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Feng Shao
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Hong Li
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhi Yang
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yanjie Su
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yafei Zhang
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie Ma
- Key Laboratory of Artificial Structures and Quantum Control Ministry of Education) Shenyang National Laboratory for Materials Science School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China
| | - Nantao Hu
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education School of Electronics Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
83
|
Ji B, He H, Yao W, Tang Y. Recent Advances and Perspectives on Calcium-Ion Storage: Key Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005501. [PMID: 33251702 DOI: 10.1002/adma.202005501] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Indexed: 05/18/2023]
Abstract
The urgent demand for cost-effective energy storage devices for large-scale applications has led to the development of several beyond-lithium energy storage systems (EESs). Among them, calcium-ion batteries (CIBs) are attractive due to abundant calcium resources, excellent volumetric and gravimetric capacities of Ca metal anode, and potential high energy density coming from the multivalent feature of Ca-ion. Therefore, the exploration of CIBs electrode materials and the construction of CIBs devices are gaining increasing research interest. Relevant publications cover a wide range of materials by both theoretical and experimental investigations, whereas the performances of rocking-chair CIBs have been unsatisfactory. Meanwhile, multi-ion strategies using more than one ion as the charge carrier have been demonstrated to be feasible and promising options in realizing room temperature CIBs. The summary and reflection of previous studies would provide useful information for future exploration and optimization. In this circumstance, this paper overviews the reported CIBs electrode materials, including both anode and cathode, and presents the latest progress of multi-ion strategies in CIBs. Fundamental challenges, potential solutions, and opportunities are accordingly proposed, mimicking other more mature EESs. This review may promote the development of electrode materials and accelerate the construction of low-cost and high-performance CIBs.
Collapse
Affiliation(s)
- Bifa Ji
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haiyan He
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenjiao Yao
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, China
- Key Laboratory of Advanced Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
84
|
Song H, Su J, Wang C. Hybrid Solid Electrolyte Interphases Enabled Ultralong Life Ca-Metal Batteries Working at Room Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006141. [PMID: 33215793 DOI: 10.1002/adma.202006141] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Currently, the application of calcium metal anodes is challenged by rapidly degenerated plating/stripping electrochemistry without suitable solid electrolyte interphases (SEIs) capable of fast Ca2+ transport kinetics and superior ability to resist anion oxidation. Here, through in situ evolved Na/Ca hybrid SEIs, symmetrical Ca//Ca batteries readily remain stable for more than 1000 h deposition-dissolution cycles (versus less than 60 h for those with pure Ca SEIs under the same condition). Coupled with a specially designed freestanding lattice-expanded graphitic carbon fiber membrane and tailored operation voltages, the proof-of-concept Ca-metal batteries reversibly run for almost 1900 cycles with ≈83% capacity retention and a high average discharge voltage of 3.16 V. The good performance not only benefits from the stable SEIs at the Ca metal surface which affords free Ca2+ transports and prohibits out-of-control fluridation of Ca (forming CaF2 ion-/electron-insulating layer) but is also attributed to reversible relay insertion/extraction electrochemistry in the cathode. This work sheds new light on durable metal battery technology.
Collapse
Affiliation(s)
- Huawei Song
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| | - Jian Su
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| | - Chengxin Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
| |
Collapse
|
85
|
Huang R, Zhou R, Wang L, Zhu Y. Dandelion‐like CoO/Co
3
O
4
/Carbon Composites as Anode Materials for a High‐Performance Lithium Ion Battery. ChemistrySelect 2020. [DOI: 10.1002/slct.202002986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Run Huang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 China
| | - Rihui Zhou
- Analysis and Testing Center Jiangxi Normal University Nanchang 330022 China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 China
| | - Yongmei Zhu
- Analysis and Testing Center Jiangxi Normal University Nanchang 330022 China
| |
Collapse
|
86
|
Affiliation(s)
- Huawei Song
- State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat‐sen (Zhongshan) University Guangzhou 510275 P. R. China
| | - Jian Su
- State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat‐sen (Zhongshan) University Guangzhou 510275 P. R. China
| | - Chengxin Wang
- State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat‐sen (Zhongshan) University Guangzhou 510275 P. R. China
| |
Collapse
|
87
|
Kim KI, Guo Q, Tang L, Zhu L, Pan C, Chang CH, Razink J, Lerner MM, Fang C, Ji X. Reversible Insertion of Mg-Cl Superhalides in Graphite as a Cathode for Aqueous Dual-Ion Batteries. Angew Chem Int Ed Engl 2020; 59:19924-19928. [PMID: 32710468 DOI: 10.1002/anie.202009172] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 11/08/2022]
Abstract
Oxidative anion insertion into graphite in an aqueous environment represents a significant challenge in the construction of aqueous dual-ion batteries. In dilute aqueous electrolytes, the oxygen evolution reaction (OER) dominates the anodic current before anions can be inserted into the graphite gallery. Herein, we report that the reversible insertion of Mg-Cl superhalides in graphite delivers a record-high reversible capacity of 150 mAh g-1 from an aqueous deep eutectic solvent comprising magnesium chloride and choline chloride. The insertion of Mg-Cl superhalides in graphite does not form staged graphite intercalation compounds; instead, the insertion of Mg-Cl superhalides makes the graphite partially turbostratic.
Collapse
Affiliation(s)
- Keun-Il Kim
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Qiubo Guo
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Changqing Pan
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331-4002, USA
| | - Chih-Hung Chang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331-4002, USA
| | - Joshua Razink
- CAMCOR, University of Oregon, Eugene, OR, 97403-1241, USA
| | - Michael M Lerner
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
88
|
Yang R, Zhang F, Lei X, Zheng Y, Zhao G, Tang Y, Lee CS. Pseudocapacitive Ti-Doped Niobium Pentoxide Nanoflake Structure Design for a Fast Kinetics Anode toward a High-Performance Mg-Ion-Based Dual-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47539-47547. [PMID: 32986396 DOI: 10.1021/acsami.0c13045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnesium-ion batteries (MIBs) have received increasing attention for next-generation energy storage recently because of the natural abundance, high capacity, and dendrite-free deposition of Mg. However, their applications are hindered by irreversible Mg anode plating in conventional electrolytes and the lack of cathode materials, demonstrating high working voltage, satisfactory Mg2+ diffusivity, and long cycling life. In this work, we first developed a novel magnesium-ion based dual-ion battery (Mg-DIB) by utilizing expanded graphite as the cathode and Ti-doped niobium pentoxide nanoflakes (Ti-Nb2O5 NFs) as the anode. The Ti-Nb2O5 NFs showed hierarchical structures of microspheres with diameters of 4-5 μm assembled by nanoflakes. For the first time, the Mg-ion storage mechanism in Ti-Nb2O5 NFs was investigated. Benefiting from the hierarchical structure design and pseudocapacitive intercalation behavior of Mg ions, the Ti-Nb2O5 NF anode exhibited fast Mg-ion diffusion. Consequently, the Mg-DIB exhibited a high discharge capacity of 93 mA h g-1 at 1 C (1 C corresponding to 100 mA g-1), along with good long-term cycling performance with a capacity retention of 79% at 3 C after 500 cycles. The Mg-DIB also demonstrated a capacity retention of 77% at 5C, indicating its good rate performance. Moreover, the Mg-DIB exhibited a high discharge medium voltage of ∼1.83 V, thus enabling a high energy density of 174 W h kg-1 at 183 W kg-1 and 122 W h kg-1 at a high power density of 845 W kg-1, among the best of the reported magnesium-ion full batteries. Our work provides a new strategy to improve the performance of MIBs and other rechargeable batteries.
Collapse
Affiliation(s)
- Rui Yang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center of Super-Diamond and Advanced Film (COSDAF) and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Fan Zhang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xin Lei
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yongping Zheng
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guohua Zhao
- Chery Commercial Vehicle (Anhui) Company Ltd., Wuhu 241000, China
| | - Yongbing Tang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Film (COSDAF) and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
89
|
Zhou Z, Zhou X, Zhang M, Mu S, Liu Q, Tang Y. In Situ Two-Step Activation Strategy Boosting Hierarchical Porous Carbon Cathode for an Aqueous Zn-Based Hybrid Energy Storage Device with High Capacity and Ultra-Long Cycling Life. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003174. [PMID: 32761988 DOI: 10.1002/smll.202003174] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Indexed: 05/27/2023]
Abstract
Aqueous Zn-based hybrid energy storage devices (HESDs) exhibit great potential for large-scale energy storage applications for the merits of environmental friendliness, low redox potential, and high theoretical capacity of Zn anode. However, they are still subjected to low specific capacities since adsorption-type cathodes (i.e., activated carbon, hard carbon) have limited capability to accommodate active ions. Herein, a hierarchical porous activated carbon cathode (HPAC) is prepared via an in situ two-step activation strategy, different from the typical one-step/postmortem activation of fully carbonized precursors. The strategy endows the HPAC with a high specific surface area and a large mesoporous volume, and thus provides abundant active sites and fast kinetics for accommodating active ions. Consequently, pairing the HPAC with Zn anode yields an aqueous Zn-based HESD, which delivers a high specific capacity of 231 mAh g-1 at 0.5 A g-1 and excellent rate performance with a retained capacity of 119 mAh g-1 at 20 A g-1 , the best result among previously reported lithium-free HESDs based on carbon cathodes. Further, the aqueous Zn-based HESD shows ultra-long cycling stability with a capacity retention of ≈70% after 18 000 cycles at 10 A g-1 , indicating great potential for environmentally friendly, low-cost, and high-safety energy storage applications.
Collapse
Affiliation(s)
- Zhiming Zhou
- College of Material Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoyan Zhou
- College of Material Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Miao Zhang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Sainan Mu
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qirong Liu
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongbing Tang
- College of Material Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
90
|
Kim K, Guo Q, Tang L, Zhu L, Pan C, Chang C, Razink J, Lerner MM, Fang C, Ji X. Reversible Insertion of Mg‐Cl Superhalides in Graphite as a Cathode for Aqueous Dual‐Ion Batteries. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Keun‐il Kim
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Qiubo Guo
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Longteng Tang
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Liangdong Zhu
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Changqing Pan
- School of Chemical, Biological and Environmental Engineering Oregon State University Corvallis OR 97331-4002 USA
| | - Chih‐hung Chang
- School of Chemical, Biological and Environmental Engineering Oregon State University Corvallis OR 97331-4002 USA
| | - Joshua Razink
- CAMCOR University of Oregon Eugene OR 97403-1241 USA
| | - Michael M. Lerner
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Chong Fang
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Xiulei Ji
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| |
Collapse
|
91
|
Xiang L, Ou X, Wang X, Zhou Z, Li X, Tang Y. Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual‐Ion Battery. Angew Chem Int Ed Engl 2020; 59:17924-17930. [DOI: 10.1002/anie.202006595] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/28/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Li Xiang
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Xuewu Ou
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Xingyong Wang
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Zhiming Zhou
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Xiang Li
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Yongbing Tang
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
92
|
Xiang L, Ou X, Wang X, Zhou Z, Li X, Tang Y. Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual‐Ion Battery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Xiang
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Xuewu Ou
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Xingyong Wang
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Zhiming Zhou
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Xiang Li
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Yongbing Tang
- Functional Thin Films Research Center Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
93
|
Bargardi FL, Billaud J, Villevieille C, Bouville F, Studart AR. Architectured ZnO-Cu particles for facile manufacturing of integrated Li-ion electrodes. Sci Rep 2020; 10:12401. [PMID: 32709932 PMCID: PMC7382461 DOI: 10.1038/s41598-020-69141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/02/2020] [Indexed: 11/08/2022] Open
Abstract
Designing electrodes with tailored architecture is an efficient mean to enhance the performance of metal-ion batteries by minimizing electronic and ionic transport limitations and increasing the fraction of active material in the electrode. However, the fabrication of architectured electrodes often involves multiple laborious steps that are not directly scalable to current manufacturing platforms. Here, we propose a processing route in which Cu-coated ZnO powders are directly shaped into architectured electrodes using a simple uniaxial pressing step. Uniaxial pressing leads to a percolating Cu phase with enhanced electrical conductivity between the active ZnO particles and improved mechanical stability, thus dispensing the use of carbon-based additives and polymeric binders in the electrode composition. The additive-free percolating copper network obtained upon pressing leads to highly loaded integrated anodes displaying volumetric charge capacity 6-10 fold higher than Cu-free ZnO films and that matches the electrochemical performance reported for advanced cathode structures. Achieving this high charge capacity using a readily available pressing tool makes this approach a promising route for the facile manufacturing of high-performance electrodes at large industrial scales.
Collapse
Affiliation(s)
- Fabio L Bargardi
- Complex Materials, Department of Materials, ETH Zürich, 8093, Zurich, Switzerland
| | - Juliette Billaud
- Electrochemical Laboratory, Paul Scherrer Institut, 5232, Villigen, Switzerland.
| | - Claire Villevieille
- Electrochemical Laboratory, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Florian Bouville
- Complex Materials, Department of Materials, ETH Zürich, 8093, Zurich, Switzerland.
- Centre for Advanced Structural Ceramics, Imperial College London, London, SW7 2AZ, UK.
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, 8093, Zurich, Switzerland.
| |
Collapse
|
94
|
Rubio S, Medina A, Cabello M, Lavela P, Alcántara R, Vicente CP, Ortiz GF, Tirado JL. Inorganic solids for dual magnesium and sodium battery electrodes. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
95
|
Shin DY, Ahn HJ. Interfacial Engineering of a Heteroatom-Doped Graphene Layer on Patterned Aluminum Foil for Ultrafast Lithium Storage Kinetics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19210-19217. [PMID: 32233395 DOI: 10.1021/acsami.0c01774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design of the interfacial architecture between the electrode and the current collector in lithium-ion batteries (LIB) plays a key role in achieving ultrafast lithium storage kinetics with respect to efficient charge transfer and cycle stability. However, in recent years, despite considerable efforts in the structural and chemical engineering of active materials (anode and cathode materials), interfacial architectures between the electrode and the current collector have received relatively insufficient attention in the case of ultrafast LIBs. Here, the interface architecture of a micropatterned Al current collector with a heteroatom-doped graphene interfacial layer is developed using roll pressing and dip coating processes. The cathode electrode fabricated with the resultant current collector offers increased contact area with enhanced interfacial stability between the electrode and the current collector because of micropatterns with heteroatom-doped graphene formed on the current collector, leading to outstanding ultrafast cycling capacity (105.8 mA h g-1) at 20 C. Furthermore, at extremely high rate and long-term cycling performance, significant ultrafast cycling stability (specific capacity of 87.1 mA h g-1 with capacity retention of 82.3% at 20 C after 1000 cycles) is noted. These improved ultrafast and ultra-stable performances are explained in terms of the increased electron collection/provision site with a high contact area between the electrode and the current collector for enhanced ultrafast cycling capacity and the effective corrosion prevention of the current collector with fast charge transfer for ultrafast cycling stability.
Collapse
Affiliation(s)
- Dong-Yo Shin
- Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Hyo-Jin Ahn
- Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Korea
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| |
Collapse
|
96
|
Lan Y, Yao W, He X, Song T, Tang Y. Gemischte polyanionische Verbindungen als positive Elektroden für die kostengünstige elektrochemische Energiespeicherung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuanqi Lan
- Functional Thin Films Research CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
- Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of Sciences Shenzhen 518055 China
| | - Wenjiao Yao
- Functional Thin Films Research CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
| | - Xiaolong He
- Functional Thin Films Research CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology InstituteUniversity of Science and Technology of China Suzhou 215123 China
| | - Tianyi Song
- Functional Thin Films Research CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology InstituteUniversity of Science and Technology of China Suzhou 215123 China
| | - Yongbing Tang
- Functional Thin Films Research CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
- Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
97
|
Lan Y, Yao W, He X, Song T, Tang Y. Mixed Polyanionic Compounds as Positive Electrodes for Low‐Cost Electrochemical Energy Storage. Angew Chem Int Ed Engl 2020; 59:9255-9262. [DOI: 10.1002/anie.201915666] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Yuanqi Lan
- Functional Thin Films Research CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
- Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of Sciences Shenzhen 518055 China
| | - Wenjiao Yao
- Functional Thin Films Research CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
| | - Xiaolong He
- Functional Thin Films Research CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology InstituteUniversity of Science and Technology of China Suzhou 215123 China
| | - Tianyi Song
- Functional Thin Films Research CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology InstituteUniversity of Science and Technology of China Suzhou 215123 China
| | - Yongbing Tang
- Functional Thin Films Research CenterShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences Shenzhen 518055 China
- Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
98
|
Jiang C, Xiang L, Miao S, Shi L, Xie D, Yan J, Zheng Z, Zhang X, Tang Y. Flexible Interface Design for Stress Regulation of a Silicon Anode toward Highly Stable Dual-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908470. [PMID: 32108386 DOI: 10.1002/adma.201908470] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/26/2020] [Indexed: 05/19/2023]
Abstract
Dual-ion batteries (DIBs) have attracted increasing attention due to their high working voltage, low cost, and environmental friendliness, yet their development is hindered by their limited energy density. Pairing silicon-a most promising anode due to its highest theoretical capacity (4200 mAh g-1 )-with a graphite cathode is a feasible strategy to address the challenge. Nevertheless, the cycling stability of silicon is unsatisfactory due to the loss of electrical contact resulting from the high interface stress when using rigid current collectors. In this work, a flexible interface design to regulate the stress distribution is proposed, via the construction of a silicon anode on a soft nylon fabric modified with a conductive Cu-Ni transition layer, which endows the silicon electrode with remarkable flexibility and stability over 50 000 bends. Assembly of the flexible silicon anode with an expanded graphite cathode yields a silicon-graphite DIB (SGDIB), which possesses record-breaking rate performance (up to 150 C) and cycling stability over 2000 cycles at 10 C with a capacity retention of 97%. Moreover, the SGDIB shows a high capacity retention of ≈84% after 1500 bends and a low self-discharging voltage loss of 0.0015% per bend after 10 000 bends, suggesting high potential for high-performance flexible energy-storage applications.
Collapse
Affiliation(s)
- Chunlei Jiang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory for Advanced Interfacial Materials and Devices, Research Center for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Lei Xiang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, China
| | - Shijie Miao
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, China
| | - Lei Shi
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Donghao Xie
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jiaxiao Yan
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Center for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Xiaoming Zhang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Yongbing Tang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
99
|
Liu X, Zhang P, Liu L, Feng J, He X, Song X, Han Q, Wang H, Peng Z, Zhao Y. Inhibition of Discharge Side Reactions by Promoting Solution-Mediated Oxygen Reduction Reaction with Stable Quinone in Li-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10607-10615. [PMID: 32031771 DOI: 10.1021/acsami.0c01105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aprotic lithium-oxygen (Li-O2) batteries with an ultrahigh theoretical energy density have great potential in rechargeable power supply, while their application still faces several challenges, especially poor cycle stability. To solve the problems, one of the effective strategies is to inhibit the generation of the LiO2 intermediate produced via a surface-mediated oxygen reduction reaction (ORR) pathway, which is an important species inducing byproduct generation and low cell cyclic stability. Herein, a series of quinones and solid materials serve as the solution-mediated and surface-mediated ORR catalysts, and it was found that the generation of LiO2 and byproducts from solid catalysts was inhibited by quinones. Among the studied quinones, benzo[1,2-b:4,5-b']dithiophene-4,8-dione, a quinone molecule with the advantage of a highly symmetrical planar and conjugated structure and without α-H, exhibits high redox potential, diffusion coefficient, and electrochemical stability, and consequently the best ORR activities and the capability to inhibit byproduct generation. It indicated that the increase of the solution-mediated ORR pathway plays an important role in restraining the discharging side reaction, substantially improving cell cycle stability and capacity. This study provides the theoretical and experimental basis for better understanding the ORR process of Li-O2 batteries.
Collapse
Affiliation(s)
- Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Peng Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Department of Materials Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Liangliang Liu
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jianwen Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaofeng He
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaosheng Song
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qing Han
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hua Wang
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhangquan Peng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education; National and Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology; School of Materials Science and Engineering; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
100
|
Zhou J, Zhou Y, Zhang X, Cheng L, Qian M, Wei W, Wang H. Germanium-based high-performance dual-ion batteries. NANOSCALE 2020; 12:79-84. [PMID: 31825064 DOI: 10.1039/c9nr08783d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, dual-ion batteries (DIBs) have received immense attention owing to their high operating voltage and low cost, and further studies on the enhancement of their energy densities and cyclabilities are being intensively pursued. Herein, a novel Ge-based DIB has been developed for the first time by using a rationally designed nanocomposite of Ge particles embedded in one-dimensional carbon nanofibers (Ge/CNFs) as an anode. The resulting battery shows a high discharge capacity of 281 mA h g-1 at a discharge current of 0.25 A g-1 and a superb rate capability of 94 mA h g-1 at a discharge current of 2.5 A g-1, which greatly surpasses those of most of the reported DIBs. These remarkable properties can be ascribed to the fact that the uniform one-dimensional nanostructure facilitates the improvement of lithium-ion diffusion within the hybrids, and the carbon matrix effectively alleviates the volume expansion of Ge during the cycling process and simultaneously enhances the electrical conductivity of the hybrids. The charge storage mechanism of Ge/CNFs is found to be Ge alloying with Li, accompanied by a phase transformation process from crystalline Ge to amorphous LixGe alloys. This work paves the way for the rational utilization of Ge-based materials in new-generation high-performance DIBs.
Collapse
Affiliation(s)
- Jing Zhou
- School of Chemistry Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Yan Zhou
- School of Chemistry Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Liwei Cheng
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| | - Mengmeng Qian
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China.
| | - Hua Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|