51
|
Jonitz-Heincke A, Klinder A, Boy D, Salamon A, Hansmann D, Pasold J, Buettner A, Bader R. In Vitro Analysis of the Differentiation Capacity of Postmortally Isolated Human Chondrocytes Influenced by Different Growth Factors and Oxygen Levels. Cartilage 2019; 10:111-119. [PMID: 28715962 PMCID: PMC6376569 DOI: 10.1177/1947603517719318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE In the present in vitro study, we analyzed the chondrogenic differentiation capacity of human chondrocytes postmortally isolated from unaffected knee cartilage by the addition of transforming growth factor-β1 (TGF-β1) and/or insulin-like growth factor-1 (IGF-1) and different oxygen levels. DESIGN After 14 and 35 days, DNA concentrations and protein contents of Col1, Col2, aggrecan as well as glycosaminoglycans (GAGs) of chondrocytes cultivated as pellet cultures were analyzed. Additionally, expression rates of mesenchymal stem cell (MSC)-associated differentiation markers were assessed in monolayer cultures. RESULTS All cultivated chondrocytes were found to be CD29+/CD44+/CD105+/CD166+. Chondrocytic pellets stimulated with TGF-β1 showed enhanced synthesis rates of hyaline cartilage markers and reduced expression of the non-hyaline cartilage marker Col1 under hypoxic culture conditions. CONCLUSIONS Our results underline the substantial chondrogenic potential of human chondrocytes postmortally isolated from unaffected articular knee cartilage especially in case of TGF-β1 administration.
Collapse
Affiliation(s)
- Anika Jonitz-Heincke
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Rostock, Germany,Anika Jonitz-Heincke, Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Doberaner Strasse 142, 18057 Rostock, Germany.
| | - Annett Klinder
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Rostock, Germany
| | - Diana Boy
- Institute of Forensic Medicine, University Medical Center Rostock, Rostock, Germany
| | - Achim Salamon
- Department of Cell Biology, University Medical Center Rostock, Rostock, Germany
| | - Doris Hansmann
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Rostock, Germany
| | - Juliane Pasold
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Rostock, Germany
| | - Andreas Buettner
- Institute of Forensic Medicine, University Medical Center Rostock, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
52
|
Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death Dis 2018; 9:1166. [PMID: 30518918 PMCID: PMC6281585 DOI: 10.1038/s41419-018-1225-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA), a chronic disease characterized by articular cartilage degeneration, is a leading cause of disability and pain worldwide. In OA, chondrocytes in cartilage undergo phenotypic changes and senescence, restricting cartilage regeneration and favouring disease progression. Similar to other wound-healing disorders, chondrocytes from OA patients show a chronic increase in the gap junction channel protein connexin43 (Cx43), which regulates signal transduction through the exchange of elements or recruitment/release of signalling factors. Although immature or stem-like cells are present in cartilage from OA patients, their origin and role in disease progression are unknown. In this study, we found that Cx43 acts as a positive regulator of chondrocyte-mesenchymal transition. Overactive Cx43 largely maintains the immature phenotype by increasing nuclear translocation of Twist-1 and tissue remodelling and proinflammatory agents, such as MMPs and IL-1β, which in turn cause cellular senescence through upregulation of p53, p16INK4a and NF-κB, contributing to the senescence-associated secretory phenotype (SASP). Downregulation of either Cx43 by CRISPR/Cas9 or Cx43-mediated gap junctional intercellular communication (GJIC) by carbenoxolone treatment triggered rediferentiation of osteoarthritic chondrocytes into a more differentiated state, associated with decreased synthesis of MMPs and proinflammatory factors, and reduced senescence. We have identified causal Cx43-sensitive circuit in chondrocytes that regulates dedifferentiation, redifferentiation and senescence. We propose that chondrocytes undergo chondrocyte-mesenchymal transition where increased Cx43-mediated GJIC during OA facilitates Twist-1 nuclear translocation as a novel mechanism involved in OA progression. These findings support the use of Cx43 as an appropriate therapeutic target to halt OA progression and to promote cartilage regeneration.
Collapse
|
53
|
Mantripragada V, Bova W, Boehm C, Piuzzi N, Obuchowski N, Midura R, Muschler G. Primary Cells Isolated from Human Knee Cartilage Reveal Decreased Prevalence of Progenitor Cells but Comparable Biological Potential During Osteoarthritic Disease Progression. J Bone Joint Surg Am 2018; 100:1771-1780. [PMID: 30334888 PMCID: PMC6636794 DOI: 10.2106/jbjs.18.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Current decisions on cellular therapies for osteoarthritis are based primarily on clinical experience or on assumptions about preferred cell sourcing. They have not been informed by rigorous standardized measurements of the chondrogenic connective-tissue progenitors (CTP-Cs) or their intrinsic diversity of chondrogenic potential. The goal of this study was to quantitatively define the CTP-Cs resident in cartilage of different grades of osteoarthritis and to compare their concentration, prevalence, and biological potential. METHODS Twenty-three patients who had varus malalignment of the knee and were scheduled to undergo elective total knee arthroplasty for idiopathic osteoarthritis and who had grade 1-2 osteoarthritis on the lateral femoral condyle and grade 3-4 osteoarthritis on the medial femoral condyle were recruited for study of the cartilage removed during surgery. CTP-Cs were assayed by a standardized colony-forming-unit assay using automated image-analysis software based on ASTM standard test method F2944-12. RESULTS Cell concentration was significantly greater (p < 0.001) in grade 3-4 cartilage than in grade 1-2 cartilage. The prevalence of CTP-Cs varied widely, but it trended lower in grade 3-4 cartilage than in grade 1-2 samples (p = 0.078). The biological performance of CTP-Cs from grade 1-2 and grade 3-4 cartilage was comparable. Increased cell concentration was a significant predictor of decreased CTP-C prevalence (p = 0.002). CONCLUSIONS Although grade 3-4 cartilage showed fewer CTP-Cs than grade 1-2 cartilage, the range of biological performance was comparable, which suggests that either may be used as a source for potent CTP-Cs. However, the biological reason for the heterogeneity of CTP-Cs in cartilage and the biological implications of that heterogeneity are not well understood and require further study. CLINICAL RELEVANCE In order to improve the efficacy of cartilage cell therapy procedures, it is key to characterize the quality and quantity of the cells and progenitors being administered. Additionally, understanding the heterogeneity in order to select appropriate subsets of populations will improve the rigor of decisions concerning cell sourcing and targeting for pharmacological and cellular therapies.
Collapse
Affiliation(s)
- V.P. Mantripragada
- Department of Biomedical Engineering, Lerner Research Institute (V.P.M., W.A.B., C.B., N.S.P., R.J.M., and G.F.M.), and Departments of Orthopedic Surgery (N.S.P. and G.F.M.) and Quantitative Health Science (N.A.O.), Cleveland Clinic, Cleveland, Ohio
| | - W.A. Bova
- Department of Biomedical Engineering, Lerner Research Institute (V.P.M., W.A.B., C.B., N.S.P., R.J.M., and G.F.M.), and Departments of Orthopedic Surgery (N.S.P. and G.F.M.) and Quantitative Health Science (N.A.O.), Cleveland Clinic, Cleveland, Ohio
| | - C. Boehm
- Department of Biomedical Engineering, Lerner Research Institute (V.P.M., W.A.B., C.B., N.S.P., R.J.M., and G.F.M.), and Departments of Orthopedic Surgery (N.S.P. and G.F.M.) and Quantitative Health Science (N.A.O.), Cleveland Clinic, Cleveland, Ohio
| | - N.S. Piuzzi
- Department of Biomedical Engineering, Lerner Research Institute (V.P.M., W.A.B., C.B., N.S.P., R.J.M., and G.F.M.), and Departments of Orthopedic Surgery (N.S.P. and G.F.M.) and Quantitative Health Science (N.A.O.), Cleveland Clinic, Cleveland, Ohio
- Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - N.A. Obuchowski
- Department of Biomedical Engineering, Lerner Research Institute (V.P.M., W.A.B., C.B., N.S.P., R.J.M., and G.F.M.), and Departments of Orthopedic Surgery (N.S.P. and G.F.M.) and Quantitative Health Science (N.A.O.), Cleveland Clinic, Cleveland, Ohio
| | - R.J. Midura
- Department of Biomedical Engineering, Lerner Research Institute (V.P.M., W.A.B., C.B., N.S.P., R.J.M., and G.F.M.), and Departments of Orthopedic Surgery (N.S.P. and G.F.M.) and Quantitative Health Science (N.A.O.), Cleveland Clinic, Cleveland, Ohio
| | - G.F. Muschler
- Department of Biomedical Engineering, Lerner Research Institute (V.P.M., W.A.B., C.B., N.S.P., R.J.M., and G.F.M.), and Departments of Orthopedic Surgery (N.S.P. and G.F.M.) and Quantitative Health Science (N.A.O.), Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
54
|
Gullotta F, Izzo D, Scalera F, Palazzo B, Martin I, Sannino A, Gervaso F. Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration. J Mech Behav Biomed Mater 2018; 86:294-304. [DOI: 10.1016/j.jmbbm.2018.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 01/22/2023]
|
55
|
Lee J, Lee JY, Chae BC, Jang J, Lee E, Son Y. Fully Dedifferentiated Chondrocytes Expanded in Specific Mesenchymal Stem Cell Growth Medium with FGF2 Obtains Mesenchymal Stem Cell Phenotype In Vitro but Retains Chondrocyte Phenotype In Vivo. Cell Transplant 2018; 26:1673-1687. [PMID: 29251111 PMCID: PMC5753982 DOI: 10.1177/0963689717724794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Given recent progress in regenerative medicine, we need a means to expand chondrocytes in quantity without losing their regenerative capability. Although many reports have shown that growth factor supplementation can have beneficial effects, the use of growth factor-supplemented basal media has widespread effect on the characteristics of chondrocytes. Chondrocytes were in vitro cultured in the 2 most widely used chondrocyte growth media, conventional chondrocyte culture medium and mesenchymal stem cell (MSC) culture medium, both with and without fibroblast growth factor-2 (FGF2) supplementation. Their expansion rates, expressions of extracellular matrix-related factors, senescence, and differentiation potentials were examined in vitro and in vivo. Our results revealed that chondrocytes quickly dedifferentiated during expansion in all tested media, as assessed by the loss of type II collagen expression. The 2 basal media (chondrocyte culture medium vs. MSC culture medium) were associated with distinct differences in cell senescence. Consistent with the literature, FGF2 was associated with accelerated dedifferentiation during expansion culture and superior redifferentiation upon induction. However, chondrocytes expanded in FGF2-containing conventional chondrocyte culture medium showed MSC-like features, as indicated by their ability to direct ectopic bone formation and cartilage formation. In contrast, chondrocytes cultured in FGF2-supplemented MSC culture medium showed potent chondrogenesis and almost no bone formation. The present findings show that the chosen basal medium can exert profound effects on the characteristics and activity of in vitro-expanded chondrocytes and indicate that right growth factor/medium combination can help chondrocytes retain a high-level chondrogenic potential without undergoing hypertrophic transition.
Collapse
Affiliation(s)
- Jungsun Lee
- 1 R&D Institute, Biosolution Inc., Seoul, South Korea
| | - Jin-Yeon Lee
- 1 R&D Institute, Biosolution Inc., Seoul, South Korea
| | | | - Jeongho Jang
- 2 Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| | - EunAh Lee
- 2 Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea.,3 Impedance Imaging Research Center, Kyung Hee University, Seoul, South Korea
| | - Youngsook Son
- 2 Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
56
|
Zheng H, Ramnaraign D, Anderson BA, Tycksen E, Nunley R, McAlinden A. MicroRNA-138 Inhibits Osteogenic Differentiation and Mineralization of Human Dedifferentiated Chondrocytes by Regulating RhoC and the Actin Cytoskeleton. JBMR Plus 2018; 3:e10071. [PMID: 30828688 PMCID: PMC6383697 DOI: 10.1002/jbm4.10071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are known to play critical roles in many cellular processes including those regulating skeletal development and homeostasis. A previous study from our group identified differentially expressed miRNAs in the developing human growth plate. Among those more highly expressed in hypertrophic chondrocytes compared to progenitor chondrocytes was miR‐138, therefore suggesting a possible role for this miRNA in regulating chondrogenesis and/or endochondral ossification. The goal of this study was to determine the function of miR‐ 138 in regulating osteogenesis by using human osteoarthritic dedifferentiated chondrocytes (DDCs) as source of inducible cells. We show that over‐expression of miR‐138 inhibited osteogenic differentiation of DDCs in vitro. Moreover, cell shape was altered and cell proliferation and possibly migration was also suppressed by miR‐138. Given alterations in cell shape, closer analysis revealed that F‐actin polymerization was also inhibited by miR‐138. Computational approaches showed that the small GTPase, RhoC, is a potential miR‐138 target gene. We pursued RhoC further given its function in regulating cell proliferation and migration in cancer cells. Indeed, miR‐138 over‐expression in DDCs resulted in decreased RhoC protein levels. A series of rescue experiments showed that RhoC over‐expression could attenuate the inhibitory actions of miR‐138 on DDC proliferation, F‐actin polymerization and osteogenic differentiation. Bone formation was also found to be enhanced within human demineralized bone scaffolds seeded with DDCs expressing both miR‐138 and RhoC. In conclusion, we have discovered a new mechanism in DDCs whereby miR‐138 functions to suppress RhoC which subsequently inhibits proliferation, F‐actin polymerization and osteogenic differentiation. To date, there are no published reports on the importance of RhoC in regulating osteogenesis. This opens up new avenues of research involving miR‐138 and RhoC pathways to better understand mechanisms regulating bone formation in addition to the potential use of DDCs as a cell source for bone tissue engineering. © 2018 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | | | - Britta A Anderson
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | - Eric Tycksen
- Genome Technology Access CenterWashington University School of MedicineSt LouisMOUSA
| | - Ryan Nunley
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
| | - Audrey McAlinden
- Department of Orthopaedic SurgeryWashington University School of MedicineSt LouisMOUSA
- Department of Cell BiologyWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
57
|
Rim YA, Nam Y, Park N, Lee J, Park SH, Ju JH. Repair potential of nonsurgically delivered induced pluripotent stem cell-derived chondrocytes in a rat osteochondral defect model. J Tissue Eng Regen Med 2018; 12:1843-1855. [PMID: 29770595 DOI: 10.1002/term.2705] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 04/13/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are thought to be an alternative cell source for future regenerative medicine. hiPSCs may allow unlimited production of cell types that have low turnover rates and are difficult to obtain such as autologous chondrocytes. In this study, we generated hiPSC-derived chondrogenic pellets, and chondrocytes were isolated. To confirm the curative effects, chondrogenic pellets and isolated chondrocytes were transplanted into rat joints with osteochondral defects. Isolated hiPSC-derived chondrocytes were delivered in the defect by a single intra-articular injection. The generated hiPSC-derived chondrogenic pellets had increased chondrogenic marker expression and accumulated extracellular matrix proteins. Chondrocytes were successfully isolated from the pellets. Alcian blue staining and collagen type II were detected in the cells. Chondrogenic marker expression was also increased in the isolated cells. Transplanted chondrogenic pellets and chondrocytes both had curative effects in the osteochondral defect rat model. Detection of human proteins in the joints proved that the cells were successfully delivered into the defect. Chondrogenic pellets or chondrocytes generated from hiPSCs have potential as regenerative medicine for cartilage recovery or regeneration. Chondrocytes isolated from hiPSC-derived chondrogenic pellets had curative effects in damaged cartilage. Injectable hiPSC-derived chondrocytes show the possibility of noninvasive delivery of regenerative medicine for cartilage recovery.
Collapse
Affiliation(s)
- Yeri Alice Rim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoojun Nam
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Narae Park
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jennifer Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
58
|
Moradian Tehrani R, Mirzaei H, Verdi J, Sahebkar A, Noureddini M, Salehi R, Alani B, Kianmehr M. Chondrogenic differentiation of human scalp adipose-derived stem cells in Polycaprolactone scaffold and using Freeze Thaw Freeze method. J Cell Physiol 2018; 233:6705-6713. [PMID: 29323717 DOI: 10.1002/jcp.26477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/03/2018] [Indexed: 01/22/2023]
Abstract
Human adipose tissue has been identified as a viable alternative source for mesenchymal stem cells. SADSCs were isolated from human scalp biopsy and then were characterized by Flow cytometry. SADSCS expressed CD90, CD44, and CD105 but did not express CD45 surface marker. Growth factors were used for chondrogenesis induction. Histology and immunohistology methods and gene expression by real-time PCR 14 days after induced cells have shown the feature of chondrocytes in their morphology and extracellular matrix in both inducing patterns of combination and cycling induction. Moreover, the expression of gene markers of chondrogenesis for example collagen type II aggrecan and SOX9 has shown by real-time PCR assay. Then, SADSCs were seeded alone on polycaprolatone (PCL) and with Freeze thaw Freeze (PCL+FTF) scaffolds and SADSCs differentiated toward the chondrogenic lineage and chondrogenesis induction were evaluated using scanning electron microcopy (SEM) and MTT assay. Our results showed that SADSCs were also similar to the other adipose-derived stem cells. Using TGF-beta3 and BMP-6 were effective for chondrogenesis induction. Therefore using of TGF-beta3 and BMP-6 growth factors may be the important key for in vitro chondrogenesis induction. The bio-composite of PCL+FTF nanofibrous scaffolds enhance the chondroblast differentiation and proliferation compared to PCL scaffolds .Therefore, our model will make it possible to study the mechanism of transition from chondroblast to chondrocyte.
Collapse
Affiliation(s)
- Rana Moradian Tehrani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Noureddini
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Rasoul Salehi
- Department of Genetic and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojtaba Kianmehr
- Faculty of Medicine, Department of Medical Physics, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
59
|
Characterization and application of size-sorted zonal chondrocytes for articular cartilage regeneration. Biomaterials 2018. [DOI: 10.1016/j.biomaterials.2018.02.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
60
|
Gan EH, Robson W, Murphy P, Pickard R, Pearce S, Oldershaw R. Isolation of a multipotent mesenchymal stem cell-like population from human adrenal cortex. Endocr Connect 2018; 7:617-629. [PMID: 29622661 PMCID: PMC5919938 DOI: 10.1530/ec-18-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND The highly plastic nature of adrenal cortex suggests the presence of adrenocortical stem cells (ACSC), but the exact in vivo identity of ACSC remains elusive. A few studies have demonstrated the differentiation of adipose or bone marrow-derived mesenchymal stem cells (MSC) into steroid-producing cells. We therefore investigated the isolation of multipotent MSC from human adrenal cortex. METHODS Human adrenals were obtained as discarded surgical material. Single-cell suspensions from human adrenal cortex (n = 3) were cultured onto either complete growth medium (CM) or MSC growth promotion medium (MGPM) in hypoxic condition. Following ex vivo expansion, their multilineage differentiation capacity was evaluated. Phenotype markers were analysed by immunocytochemistry and flow cytometry for cell-surface antigens associated with bone marrow MSCs and adrenocortical-specific phenotype. Expression of mRNAs for pluripotency markers was assessed by q-PCR. RESULTS The formation of colony-forming unit fibroblasts comprising adherent cells with fibroblast-like morphology were observed from the monolayer cell culture, in both CM and MGPM. Cells derived from MGPM revealed differentiation towards osteogenic and adipogenic cell lineages. These cells expressed cell-surface MSC markers (CD44, CD90, CD105 and CD166) but did not express the haematopoietic, lymphocytic or HLA-DR markers. Flow cytometry demonstrated significantly higher expression of GLI1 in cell population harvested from MGPM, which were highly proliferative. They also exhibited increased expression of the pluripotency markers. CONCLUSION Our study demonstrates that human adrenal cortex harbours a mesenchymal stem cell-like population. Understanding the cell biology of adrenal cortex- derived MSCs will inform regenerative medicine approaches in autoimmune Addison's disease.
Collapse
Affiliation(s)
- Earn H Gan
- Institute of Genetic MedicineNewcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
- Endocrine UnitRoyal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Wendy Robson
- Urology UnitFreeman Hospital, Newcastle upon Tyne, UK
| | - Peter Murphy
- Urology UnitFreeman Hospital, Newcastle upon Tyne, UK
| | - Robert Pickard
- Urology UnitFreeman Hospital, Newcastle upon Tyne, UK
- Institute of Cellular MedicineNewcastle University, Newcastle upon Tyne, UK
| | - Simon Pearce
- Institute of Genetic MedicineNewcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, UK
- Endocrine UnitRoyal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Rachel Oldershaw
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
61
|
Ma C, Lu T, Wen H, Zheng Y, Han X, Ji X, Guan W. Isolation and biological characteristic evaluation of a novel type of cartilage stem/progenitor cell derived from Small‑tailed Han sheep embryos. Int J Mol Med 2018; 42:525-533. [PMID: 29693133 DOI: 10.3892/ijmm.2018.3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/14/2018] [Indexed: 11/05/2022] Open
Abstract
Cartilage stem/progenitor cells (CSPCs) are a novel stem cell population and function as promising therapeutic candidates for cell‑based cartilage repair. Until now, numerous existing research materials have been obtained from humans, horses, cows and other mammals, but rarely from sheep. In the present study, CSPCs with potential applications in repairing tissue damage and cell‑based therapy were isolated from 45‑day‑old Small‑tailed Han Sheep embryos, and examined at the cellular and molecular level. The expression level of characteristic surface markers of the fetal sheep CSPCs were also evaluated by immunofluorescence, reverse transcription‑polymerase chain reaction analysis and flow cytometric assays. Biological growth curves were drawn in accordance with cell numbers. Additionally, karyotype analysis showed no marked differences in the in vitro cultured CSPCs and they were genetically stable among different passages. The CSPCs were also capable of adipogenic, osteogenic and chondrogenic lineage progression under the appropriate induction medium in vitro. Together, these findings provide a theoretical basis and experimental evidence for cellular transplant therapy in tissue engineering.
Collapse
Affiliation(s)
- Caiyun Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Tengfei Lu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Hebao Wen
- Mudanjiang Normal University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanjie Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiao Han
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xongda Ji
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Weijun Guan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
62
|
Vinod E, Boopalan PRJVC, Sathishkumar S. Reserve or Resident Progenitors in Cartilage? Comparative Analysis of Chondrocytes versus Chondroprogenitors and Their Role in Cartilage Repair. Cartilage 2018; 9:171-182. [PMID: 29047310 PMCID: PMC5871122 DOI: 10.1177/1947603517736108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction Articular cartilage is made up of hyaline tissue embodying chondrocytes, which arise from mesenchymal stromal cells (MSCs) and specialized extracellular matrix. Despite possessing resident progenitors in and around the joint primed for chondrogenesis, cartilage has limited intrinsic capacity of repair and cell turnover. Advances in isolation, culture, and characterization of these progenitors have raised the possibility for their use in cell-based cartilage repair. Chondroprogenitors (CPCs) have been classified as MSCs and have been postulated to play a vital role in injury response and are identified by their colony forming ability, proliferative potential, telomere dynamics, multipotency, and expression of stem cell markers. The combined presence of CPCs and chondrocytes within the same tissue compartments and the ability of chondrocytes to dedifferentiate and acquire stemness during culture expansion has obscured our ability to define and provide clear-cut differences between these 2 cell populations. Objective This review aims to evaluate and summarize the available literature on CPCs in terms of their origin, growth kinetics, molecular characteristics, and differential and therapeutic potential with emphasis on their difference from daughter chondrocytes. Design For this systematic review, a comprehensive electronic search was performed on PubMed and Google Scholar using relevant terms such as chondrocytes, chondroprogenitors, and surface marker expression. Results and Conclusion Our comparative analysis shows that there is an ill-defined distinction between CPCs and chondrocytes with respect to their cell surface expression (MSC markers and CPC-specific markers) and differentiation potential. Accumulating evidence indicates that the 2 subpopulations may be distinguished based on their growth kinetics and chondrogenic marker.
Collapse
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India
| | - P. R. J. V. C. Boopalan
- Department of Orthopaedics, Christian Medical College/Center for Stem Cell Research, Vellore, India,P. R. J. V. C. Boopalan, Department of Orthopaedics, Centre for Stem Cell Research, Christian Medical College & Hospital, Vellore 632002, India.
| | | |
Collapse
|
63
|
Goepfert C, Lutz V, Lünse S, Kittel S, Wiegandt K, Kammal M, Püschel K, Pörtner R. Evaluation of Cartilage Specific Matrix Synthesis of Human Articular Chondrocytes after Extended Propagation on Microcarriers by Image Analysis. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300405] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Cell-based technologies for the repair of cartilage defects usually rely on the expansion of low numbers of chondrocytes isolated from biopsies of healthy cartilage. Proliferating chondrocytes are known to undergo dedifferentiation characterized by downregulation of collagen type II and proteoglycan production, and by upregulation of collagen type I synthesis. Re-expression of cartilage specific matrix components by expanded chondrocytes is therefore critical for successful cartilage repair. Methods Human articular chondrocytes were expanded on microcarriers Cytodex 3. The growth area was increased by adding empty microcarriers. Added microcarriers were colonized by bead-to-bead transfer of the cells. The chondrocytes were harvested from the microcarriers and characterized by their ability to synthesize collagen type II when cultivated in alginate beads using chondrogenic growth factors. A semi-automatic image analysis technique was developed to determine the fractions of collagen type II and type I positive cells. Results The expansion of human articular chondrocytes on microcarriers yielded high cell numbers and propagation rates compared to chondrocytes expanded in flask culture for one passage. The proportion of collagen type II positive cells compared to collagen type I synthesizing cells was increased compared to chondrocytes expanded using conventional methods. The matrix synthesis upon treatment with chondrogenic factors IGF-I and BMP-7 was enhanced whereas TGF-β had an inhibitory effect on microcarrier expanded chondrocytes. Conclusions Expanding human articular chondrocytes on microcarriers omitting subcultivation steps leads to superior ratios of collagen type II to type I forming cells compared to the expansion in conventional monolayer culture.
Collapse
Affiliation(s)
- Christiane Goepfert
- Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Hamburg - Germany
| | - Vivien Lutz
- Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Hamburg - Germany
| | - Svenja Lünse
- Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Hamburg - Germany
| | - Sabrina Kittel
- Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Hamburg - Germany
| | - Katharina Wiegandt
- Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Hamburg - Germany
| | - Michael Kammal
- University Medical Center Hamburg-Eppendorf, Department of Legal Medicine, Hamburg - Germany
| | - Klaus Püschel
- University Medical Center Hamburg-Eppendorf, Department of Legal Medicine, Hamburg - Germany
| | - Ralf Pörtner
- Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Hamburg - Germany
| |
Collapse
|
64
|
Pudlas M, Koch S, Bolwien C, Walles H. Raman Spectroscopy as a Tool for Quality and Sterility Analysis for Tissue Engineering Applications like Cartilage Transplants. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300407] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At present, the production of tissue engineered cartilage requires the concurrent production of two identical transplants. One transplant is used for destructive quality control and the second one is implanted into the patient. A non-invasive characterization of such tissue engineering samples would be a promising tool to achieve a production process of just one transplant that is both implanted and tested. Raman spectroscopy is a method that satisfies this requirement by analyzing cells without lysis, fixation or the use of any chemicals. This pure optical technique is based on inelastic scattering of laser photons by molecular vibrations of biopolymers. Characteristic peaks in Raman spectra of cells could be assigned to typical biochemical molecules present in biological samples. For the analysis of chondrocytes present in cartilage transplants, the determination of the cell vitality as well as the discrimination of another cell type have been studied by Raman spectroscopy. Another bottleneck in such biological processes under GMP conditions is sterility control, as most of the commonly used methods require long cultivation times. Raman spectroscopy provides a good alternative to conventional methods in terms of time saving. In this study, the potential of Raman spectroscopy as a quality and sterility control tool for tissue engineering applications was studied by analyzing and comparing the spectra of cell and bacteria cultures.
Collapse
Affiliation(s)
- Marieke Pudlas
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart - Germany
- University of Stuttgart, Medical Interfacial Engineering, Stuttgart - Germany
| | - Steffen Koch
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart - Germany
- University of Stuttgart, Medical Interfacial Engineering, Stuttgart - Germany
| | - Carsten Bolwien
- Fraunhofer Institute for Physical Measurement Techniques, Freiburg - Germany
| | - Heike Walles
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart - Germany
| |
Collapse
|
65
|
Dale TP, Forsyth NR. Ectopic Telomerase Expression Fails to Maintain Chondrogenic Capacity in Three-Dimensional Cultures of Clinically Relevant Cell Types. Biores Open Access 2018; 7:10-24. [PMID: 29588876 PMCID: PMC5865620 DOI: 10.1089/biores.2018.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The poor healing capacity of cartilage and lack of effective treatment for associated disease and trauma makes it a strong candidate for a regenerative medicine approach. Potential therapies tested to date, although effective, have met with a number of intrinsic difficulties possibly related to limited autologous chondrocyte cell yield and quality of cartilage produced. A potential mechanism to bypass limited cell yields and improve quality of differentiation is to immortalize relevant cell types through the ectopic expression of telomerase. Pellet cultures of human chondrocytes (OK3), bone marrow mesenchymal stem cells (BMA13), and embryonic stem cell (H1 line)-derived cells (1C6) and their human telomerase reverse transcriptase (hTERT) transduced counterparts were maintained for 20 days in standard maintenance medium (MM) or transforming growth factor-β3-supplemented prochondrogenic medium (PChM). Pellets were assessed for volume and density by microcomputed tomography. Quantitative gene expression (COL1A2, COL2A1, COL3A1, COL6A3, COL10A1, ACAN, COMP, SOX9); sulfated glycosaminoglycans (sGAGs), and DNA quantification were performed. Histology and immunohistochemistry were used to determine matrix constituent distribution. Pellet culture in PChM resulted in significantly larger pellets with an overall increased density when compared with MM culture. Gene expression analysis revealed similarities in expression patterns between telomerase-transduced and parental cells in both MM and PChM. Of the three parental cell types examined OK3 and BMA13 produced similar amounts of pellet-associated sGAG in PChM (4.62 ± 1.20 and 4.91 ± 1.37 μg, respectively) with lower amounts in 1C6 (2.89 ± 0.52 μg), corresponding to 3.1, 2.3, and 1.6-fold increases from day 0. In comparison, telomerase-transduced cells all had much lower sGAG with OK3H at 2.74 ± 0.11 μg, BMA13H 1.29 ± 0.34 μg, and 1C6H 0.52 ± 0.01 μg corresponding to 1.2, 0.87, and 0.34-fold changes compared with day 0. Histology of day 20 pellets displayed reduced staining overall for collagens and sGAG in telomerase-transduced cells, most notably with alterations in aggrecan and collagen VI; all cells stained positively for collagen II. We conclude that while telomerase transduction may be an effective technique to extend cellular proliferative capacity, it is not sufficient in isolation to sustain a naive chondrogenic phenotype across multiple cell types.
Collapse
Affiliation(s)
- Tina P Dale
- Faculty of Medicine and Health Sciences, Guy Hilton Research Center, Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| | - Nicholas R Forsyth
- Faculty of Medicine and Health Sciences, Guy Hilton Research Center, Institute for Science and Technology in Medicine, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
66
|
Menzi N, Osinga R, Todorov A, Schaefer DJ, Martin I, Scherberich A. Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells. Cytotechnology 2018; 70:807-817. [PMID: 29344745 DOI: 10.1007/s10616-018-0190-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
The isolation of stromal vascular fraction (SVF) cells from excised human adipose tissue, for clinical or research purposes, implies the tedious and time consuming process of manual mincing prior to enzymatic digestion. Since no efficient alternative technique to this current standard procedure has been proposed so far, the aim of this study was to test a milling procedure, using two simple, inexpensive and commercially available manual meat grinders, to process large amounts of adipose tissue. The procedure was assessed on adipose tissue resections from seven human donors and compared to manual mincing with scalpels. The processed adipose tissues were digested and the resulting SVF cells compared in terms of number, clonogenicity and differentiation capacity. After 10 min of processing, either device tested yielded on average sixfold more processed material for subsequent cell isolation than manual mincing. The isolation yield of SVF cells (isolated cells per ml of adipose tissue), their viability, phenotype, clonogenicity and osteogenic/adipogenic differentiation capacity, tested by production of mineralized matrix and lipid vacuoles, respectively, were comparable. This new method is practical and inexpensive and represents an efficient alternative to the current standard for large scale adipose tissue resection processing. A device based on the milling principle could be embedded within a streamlined system for isolation and clinical use of SVF cells from adipose tissue excision.
Collapse
Affiliation(s)
- Nadia Menzi
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Rik Osinga
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Atanas Todorov
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123, Allschwil, Switzerland
| | - Dirk Johannes Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland. .,Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123, Allschwil, Switzerland.
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.,Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Spitalstrasse 21, 4031, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123, Allschwil, Switzerland
| |
Collapse
|
67
|
Burger MG, Steinitz A, Geurts J, Pippenger BE, Schaefer DJ, Martin I, Barbero A, Pelttari K. Ascorbic Acid Attenuates Senescence of Human Osteoarthritic Osteoblasts. Int J Mol Sci 2017; 18:ijms18122517. [PMID: 29186811 PMCID: PMC5751120 DOI: 10.3390/ijms18122517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022] Open
Abstract
The accumulation of senescent cells is implicated in the pathology of several age-related diseases. While the clearance of senescent cells has been suggested as a therapeutic target for patients with osteoarthritis (OA), cellular senescence of bone-resident osteoblasts (OB) remains poorly explored. Since oxidative stress is a well-known inducer of cellular senescence, we here investigated the effect of antioxidant supplementation on the isolation efficiency, expansion, differentiation potential, and transcriptomic profile of OB from osteoarthritic subchondral bone. Bone chips were harvested from sclerotic and non-sclerotic regions of the subchondral bone of human OA joints. The application of 0.1 mM ascorbic acid-2-phosphate (AA) significantly increased the number of outgrowing cells and their proliferation capacity. This enhanced proliferative capacity showed a negative correlation with the amount of senescent cells and was accompanied by decreased expression of reactive oxygen species (ROS) in cultured OB. Expanded cells continued to express differentiated OB markers independently of AA supplementation and demonstrated no changes in their capacity to osteogenically differentiate. Transcriptomic analyses revealed that apoptotic, cell cycle–proliferation, and catabolic pathways were the main pathways affected in the presence of AA during OB expansion. Supplementation with AA can thus help to expand subchondral bone OB in vitro while maintaining their special cellular characteristics. The clearance of such senescent OB could be envisioned as a potential therapeutic target for the treatment of OA.
Collapse
Affiliation(s)
- Maximilian G. Burger
- Department of Biomedicine, University of Basel, University Hospital of Basel, 4031 Basel, Switzerland; (M.G.B.); (A.S.); (I.M.); (K.P.)
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland;
| | - Amir Steinitz
- Department of Biomedicine, University of Basel, University Hospital of Basel, 4031 Basel, Switzerland; (M.G.B.); (A.S.); (I.M.); (K.P.)
- Departments for Orthopedic Surgery and Traumatology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Jeroen Geurts
- Departments Spine Surgery and Biomedical Engineering, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland; (J.G.); (B.E.P.)
| | - Benjamin E. Pippenger
- Departments Spine Surgery and Biomedical Engineering, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland; (J.G.); (B.E.P.)
| | - Dirk J. Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland;
| | - Ivan Martin
- Department of Biomedicine, University of Basel, University Hospital of Basel, 4031 Basel, Switzerland; (M.G.B.); (A.S.); (I.M.); (K.P.)
| | - Andrea Barbero
- Department of Biomedicine, University of Basel, University Hospital of Basel, 4031 Basel, Switzerland; (M.G.B.); (A.S.); (I.M.); (K.P.)
- Correspondence: ; Tel.: +41-61-265-2384
| | - Karoliina Pelttari
- Department of Biomedicine, University of Basel, University Hospital of Basel, 4031 Basel, Switzerland; (M.G.B.); (A.S.); (I.M.); (K.P.)
| |
Collapse
|
68
|
Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation. Int J Mol Sci 2017; 18:ijms18112478. [PMID: 29160845 PMCID: PMC5713444 DOI: 10.3390/ijms18112478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/01/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF) plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1) or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC) freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.
Collapse
|
69
|
McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat Rev Rheumatol 2017; 13:719-730. [DOI: 10.1038/nrrheum.2017.182] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
70
|
Londono R, Wenzhong W, Wang B, Tuan RS, Lozito TP. Cartilage and Muscle Cell Fate and Origins during Lizard Tail Regeneration. Front Bioeng Biotechnol 2017; 5:70. [PMID: 29164111 PMCID: PMC5673626 DOI: 10.3389/fbioe.2017.00070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
Introduction Human cartilage is an avascular tissue with limited capacity for repair. By contrast, certain lizards are capable of musculoskeletal tissue regeneration following tail loss throughout all stages of their lives. This extraordinary ability is the result of a complex process in which a blastema forms and gives rise to the tissues of the regenerate. Blastemal cells have been shown to originate either from dedifferentiated tissues or from existing progenitor cells in various species, but their origin has not been determined in lizards. As reptiles, lizards are the closest relatives to mammals with enhanced regenerative potential, and the origin of blastemal cells has important implications for the regenerative process. Hence, the aim of this study is to determine the cellular origin of regenerated cartilage and muscle tissues in reptiles using the mourning gecko lizard as the regenerative model. Methods To trace the fate and differentiation potential of cartilage during tail regeneration, cartilage cells pre-labeled with the fluorescent tracer Dil were injected into lizard tails, and the contribution of cartilage cells to regenerated tail tissues was assessed by histologic examination at 7, 14, and 21 days post-tail amputation. The contribution of muscle cells to regenerated tail tissues was evaluated using muscle creatine kinase promoter-driven Cre recombinase in conjunction with the Cre-responsive green-to-red fluorescence shift construct CreStoplight. 21 days after amputation, tail tissues were analyzed by histology for red fluorescent protein (RFP)-positive cells. Results At 7 days post-amputation, Dil-labeled cartilage cells localized to the subapical space contributing to the blastema. At 14 and 21 days post-amputation, Dil-labeled cells remained in the subapical space and colocalized with Collagen type II (Col2) staining in the cartilage tube and myosin heavy chain (MHC) staining in regenerated muscle. Lineage tracing of myocytes showed colocalization of RFP with Col2 and MHC in differentiated tissues at 21 days post-amputation. Conclusion This study demonstrates that differentiated cartilage cells contribute to both regenerated muscle and cartilage tissues following tail loss, and in turn, differentiated muscle cells contribute to both tissue types as well. These findings suggest that dedifferentiation and/or transdifferentiation are at least partially responsible for the regenerative outcome in the mourning gecko.
Collapse
Affiliation(s)
- Ricardo Londono
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Wei Wenzhong
- Molecular Therapy Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bing Wang
- Molecular Therapy Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Thomas P Lozito
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
71
|
Liang Y, Idrees E, Andrews SHJ, Labib K, Szojka A, Kunze M, Burbank AD, Mulet-Sierra A, Jomha NM, Adesida AB. Plasticity of Human Meniscus Fibrochondrocytes: A Study on Effects of Mitotic Divisions and Oxygen Tension. Sci Rep 2017; 7:12148. [PMID: 28939894 PMCID: PMC5610182 DOI: 10.1038/s41598-017-12096-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023] Open
Abstract
Meniscus fibrochondrocytes (MFCs) may be the optimal cell source to repair non-healing meniscus injuries using tissue engineering strategies. In this study, we investigated the effects of mitotic divisions and oxygen tension on the plasticity of adult human MFCs. Our assessment techniques included gene expression, biochemical, histological, and immunofluorescence assays. MFCs were expanded in monolayer culture with combined growth factors TGFβ1 and FGF-2 (T1F2) under normoxia (21% O2). Trilineage (adipogenesis, chondrogenesis and osteogenesis) differentiation was performed under both normoxic (21% O2) and hypoxic (3% O2) conditions. The data demonstrated that MFCs with a mean total population doubling of 10 can undergo adipogenesis and chondrogenesis. This capability was enhanced under hypoxic conditions. The MFCs did not undergo osteogenesis. In conclusion, our findings suggest that extensively expanded human MFCs have the capacity to generate tissues with the functional matrix characteristics of avascular meniscus. To this end, expanded MFCs may be an ideal cell source for engineering functional constructs for the replacement or repair of avascular meniscus.
Collapse
Affiliation(s)
- Yan Liang
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
- Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Enaam Idrees
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Stephen H J Andrews
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Kirollos Labib
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Alexander Szojka
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Melanie Kunze
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Andrea D Burbank
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Aillette Mulet-Sierra
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Nadr M Jomha
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Adetola B Adesida
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada.
| |
Collapse
|
72
|
do Amaral RJFC, Almeida HV, Kelly DJ, O'Brien FJ, Kearney CJ. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy. Stem Cells Int 2017; 2017:6843727. [PMID: 29018484 PMCID: PMC5606137 DOI: 10.1155/2017/6843727] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.
Collapse
Affiliation(s)
- Ronaldo J. F. C. do Amaral
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Henrique V. Almeida
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cathal J. Kearney
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
73
|
Fabrication of Innovative Silk/Alginate Microcarriers for Mesenchymal Stem Cell Delivery and Tissue Regeneration. Int J Mol Sci 2017; 18:ijms18091829. [PMID: 28832547 PMCID: PMC5618478 DOI: 10.3390/ijms18091829] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to exploit silk fibroin’s properties to develop innovative composite microcarriers for mesenchymal stem cell (MSCs) adhesion and proliferation. Alginate microcarriers were prepared, added to silk fibroin solution, and then treated with ethanol to induce silk conformational transition. Microcarriers were characterized for size distribution, coating stability and homogeneity. Finally, in vitro cytocompatibility and suitability as delivery systems for MSCs were investigated. Results indicated that our manufacturing process is consistent and reproducible: silk/alginate microcarriers were stable, with spherical geometry, about 400 μm in average diameter, and fibroin homogeneously coated the surface. MSCs were able to adhere rapidly onto the microcarrier surface and to cover the surface of the microcarrier within three days of culture; moreover, on this innovative 3D culture system, stem cells preserved their metabolic activity and their multi-lineage differentiation potential. In conclusion, silk/alginate microcarriers represent a suitable support for MSCs culture and expansion. Since it is able to preserve MSCs multipotency, the developed 3D system can be intended for cell delivery, for advanced therapy and regenerative medicine applications.
Collapse
|
74
|
Differentiation potential of synoviocytes derived from joints with cranial cruciate ligament rupture and medial patella luxation in dogs. Res Vet Sci 2017; 114:370-377. [PMID: 28711819 DOI: 10.1016/j.rvsc.2017.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/29/2017] [Accepted: 07/08/2017] [Indexed: 01/16/2023]
Abstract
The objective of this study was to assess the differentiation capability of synoviocytes derived from dogs with inflammatory joint conditions. Cranial cruciate ligament ruptured (CCLr) (n=12) and medial patella luxated (MPL) (n=10) knee joints of the dogs were used to collect the synovial membrane (SM). Synoviocytes were enzymatically released from the SM and analyzed by flow cytometry for specific cellular markers (CD44 and CD90) of mesenchymal stem cells (MSCs), while doing histopathology from another part of SM sections. Under specific culture conditions, synoviocytes were forced to differentiate into chondrogenesis, adipogenesis, osteogenesis and osteoclastogenesis to investigate the multipotency. Upon treatments phenotypes of cell cultures were analyzed by histopathology and by semi-quantitative reverse transcriptase polymerase chain reaction for the expression of each differentiation marker genes. Although flow cytometry showing similar MSCs populations in CCLr and MPL synovium, synovial cells derived from CCLr showed higher multipotency compared to MPL-derived samples. Further, synovial changes such as vascularity, mononuclear cell infiltration and cellular hypertrophy were more pronounced in CCLr-derived synovial tissue than in MPL. Taken together, these findings suggested that the differentiation capability of SM-derived multipotent stem cells varies with inflammatory severity occurring in different joint conditions.
Collapse
|
75
|
Mullen AC, Wrana JL. TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022186. [PMID: 28108485 DOI: 10.1101/cshperspect.a022186] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of transforming growth factor-β (TGF-β), seminal work in vertebrate and invertebrate models revealed the TGF-β family to be central regulators of tissue morphogenesis. Members of the TGF-β family direct some of the earliest cell-fate decisions in animal development, coordinate complex organogenesis, and contribute to tissue homeostasis in the adult. Here, we focus on the role of the TGF-β family in mammalian stem-cell biology and discuss its wide and varied activities both in the regulation of pluripotency and in cell-fate commitment.
Collapse
Affiliation(s)
- Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbam Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| |
Collapse
|
76
|
Bianchi VJ, Weber JF, Waldman SD, Backstein D, Kandel RA. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes. Tissue Eng Part A 2017; 23:156-165. [DOI: 10.1089/ten.tea.2016.0262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Vanessa J. Bianchi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Joanna F. Weber
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
- Kennan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Stephen D. Waldman
- Kennan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada
| | - David Backstein
- Division of Orthopaedics, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Pathology and Laboratory Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
77
|
Small animal models to understand pathogenesis of osteoarthritis and use of stem cell in cartilage regeneration. Cell Biochem Funct 2017; 35:3-11. [DOI: 10.1002/cbf.3246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/06/2016] [Accepted: 12/04/2016] [Indexed: 01/05/2023]
|
78
|
Fellows CR, Matta C, Zakany R, Khan IM, Mobasheri A. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair. Front Genet 2016; 7:213. [PMID: 28066501 PMCID: PMC5167763 DOI: 10.3389/fgene.2016.00213] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 01/15/2023] Open
Abstract
Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple "one size fits all," but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue.
Collapse
Affiliation(s)
| | - Csaba Matta
- Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary
| | - Roza Zakany
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary
| | - Ilyas M. Khan
- Centre for NanoHealth, Swansea University Medical SchoolSwansea, UK
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical CentreNottingham, UK
- King Fahd Medical Research Center, King AbdulAziz UniversityJeddah, Saudi Arabia
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
79
|
Diaz-Romero J, Kürsener S, Kohl S, Nesic D. S100B + A1 CELISA: A Novel Potency Assay and Screening Tool for Redifferentiation Stimuli of Human Articular Chondrocytes. J Cell Physiol 2016; 232:1559-1570. [DOI: 10.1002/jcp.25682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Jose Diaz-Romero
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| | - Sibylle Kürsener
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
| | - Sandro Kohl
- Department of Orthopedics and Traumatology; Inselspital; University of Bern; Bern Switzerland
| | - Dobrila Nesic
- Osteoarticular Research Group; Department of Clinical Research; University of Bern; Bern Switzerland
- Department of Orthopedics and Traumatology; Inselspital; University of Bern; Bern Switzerland
| |
Collapse
|
80
|
Osteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering. Biochem Biophys Res Commun 2016; 479:469-475. [DOI: 10.1016/j.bbrc.2016.09.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 01/01/2023]
|
81
|
Reboredo JW, Weigel T, Steinert A, Rackwitz L, Rudert M, Walles H. Investigation of Migration and Differentiation of Human Mesenchymal Stem Cells on Five-Layered Collagenous Electrospun Scaffold Mimicking Native Cartilage Structure. Adv Healthc Mater 2016; 5:2191-8. [PMID: 27185494 DOI: 10.1002/adhm.201600134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/30/2016] [Indexed: 11/06/2022]
Abstract
Cartilage degeneration is the major cause of chronic pain, lost mobility, and reduced quality of life for over estimated 150 million osteoarthritis sufferers worldwide. Despite intensive research, none of the available therapies can restore the hyaline cartilage surface beyond just fibrous repair. To overcome these limitations, numerous cell-based approaches for cartilage repair are being explored that aim to provide an appropriate microenvironment for chondrocyte maintenance and differentiation of multipotent mesenchymal stem cells (MSCs) toward the chondrogenic lineage. Articular cartilage is composed of highly organized collagen network that entails the tissue into four distinct zones and each zone into three different regions based on differences in matrix morphology and biochemistry. Current cartilage implants cannot establish the hierarchical tissue organization that seems critical for normal cartilage function. Therefore, in this study, a structured, multilayered collagen scaffold designed for the replacement of damaged cartilage is presented that allows repopulation by host cells and synthesis of a new natural matrix. By using the electrospinning method, the potential to engineer a scaffold consisting of two different collagen types is obtained. With the developed collagen scaffold, a five-layered biomaterial is created that has the potency to induce the differentiation of human bone marrow derived MSCs toward the chondrogenic lineage.
Collapse
Affiliation(s)
- Jenny W. Reboredo
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
| | - Tobias Weigel
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
| | - Andre Steinert
- Department of Orthopedic Surgery, König-Ludwig-Haus Orthopaedic Center for Musculoskeletal Research; Julius-Maximilians-University Würzburg; Brettreichstraße 11 Würzburg 97074 Germany
| | - Lars Rackwitz
- Department of Orthopedic Surgery, König-Ludwig-Haus Orthopaedic Center for Musculoskeletal Research; Julius-Maximilians-University Würzburg; Brettreichstraße 11 Würzburg 97074 Germany
| | - Maximilian Rudert
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
- Department of Orthopedic Surgery, König-Ludwig-Haus Orthopaedic Center for Musculoskeletal Research; Julius-Maximilians-University Würzburg; Brettreichstraße 11 Würzburg 97074 Germany
| | - Heike Walles
- Department Tissue Engineering and Regenerative Medicine; University Hospital Würzburg; Röntgenring 11 97070 Würzburg Germany
- Translational Center Würzburg “Regenerative Therapies in Oncology and Musculoskeletal Diseases” Würzburg Branch; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Röntgenring 11 97070 Würzburg Germany
| |
Collapse
|
82
|
Chameettachal S, Midha S, Ghosh S. Regulation of Chondrogenesis and Hypertrophy in Silk Fibroin-Gelatin-Based 3D Bioprinted Constructs. ACS Biomater Sci Eng 2016; 2:1450-1463. [DOI: 10.1021/acsbiomaterials.6b00152] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shibu Chameettachal
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| | - Swati Midha
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| | - Sourabh Ghosh
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| |
Collapse
|
83
|
Marsano A, Medeiros da Cunha CM, Ghanaati S, Gueven S, Centola M, Tsaryk R, Barbeck M, Stuedle C, Barbero A, Helmrich U, Schaeren S, Kirkpatrick JC, Banfi A, Martin I. Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling. Stem Cells Transl Med 2016; 5:1730-1738. [PMID: 27460852 DOI: 10.5966/sctm.2015-0321] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/09/2016] [Indexed: 11/16/2022] Open
Abstract
: Chondrogenic differentiation of bone marrow-derived mesenchymal stromal/stem cells (MSCs) can be induced by presenting morphogenetic factors or soluble signals but typically suffers from limited efficiency, reproducibility across primary batches, and maintenance of phenotypic stability. Considering the avascular and hypoxic milieu of articular cartilage, we hypothesized that sole inhibition of angiogenesis can provide physiological cues to direct in vivo differentiation of uncommitted MSCs to stable cartilage formation. Human MSCs were retrovirally transduced to express a decoy soluble vascular endothelial growth factor (VEGF) receptor-2 (sFlk1), which efficiently sequesters endogenous VEGF in vivo, seeded on collagen sponges and immediately implanted ectopically in nude mice. Although naïve cells formed vascularized fibrous tissue, sFlk1-MSCs abolished vascular ingrowth into engineered constructs, which efficiently and reproducibly developed into hyaline cartilage. The generated cartilage was phenotypically stable and showed no sign of hypertrophic evolution up to 12 weeks. In vitro analyses indicated that spontaneous chondrogenic differentiation by blockade of angiogenesis was related to the generation of a hypoxic environment, in turn activating the transforming growth factor-β pathway. These findings suggest that VEGF blockade is a robust strategy to enhance cartilage repair by endogenous or grafted mesenchymal progenitors. This article outlines the general paradigm of controlling the fate of implanted stem/progenitor cells by engineering their ability to establish specific microenvironmental conditions rather than directly providing individual morphogenic cues. SIGNIFICANCE Chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs) is typically targeted by morphogen delivery, which is often associated with limited efficiency, stability, and robustness. This article proposes a strategy to engineer MSCs with the capacity to establish specific microenvironmental conditions, supporting their own targeted differentiation program. Sole blockade of angiogenesis mediated by transduction for sFlk-1, without delivery of additional morphogens, is sufficient for inducing MSC chondrogenic differentiation. The findings represent a relevant step forward in the field because the method allowed reducing interdonor variability in MSC differentiation efficiency and, importantly, onset of a stable, nonhypertrophic chondrocyte phenotype.
Collapse
Affiliation(s)
- Anna Marsano
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Carolina M Medeiros da Cunha
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Shahram Ghanaati
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
- Department for Oral, Craniomaxillofacial and Facial Plastic Surgery, University Frankfurt am Main, Frankfurt, Germany
| | - Sinan Gueven
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Surgery, University Hospital Basel, Basel, Switzerland
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Matteo Centola
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Roman Tsaryk
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Mike Barbeck
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
- Department for Oral, Craniomaxillofacial and Facial Plastic Surgery, University Frankfurt am Main, Frankfurt, Germany
| | - Chiara Stuedle
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Uta Helmrich
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Stefan Schaeren
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | | | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
84
|
Nava MM, Di Maggio N, Zandrini T, Cerullo G, Osellame R, Martin I, Raimondi MT. Synthetic niche substrates engineered via two-photon laser polymerization for the expansion of human mesenchymal stromal cells. J Tissue Eng Regen Med 2016; 11:2836-2845. [PMID: 27296669 PMCID: PMC5697673 DOI: 10.1002/term.2187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
The present study reports on the development of an innovative culture substrate, micro-fabricated by two-photon laser polymerization (2PP) in a hybrid organic-inorganic photoresin. It was previously demonstrated that this substrate is able to guide spontaneous homing and colonization of mesenchymal stromal cells by the presence of synthetic microniches. Here, the number of niches covering the culture substrate was increased up to 10% of the total surface. Human bone marrow-derived mesenchymal stromal cells were expanded for 3 weeks and then their proliferation, clonogenic capacity and bilineage differentiation potential towards the osteogenic and adipogenic lineage were evaluated, both by colorimetric assays and by real-time polymerase chain reaction. Compared with cells cultured on glass substrates, cells expanded on 2PP substrates showed a greater colony diameter, which is an index of clonogenic potential. Following medium conditioning on 2PP-cultured cells, the expression of RUNX2 and BSP genes, as well as PPAR-gamma, was significantly greater than that measured on glass controls. Thus, human cells expanded on the synthetic niche substrate maintained their proliferative potential, clonogenic capacity and bilineage differentiation potential more effectively than cells expanded on glass substrates and in some aspects were comparable to non-expanded cells. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Michele M Nava
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milano, Italy
| | - Nunzia Di Maggio
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Tommaso Zandrini
- Istituto di Fotonica e Nanotecnologie - CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie - CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie - CNR and Department of Physics, Politecnico di Milano, Milano, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Manuela T Raimondi
- Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Milano, Italy
| |
Collapse
|
85
|
Di Maggio N, Martella E, Meikle S, Columbaro M, Lucarelli E, Santin M, Banfi A. Rapid and efficient magnetization of mesenchymal stem cells by dendrimer-functionalized magnetic nanoparticles. Nanomedicine (Lond) 2016; 11:1519-34. [DOI: 10.2217/nnm-2016-0085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: Rapid and efficient magnetization of human bone marrow stromal cells (BMSC) through functionalized magnetic nanoparticles (MNP). Methods: MNP were functionalized with poly(epsilon-lysine) dendrons exposing carboxybetaine residue (CB-MNP) to enhance binding to the cellular glycocalix. BMSC were incubated with CB-MNP or non-functionalized PAA-MNP for 5–30 min in suspension. Results: CB-MNP functionalization increased the magnetization efficiency by threefold. Remarkably, 66% of cells were magnetized after only 5 min and the maximum efficiency of >80% was reached by 15 min. BMSC viability, proliferation and differentiation were not impaired: actually, adipogenic and osteogenic differentiation were even improved. Conclusion: Carboxybetaine-dendron functionalization ensured rapid and efficient BMSC magnetization and allowed innovative suspension labeling, with a potential for bypassing adhesion culture of progenitors for regenerative medicine.
Collapse
Affiliation(s)
- Nunzia Di Maggio
- Cell & Gene Therapy, Department of Biomedicine, Basel University & Department of Surgery, Basel University Hospital, Basel, Switzerland
| | - Elisa Martella
- Osteoarticular Regeneration Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
- Department of Biomedical & Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Steve Meikle
- BrightSTAR, Brighton Centre for Regenerative Medicine, University of Brighton, UK
| | - Marta Columbaro
- Musculoskeletal Cell Biology Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Enrico Lucarelli
- Osteoarticular Regeneration Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Matteo Santin
- BrightSTAR, Brighton Centre for Regenerative Medicine, University of Brighton, UK
| | - Andrea Banfi
- Cell & Gene Therapy, Department of Biomedicine, Basel University & Department of Surgery, Basel University Hospital, Basel, Switzerland
| |
Collapse
|
86
|
Tremp M, Menzi N, Tchang L, di Summa PG, Schaefer DJ, Kalbermatten DF. Adipose-Derived Stromal Cells from Lipomas: Isolation, Characterisation and Review of the Literature. Pathobiology 2016; 83:258-66. [PMID: 27225269 DOI: 10.1159/000444501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/04/2016] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The aim of this study was to characterize adipose-derived stromal cells (ADSCs) from patients diagnosed with multiple symmetric lipomatosis (MSL) in order to obtain potentially new insights into the pathophysiology, pathogenesis and treatment of this disease. METHODS Cells from the stromal vascular fraction were analysed by the colony-forming efficiency assay and flow cytometry using standard markers. Moreover, the power of adipogenic plasticity was evaluated. Finally, a literature review was performed from 1982 to 2015 using the US National Institutes of Health's PubMed database. RESULTS Three European-descent patients diagnosed with either MSL type I or II could be identified for analysis. The resulting mean colony-forming efficiency assay was 14.3 ± 5%. Flow-cytometric analysis of the ADSCs revealed high levels of CD34 (70 ± 9%), CD45 (37 ± 13%) and CD73 (55.8 ± 14%), whereas low levels of CD31 (16.8 ± 14%) and CD105 (5.8 ± 0.7%) were detected. Furthermore, ADSCs showed a strong adipogenic potential, which is in line with the literature review. The stem cell pool in lipoma shows several alterations in biological activities, such as proliferation, apoptosis and stemness. CONCLUSIONS ADSCs from lipoma may be interesting in the application of regenerative medicine. We discuss possible molecular treatment options to regulate their activities at the source of the MSL.
Collapse
Affiliation(s)
- Mathias Tremp
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
87
|
Cui Y, Wang H, Yu M, Xu T, Li X, Li L. Differentiation Plasticity of Human Fetal Articular Chondrocytes. Otolaryngol Head Neck Surg 2016; 135:61-7. [PMID: 16815184 DOI: 10.1016/j.otohns.2006.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/20/2006] [Indexed: 11/16/2022]
Abstract
OBJECTIVE: To test chondrogenic differentiation potential, we examined the differentiation plasticity of isolated human fetal articular chondrocytes (HFACs). STUDY AND DESIGN SETTING: Culture-expanded human fetal articular chondrocytes (HFACs) were analyzed for chondrogenic, adipogenic, osteogenic capacity and neural differentiation ability in defined in vitro culture systems. RESULTS: The different assays demonstrated that culture-expanded HFACs have potential to form cartilage in pellet mass culture, to form adipose cells, osteogenic cells, and neural cells in monolayer culture. CONCLUSIONS: These results suggest that within human fetal articular cartilages there are MSC-like cells that exhibit differentiation plasticity that is comparable with that of BM-MSCs and they may be a new kind of seeding cells for head and neck cartilage reconstruction.
Collapse
Affiliation(s)
- Ying Cui
- Peking University Third Hospital, Beijing City 100083, China
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
|
89
|
Cigan AD, Roach BL, Nims RJ, Tan AR, Albro MB, Stoker AM, Cook JL, Vunjak-Novakovic G, Hung CT, Ateshian GA. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties. J Biomech 2016; 49:1909-1917. [PMID: 27198889 DOI: 10.1016/j.jbiomech.2016.04.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022]
Abstract
Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes.
Collapse
Affiliation(s)
- Alexander D Cigan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Brendan L Roach
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Robert J Nims
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Andrea R Tan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Michael B Albro
- Department of Materials, Imperial College London, London, UK
| | | | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
90
|
Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016; 98:1-22. [PMID: 27177218 DOI: 10.1016/j.biomaterials.2016.04.018] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
One of the most important issues facing cartilage tissue engineering is the inability to move technologies into the clinic. Despite the multitude of current research in the field, it is known that 90% of new drugs that advance past animal studies fail clinical trials. The objective of this review is to provide readers with an understanding of the scientific details of tissue engineered cartilage products that have demonstrated a certain level of efficacy in humans, so that newer technologies may be developed upon this foundation. Compared to existing treatments, such as microfracture or autologous chondrocyte implantation, a tissue engineered product can potentially provide more consistent clinical results in forming hyaline repair tissue and in filling the entirety of the defect. The various tissue engineering strategies (e.g., cell expansion, scaffold material, media formulations, biomimetic stimuli, etc.) used in forming these products, as collected from published literature, company websites, and relevant patents, are critically discussed. The authors note that many details about these products remain proprietary, not all information is made public, and that advancements to the products are continuously made. Nevertheless, by understanding the design and production processes of these emerging technologies, one can gain tremendous insight into how to best use them and also how to design the next generation of tissue engineered cartilage products.
Collapse
Affiliation(s)
- Brian J Huang
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Davis, USA.
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Davis, USA; Department of Orthopedic Surgery, University of California Davis, USA.
| |
Collapse
|
91
|
Zhang X, Lin YC, Rui YF, Xu HL, Chen H, Wang C, Teng GJ. Therapeutic Roles of Tendon Stem/Progenitor Cells in Tendinopathy. Stem Cells Int 2016; 2016:4076578. [PMID: 27195010 PMCID: PMC4853952 DOI: 10.1155/2016/4076578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/10/2016] [Indexed: 02/07/2023] Open
Abstract
Tendinopathy is a tendon disorder characterized by activity-related pain, local edema, focal tenderness to palpation, and decreased strength in the affected area. Tendinopathy is prevalent in both athletes and the general population, highlighting the need to elucidate the pathogenesis of this disorder. Current treatments of tendinopathy are both conservative and symptomatic. The discovery of tendon stem/progenitor cells (TSPCs) and erroneous differentiation of TSPCs have provided new insights into the pathogenesis of tendinopathy. In this review, we firstly present the histopathological characteristics of tendinopathy and explore the cellular and molecular cues in the pathogenesis of tendinopathy. Current evidence of the depletion of the stem cell pool and altered TSPCs fate in the pathogenesis of tendinopathy has been presented. The potential regulatory factors for either tenogenic or nontenogenic differentiation of TSPCs are also summarized. The regulation of endogenous TSPCs or supplementation with exogenous TSPCs as therapeutic targets for the treatment of tendinopathy is proposed. Therefore, inhibiting the erroneous differentiation of TSPCs and regulating the differentiation of TSPCs into tendon cells might be important areas of future research and could provide new clinical treatments for tendinopathy. The current evidence suggests that TSPCs are promising therapeutic targets for the management of tendinopathy.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, China
| | - Yu-cheng Lin
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, China
| | - Yun-feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, China
- Department of Orthopaedics, Xishan People's Hospital, 588 Guang Rui Road, Wuxi, Jiangsu 214011, China
- China Orthopedic Regenerative Medicine Group, Hangzhou, Zhejiang 310000, China
| | - Hong-liang Xu
- Department of Orthopaedics, Xishan People's Hospital, 588 Guang Rui Road, Wuxi, Jiangsu 214011, China
| | - Hui Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, China
- Department of Orthopaedics, Xishan People's Hospital, 588 Guang Rui Road, Wuxi, Jiangsu 214011, China
| | - Gao-jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
92
|
Shaharuddin B, Osei-Bempong C, Ahmad S, Rooney P, Ali S, Oldershaw R, Meeson A. Human limbal mesenchymal stem cells express ABCB5 and can grow on amniotic membrane. Regen Med 2016; 11:273-86. [DOI: 10.2217/rme-2016-0009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To isolate and characterize limbal mesenchymal stem cells (LMSCs) from human corneoscleral rings. Materials & methods: Cells were isolated from corneoscleral rings and cultured in a mesenchymal stem cell (MSC)-selective media and examined for differentiation, phenotyping and characterization. Results: LMSCs were capable of trilineage differentiation, adhered to tissue culture plastic, expressed HLA class I and cell surface antigens associated with human MSC while having no/low expression of HLA class II and negative hematopoietic lineage markers. They were capable for CXCL12-mediated cellular migration. LMSCs adhered, proliferated on amniotic membrane and expressed the common putative limbal stem cell markers. Conclusion: Limbal-derived MSC exhibited plasticity, could maintain limbal markers expression and demonstrated viable growth on amniotic membrane.
Collapse
Affiliation(s)
- Bakiah Shaharuddin
- Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 3BZ, UK
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, 13200 Pulau Pinang, Malaysia
| | - Charles Osei-Bempong
- Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 3BZ, UK
| | - Sajjad Ahmad
- St Paul's Eye Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, UK
- Department of Eye & Vision Sciences, Institute of Ageing & Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, L69 3GA, UK
| | - Paul Rooney
- Tissue Development Laboratory, NHS Blood & Transplant, Estuary Banks, Liverpool, L24 8RB, UK
| | - Simi Ali
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon-Tyne, NE2 4HH, UK
| | - Rachel Oldershaw
- Department of Musculoskeletal Biology Group I, Institute of Ageing & Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Annette Meeson
- Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
93
|
Martel-Pelletier J, Raynauld JP, Dorais M, Abram F, Pelletier JP. The levels of the adipokines adipsin and leptin are associated with knee osteoarthritis progression as assessed by MRI and incidence of total knee replacement in symptomatic osteoarthritis patients: apost hocanalysis. Rheumatology (Oxford) 2015; 55:680-8. [DOI: 10.1093/rheumatology/kev408] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/13/2022] Open
|
94
|
Sasao T, Fukuda Y, Yoshida S, Miyabara S, Kasashima Y, Kuwano A, Arai K. Population doubling level-dependent change of secreted glycosaminoglycan in equine bone marrow-derived mesenchymal stem cells. J Equine Sci 2015; 26:73-80. [PMID: 26435680 PMCID: PMC4591413 DOI: 10.1294/jes.26.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/28/2015] [Indexed: 01/18/2023] Open
Abstract
In regenerative medicine using transplantation of mesenchymal stem cells (MSCs), the importance of regulating the quality of MSCs has been well recognized; however, there is little information concerning the relationship between the population doubling level (PDL) and the stemness of MSCs in equine medicine. In this study, we showed that the amount of glycosaminoglycan (GAG) secreted by bone marrow-derived MSCs (BMSCs) decreases with increase of PDL. Enzymatic digestion and two-dimensional electrophoresis revealed that a main component of GAG produced by BMSCs was hyaluronan with a small amount of chondroitin sulfate. Increase of PDL downregulated the expression of MSC CD markers, including CD44, CD73, CD90, CD105, and CD146, along with loss of differentiation capacity. Thus, the effect of hyaluronan supplement to the growth medium on both expression of CD markers and the tri-lineage potential of BMSCs was evaluated. Expression of CD73 and CD90 was preserved by continuous
addition of hyaluronan to the growth medium, whereas mRNA levels corresponding to CD44, CD105 and CD146 were not preserved by supplementation of hyaluronan. BMSCs subcultured with hyaluronan-supplemented growth medium to PDL-12 showed osteogenic capacity, however adipogenic and chondrogenic activities at PDL-12 were not preserved by exogenous hyaluronan. These results suggest that downregulation of CD44, CD105 and CD146 might not affect the osteogenic capacity. Taken together, the results suggested that supplementation of hyaluronan to the growth medium might be effective at maintaining the osteogenic capacity of equine BMSCs.
Collapse
Affiliation(s)
- Takafumi Sasao
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yuki Fukuda
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Sayako Yoshida
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Shihori Miyabara
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yoshinori Kasashima
- Laboratory of Clinical Science and Pathobiology, Equine Research Institute, Japan Racing Association, Tochigi 320-8056, Japan
| | - Atsutoshi Kuwano
- Laboratory of Clinical Science and Pathobiology, Equine Research Institute, Japan Racing Association, Tochigi 320-8056, Japan
| | - Katsuhiko Arai
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
95
|
Murphy MK, Arzi B, Prouty SM, Hu JC, Athanasiou KA. Neocartilage integration in temporomandibular joint discs: physical and enzymatic methods. J R Soc Interface 2015; 12:rsif.2014.1075. [PMID: 25519993 DOI: 10.1098/rsif.2014.1075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Integration of engineered musculoskeletal tissues with adjacent native tissues presents a significant challenge to the field. Specifically, the avascularity and low cellularity of cartilage elicit the need for additional efforts in improving integration of neocartilage within native cartilage. Self-assembled neocartilage holds significant potential in replacing degenerated cartilage, though its stabilization and integration in native cartilage require further efforts. Physical and enzymatic stabilization methods were investigated in an in vitro model for temporomandibular joint (TMJ) disc degeneration. First, in phase 1, suture, glue and press-fit constructs were compared in TMJ disc intermediate zone defects. In phase 1, suturing enhanced interfacial shear stiffness and strength immediately; after four weeks, a 15-fold increase in stiffness and a ninefold increase in strength persisted over press-fit. Neither suture nor glue significantly altered neocartilage properties. In phase 2, the effects of the enzymatic stabilization regimen composed of lysyl oxidase, CuSO4 and hydroxylysine were investigated. A full factorial design was employed, carrying forward the best physical method from phase 1, suturing. Enzymatic stabilization significantly increased interfacial shear stiffness after eight weeks. Combined enzymatic stabilization and suturing led to a fourfold increase in shear stiffness and threefold increase in strength over press-fit. Histological analysis confirmed the presence of a collagen-rich interface. Enzymatic treatment additionally enhanced neocartilage mechanical properties, yielding a tensile modulus over 6 MPa and compressive instantaneous modulus over 1200 kPa at eight weeks. Suturing enhances stabilization of neocartilage, and enzymatic treatment enhances functional properties and integration of neocartilage in the TMJ disc. Methods developed here are applicable to other orthopaedic soft tissues, including knee meniscus and hyaline articular cartilage.
Collapse
Affiliation(s)
- Meghan K Murphy
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, William R. Pritchard Veterinary Medical Teaching Hospital, University of California Davis, Davis, CA, USA
| | - Shannon M Prouty
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA Department of Orthopaedic Surgery, University of California Davis, Davis, CA, USA
| |
Collapse
|
96
|
Choi WH, Kim HR, Lee SJ, Jeong N, Park SR, Choi BH, Min BH. Fetal Cartilage-Derived Cells Have Stem Cell Properties and Are a Highly Potent Cell Source for Cartilage Regeneration. Cell Transplant 2015; 25:449-61. [PMID: 26171766 DOI: 10.3727/096368915x688641] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Current strategies for cartilage cell therapy are mostly based on the use of autologous chondrocytes or mesenchymal stem cells (MSCs). However, these cells have limitations of a small number of cells available and of low chondrogenic ability, respectively. Many studies now suggest that fetal stem cells are more plastic than adult stem cells and can therefore more efficiently differentiate into target tissues. However, the characteristics and the potential of progenitor cells from fetal tissue remain poorly defined. In this study, we examined cells from human fetal cartilage at 12 weeks after gestation in comparison with bone marrow-derived MSCs or cartilage chondrocytes from young donors (8-25 years old). The fetal cartilage-derived progenitor cells (FCPCs) showed higher yields by approximately 24 times than that of chondrocytes from young cartilage. The morphology of the FCPCs was polygonal at passage 0, being similar to that of the young chondrocytes, but it changed later at passage 5, assuming a fibroblastic shape more akin to that of MSCs. As the passages advanced, the FCPCs showed a much greater proliferation ability than the young chondrocytes and MSCs, with the doubling times ranging from 2∼4 days until passage 15. The surface marker profile of the FCPCs at passage 2 was quite similar to that of the MSCs, showing high expressions of CD29, CD90, CD105, and Stro-1. When compared to the young chondrocytes, the FCPCs showed much less staining of SA-β-gal, a senescence indicator, at passage 10 and no decrease in SOX9 expression until passage 5. They also showed a much greater chondrogenic potential than the young chondrocytes and the MSCs in a three-dimensional pellet culture in vitro and in polyglycolic acid (PGA) scaffolds in vivo. In addition, they could differentiate into adipogenic and osteogenic lineages as efficiently as MSCs in vitro. These results suggest that FCPCs have stem cell properties to some extent and that they are more active in terms of proliferation and chondrogenic differentiation than young chondrocytes or MSCs.
Collapse
Affiliation(s)
- Woo Hee Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
97
|
do Amaral RJ, Matsiko A, Tomazette MR, Rocha WK, Cordeiro-Spinetti E, Levingstone TJ, Farina M, O'Brien FJ, El-Cheikh MC, Balduino A. Platelet-rich plasma releasate differently stimulates cellular commitment toward the chondrogenic lineage according to concentration. J Tissue Eng 2015; 6:2041731415594127. [PMID: 26380066 PMCID: PMC4555349 DOI: 10.1177/2041731415594127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023] Open
Abstract
Platelet-rich plasma has been used to treat articular cartilage defects, with the expectations of anabolic and anti-inflammatory effects. However, its role on cellular chondrogenic or fibrogenic commitment is still a controversy. Herein, the role of platelet-rich plasma releasate, the product obtained following platelet-rich plasma activation, on cellular commitment toward the chondrogenic lineage was evaluated in vitro. Human nasoseptal chondrogenic cells and human bone marrow mesenchymal stromal cells were used as cell types already committed to the chondrogenic lineage and undifferentiated cells, respectively, as different concentrations of platelet-rich plasma releasate were tested in comparison to commonly used fetal bovine serum. Low concentration of platelet-rich plasma releasate (2.5%) presented similar effects on cellular growth compared to 10% fetal bovine serum, for both cell types. In a three-dimensional culture system, platelet-rich plasma releasate alone did not induce full nasoseptal chondrogenic cells cartilage-like pellet formation. Nonetheless, platelet-rich plasma releasate played a significant role on cell commitment as high-passage nasoseptal chondrogenic cells only originated cartilage-like pellets when expanded in the presence of platelet-rich plasma releasate rather than fetal bovine serum. Histological analyses and measurements of pellet area demonstrated that even low concentrations of platelet-rich plasma releasate were enough to prevent nasoseptal chondrogenic cells from losing their chondrogenic potential due to in vitro expansion thereby promoting their recommitment. Low concentration of platelet-rich plasma releasate supplemented in chondrogenic medium also increased the chondrogenic potential of mesenchymal stromal cells seeded on collagen-hyaluronic acid scaffolds, as observed by an increase in chondrogenic-related gene expression, sulfated glycosaminoglycan production, and compressive modulus following in vitro culture. On the contrary, higher concentration of platelet-rich plasma releasate (10%) hampered some of these features. In conclusion, platelet-rich plasma releasate was able to prevent cellular chondrogenic capacity loss, inducing regain of their phenotype, and modulate cell commitment. Our data support the hypothesis of platelet-rich plasma chondrogenic potential, allowing fetal bovine serum substitution for platelet-rich plasma releasate at specific concentrations in culture medium when chondrogenic commitment is desired on specific cell types and moments of culture.
Collapse
Affiliation(s)
- Ronaldo Jfc do Amaral
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil ; Excellion Serviços Biomédicos, Amil/UnitedHealth Group, Petrópolis, Brasil
| | - Amos Matsiko
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland ; Trinity Centre for Bioengineering, Trinity College Dublin (TCD), Dublin, Ireland ; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | - Marcel Rp Tomazette
- Laboratório de Biologia e Tecnologia Celular, Universidade Veiga de Almeida, Rio de Janeiro, Brasil
| | - Wanessa Kr Rocha
- Instituto Estadual de Hematologia Arthur de Siqueira Cavalcanti, Rio de Janeiro, Brasil
| | - Eric Cordeiro-Spinetti
- Laboratório de Biologia e Tecnologia Celular, Universidade Veiga de Almeida, Rio de Janeiro, Brasil
| | - Tanya J Levingstone
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland ; Trinity Centre for Bioengineering, Trinity College Dublin (TCD), Dublin, Ireland ; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland ; Trinity Centre for Bioengineering, Trinity College Dublin (TCD), Dublin, Ireland ; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | - Marcia C El-Cheikh
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Alex Balduino
- Excellion Serviços Biomédicos, Amil/UnitedHealth Group, Petrópolis, Brasil ; Laboratório de Biologia e Tecnologia Celular, Universidade Veiga de Almeida, Rio de Janeiro, Brasil
| |
Collapse
|
98
|
Capsoni F, Ongari AM, Lonati C, Accetta R, Gatti S, Catania A. α-Melanocyte-stimulating-hormone (α-MSH) modulates human chondrocyte activation induced by proinflammatory cytokines. BMC Musculoskelet Disord 2015; 16:154. [PMID: 26093672 PMCID: PMC4475285 DOI: 10.1186/s12891-015-0615-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Background Alpha-melanocyte-stimulating-hormone (α-MSH) has marked anti-inflammatory potential. Proinflammatory cytokines are critical mediators of the disturbed cartilage homeostasis in osteoarthritis, inhibiting anabolic activities and increasing catabolic activities in chondrocytes. Since human chondrocytes express α-MSH receptors, we evaluated the role of the peptide in modulating chondrocyte production of pro-inflammatory cytokines, matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in response to interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Methods Human articular chondrocytes were obtained from osteoarthritic joint cartilage from subjects undergoing hip routine arthroplasty procedures. The cells were cultured with or without α-MSH in the presence of IL-1β or TNF-α. Cell-free supernatants were collected and cells immediately lysed for RNA purification. Expression of cytokines, MMPs, TIMPs, iNOS was determined by Reverse Transcription Real-time Polymerase Chain Reaction and enzyme-linked immunosorbent assay. Griess reaction was used for NO quantification. Results Gene expression and secretion of IL-6, IL-8, MMP-3, MMP-13 were significantly increased in IL-1β or TNF-α-stimulated chondrocytes; α-MSH did not modify the release of IL-6 or IL-8 while the peptide significantly reduced their gene expression on TNF-α-stimulated cells. A significant inhibition of MMP3 gene expression and secretion from IL-1β or TNFα-stimulated chondrocytes was induced by α-MSH. On the other hand, α-MSH did not modify the release of MMP-13 by cytokine-stimulated chondrocyte but significantly decreased gene expression of the molecule on TNF-α-stimulated cells. Detectable amount of TIMP-3 and TIMP-4 were present in the supernatants of resting chondrocytes and a significant increase of TIMP-3 gene expression and release was induced by α-MSH on unstimulated cells. TIMP-3 secretion and gene expression were significantly increased in IL-1β-stimulated chondrocytes and α-MSH down-regulated gene expression but not secretion of the molecule. TIMP-4 gene expression (but not secretion) was moderately induced in IL-1β-stimulated chondrocytes with a down-regulation exerted by α-MSH. IL-1β and TNF-α were potent stimuli for NO production and iNOS gene expression by chondrocytes; no inhibition was induced by α-MSH on cytokine-stimulated NO production, while the peptide significantly reduced gene expression of iNOS. Conclusions Our results underscore a potential anti-inflammatory and chondroprotective activity exerted by α-MSH, increasing TIMP-3 gene expression and release on resting cells and down- modulating TNF-α-induced activation of human chondrocytes. However, the discrepancy between the influences exerted by α-MSH on gene expression and protein release as well as the difference in the inhibitory pattern exerted by α-MSH in TNF-α- or IL-1β-stimulated cells leave some uncertainty on the role of the peptide on chondrocyte modulation.
Collapse
Affiliation(s)
- Franco Capsoni
- Allergy, Clinical Immunology & Rheumatology Unit, Istituto Auxologico Italiano, IRCCS, University of Milan, Piazzale Brescia, 20 - 20149, Milano, Italy.
| | - Anna Maria Ongari
- Allergy, Clinical Immunology & Rheumatology Unit, Istituto Auxologico Italiano, IRCCS, University of Milan, Piazzale Brescia, 20 - 20149, Milano, Italy.
| | - Caterina Lonati
- Center for Preclinical Investigation, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy.
| | - Riccardo Accetta
- Traumatology and First Aid Unit, Istituto Ortopedico Galeazzi, IRCCS, Milan, Italy.
| | - Stefano Gatti
- Center for Preclinical Investigation, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy.
| | - Anna Catania
- Center for Preclinical Investigation, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy.
| |
Collapse
|
99
|
Sesia SB, Duhr R, Medeiros da Cunha C, Todorov A, Schaeren S, Padovan E, Spagnoli G, Martin I, Barbero A. Anti-inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells. J Cell Physiol 2015; 230:1258-69. [PMID: 25413299 DOI: 10.1002/jcp.24861] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/29/2014] [Indexed: 01/14/2023]
Abstract
Macrophages are key players in healing processes. However, little is known on their capacity to modulate the differentiation potential of mesenchymal stem/stromal cells (MSC). Here we investigated whether macrophages (Mf) with, respectively, pro-inflammatory and tissue-remodeling traits differentially modulate chondrogenesis of bone marrow derived-MSC (BM-MSC). We demonstrated that coculture in collagen scaffolds of BM-MSC with Mf derived from monocytes polarized with M-CSF (M-Mf), but not with GM-CSF (GM-Mf) resulted in significantly higher glycosaminoglycan (GAG) content than what would be expected from an equal number of BM-MSC alone (defined as chondro-induction). Moreover, type II collagen was expressed at significantly higher levels in BM-MSC/M-Mf as compared to BM-MSC/GM-Mf constructs, while type X collagen expression was unaffected. In order to understand the possible cellular mechanism accounting for chondro-induction, developing monoculture and coculture tissues were digested and the properties of the isolated BM-MSC analysed. We observed that as compared to monocultures, in coculture with M-Mf, BM-MSC decreased less markedly in number and exhibited higher clonogenic and chondrogenic capacity. Despite their chondro-inductive effect in vitro, M-Mf did not modulate the cartilage tissue maturation in subcutaneous pockets of nude mice, as evidenced by similar accumulation of type X collagen and calcified tissue. Our results demonstrate that coculture of BM-MSC with M-Mf results in synergistic cartilage tissue formation in vitro. Such effect seems to result from the survival of BM-MSC with high chondrogenic capacity. Studies in an orthotopic in vivo model are necessary to assess the clinical relevance of our findings in the context of cartilage repair.
Collapse
Affiliation(s)
- Sergio B Sesia
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Pediatric Surgery, University Children's Hospital of Basel (UKBB), Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Pelttari K, Pippenger B, Mumme M, Feliciano S, Scotti C, Mainil-Varlet P, Procino A, von Rechenberg B, Schwamborn T, Jakob M, Cillo C, Barbero A, Martin I. Adult human neural crest-derived cells for articular cartilage repair. Sci Transl Med 2015; 6:251ra119. [PMID: 25163479 DOI: 10.1126/scitranslmed.3009688] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In embryonic models and stem cell systems, mesenchymal cells derived from the neuroectoderm can be distinguished from mesoderm-derived cells by their Hox-negative profile--a phenotype associated with enhanced capacity of tissue regeneration. We investigated whether developmental origin and Hox negativity correlated with self-renewal and environmental plasticity also in differentiated cells from adults. Using hyaline cartilage as a model, we showed that adult human neuroectoderm-derived nasal chondrocytes (NCs) can be constitutively distinguished from mesoderm-derived articular chondrocytes (ACs) by lack of expression of specific HOX genes, including HOXC4 and HOXD8. In contrast to ACs, serially cloned NCs could be continuously reverted from differentiated to dedifferentiated states, conserving the ability to form cartilage tissue in vitro and in vivo. NCs could also be reprogrammed to stably express Hox genes typical of ACs upon implantation into goat articular cartilage defects, directly contributing to cartilage repair. Our findings identify previously unrecognized regenerative properties of HOX-negative differentiated neuroectoderm cells in adults, implying a role for NCs in the unmet clinical challenge of articular cartilage repair. An ongoing phase 1 clinical trial preliminarily indicated the safety and feasibility of autologous NC-based engineered tissues for the treatment of traumatic articular cartilage lesions.
Collapse
Affiliation(s)
- Karoliina Pelttari
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Benjamin Pippenger
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Marcus Mumme
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Sandra Feliciano
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Celeste Scotti
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy
| | - Pierre Mainil-Varlet
- AGINKO Research AG, Route de l'ancienne Papeterie, P. O. Box 30, 1723 Marly, Switzerland
| | - Alfredo Procino
- Department of Medicine and Surgery, Federico II Medical School, Via S. Pansini 5, 80131 Napoli, Italy
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Equine Hospital, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | | | - Marcel Jakob
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Clemente Cillo
- Department of Medicine and Surgery, Federico II Medical School, Via S. Pansini 5, 80131 Napoli, Italy
| | - Andrea Barbero
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Ivan Martin
- Departments of Surgery and of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| |
Collapse
|