51
|
Gkoutsias A, Makis A. The role of epigenetics in childhood autoimmune diseases with hematological manifestations. Pediatr Investig 2022; 6:36-46. [PMID: 35382418 PMCID: PMC8960932 DOI: 10.1002/ped4.12309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
Autoimmune diseases with hematological manifestations are often characterized by chronicity and relapses despite treatment, and the underlying pathogenetic mechanisms remain unknown. Epigenetic alterations play a vital role in the deregulation of immune tolerance and the development of autoimmune diseases. In recent years, study of epigenetic mechanisms in both adult and childhood autoimmune disorders has been seeking to explain the pathophysiology of these heterogeneous diseases and to elucidate the interaction between genetic and environmental factors. Various mechanisms, including DNA methylation, histone modifications (chromatin remodeling), and noncoding RNAs (ncRNAs), have been studied extensively in the context of autoimmune diseases. This paper summarizes the epigenetic patterns in some of the most common childhood autoimmune disorders with hematological manifestations, based on epigenetic studies in children with primary immune thrombocytopenia (ITP), systemic lupus erythematosus (SLE), and juvenile idiopathic arthritis (JIA). Research findings indicate that methylation changes in genes expressed on T cells, modifications at a variety of histone sites, and alterations in the expression of several ncRNAs are involved in the pathogenesis of these diseases. These mechanisms not only determine the development of these diseases but also affect the severity of the clinical presentation and biochemical markers. Further studies will provide new tools for the prevention and diagnosis of childhood autoimmune disorders, and possible novel treatment options.
Collapse
Affiliation(s)
- Athanasios Gkoutsias
- Department of PediatricsFaculty of MedicineSchool of Health SciencesUniversity of IoanninaIoanninaGreece
| | - Alexandros Makis
- Department of PediatricsFaculty of MedicineSchool of Health SciencesUniversity of IoanninaIoanninaGreece
| |
Collapse
|
52
|
Ferreté-Bonastre AG, Cortés-Hernández J, Ballestar E. What can we learn from DNA methylation studies in lupus? Clin Immunol 2022; 234:108920. [PMID: 34973429 DOI: 10.1016/j.clim.2021.108920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022]
Abstract
During the past twenty years, a wide range of studies have established the existence of epigenetic alterations, particularly DNA methylation changes, in lupus. Epigenetic changes might have different contributions in children-onset versus adult-onset lupus. DNA methylation alterations have been identified and characterized in relation to disease activity and damage, different lupus subtypes and responses to drugs. However, to date there has been no practical application of these findings in the clinical milieu. In this article, we provide a review of key studies showing the relationship between DNA methylation and the many clinical aspects related to lupus. We also propose several options, in relation to the range of methodological developments and experimental design, that could optimize these findings and make them amenable for use in clinical practice.
Collapse
Affiliation(s)
| | | | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, 200241, China.
| |
Collapse
|
53
|
Afrasiabi A, Keane JT, Ong LTC, Alinejad-Rokny H, Fewings NL, Booth DR, Parnell GP, Swaminathan S. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus. J Autoimmun 2021; 127:102781. [PMID: 34952359 DOI: 10.1016/j.jaut.2021.102781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
To investigate the molecular mechanisms through which Epstein-Barr virus (EBV) may contribute to Systemic Lupus Erythematosus (SLE) pathogenesis, we interrogated SLE genetic risk loci for signatures of EBV infection. We first compared the gene expression profile of SLE risk genes across 459 different cell/tissue types. EBV-infected B cells (LCLs) had the strongest representation of highly expressed SLE risk genes. By determining an SLE risk allele effect on gene expression (expression quantitative trait loci, eQTL) in LCLs and 16 other immune cell types, we identified 79 SLE risk locus:gene pairs putatively interacting with EBV infection. A total of 10 SLE risk genes from this list (CD40, LYST, JAZF1, IRF5, BLK, IKZF2, IL12RB2, FAM167A, PTPRC and SLC15A) were targeted by the EBV transcription factor, EBNA2, differentially expressed between LCLs and B cells, and the majority were also associated with EBV DNA copy number, and expression level of EBV encoded genes. Our final gene network model based on these genes is suggestive of a nexus involving SLE risk loci and EBV latency III and B cell proliferation signalling pathways. Collectively, our findings provide further evidence to support the interaction between SLE risk loci and EBV infection that is in part mediated by EBNA2. This interplay may increase the tendency towards EBV lytic switching dependent on the presence of SLE risk alleles. These results support further investigation into targeting EBV as a therapeutic strategy for SLE.
Collapse
Affiliation(s)
- Ali Afrasiabi
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Jeremy Thomas Keane
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Lawrence T C Ong
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia; Health Data Analytics Program Leader, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney, 2109, Australia; Core Member of UNSW Data Science Hub, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Nicole Louise Fewings
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David Richmond Booth
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Grant Peter Parnell
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; Biomedical Informatics and Digital Health, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Sanjay Swaminathan
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia; Department of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
54
|
Jiang SH, Mercan S, Papa I, Moldovan M, Walters GD, Koina M, Fadia M, Stanley M, Lea-Henry T, Cook A, Ellyard J, McMorran B, Sundaram M, Thomson R, Canete PF, Hoy W, Hutton H, Srivastava M, McKeon K, de la Rúa Figueroa I, Cervera R, Faria R, D’Alfonso S, Gatto M, Athanasopoulos V, Field M, Mathews J, Cho E, Andrews TD, Kitching AR, Cook MC, Riquelme MA, Bahlo M, Vinuesa CG. Deletions in VANGL1 are a risk factor for antibody-mediated kidney disease. Cell Rep Med 2021; 2:100475. [PMID: 35028616 PMCID: PMC8714939 DOI: 10.1016/j.xcrm.2021.100475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
We identify an intronic deletion in VANGL1 that predisposes to renal injury in high risk populations through a kidney-intrinsic process. Half of all SLE patients develop nephritis, yet the predisposing mechanisms to kidney damage remain poorly understood. There is limited evidence of genetic contribution to specific organ involvement in SLE.1,2 We identify a large deletion in intron 7 of Van Gogh Like 1 (VANGL1), which associates with nephritis in SLE patients. The same deletion occurs at increased frequency in an indigenous population (Tiwi Islanders) with 10-fold higher rates of kidney disease compared with non-indigenous populations. Vangl1 hemizygosity in mice results in spontaneous IgA and IgG deposition within the glomerular mesangium in the absence of autoimmune nephritis. Serum transfer into B cell-deficient Vangl1+/- mice results in mesangial IgG deposition indicating that Ig deposits occur in a kidney-intrinsic fashion in the absence of Vangl1. These results suggest that Vangl1 acts in the kidney to prevent Ig deposits and its deficiency may trigger nephritis in individuals with SLE.
Collapse
Affiliation(s)
- Simon H. Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
- Department of Renal Medicine, The Canberra Hospital, Canberra 2605, Australia
| | - Sevcan Mercan
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Department of Bioengineering, Kafkas University, Kars 36100, Turkey
| | - Ilenia Papa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Max Moldovan
- Centre for Population Health Research, University of South Australia, South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5001, Australia
- Australian Institute of Health Innovation, Macquarie University, Sydney 2109, Australia
| | - Giles D. Walters
- Department of Renal Medicine, The Canberra Hospital, Canberra 2605, Australia
| | - Mark Koina
- Department of Pathology, The Canberra Hospital, Canberra 2605, Australia
| | - Mitali Fadia
- Department of Pathology, The Canberra Hospital, Canberra 2605, Australia
| | - Maurice Stanley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Tom Lea-Henry
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Amelia Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Julia Ellyard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Brendan McMorran
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Madhivanan Sundaram
- Department of Renal Medicine, Royal Darwin Hospital, Northern Territory 0811, Australia
| | - Russell Thomson
- Centre for Research in Mathematics and Data Science, School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta 2150, NSW, Australia
| | - Pablo F. Canete
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Wendy Hoy
- Centre for Chronic Disease, Faculty of Health, The University of Queensland, Brisbane 4029, QLD, Australia
| | - Holly Hutton
- Centre for Inflammatory Diseases, Monash University, Melbourne 3168, VIC, Australia
| | - Monika Srivastava
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
| | - Kathryn McKeon
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | | | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clinic, Barcelona 08036, Spain
| | - Raquel Faria
- Unidade de Imunologia Clinica, Centro Hospitalar Unisersitario do Porto, Porto 4099-001, Portugal
| | | | - Mariele Gatto
- Department of Rheumatology, University of Padova, Italy
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
| | - Matthew Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4870, QLD, Australia
| | - John Mathews
- School of Population and Global Health, University of Melbourne, Melbourne 3053, Australia
| | - Eun Cho
- Genome Informatics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
| | - Thomas D. Andrews
- Genome Informatics Laboratory, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Monash University, Melbourne 3168, VIC, Australia
- Departments Nephrology and Paediatric Nephrology. Monash Health, Melbourne 3168, Australia
| | - Matthew C. Cook
- Department of Immunology, The Canberra Hospital, Canberra 2605, Australia
| | - Marta Alarcon Riquelme
- Department of Medical Genomics, GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, 18016, Spain
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010 VIC, Australia
| | - Carola G. Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Canberra, Australian National University, Canberra 2601, Australia
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra 2601, Australia
- China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai 200001, China
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| |
Collapse
|
55
|
Tu TY, Yeh CY, Hung YM, Chang R, Chen HH, Wei JCC. Association Between a History of Nontyphoidal Salmonella and the Risk of Systemic Lupus Erythematosus: A Population-Based, Case-Control Study. Front Immunol 2021; 12:725996. [PMID: 34887848 PMCID: PMC8650632 DOI: 10.3389/fimmu.2021.725996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
Objective We investigated the correlation between nontyphoidal Salmonella (NTS) infection and systemic lupus erythematosus (SLE) risk. Methods This case-control study comprised 6,517 patients with newly diagnosed SLE between 2006 and 2013. Patients without SLE were randomly selected as the control group and were matched at a case-control ratio of 1:20 by age, sex, and index year. All study individuals were traced from the index date back to their NTS exposure, other relevant covariates, or to the beginning of year 2000. Conditional logistic regression analysis was used to analyze the risk of SLE with adjusted odds ratios (aORs) and 95% confidence intervals (CIs) between the NTS and control groups. Results The mean age was 37.8 years in the case and control groups. Females accounted for 85.5%. The aOR of having NTS infection were significantly increased in SLE relative to controls (aOR, 9.20; 95% CI, 4.51-18.78) in 1:20 sex-age matching analysis and (aOR, 7.47; 95% CI=2.08-26.82) in propensity score matching analysis. Subgroup analysis indicated that the SLE risk was high among those who dwelled in rural areas; had rheumatoid arthritis, multiple sclerosis, or Sjogren’s syndrome; and developed intensive and severe NTS infection during admission. Conclusions Exposure to NTS infection is associated with the development of subsequent SLE in Taiwanese individuals. Severe NTS infection and other autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, or Sjogren’s syndrome also contributed to the risk of developing SLE.
Collapse
Affiliation(s)
- Ting-Yu Tu
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chiu-Yu Yeh
- Department of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Min Hung
- College of Health and Nursing, Meiho University, Pingtung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal United Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Renin Chang
- Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsin-Hua Chen
- School of Medicine, National Yang Ming University, Taipei, Taiwan.,Division of Allergy, Immunology and Rheumatology, Division of General Internal Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Science and Rong Hsing Research Centre for Translational Medicine, Chung Hsing University, Taichung, Taiwan.,Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan.,Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Division of Allergy, and Institute of Medicine, Chung Shan, Medical University, Immunology and Rheumatology, Taichung, Taiwan
| |
Collapse
|
56
|
Woźniak E, Owczarczyk-Saczonek A, Placek W. Psychological Stress, Mast Cells, and Psoriasis-Is There Any Relationship? Int J Mol Sci 2021; 22:ijms222413252. [PMID: 34948049 PMCID: PMC8705845 DOI: 10.3390/ijms222413252] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Psoriasis vulgaris is a common inflammatory skin disease with still unknown pathogenesis. In recent years, genetic and environmental factors have been mentioned as the main causes. Among environmental factors, many researchers are trying to investigate the role of mental health and its importance in the development of many diseases. In the pathophysiology of psoriasis, the role of the interaction between the nervous, endocrine, and immune systems are often emphasized. So far, no one has clearly indicated where the pathological process begins. One of the hypotheses is that chronic stress influences the formation of hormonal changes (lowering the systemic cortisol level), which favors the processes of autoimmunity. In inflammatory skin conditions, mast cells (MCs) are localized close to blood vessels and peripheral nerves, where they probably play an important role in the response to environmental stimuli and emotional stress. They are usually connected with a fast immune response, not only in allergies but also a protective response to microbial antigens. Among many cells of the immune system, MCs have receptors for the hormones of the hypothalamic-pituitary-adrenal (HPA) axis on their surface. In this review, we will try to take a closer look at the role of MCs in the pathophysiology of psoriasis. This knowledge may give the opportunity to search for therapeutic solutions.
Collapse
|
57
|
Alexander T, Hedrich CM. Systemic lupus erythematosus - Are children miniature adults? Clin Immunol 2021; 234:108907. [PMID: 34890808 DOI: 10.1016/j.clim.2021.108907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune/inflammatory disease that can affect any organ system and cause significant damage and organ failure. Disease-onset during childhood (juvenile-onset SLE) is associated with less typical autoantibody patterns, diffuse organ involvement, more damage already at diagnoses, and a higher need of immunomodulating treatment, including corticosteroids, when compared to adult-onset SLE. Differences in the molecular pathophysiology within SLE, and over-representation of patients with "genetic SLE" contribute to differences in clinical presentation and treatment responses between children and adults. This manuscript summarizes currently available literature focusing on parallels and differences between clinical pictures, known pathomechanisms, and available treatment options in juvenile- versus adult-onset SLE.
Collapse
Affiliation(s)
- Tobias Alexander
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, 10117 Berlin, Germany; Deutsches Rheuma-Forschungszentrum (DRFZ Berlin), ein Leibniz Institute, 10117 Berlin, Germany
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Live Course and Medical Sciences, University of Liverpool, Liverpool, UK; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
58
|
Marion MC, Ramos PS, Bachali P, Labonte AC, Zimmerman KD, Ainsworth HC, Heuer SE, Robl RD, Catalina MD, Kelly JA, Howard TD, Lipsky PE, Grammer AC, Langefeld CD. Nucleic Acid-Sensing and Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus and Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and Drug Targeting. Genes (Basel) 2021; 12:genes12121898. [PMID: 34946847 PMCID: PMC8701117 DOI: 10.3390/genes12121898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic factors are a significant contributor to SLE risk and may be informative for identifying pathogenic mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background, we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE. Results were replicated on the same array in four cell types from a set of four Danish female MZ twin pairs discordant for SLE. Genes implicated by the epigenetic analyses were then evaluated in 10 independent SLE gene expression datasets from the Gene Expression Omnibus (GEO). There were 59 differentially methylated loci between unaffected and affected MZ twins in whole blood, including 11 novel loci. All but two of these loci were hypomethylated in the SLE twins relative to the unaffected twins. The genes harboring these hypomethylated loci exhibited increased expression in multiple independent datasets of SLE patients. This pattern was largely consistent regardless of disease activity, cell type, or renal tissue type. The genes proximal to CpGs exhibiting differential methylation (DM) in the SLE-discordant MZ twins and exhibiting differential expression (DE) in independent SLE GEO cohorts (DM-DE genes) clustered into two pathways: the nucleic acid-sensing pathway and the type I interferon pathway. The DM-DE genes were also informatically queried for potential gene–drug interactions, yielding a list of 41 drugs including a known SLE therapy. The DM-DE genes delineate two important biologic pathways that are not only reflective of the heterogeneity of SLE but may also correlate with distinct IFN responses that depend on the source, type, and location of nucleic acid molecules and the activated receptors in individual patients. Cell- and tissue-specific analyses will be critical to the understanding of genetic factors dysregulating the nucleic acid-sensing and IFN pathways and whether these factors could be appropriate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Miranda C. Marion
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (M.C.M.); (H.C.A.)
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Paula S. Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Prathyusha Bachali
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Adam C. Labonte
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Hannah C. Ainsworth
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (M.C.M.); (H.C.A.)
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Sarah E. Heuer
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
- The Jackson Laboratory, Tufts Graduate School of Biomedical Sciences, Bar Harbor, ME 04609, USA
| | - Robert D. Robl
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Michelle D. Catalina
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Timothy D. Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Peter E. Lipsky
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Amrie C. Grammer
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (M.C.M.); (H.C.A.)
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Correspondence:
| |
Collapse
|
59
|
Abstract
Systemic lupus erythematosus (SLE) is a systemic inflammatory disease that can affect any organ of the human body and cause significant damage. As compared to patients with adult-onset SLE, children and young people (juvenile SLE) more frequently experience extensive diffuse organ involvement, more organ damage at diagnoses, and resistance to immunomodulatory treatment. This manuscript emphasizes parallels and differences between the clinical pictures, known pathomechanisms, and available treatment options of juvenile and adult-onset SLE.
Collapse
|
60
|
Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol 2021; 44:29-46. [PMID: 34731289 DOI: 10.1007/s00281-021-00900-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a polygenic chronic autoimmune disease leading to multiple organ damage. A large heritability of up to 66% is estimated in SLE, with roughly 180 reported susceptibility loci that have been identified mostly by genome-wide association studies (GWASs) and account for approximately 30% of genetic heritability. A vast majority of risk variants reside in non-coding regions, which makes it quite challenging to interpret their functional implications in the SLE-affected immune system, suggesting the importance of understanding cell type-specific epigenetic regulation around SLE GWAS variants. The latest genetic studies have been highly fruitful as several dozens of SLE loci were newly discovered in the last few years and many loci have come to be understood in systemic approaches integrating GWAS signals with other biological resources. In this review, we summarize SLE-associated genetic variants in both the major histocompatibility complex (MHC) and non-MHC loci, examining polygenetic risk scores for SLE and their associations with clinical features. Finally, variant-driven pathogenetic functions underlying genetic associations are described, coupled with discussion about challenges and future directions in genetic studies on SLE.
Collapse
Affiliation(s)
- Eunji Ha
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea. .,Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea.
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea. .,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
61
|
Wood RA, Guthridge L, Thurmond E, Guthridge CJ, Kheir JM, Bourn RL, Wagner CA, Chen H, DeJager W, Macwana SR, Kamp S, Lu R, Arriens C, Chakravarty EF, Thanou A, Merrill JT, Guthridge JM, James JA. Serologic markers of Epstein-Barr virus reactivation are associated with increased disease activity, inflammation, and interferon pathway activation in patients with systemic lupus erythematosus. J Transl Autoimmun 2021; 4:100117. [PMID: 35005588 PMCID: PMC8716608 DOI: 10.1016/j.jtauto.2021.100117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
SLE is a clinically heterogeneous disease characterized by an unpredictable relapsing-remitting disease course. Although the etiology and mechanisms of SLE flares remain elusive, Epstein-Barr virus (EBV) reactivation is implicated in SLE pathogenesis. This study examined the relationships between serological measures of EBV reactivation, disease activity, and interferon (IFN)-associated immune pathways in SLE patients. Sera from adult SLE patients (n = 175) and matched unaffected controls (n = 47) were collected and tested for antibodies against EBV-viral capsid antigen (EBV-VCA; IgG and IgA), EBV-early antigen (EBV-EA; IgG), cytomegalovirus (CMV; IgG), and herpes simplex virus (HSV-1; IgG). Serological evidence of EBV reactivation was more common in SLE patients compared to controls as demonstrated by seropositivity to EBV-EA IgG (39% vs 13%; p = 0.0011) and EBV-VCA IgA (37% vs 17%; p = 0.018). EBV-VCA, CMV1, and HSV-1 IgG seropositivity rates did not differ between SLE patients and controls. Furthermore, concentrations of EBV-VCA (IgG and IgA) and EBV-EA (IgG) were higher in SLE patients. SLE patients with high disease activity had increased concentrations of EBV-VCA IgA (mean ISR 1.34 vs. 0.97; p = 0.041) and EBV-EA IgG levels (mean ISR 1.38 vs. 0.90; p = 0.007) compared with those with lower disease activity. EBV reactivation was associated with enhanced levels of the IFN-associated molecule IP-10 (p < 0.001) and the soluble mediators BLyS (p < 0.001) and IL-10 (p = 0.0011). In addition, EBV-EA IgG responses were enriched in two previously defined patient clusters with robust expression of IFN and inflammatory or lymphoid and monocyte responses. Patients in these clusters were also more likely to have major organ involvement, such as renal disease. This study supports a possible role for EBV reactivation in SLE disease activity.
Collapse
Affiliation(s)
- Rebecca A. Wood
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Lauren Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Emma Thurmond
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Carla J. Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joseph M. Kheir
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rebecka L. Bourn
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Catriona A. Wagner
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Hua Chen
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Wade DeJager
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Susan R. Macwana
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Stan Kamp
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rufei Lu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cristina Arriens
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Eliza F. Chakravarty
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Aikaterini Thanou
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joan T. Merrill
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
62
|
Abstract
The term "epigenetics" refers to a series of meiotically/mitotically inheritable alterations in gene expression, related to environmental factors, without disruption on DNA sequences of bases. Recently, the pathophysiology of autoimmune diseases (ADs) has been closely linked to epigenetic modifications. Actually, epigenetic mechanisms can modulate gene expression or repression of targeted cells and tissues involved in autoimmune/inflammatory conditions acting as keys effectors in regulation of adaptive and innate responses. ADs, as systemic lupus erythematosus (SLE), a rare disease that still lacks effective treatment, is characterized by epigenetic marks in affected cells.Taking into account that epigenetic mechanisms have been proposed as a winning strategy in the search of new more specific and personalized therapeutics agents. Thus, pharmacology and pharmacoepigenetic studies about epigenetic regulations of ADs may provide novel individualized therapies. Focussing in possible implicated factors on development and predisposition of SLE, diet is feasibly one of the most important factors since it is linked directly to epigenetic alterations and these epigenetic changes may augment or diminish the risk of SLE. Nevertheless, several studies have guaranteed that dietary therapy could be a promise to SLE patients via prophylactic actions deprived of side effects of pharmacology, decreasing co-morbidities and improving lifestyle of SLE sufferers.Herein, we review and discuss the cross-link between epigenetic mechanisms on SLE predisposition and development, as well as the influence of dietary factors on regulation epigenetic modifications that would eventually make a positive impact on SLE patients.
Collapse
|
63
|
Chen L, Wang YF, Liu L, Bielowka A, Ahmed R, Zhang H, Tombleson P, Roberts AL, Odhams CA, Cunninghame Graham DS, Zhang X, Yang W, Vyse TJ, Morris DL. Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity. Hum Mol Genet 2021; 29:1745-1756. [PMID: 32077931 PMCID: PMC7322569 DOI: 10.1093/hmg/ddaa030] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Using three European and two Chinese genome-wide association studies (GWAS), we investigated the performance of genetic risk scores (GRSs) for predicting the susceptibility and severity of systemic lupus erythematosus (SLE), using renal disease as a proxy for severity. We used four GWASs to test the performance of GRS both cross validating within the European population and between European and Chinese populations. The performance of GRS in SLE risk prediction was evaluated by receiver operating characteristic (ROC) curves. We then analyzed the polygenic nature of SLE statistically. We also partitioned patients according to their age-of-onset and evaluated the predictability of GRS in disease severity in each age group. We found consistently that the best GRS in the prediction of SLE used SNPs associated at the level of P < 1e−05 in all GWAS data sets and that SNPs with P-values above 0.2 were inflated for SLE true positive signals. The GRS results in an area under the ROC curve ranging between 0.64 and 0.72, within European and between the European and Chinese populations. We further showed a significant positive correlation between a GRS and renal disease in two independent European GWAS (Pcohort1 = 2.44e−08; Pcohort2 = 0.00205) and a significant negative correlation with age of SLE onset (Pcohort1 = 1.76e−12; Pcohort2 = 0.00384). We found that the GRS performed better in the prediction of renal disease in the ‘later onset’ compared with the ‘earlier onset’ group. The GRS predicts SLE in both European and Chinese populations and correlates with poorer prognostic factors: young age-of-onset and lupus nephritis.
Collapse
Affiliation(s)
- Lingyan Chen
- Department of Medical and Molecular Genetics, King's College London, London, UK.,MRC/BHF Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Lu Liu
- Department of Dermatology, NO. 1 Hospital, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Adrianna Bielowka
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Rahell Ahmed
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Huoru Zhang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Phil Tombleson
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Amy L Roberts
- Department of Medical and Molecular Genetics, King's College London, London, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | | | - Xuejun Zhang
- Department of Dermatology, NO. 1 Hospital, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Huashan Hospital of Fudan University, Shanghai, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - David L Morris
- Department of Medical and Molecular Genetics, King's College London, London, UK
| |
Collapse
|
64
|
Lea-Henry TN, Chuah A, Stanley M, Athanasopoulos V, Starkey MR, Christiadi D, Kitching AR, Cook MC, Andrews TD, Vinuesa CG, Walters GD, Jiang SH. Increased burden of rare variants in genes of the endosomal Toll-like receptor pathway in patients with systemic lupus erythematosus. Lupus 2021; 30:1756-1763. [PMID: 34266320 DOI: 10.1177/09612033211033979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To compare the frequency of rare variants in genes of the pathophysiologically relevant endosomal Toll-like receptor (eTLR) pathway and any quantifiable differences in variant rarity, predicted deleteriousness, or molecular proximity in patients with systemic lupus erythematosus (SLE) and healthy controls. PATIENTS AND METHODS 65 genes associated with the eTLR pathway were identified by literature search and pathway analysis. Using next generation sequencing techniques, these were compared in two randomised cohorts of patients with SLE (n = 114 and n = 113) with 197 healthy controls. Genetically determined ethnicity was used to normalise minor allele frequencies (MAF) for the identified genetic variants and these were then compared by their frequency: rare (MAF < 0.005), uncommon (MAF 0.005-0.02), and common (MAF >0.02). This was compared to the results for 65 randomly selected genes. RESULTS Patients with SLE are more likely to carry a rare nonsynonymous variant affecting proteins within the eTLR pathway than healthy controls. Furthermore, individuals with SLE are more likely to have multiple rare variants in this pathway. There were no differences in rarity, Combined Annotation Dependent Depletion (CADD) score, or molecular proximity for rare eTLR pathway variants. CONCLUSIONS Rare non-synonymous variants are enriched in patients with SLE in the eTLR pathway. This supports the hypothesis that SLE arises from several rare variants of relatively large effect rather than many common variants of small effect.
Collapse
Affiliation(s)
- Tom N Lea-Henry
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Aaron Chuah
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Maurice Stanley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Daniel Christiadi
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia
| | - A Richard Kitching
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,Centre for Inflammatory Diseases, 439191Monash University Department of Medicine, Monash University Department of Medicine, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia.,Department of Paediatric Nephrology. Monash Health, Clayton, VIC, Australia
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China
| | - Thomas D Andrews
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China
| | - Giles D Walters
- Department of Renal Medicine, 34381Canberra Hospital, The Canberra Hospital, Garran, ACT, Australia
| | - Simon H Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China.,Department of Renal Medicine, 34381Canberra Hospital, The Canberra Hospital, Garran, ACT, Australia
| |
Collapse
|
65
|
Trindade VC, Carneiro-Sampaio M, Bonfa E, Silva CA. An Update on the Management of Childhood-Onset Systemic Lupus Erythematosus. Paediatr Drugs 2021; 23:331-347. [PMID: 34244988 PMCID: PMC8270778 DOI: 10.1007/s40272-021-00457-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Childhood-onset systemic lupus erythematosus (cSLE) is a prototype of a multisystemic, inflammatory, heterogeneous autoimmune condition. This disease is characterized by simultaneous or sequential organ and system involvement, with unpredictable flare and high levels of morbidity and mortality. Racial/ethnic background, socioeconomic status, cost of medications, difficulty accessing health care, and poor adherence seem to impact lupus outcomes and treatment response. In this article, the management of cSLE patients is updated. Regarding pathogenesis, a number of potential targets for drugs have been studied. However, most treatments in pediatric patients are off-label drugs with recommendations based on inadequately powered studies, therapeutic consensus guidelines, or case series. Management practices for cSLE patients include evaluations of disease activity and cumulative damage scores, routine non-live vaccinations, physical activity, and addressing mental health issues. Antimalarials and glucocorticoids are still the most common drugs used to treat cSLE, and hydroxychloroquine is recommended for nearly all cSLE patients. Disease-modifying antirheumatic drugs (DMARDs) should be standardized for each patient, based on disease flare and cSLE severity. Mycophenolate mofetil or intravenous cyclophosphamide is suggested as induction therapy for lupus nephritis classes III and IV. Calcineurin inhibitors (cyclosporine, tacrolimus, voclosporin) appear to be another good option for cSLE patients with lupus nephritis. Regarding B-cell-targeting biologic agents, rituximab may be used for refractory lupus nephritis patients in combination with another DMARD, and belimumab was recently approved by the US Food and Drug Administration for cSLE treatment in children aged > 5 years. New therapies targeting CD20, such as atacicept and telitacicept, seem to be promising drugs for SLE patients. Anti-interferon therapies (sifalimumab and anifrolumab) have shown beneficial results in phase II randomized control trials in adult SLE patients, as have some Janus kinase inhibitors, and these could be alternative treatments for pediatric patients with severe interferon-mediated inflammatory disease in the future. In addition, strict control of proteinuria and blood pressure is required in cSLE, especially with angiotensin-converting enzyme inhibitor and angiotensin receptor blocker use.
Collapse
Affiliation(s)
- Vitor Cavalcanti Trindade
- Children and Adolescent Institute, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Children and Adolescent Institute, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Eloisa Bonfa
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647, Cerqueira César, São Paulo, SP, 05403-000, Brazil
| | - Clovis Artur Silva
- Children and Adolescent Institute, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil.
- Rheumatology Division, Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 647, Cerqueira César, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
66
|
DNA glycosylase deficiency leads to decreased severity of lupus in the Polb-Y265C mouse model. DNA Repair (Amst) 2021; 105:103152. [PMID: 34186496 DOI: 10.1016/j.dnarep.2021.103152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The Polb gene encodes DNA polymerase beta (Pol β), a DNA polymerase that functions in base excision repair (BER) and microhomology-mediated end-joining. The Pol β-Y265C protein exhibits low catalytic activity and fidelity, and is also deficient in microhomology-mediated end-joining. We have previously shown that the PolbY265C/+ and PolbY265C/C mice develop lupus. These mice exhibit high levels of antinuclear antibodies and severe glomerulonephritis. We also demonstrated that the low catalytic activity of the Pol β-Y265C protein resulted in accumulation of BER intermediates that lead to cell death. Debris released from dying cells in our mice could drive development of lupus. We hypothesized that deletion of the Neil1 and Ogg1 DNA glycosylases that act upstream of Pol β during BER would result in accumulation of fewer BER intermediates, resulting in less severe lupus. We found that high levels of antinuclear antibodies are present in the sera of PolbY265C/+ mice deleted of Ogg1 and Neil1 DNA glycosylases. However, these mice develop significantly less severe renal disease, most likely due to high levels of IgM in their sera.
Collapse
|
67
|
miR-183-5p Is a Potential Molecular Marker of Systemic Lupus Erythematosus. J Immunol Res 2021; 2021:5547635. [PMID: 34036107 PMCID: PMC8124875 DOI: 10.1155/2021/5547635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Objective To investigate microRNA (miRNA) expression profiles in individuals with systemic lupus erythematosus (SLE) and identify the valuable miRNA biomarkers in diagnosing and monitoring SLE. Methods Next-generation sequencing (NGS) was performed to assess miRNA amounts in peripheral blood mononuclear cells (PBMCs) from four SLE cases and four healthy controls. Quantitative polymerase chain reaction (qPCR) was carried out for validating candidate miRNAs in 32 SLE cases and 32 healthy controls. In addition, receiver operating characteristic (ROC) curve analysis was completed to evaluate diagnostic performance. Finally, the associations of candidate miRNAs with various characteristics of SLE were analyzed. Results A total of 157 miRNAs were upregulated, and 110 miRNAs were downregulated in PBMCs from SLE cases in comparison to healthy controls, of which the increase of miR-183-5p and decrease of miR-374b-3p were validated by qPCR and both showed good diagnostic performance for SLE diagnosis. Besides, miR-183-5p expression levels displayed a positive association with SLE disease activity index (SLEDAI) and anti-dsDNA antibody amounts. Conclusion Our data indicated that miR-183-5p is a promising biomarker of SLE.
Collapse
|
68
|
Dai R, Wang Z, Ahmed SA. Epigenetic Contribution and Genomic Imprinting Dlk1-Dio3 miRNAs in Systemic Lupus Erythematosus. Genes (Basel) 2021; 12:680. [PMID: 34062726 PMCID: PMC8147206 DOI: 10.3390/genes12050680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that afflicts multiple organs, especially kidneys and joints. In addition to genetic predisposition, it is now evident that DNA methylation and microRNAs (miRNAs), the two major epigenetic modifications, are critically involved in the pathogenesis of SLE. DNA methylation regulates promoter accessibility and gene expression at the transcriptional level by adding a methyl group to 5' cytosine within a CpG dinucleotide. Extensive evidence now supports the importance of DNA hypomethylation in SLE etiology. miRNAs are small, non-protein coding RNAs that play a critical role in the regulation of genome expression. Various studies have identified the signature lupus-related miRNAs and their functional contribution to lupus incidence and progression. In this review, the mutual interaction between DNA methylation and miRNAs regulation in SLE is discussed. Some lupus-associated miRNAs regulate DNA methylation status by targeting the DNA methylation enzymes or methylation pathway-related proteins. On the other hand, DNA hyper- and hypo-methylation are linked with dysregulated miRNAs expression in lupus. Further, we specifically discuss the genetic imprinting Dlk1-Dio3 miRNAs that are subjected to DNA methylation regulation and are dysregulated in several autoimmune diseases, including SLE.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| | | | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine (VMCVM), Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
69
|
Nashi RA, Shmerling RH. Antinuclear Antibody Testing for the Diagnosis of Systemic Lupus Erythematosus. Med Clin North Am 2021; 105:387-396. [PMID: 33589110 DOI: 10.1016/j.mcna.2020.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory condition that may involve multiple organ systems. Although the antinuclear antibody (ANA) test is positive in nearly every case of SLE, it is not specific for this disease and must be interpreted in the appropriate clinical context. Key features that warrant ANA testing include unexplained multisystem inflammatory disease, symmetric joint pain with inflammatory features, photosensitive rash, and cytopenias. ANA staining patterns and more specific autoantibody testing may be helpful in diagnosis of suspected SLE or ANA-associated disease. For patients with nonspecific symptoms, such as malaise and fatigue, ANA testing is of limited value.
Collapse
Affiliation(s)
- Rand A Nashi
- Division of Rheumatology, Beth Israel Deaconess Medical Center, 110 Francis Street, Suite 4B, Boston, MA 02215, USA
| | - Robert H Shmerling
- Division of Rheumatology, Beth Israel Deaconess Medical Center, 110 Francis Street, Suite 4B, Boston, MA 02215, USA; Harvard Health Publications, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
70
|
Paraschou V, Chaitidis N, Papadopoulou Z, Theocharis P, Siolos P, Festas C. Association of systemic lupus erythematosus with hearing loss: a systemic review and meta-analysis. Rheumatol Int 2021; 41:681-689. [PMID: 33533981 DOI: 10.1007/s00296-021-04788-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/12/2021] [Indexed: 11/24/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that can affect virtually any organ, including middle and/or inner ear. The objective of the current systematic review and meta-analysis was to investigate the association of SLE with the different subtypes of hearing loss. This systematic review and meta-analysis was conducted in agreement with the PRISMA guidelines. The review protocol was registered in the PROSPERO international prospective register of systematic reviews ( https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=216353 ). A random effects model meta-analysis was carried out while heterogeneity was appraised by I2. Subgroup analysis and sensitivity analysis were also performed. Nine studies comprising 7,654 SLE patients and 37,244 controls were included in this systematic review. Four of them were rated to a moderate rate of bias, while five of them were rated to a low rate of bias. SLE patients had significantly increased odds of sensorineural hearing loss (SNHL) compared with controls (OR 2.31; 95%CI 1.48-3.60; I2 = 0). SLE patients did not have significantly increased odds of Conductive Hearing Loss (CHL) (OR 1.30; 95% CI 0.23-7.45; I2 = 0). Only one study reported on the outcome of Mixed Hearing Loss (MHL) (3 events in SLE group vs. 0 events in control group). Subgroup analysis, based on study design and detection method of hearing loss also showed significantly increased odds of SNHL in SLE patients. The significantly increased odds of SNHL in SLE persisted even after sensitivity analysis. In conclusion, SLE is significantly associated with SNHL; SLE is not associated with CHL, while, due to lack of data, we could not reach a conclusion regarding the odds of MHL in SLE patients. Pure tone audiometry as a screening test and follow-up test in SLE patients could be of essence. Management and prognosis of hearing loss in SLE patients should be discussed.
Collapse
Affiliation(s)
| | | | - Zoi Papadopoulou
- 3rd Department of Pediatrics, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Pavlos Siolos
- 1st Department of Pediatrics, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalampos Festas
- Department of Otorhinolaryngology, 401 General Military Hospital of Athens, Athens, Greece
| |
Collapse
|
71
|
Fanouriakis A, Tziolos N, Bertsias G, Boumpas DT. Update οn the diagnosis and management of systemic lupus erythematosus. Ann Rheum Dis 2021; 80:14-25. [PMID: 33051219 DOI: 10.1136/annrheumdis-2020-218272] [Citation(s) in RCA: 403] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Clinical heterogeneity, unpredictable course and flares are characteristics of systemic lupus erythematosus (SLE). Although SLE is-by and large-a systemic disease, occasionally it can be organ-dominant, posing diagnostic challenges. To date, diagnosis of SLE remains clinical with a few cases being negative for serologic tests. Diagnostic criteria are not available and classification criteria are often used for diagnosis, yet with significant caveats. Newer sets of criteria (European League Against Rheumatism (EULAR)/American College of Rheumatology (ACR) 2019) enable earlier and more accurate classification of SLE. Several disease endotypes have been recognised over the years. There is increased recognition of milder cases at presentation, but almost half of them progress overtime to more severe disease. Approximately 70% of patients follow a relapsing-remitting course, the remaining divided equally between a prolonged remission and a persistently active disease. Treatment goals include long-term patient survival, prevention of flares and organ damage, and optimisation of health-related quality of life. For organ-threatening or life-threatening SLE, treatment usually includes an initial period of high-intensity immunosuppressive therapy to control disease activity, followed by a longer period of less intensive therapy to consolidate response and prevent relapses. Management of disease-related and treatment-related comorbidities, especially infections and atherosclerosis, is of paramount importance. New disease-modifying conventional and biologic agents-used alone, in combination or sequentially-have improved rates of achieving both short-term and long-term treatment goals, including minimisation of glucocorticoid use.
Collapse
MESH Headings
- Anemia, Hemolytic, Autoimmune/physiopathology
- Anemia, Hemolytic, Autoimmune/therapy
- Antibodies, Monoclonal, Humanized/therapeutic use
- Autoantibodies/immunology
- Azathioprine/therapeutic use
- Calcineurin Inhibitors/therapeutic use
- Cardiovascular Diseases/epidemiology
- Cyclophosphamide/therapeutic use
- Disease Management
- Female
- Glucocorticoids/therapeutic use
- Heart Valve Diseases/physiopathology
- Heart Valve Diseases/therapy
- Humans
- Hydroxychloroquine/therapeutic use
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/therapy
- Immunosuppressive Agents/therapeutic use
- Lupus Erythematosus, Systemic/diagnosis
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/physiopathology
- Lupus Erythematosus, Systemic/therapy
- Lupus Nephritis/physiopathology
- Lupus Nephritis/therapy
- Lupus Vasculitis, Central Nervous System/physiopathology
- Lupus Vasculitis, Central Nervous System/therapy
- Macrophage Activation Syndrome/physiopathology
- Macrophage Activation Syndrome/therapy
- Methotrexate/therapeutic use
- Mycophenolic Acid/therapeutic use
- Myocarditis/physiopathology
- Myocarditis/therapy
- Outcome Assessment, Health Care
- Pericarditis/physiopathology
- Pericarditis/therapy
- Phenotype
- Pregnancy
- Pregnancy Complications/epidemiology
- Pregnancy Complications/physiopathology
- Pregnancy Complications/therapy
- Prognosis
- Purpura, Thrombocytopenic, Idiopathic/physiopathology
- Purpura, Thrombocytopenic, Idiopathic/therapy
- Quality of Life
- Recurrence
- Rituximab/therapeutic use
- Severity of Illness Index
- Survival Rate
- Uterine Cervical Neoplasms/epidemiology
Collapse
Affiliation(s)
| | - Nikolaos Tziolos
- 4th Department of Internal Medicine, "Attikon" University Hospital, Athens, Greece
| | - George Bertsias
- Rheumatology, Clinical Immunology and Allergy, University of Crete School of Medicine, Iraklio, Crete, Greece
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Crete, Greece
| | - Dimitrios T Boumpas
- 4th Department of Internal Medicine, "Attikon" University Hospital, Athens, Greece
- Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Medical School, University of Cyprus, Nicosia, Cyprus
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Cyprus
| |
Collapse
|
72
|
Peng B, Temple BR, Yang J, Geng S, Culton DA, Qian Y. Identification of a primary antigenic target of epitope spreading in endemic pemphigus foliaceus. J Autoimmun 2021; 116:102561. [PMID: 33158670 PMCID: PMC7770069 DOI: 10.1016/j.jaut.2020.102561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
Epitope spreading is an important mechanism for the development of autoantibodies (autoAbs) in autoimmune diseases. The study of epitope spreading in human autoimmune diseases is limited due to the major challenge of identifying the initial/primary target epitopes on autoantigens in autoimmune diseases. We have been studying the development of autoAbs in an endemic human autoimmune disease, Brazilian pemphigus foliaceus (or Fogo Selvagem (FS)). Our previous findings demonstrated that patients before (i.e. preclinical) and at the onset of FS have antibody (Ab) responses against other keratinocyte adhesion molecules in addition to the main target autoantigen of FS, desmoglein 1 (Dsg1), and anti-Dsg1 monoclonal Abs (mAbs) cross-reacted with an environmental antigen LJM11, a sand fly saliva protein. Since sand fly is prevalent in FS endemic regions, individuals in these regions could develop Abs against LJM11. The anti-LJM11 Abs could recognize different epitopes on LJM11, including an epitope that shares the structure similarity with an epitope on Dsg1 autoantigen. Thus, Ab response against this epitope on LJM11 could be the initial autoAb response detected in individuals in FS endemic regions, including those who eventually developed FS. Accordingly, this LJM11 and Dsg1 cross-reactive epitope on Dsg1 could be the primary target of the autoimmune response in FS. This investigation aimed to determine whether the autoAb responses against keratinocyte adhesion molecules are linked and originate from the immune response to LJM11. The anti-Dsg1 mAbs from preclinical FS and FS individuals were employed to determine their specificity or cross-reactivity to LJM11 and keratinocyte adhesion molecules. The cross-reactive epitopes on autoantigens were mapped. Our results indicate that all tested mAbs cross-reacted with LJM11 and keratinocyte adhesion molecules, and we identified an epitope on these keratinocyte adhesion molecules which is mimicked by LJM11. Thus, the cross-reactivity could be the mechanism by which the immune response against an environmental antigen triggers the initial autoAb responses. Epitope spreading leads to the pathogenic autoAb development and ensuing FS among genetically susceptible individuals.
Collapse
Affiliation(s)
- Bin Peng
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brenda R Temple
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; R.L. Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinsheng Yang
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Songmei Geng
- Department of Dermatology, Northwest Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Donna A Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Qian
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
73
|
Pakzad B, Shirpour R, Mousavi M, Karimzadeh H, Salehi A, Kazemi M, Amini G, Akbari M, Salehi R. C1QTNF4 gene p.His198Gln mutation is correlated with early-onset systemic lupus erythematosus in Iranian patients. Int J Rheum Dis 2020; 23:1594-1598. [PMID: 33009720 DOI: 10.1111/1756-185x.13981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease with multifactorial etiology. Several studies show that genetic factors have an important part in the incidence of SLE. The C1QTNF4 gene is involved in the regulation of the inflammatory pathways by pro-inflammatory function. In the present study, we have evaluated the association between C1QTNF4 gene p.His198Gln mutation and risk of SLE. METHODS Forty SLE patients and 40 control subjects were recruited in this case-control study. Genotyping of C1QTNF4 p.His198Gln mutation was performed using real-time polymerase chain reaction high resolution melting method. RESULTS We found a significant association between this mutation (GG + GC) with the risk of SLE (odds ratio = 6.33, 95% CI = 1.28-31.11). Furthermore, we observed that in the patient group, this mutation leads to early-onset SLE (19.7 ± 4.34 years for mutation carriers compared to 27.7 ± 11.4 years for wild type carriers; P = .003). CONCLUSION Our results suggest that this mutation (p.His198Gln) potentially has an important role in SLE risk in the Iranian population.
Collapse
Affiliation(s)
- Bahram Pakzad
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Reza Shirpour
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Maryam Mousavi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hadi Karimzadeh
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Amirhossein Salehi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Mehdi Kazemi
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Guilda Amini
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Akbari
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
74
|
Tocut M, Shoenfeld Y, Zandman-Goddard G. Systemic lupus erythematosus: an expert insight into emerging therapy agents in preclinical and early clinical development. Expert Opin Investig Drugs 2020; 29:1151-1162. [PMID: 32755494 DOI: 10.1080/13543784.2020.1807004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a chronic disease that is potentially fatal. There is no cure for SLE and the medications used are associated with toxic side effects. In the era of revolutionary emerging novel biologic agents, the design and investigation of targeted therapy for these patients is necessary. Novel therapies under investigation in phase II-III clinical trials showed promising results. Therapies can target various pathways involved in SLE including cytokines, signal transduction inhibitors, B-cell depletion and interference with co-stimulation. Of interest is the proof of concept of sequential therapy. AREAS COVERED We performed an extensive literature search via PubMed, Medline, Elsevier Science and Springer Link databases between the years 2014-2020 using the following terms: SLE, novel treatments. We have reviewed 232 articles and selected those articles that (i) focus on phase II-III emerging therapies and (ii) offer new findings from existing therapies, which reveal breakthrough concepts in SLE treatment. EXPERT OPINION It is still difficult to crack the puzzle of a successful SLE treatment approach. New strategies with potential may encompass the targeting of more than one protein. Another way forward is to identify each SLE patient and personalize therapy by clinical manifestations, disease activity, serology and activated protein.
Collapse
Affiliation(s)
- Milena Tocut
- Department of Internal Medicine C, Wolfson Medical Center , Holon, Israel.,Sackler Faculty of Medicine, Tel-Aviv University , Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel-Aviv University , Tel Aviv, Israel.,Center for Autoimmune Diseases, Sheba Medical Center , Ramat Gan, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | - Gisele Zandman-Goddard
- Department of Internal Medicine C, Wolfson Medical Center , Holon, Israel.,Sackler Faculty of Medicine, Tel-Aviv University , Tel Aviv, Israel
| |
Collapse
|
75
|
Zhang F, Wang YF, Zhang Y, Lin Z, Cao Y, Zhang H, Liu ZY, Morris DL, Sheng Y, Cui Y, Zhang X, Vyse TJ, Lau YL, Yang W, Chen Y. Independent Replication on Genome-Wide Association Study Signals Identifies IRF3 as a Novel Locus for Systemic Lupus Erythematosus. Front Genet 2020; 11:600. [PMID: 32719713 PMCID: PMC7348047 DOI: 10.3389/fgene.2020.00600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease. Despite the significant progress made in identifying susceptibility genes for SLE, the genetic architecture of the disease is far from being understood. In this study, we set to replicate a number of suggestive association signals found in genome-wide association studies (GWASs) in additional independent cohorts. Replication studies were performed on Han Chinese cohorts from Hong Kong and Anhui, involving a total of 2,269 cases and 5,073 controls. We identified a missense variant in IRF3 (rs7251) reaching genome-wide significance through a joint analysis of GWAS and replication data (OR = 0.876, P = 4.40E-08). A significant correlation was observed between rs7251 and lupus nephritis (LN) by subphenotype stratification (OR = 0.785, P = 0.0128). IRF3 is a key molecule in type I interferon production upon nucleic acid antigen stimulations and may inhibit regulatory T cell differentiation. Further elucidation of the mechanism of this association could help us better understand the pathogenesis of SLE.
Collapse
Affiliation(s)
- Feixia Zhang
- Department of Pediatrics, Union Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Shenzhen Futian Hospital for Rheumatic Disease, Shenzhen, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zhiming Lin
- Department of Rheumatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujie Cao
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Huoru Zhang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Zhong-Yi Liu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - David L Morris
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Yujun Sheng
- Department of Dermatology, No.1 Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yong Cui
- Department of Dermatology, No.1 Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Xuejun Zhang
- Department of Dermatology, No.1 Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Timothy J Vyse
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yanhui Chen
- Department of Pediatrics, Union Hospital Affiliated to Fujian Medical University, Fuzhou, China
| |
Collapse
|
76
|
Exploring the Role of Non-Coding RNAs in the Pathophysiology of Systemic Lupus Erythematosus. Biomolecules 2020; 10:biom10060937. [PMID: 32580306 PMCID: PMC7356926 DOI: 10.3390/biom10060937] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic immune-related disorder designated by a lack of tolerance to self-antigens and the over-secretion of autoantibodies against several cellular compartments. Although the exact pathophysiology of SLE has not been clarified yet, this disorder has a strong genetic component based on the results of familial aggregation and twin studies. Variation in the expression of non-coding RNAs has been shown to influence both susceptibility to SLE and the clinical course of this disorder. Several long non-coding RNAs (lncRNAs) such as GAS5, MALAT1 and NEAT1 are dysregulated in SLE patients. Moreover, genetic variants within lncRNAs such as SLEAR and linc00513 have been associated with risk of this disorder. The dysregulation of a number of lncRNAs in the peripheral blood of SLE patients has potentiated them as biomarkers for diagnosis, disease activity and therapeutic response. MicroRNAs (miRNAs) have also been shown to affect apoptosis and the function of immune cells. Taken together, there is a compelling rationale for the better understanding of the involvement of these two classes of non-coding RNAs in the pathogenesis of SLE. Clarification of the function of these transcripts has the potential to elucidate the molecular pathophysiology of SLE and provide new opportunities for the development of targeted therapies for this disorder.
Collapse
|
77
|
Demirkaya E, Sahin S, Romano M, Zhou Q, Aksentijevich I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J Clin Med 2020; 9:E712. [PMID: 32151092 PMCID: PMC7141186 DOI: 10.3390/jcm9030712] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it's prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Sezgin Sahin
- Van Training and Research Hospital, Department of Paediatric Rheumatology, 65000 Van, Turkey;
| | - Micol Romano
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Pediatric Rheumatology, ASST-PINI-CTO, 20122 Milano, Italy
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hang Zhou 310058, China;
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
78
|
Reid S, Alexsson A, Frodlund M, Morris D, Sandling JK, Bolin K, Svenungsson E, Jönsen A, Bengtsson C, Gunnarsson I, Illescas Rodriguez V, Bengtsson A, Arve S, Rantapää-Dahlqvist S, Eloranta ML, Syvänen AC, Sjöwall C, Vyse TJ, Rönnblom L, Leonard D. High genetic risk score is associated with early disease onset, damage accrual and decreased survival in systemic lupus erythematosus. Ann Rheum Dis 2020; 79:363-369. [PMID: 31826855 PMCID: PMC7034364 DOI: 10.1136/annrheumdis-2019-216227] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To investigate associations between a high genetic disease risk and disease severity in patients with systemic lupus erythematosus (SLE). METHODS Patients with SLE (n=1001, discovery cohort and n=5524, replication cohort) and healthy controls (n=2802 and n=9859) were genotyped using a 200K Immunochip single nucleotide polymorphism array. A genetic risk score (GRS) was assigned to each individual based on 57 SLE risk loci. RESULTS SLE was more prevalent in the high, compared with the low, GRS-quartile (OR 12.32 (9.53 to 15.71), p=7.9×10-86 and OR 7.48 (6.73 to 8.32), p=2.2×10-304 for the discovery and the replication cohorts, respectively). In the discovery cohort, patients in the high GRS-quartile had a 6-year earlier mean disease onset (HR 1.47 (1.22 to 1.75), p=4.3×10-5), displayed higher prevalence of damage accrual (OR 1.47 (1.06 to 2.04), p=2.0×10-2), renal disorder (OR 2.22 (1.50 to 3.27), p=5.9×10-5), anti-dsDNA (OR 1.83 (1.19 to 2.81), p=6.1×10-3), end-stage renal disease (ESRD) (OR 5.58 (1.50 to 20.79), p=1.0×10-2), proliferative nephritis (OR 2.42 (1.30 to 4.49), p=5.1×10-3), anti-cardiolipin-IgG (OR 1.89 (1.13 to 3.18), p=1.6×10-2), anti-β2-glycoprotein-I-IgG (OR 2.29 (1.29 to 4.06), p=4.8×10-3) and positive lupus anticoagulant test (OR 2.12 (1.16 to 3.89), p=1.5×10-2) compared with patients in the low GRS-quartile. Survival analysis showed earlier onset of the first organ damage (HR 1.51 (1.04 to 2.25), p=3.7×10-2), first cardiovascular event (HR 1.65 (1.03 to 2.64), p=2.6×10-2), nephritis (HR 2.53 (1.72 to 3.71), p=9.6×10-7), ESRD (HR 6.78 (1.78 to 26.86), p=6.5×10-3) and decreased overall survival (HR 1.83 (1.02 to 3.30), p=4.3×10-2) in high to low quartile comparison. CONCLUSIONS A high GRS is associated with increased risk of organ damage, renal dysfunction and all-cause mortality. Our results indicate that genetic profiling may be useful for predicting outcomes in patients with SLE.
Collapse
Affiliation(s)
- Sarah Reid
- Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrei Alexsson
- Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Martina Frodlund
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linkoping, Sweden
| | - David Morris
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Johanna K Sandling
- Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karin Bolin
- Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Elisabet Svenungsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Jönsen
- Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Christine Bengtsson
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - Iva Gunnarsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vera Illescas Rodriguez
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Bengtsson
- Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sabine Arve
- Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Maija-Leena Eloranta
- Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ann-Christine Syvänen
- Molecular Medicine and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Christopher Sjöwall
- Rheumatology/Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linkoping, Sweden
| | - Timothy James Vyse
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Lars Rönnblom
- Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dag Leonard
- Rheumatology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
79
|
Linge P, Arve S, Olsson LM, Leonard D, Sjöwall C, Frodlund M, Gunnarsson I, Svenungsson E, Tydén H, Jönsen A, Kahn R, Johansson Å, Rönnblom L, Holmdahl R, Bengtsson A. NCF1-339 polymorphism is associated with altered formation of neutrophil extracellular traps, high serum interferon activity and antiphospholipid syndrome in systemic lupus erythematosus. Ann Rheum Dis 2020; 79:254-261. [PMID: 31704719 DOI: 10.1136/annrheumdis-2019-215820] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES: A single nucleotide polymorphism in the NCF1 gene (NCF1-339, rs201802880), encoding NADPH oxidase type II subunit NCF1/p47phox, reducing production of reactive oxygen species (ROS) is strongly associated with the development of systemic lupus erythematosus (SLE). This study aimed at characterising NCF1-339 effects on neutrophil extracellular trap (NET) formation, type I interferon activity and antibody profile in patients with SLE. METHODS: Neutrophil NET-release pathways (n=31), serum interferon (n=141) and finally antibody profiles (n=305) were investigated in SLE subjects from Lund, genotyped for NCF1-339. Then, 1087 SLE subjects from the rheumatology departments of four Swedish SLE centres, genotyped for NCF1-339, were clinically characterised to validate these findings. RESULTS: Compared with patients with normal-ROS NCF1-339 genotypes, neutrophils from patients with SLE with low-ROS NCF1-339 genotypes displayed impaired NET formation (p<0.01) and increased dependence on mitochondrial ROS (p<0.05). Low-ROS patients also had increased frequency of high serum interferon activity (80% vs 21.4%, p<0.05) and positivity for anti-β2 glycoprotein I (p<0.01) and anticardiolipin antibodies (p<0.05) but were not associated with other antibodies. We confirmed an over-representation of having any antiphospholipid antibody, OR 1.40 (95% CI 1.01 to 1.95), anti-β2 glycoprotein I, OR 1.82 (95% CI 1.02 to 3.24) and the antiphospholipid syndrome (APS), OR 1.74 (95% CI 1.19 to 2.55) in all four cohorts (n=1087). CONCLUSIONS: The NCF1-339 SNP mediated decreased NADPH oxidase function, is associated with high interferon activity and impaired formation of NETs in SLE, allowing dependence on mitochondrial ROS. Unexpectedly, we revealed a striking connection between the ROS deficient NCF1-339 genotypes and the presence of phospholipid antibodies and APS.
Collapse
Affiliation(s)
- Petrus Linge
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Sabine Arve
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Lina M Olsson
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Dag Leonard
- Department of Medical Sciences, Science for Life Laboratories, Rheumatology Unit, Uppsala University, Uppsala, Uppland, Sweden
| | - Christopher Sjöwall
- Department of Clinical and Experimental Medicine, Rheumatology/AIR, Linköping University, Linkoping, Ostergotland, Sweden
| | - Martina Frodlund
- Department of Clinical and Experimental Medicine, Rheumatology/AIR, Linköping University, Linkoping, Ostergotland, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Unit of Rheumatology, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Elisabet Svenungsson
- Department of Medicine Solna, Unit of Rheumatology, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Helena Tydén
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Andreas Jönsen
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| | - Robin Kahn
- Department of Clinical Sciences Lund, Section of Pediatrics, Lund University, Lund, Skane, Sweden
- Wallenberg Center for Molecular Medicin, Lund University, Lund, Skane, Sweden
| | - Åsa Johansson
- Division for Hematology and Transfusion Medicine, Department of laboratory medicine, Lund University, Lund, Skane, Sweden
- Regional Laboratories Region Skane, Department of Clinical Immunology and Transfusion Medicine, Skanes universitetssjukhus Lund Labmedicin Skane, Lund, Skane, Sweden
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratories, Rheumatology Unit, Uppsala University, Uppsala, Uppland, Sweden
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Stockholm County, Sweden
| | - Anders Bengtsson
- Department of Clinical Sciences Lund, Section of Rheumatology, Lunds University Faculty of Medicine, Lund, Skane, Sweden
| |
Collapse
|
80
|
The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun 2019; 110:102359. [PMID: 31806421 DOI: 10.1016/j.jaut.2019.102359] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease that causes damage to multiple organ systems. Despite decades of research and available murine models that capture some aspects of the human disease, new treatments for SLE lag behind other autoimmune diseases such as Rheumatoid Arthritis and Crohn's disease. Big data genomic assays have transformed our understanding of SLE by providing important insights into the molecular heterogeneity of this multigenic disease. Gene wide association studies have demonstrated more than 100 risk loci, supporting a model of multiple genetic hits increasing SLE risk in a non-linear fashion, and providing evidence of ancestral diversity in susceptibility loci. Epigenetic studies to determine the role of methylation, acetylation and non-coding RNAs have provided new understanding of the modulation of gene expression in SLE patients and identified new drug targets and biomarkers for SLE. Gene expression profiling has led to a greater understanding of the role of myeloid cells in the pathogenesis of SLE, confirmed roles for T and B cells in SLE, promoted clinical trials based on the prominent interferon signature found in SLE patients, and identified candidate biomarkers and cellular signatures to further drug development and drug repurposing. Gene expression studies are advancing our understanding of the underlying molecular heterogeneity in SLE and providing hope that patient stratification will expedite new therapies based on personal molecular signatures. Although big data analyses present unique interpretation challenges, both computationally and biologically, advances in machine learning applications may facilitate the ability to predict changes in SLE disease activity and optimize therapeutic strategies.
Collapse
|
81
|
Study of familial aggregation of autoimmune rheumatic diseases in Asian Indian patients with systemic lupus erythematosus. Rheumatol Int 2019; 39:2053-2060. [PMID: 31263994 DOI: 10.1007/s00296-019-04355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
Systemic lupus erythematosus (SLE) and other autoimmune rheumatic diseases (AIRD) tend to co-aggregate in families, making positive familial history a risk factor. We aimed to estimate familial aggregation of AIRD in SLE patients and to compare between ones having a positive and negative family history of autoimmunity in our cohort. We included families of 157 consecutive SLE patients in a hospital-based, cross-sectional design for a three-generation pedigree study. Clinical and laboratory parameters of these patients were recorded. AIRD was seen in families of 39 SLE patients amounting to a familial prevalence of 24.8% [95% confidence interval (CI) 18.1, 31.6] with a relative risk (λ) of 4.3 for first-degree relatives (FDRs) and 1.1 for second-degree relatives (SDRs). SLE was the commonest AIRD seen in families of 19 patients with a familial prevalence of 12.1% (95% CI 7.0, 17.2) and λ of 78.2 for FDRs and 18.1 for SDRs. AIRD as a whole and SLE alone were seen more commonly with parental consanguinity (p < 0.05). Familial aggregation in SLE patients also showed a relatively higher percentage of affected males and lesser presentation with constitutional features (p < 0.05) than sporadic SLE patients. Rheumatoid arthritis (RA) was the second most common AIRD seen in 16/39 (41%) families with a RR of 3.1 in FDRs of SLE patients. In conclusion, Asian Indian SLE patients seem to have a high familial aggregation of AIRD, which is more pronounced in the background of parental consanguinity. SLE is the commonest AIRD seen amongst FDRs and SDRs of SLE patients, followed by RA, with FDRs being at highest risk.
Collapse
|
82
|
Systemic Lupus Erythematosus: Pathogenesis at the Functional Limit of Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1651724. [PMID: 31885772 PMCID: PMC6899283 DOI: 10.1155/2019/1651724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by the production of autoreactive antibodies and cytokines, which are thought to have a major role in disease activity and progression. Immune system exposure to excessive amounts of autoantigens that are not efficiently removed is reported to play a significant role in the generation of autoantibodies and the pathogenesis of SLE. While several mechanisms of cell death-based autoantigenic exposure and compromised autoantigen removal have been described in relation to disease onset, a significant association with the development of SLE can be attributed to increased apoptosis and impaired phagocytosis of apoptotic cells. Both apoptosis and impaired phagocytosis can be caused by hydrogen peroxide whose cellular production is enhanced by exposure to endogenous hormones or environmental chemicals, which have been implicated in the pathogenesis of SLE. Hydrogen peroxide can cause lymphocyte apoptosis and glutathione depletion, both of which are associated with the severity of SLE. The cellular accumulation of hydrogen peroxide is facilitated by the myriad of stimuli causing increased cellular bioenergetic activity that enhances metabolic production of this toxic oxidizing agent such as emotional stress and infection, which are recognized SLE exacerbating factors. When combined with impaired cellular hydrogen peroxide removal caused by xenobiotics and genetically compromised hydrogen peroxide elimination due to enzymatic polymorphic variation, a mechanism for cellular accumulation of hydrogen peroxide emerges, leading to hydrogen peroxide-induced apoptosis and impaired phagocytosis, enhanced autoantigen exposure, formation of autoantibodies, and development of SLE.
Collapse
|
83
|
Rare variants in non-coding regulatory regions of the genome that affect gene expression in systemic lupus erythematosus. Sci Rep 2019; 9:15433. [PMID: 31659207 PMCID: PMC6817816 DOI: 10.1038/s41598-019-51864-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Personalized medicine approaches are increasingly sought for diseases with a heritable component. Systemic lupus erythematosus (SLE) is the prototypic autoimmune disease resulting from loss of immunologic tolerance, but the genetic basis of SLE remains incompletely understood. Genome wide association studies (GWAS) identify regions associated with disease, based on common single nucleotide polymorphisms (SNPs) within them, but these SNPs may simply be markers in linkage disequilibrium with other, causative mutations. Here we use an hierarchical screening approach for prediction and testing of true functional variants within regions identified in GWAS; this involved bioinformatic identification of putative regulatory elements within close proximity to SLE SNPs, screening those regions for potentially causative mutations by high resolution melt analysis, and functional validation using reporter assays. Using this approach, we screened 15 SLE associated loci in 143 SLE patients, identifying 7 new variants including 5 SNPs and 2 insertions. Reporter assays revealed that the 5 SNPs were functional, altering enhancer activity. One novel variant was linked to the relatively well characterized rs9888739 SNP at the ITGAM locus, and may explain some of the SLE heritability at this site. Our study demonstrates that non-coding regulatory elements can contain private sequence variants affecting gene expression, which may explain part of the heritability of SLE.
Collapse
|
84
|
Fan Y, Vilgalys TP, Sun S, Peng Q, Tung J, Zhou X. IMAGE: high-powered detection of genetic effects on DNA methylation using integrated methylation QTL mapping and allele-specific analysis. Genome Biol 2019; 20:220. [PMID: 31651351 PMCID: PMC6813132 DOI: 10.1186/s13059-019-1813-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Identifying genetic variants that are associated with methylation variation-an analysis commonly referred to as methylation quantitative trait locus (mQTL) mapping-is important for understanding the epigenetic mechanisms underlying genotype-trait associations. Here, we develop a statistical method, IMAGE, for mQTL mapping in sequencing-based methylation studies. IMAGE properly accounts for the count nature of bisulfite sequencing data and incorporates allele-specific methylation patterns from heterozygous individuals to enable more powerful mQTL discovery. We compare IMAGE with existing approaches through extensive simulation. We also apply IMAGE to analyze two bisulfite sequencing studies, in which IMAGE identifies more mQTL than existing approaches.
Collapse
Affiliation(s)
- Yue Fan
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tauras P Vilgalys
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC, 27708, USA
| | - Shiquan Sun
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qinke Peng
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Jenny Tung
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC, 27708, USA
- Duke University Population Research Institute, Duke University, Durham, NC, 27708, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
85
|
Recent Advances in Our Understanding of the Link between the Intestinal Microbiota and Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:ijms20194871. [PMID: 31575045 PMCID: PMC6801612 DOI: 10.3390/ijms20194871] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease featuring enhanced expression of type I interferon (IFN) and autoantibody production triggering inflammation of, and damage to, multiple organs. Continuing research efforts focus on how gut microbes trigger systemic autoimmunity and SLE. The gut microbial communities of mice and humans with lupus have been investigated via high-throughput sequencing. The Firmicutes-to-Bacteroidetes ratio is consistently reduced in SLE patients, regardless of ethnicity. The relative abundance of Lactobacillus differs from the animal model used (MRL/lpr mice or NZB/W F1 mice). This may indicate that interactions between gut microbes and the host, rather than the enrichment of certain gut microbes, are especially significant in terms of SLE development. Enterococcus gallinarum and Lactobacillus reuteri, both of which are possible gut pathobionts, become translocated into systemic tissue if the gut epithelial barrier is impaired. The microbes then interact with the host immune systems, activating the type I IFN pathway and inducing autoantibody production. In addition, molecular mimicry may critically link the gut microbiome to SLE. Gut commensals of SLE patients share protein epitopes with the Ro60 autoantigen. Ruminococcus gnavus strain cross-reacted with native DNA, triggering an anti-double-stranded DNA antibody response. Expansion of R. gnavus in SLE patients paralleled an increase in disease activity and lupus nephritis. Such insights into the link between the gut microbiota and SLE enhance our understanding of SLE pathogenesis and will identify biomarkers predicting active disease.
Collapse
|
86
|
Pabón-Porras MA, Molina-Ríos S, Flórez-Suárez JB, Coral-Alvarado PX, Méndez-Patarroyo P, Quintana-López G. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med 2019; 7:2050312119876146. [PMID: 35154753 PMCID: PMC8826259 DOI: 10.1177/2050312119876146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis and systemic lupus erythematosus are two highly prevalent autoimmune diseases that generate disability and low quality of life. The innate immune system, a long-forgotten issue in autoimmune diseases, is becoming increasingly important and represents a new focus for the treatment of these entities. This review highlights the role that innate immune system plays in the pathophysiology of rheumatoid arthritis and systemic lupus erythematosus. The role of the innate immune system in rheumatoid arthritis and systemic lupus erythematosus pathophysiology is not only important in early stages but is essential to maintain the immune response and to allow disease progression. In rheumatoid arthritis, genetic and environmental factors are involved in the initial stimulation of the innate immune response in which macrophages are the main participants, as well as fibroblast-like synoviocytes. In systemic lupus erythematosus, all the cells contribute to the inflammatory response, but the complement system is the major effector of the inflammatory process. Detecting alterations in the normal function of these cells, besides its contribution to the understanding of the pathophysiology of autoimmune diseases, could help to establish new treatment strategies for these diseases.
Collapse
Affiliation(s)
| | | | - Jorge Bruce Flórez-Suárez
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia
| | - Paola Ximena Coral-Alvarado
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Paul Méndez-Patarroyo
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Gerardo Quintana-López
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
87
|
Jog NR, Young KA, Munroe ME, Harmon MT, Guthridge JM, Kelly JA, Kamen DL, Gilkeson GS, Weisman MH, Karp DR, Gaffney PM, Harley JB, Wallace DJ, Norris JM, James JA. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Ann Rheum Dis 2019; 78:1235-1241. [PMID: 31217170 PMCID: PMC6692217 DOI: 10.1136/annrheumdis-2019-215361] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with unknown aetiology. Epstein-Barr virus (EBV) is an environmental factor associated with SLE. EBV maintains latency in B cells with frequent reactivation measured by antibodies against viral capsid antigen (VCA) and early antigen (EA). In this study, we determined whether EBV reactivation and single nucleotide polymorphisms (SNPs) in EBV-associated host genes are associated with SLE transition. METHODS SLE patient relatives (n=436) who did not have SLE at baseline were recontacted after 6.3 (±3.9) years and evaluated for interim transitioning to SLE (≥4 cumulative American College of Rheumatology criteria); 56 (13%) transitioned to SLE prior to the follow-up visit. At both visits, detailed demographic, environmental, clinical information and blood samples were obtained. Antibodies against viral antigens were measured by ELISA. SNPs in IL10, CR2, TNFAIP3 and CD40 genes were typed by ImmunoChip. Generalised estimating equations were used to test associations between viral antibody levels and transitioning to SLE. RESULTS Mean baseline VCA IgG (4.879±1.797 vs 3.866±1.795, p=0.0003) and EA IgG (1.192±1.113 vs 0.7774±0.8484, p=0.0236) levels were higher in transitioned compared with autoantibody negative non-transitioned relatives. Increased VCA IgG and EA IgG were associated with transitioning to SLE (OR 1.28 95% CI 1.07 to 1.53, p=0.007, OR 1.43 95% CI 1.06 to 1.93, p=0.02, respectively). Significant interactions were observed between CD40 variant rs48100485 and VCA IgG levels and IL10 variant rs3024493 and VCA IgA levels in transitioning to SLE. CONCLUSION Heightened serologic reactivation of EBV increases the probability of transitioning to SLE in unaffected SLE relatives.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Colorado School of Public Health, Aurora, Colorado, USA
| | - Melissa E Munroe
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Michael T Harmon
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Diane L Kamen
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary S Gilkeson
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael H Weisman
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David R Karp
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Daniel J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jill M Norris
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Colorado School of Public Health, Aurora, Colorado, USA
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
88
|
Surace AEA, Hedrich CM. The Role of Epigenetics in Autoimmune/Inflammatory Disease. Front Immunol 2019; 10:1525. [PMID: 31333659 PMCID: PMC6620790 DOI: 10.3389/fimmu.2019.01525] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022] Open
Abstract
Historically, systemic self-inflammatory conditions were classified as either autoinflammatory and caused by the innate immune system or autoimmune and driven by adaptive immune responses. However, it became clear that reality is much more complex and that autoimmune/inflammatory conditions range along an “inflammatory spectrum” with primarily autoinflammatory vs. autoimmune conditions resembling extremes at either end. Epigenetic modifications influence gene expression and alter cellular functions without modifying the genomic sequence. Methylation of CpG DNA dinucleotides and/or their hydroxymethylation, post-translational modifications to amino termini of histone proteins, and non-coding RNA expression are main epigenetic events. The pathophysiology of autoimmune/inflammatory diseases has been closely linked with disease causing gene mutations (rare) or a combination of genetic susceptibility and epigenetic modifications arising from exposure to the environment (more common). Over recent years, progress has been made in understanding molecular mechanisms involved in systemic inflammation and the contribution of innate and adaptive immune responses. Epigenetic events have been identified as (i) central pathophysiological factors in addition to genetic disease predisposition and (ii) as co-factors determining clinical pictures and outcomes in individuals with monogenic disease. Thus, a complete understanding of epigenetic contributors to autoimmune/inflammatory disease will result in approaches to predict individual disease outcomes and the introduction of effective, target-directed, and tolerable therapies. Here, we summarize recent findings that signify the importance of epigenetic modifications in autoimmune/inflammatory disorders along the inflammatory spectrum choosing three examples: the autoinflammatory bone condition chronic nonbacterial osteomyelitis (CNO), the “mixed pattern” disorder psoriasis, and the autoimmune disease systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Anna Elisa Andrea Surace
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.,Pädiatrische Rheumatologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
89
|
Gonzalez-Quintial R, Mayeux JM, Kono DH, Theofilopoulos AN, Pollard KM, Baccala R. Silica exposure and chronic virus infection synergistically promote lupus-like systemic autoimmunity in mice with low genetic predisposition. Clin Immunol 2019; 205:75-82. [PMID: 31175964 DOI: 10.1016/j.clim.2019.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Considerable evidence indicates that autoimmune disease expression depends on both genetic and environmental factors. Among potential environmental triggers, occupational airway exposure to crystalline silica and virus infections have been linked to lupus and other autoimmune diseases in both humans and mouse models. Here, we hypothesized that combined silica and virus exposures synergize and induce autoimmune manifestations more effectively than single exposure to either of these factors, particularly in individuals with low genetic predisposition. Accordingly, infection with the model murine pathogen lymphocytic choriomenigitis virus (LCMV) in early life, followed by airway exposure to crystalline silica in adult life, induced lupus-like autoantibodies to several nuclear self-antigens including chromatin, RNP and Sm, concurrent with kidney lesions, in non-autoimmune C57BL/6 (B6) mice. In contrast, given individually, LCMV or silica were largely ineffectual in this strain. These results support a multihit model of autoimmunity, where exposure to different environmental factors acting on distinct immunostimulatory pathways complements limited genetic predisposition and increases the risk of autoimmunity above a critical threshold.
Collapse
Affiliation(s)
| | - Jessica M Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Dwight H Kono
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Kenneth M Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Baccala
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
90
|
Jiang SH, Athanasopoulos V, Ellyard JI, Chuah A, Cappello J, Cook A, Prabhu SB, Cardenas J, Gu J, Stanley M, Roco JA, Papa I, Yabas M, Walters GD, Burgio G, McKeon K, Byers JM, Burrin C, Enders A, Miosge LA, Canete PF, Jelusic M, Tasic V, Lungu AC, Alexander SI, Kitching AR, Fulcher DA, Shen N, Arsov T, Gatenby PA, Babon JJ, Mallon DF, de Lucas Collantes C, Stone EA, Wu P, Field MA, Andrews TD, Cho E, Pascual V, Cook MC, Vinuesa CG. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat Commun 2019; 10:2201. [PMID: 31101814 PMCID: PMC6525203 DOI: 10.1038/s41467-019-10242-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/25/2019] [Indexed: 11/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease. It is thought that many common variant gene loci of weak effect act additively to predispose to common autoimmune diseases, while the contribution of rare variants remains unclear. Here we describe that rare coding variants in lupus-risk genes are present in most SLE patients and healthy controls. We demonstrate the functional consequences of rare and low frequency missense variants in the interacting proteins BLK and BANK1, which are present alone, or in combination, in a substantial proportion of lupus patients. The rare variants found in patients, but not those found exclusively in controls, impair suppression of IRF5 and type-I IFN in human B cell lines and increase pathogenic lymphocytes in lupus-prone mice. Thus, rare gene variants are common in SLE and likely contribute to genetic risk. Function-altering variants of immune-related genes cause rare autoimmune syndromes, whereas their contribution to common autoimmune diseases remains uncharacterized. Here the authors show that rare variants of lupus-associated genes are present in the majority of lupus patients and healthy controls, but only the variants found in lupus patients alter gene function.
Collapse
Affiliation(s)
- Simon H Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia. .,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia. .,Department of Renal Medicine, The Canberra Hospital, Garran, 2601, ACT, Australia.
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Julia I Ellyard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Aaron Chuah
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Genome Informatics Laboratory, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Jean Cappello
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Amelia Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Savit B Prabhu
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Paediatric Biology Center, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | | | - Jinghua Gu
- Baylor Medical Institute, Houston, 77030, Texas, USA
| | - Maurice Stanley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Jonathan A Roco
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Ilenia Papa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Mehmet Yabas
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Department of Genetics and Bioengineering, Trakya University, Edirne, 22030, Turkey
| | - Giles D Walters
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Department of Renal Medicine, The Canberra Hospital, Garran, 2601, ACT, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Kathryn McKeon
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - James M Byers
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Charlotte Burrin
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Anselm Enders
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Lisa A Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Pablo F Canete
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia
| | - Marija Jelusic
- Department of Paediatric Rheumatology and Immunology, University of Zagreb School of Medicine, Zagreb, 10000, Croatia
| | - Velibor Tasic
- University Children's Hospital, Medical School, Skopje, 1000, Macedonia
| | - Adrian C Lungu
- Department of Pediatric Nephrology, Fundeni Clinical Institute, Bucharest, 022328, Romania
| | - Stephen I Alexander
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Westmead Children's Hospital, Westmead, 2145, NSW, Australia
| | - Arthur R Kitching
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, 3168, VIC, Australia
| | - David A Fulcher
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Department of Immunology, The Canberra Hospital, Garran, 2601, ACT, Australia
| | - Nan Shen
- China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai, Huangpu Qu, 200333, China
| | - Todor Arsov
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai, Huangpu Qu, 200333, China
| | - Paul A Gatenby
- Department of Immunology, The Canberra Hospital, Garran, 2601, ACT, Australia
| | - Jeff J Babon
- Walter and Eliza Hall Institute, Parkville, 3052, VIC, Australia
| | - Dominic F Mallon
- Immunology PathWest Fiona Stanley Hospital, Murdoch, 6150, WA, Australia
| | | | - Eric A Stone
- Research School of Biology and Research School of Finance, Actuarial Studies and Statistics, Acton, 2601, ACT, Australia
| | - Philip Wu
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Australian Phenomics Facility, ANU, Acton, 2601, ACT, Australia
| | - Matthew A Field
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Genome Informatics Laboratory, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | - Thomas D Andrews
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Genome Informatics Laboratory, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,National Computational Infrastructure, ANU, Acton, 2601, ACT, Australia
| | - Eun Cho
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Genome Informatics Laboratory, John Curtin School of Medical Research, Acton, 2601, ACT, Australia
| | | | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia.,Department of Immunology, The Canberra Hospital, Garran, 2601, ACT, Australia.,China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai, Huangpu Qu, 200333, China
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Acton, 2601, ACT, Australia. .,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, 2601, Australia. .,China Australia Centre for Personalised Immunology, Renji Hospital Shanghai, JiaoTong University Shanghai, Huangpu Qu, 200333, China.
| |
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW Autoimmune diseases are of unknown origin, and they represent significant causes of morbidity and mortality. Here, we review new developments in the understanding of their pathogenesis that have led to development of well tolerated and effective treatments. RECENT FINDINGS In addition to the long-recognized genetic impact of the HLA locus, interferon regulatory factors, PTPN22, STAT4, and NOX have been implicated in pathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Smoking, ultraviolet light, diet, and microbiota exert strong environmental influence on development of RA and SLE. Metabolism has been recognized as a critical integrator of genetic and environmental factors, and it controls immune cell differentiation both under physiological and pathological conditions. SUMMARY With the advent of high-throughput genetic, proteomic, and metabolomic technologies, the field of medicine has been shifting towards systems-based and personalized approaches to diagnose and treat common conditions, including rheumatic diseases. Regulatory checkpoints of metabolism and signal transduction, such as glucose utilization, mitochondrial electron transport, JAK, mTOR, and AMPK pathway activation, and production of pro-inflammatory cytokines IL-1, IL-6, and IL-17 have presented new targets for therapeutic intervention. This review amalgamates recent discoveries in genetics and metabolomics with immunological pathways of pathogenesis in rheumatic diseases.
Collapse
Affiliation(s)
- Eric Liu
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | |
Collapse
|
92
|
Molineros JE, Looger LL, Kim K, Okada Y, Terao C, Sun C, Zhou XJ, Raj P, Kochi Y, Suzuki A, Akizuki S, Nakabo S, Bang SY, Lee HS, Kang YM, Suh CH, Chung WT, Park YB, Choe JY, Shim SC, Lee SS, Zuo X, Yamamoto K, Li QZ, Shen N, Porter LL, Harley JB, Chua KH, Zhang H, Wakeland EK, Tsao BP, Bae SC, Nath SK. Amino acid signatures of HLA Class-I and II molecules are strongly associated with SLE susceptibility and autoantibody production in Eastern Asians. PLoS Genet 2019; 15:e1008092. [PMID: 31022184 PMCID: PMC6504188 DOI: 10.1371/journal.pgen.1008092] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/07/2019] [Accepted: 03/13/2019] [Indexed: 11/18/2022] Open
Abstract
Human leukocyte antigen (HLA) is a key genetic factor conferring risk of systemic lupus erythematosus (SLE), but precise independent localization of HLA effects is extremely challenging. As a result, the contribution of specific HLA alleles and amino-acid residues to the overall risk of SLE and to risk of specific autoantibodies are far from completely understood. Here, we dissected (a) overall SLE association signals across HLA, (b) HLA-peptide interaction, and (c) residue-autoantibody association. Classical alleles, SNPs, and amino-acid residues of eight HLA genes were imputed across 4,915 SLE cases and 13,513 controls from Eastern Asia. We performed association followed by conditional analysis across HLA, assessing both overall SLE risk and risk of autoantibody production. DR15 alleles HLA-DRB1*15:01 (P = 1.4x10-27, odds ratio (OR) = 1.57) and HLA-DQB1*06:02 (P = 7.4x10-23, OR = 1.55) formed the most significant haplotype (OR = 2.33). Conditioned protein-residue signals were stronger than allele signals and mapped predominantly to HLA-DRB1 residue 13 (P = 2.2x10-75) and its proxy position 11 (P = 1.1x10-67), followed by HLA-DRB1-37 (P = 4.5x10-24). After conditioning on HLA-DRB1, novel associations at HLA-A-70 (P = 1.4x10-8), HLA-DPB1-35 (P = 9.0x10-16), HLA-DQB1-37 (P = 2.7x10-14), and HLA-B-9 (P = 6.5x10-15) emerged. Together, these seven residues increased the proportion of explained heritability due to HLA to 2.6%. Risk residues for both overall disease and hallmark autoantibodies (i.e., nRNP: DRB1-11, P = 2.0x10-14; DRB1-13, P = 2.9x10-13; DRB1-30, P = 3.9x10-14) localized to the peptide-binding groove of HLA-DRB1. Enrichment for specific amino-acid characteristics in the peptide-binding groove correlated with overall SLE risk and with autoantibody presence. Risk residues were in primarily negatively charged side-chains, in contrast with rheumatoid arthritis. We identified novel SLE signals in HLA Class I loci (HLA-A, HLA-B), and localized primary Class II signals to five residues in HLA-DRB1, HLA-DPB1, and HLA-DQB1. These findings provide insights about the mechanisms by which the risk residues interact with each other to produce autoantibodies and are involved in SLE pathophysiology. The Human leukocyte antigen (HLA) region is a key genetic factor conferring risk of systemic lupus erythematosus (SLE). In spite of multiple SLE association signals identified in the HLA region, only amino-acid residues within HLA-DRB1 have been specifically described previously. In this study, we performed an imputation-based analysis on individuals with East Asian ancestry, and characterized SLE risk within the HLA region for all involved independent genes (HLA-DRB1, HLA-DPB1, HLA-DQB1, HLA-A, and HLA-B). Furthermore, we identified a characteristic SLE risk residue signature as well as a pattern of specific nRNP and Ro/La autoantibody residues located in the peptide-binding grooves, suggesting their key involvement in autoantibody production.
Collapse
Affiliation(s)
- Julio E. Molineros
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Loren L. Looger
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States of America
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Chikashi Terao
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Xu-jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yuta Kochi
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichiro Nakabo
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Young Mo Kang
- School of Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University Hospital, Suwon, Korea
| | - Won Tae Chung
- Dong-A University Hospital, Department of Internal Medicine, Busan, Korea
| | - Yong-Beom Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Yoon Choe
- Department of Rheumatology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Seung-Cheol Shim
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| | - Shin-Seok Lee
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nan Shen
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Lauren L. Porter
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States of America
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Edward K. Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Betty P. Tsao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- * E-mail: (SCB); (SKN)
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * E-mail: (SCB); (SKN)
| |
Collapse
|
93
|
Leffers HCB, Lange T, Collins C, Ulff-Møller CJ, Jacobsen S. The study of interactions between genome and exposome in the development of systemic lupus erythematosus. Autoimmun Rev 2019; 18:382-392. [PMID: 30772495 DOI: 10.1016/j.autrev.2018.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 12/31/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic inflammatory autoimmune disease characterized by a broad spectrum of clinical and serological manifestations. This may reflect a complex and multifactorial etiology involving several identified genetic and environmental factors, though not explaining the full risk of SLE. Established SLE risk genotypes are either very rare or with modest effect sizes and twin studies indicate that other factors besides genetics must be operative in SLE etiology. The exposome comprises the cumulative environmental influences on an individual and associated biological responses through the lifespan. It has been demonstrated that exposure to silica, smoking and exogenous hormones candidate as environmental risk factors in SLE, while alcohol consumption seems to be protective. Very few studies have investigated potential gene-environment interactions to determine if some of the unexplained SLE risk is attributable hereto. Even less have focused on interactions between specific risk genotypes and environmental exposures relevant to SLE pathogenesis. Cohort and case-control studies may provide data to suggest such biological interactions and various statistical measures of interaction can indicate the magnitude of such. However, such studies do often have very large sample-size requirements and we suggest that the rarity of SLE to some extent can be compensated by increasing the ratio of controls. This review summarizes the current body of knowledge on gene-environment interactions in SLE. We argue for the prioritization of studies that comprise the increasing details available of the genome and exposome relevant to SLE as they have the potential to disclose new aspects of SLE pathogenesis including phenotype heterogeneity.
Collapse
Affiliation(s)
- Henrik Christian Bidstrup Leffers
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Theis Lange
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Denmark; Center for Statistical Science, Peking University, Beijing, China
| | - Christopher Collins
- Department of Rheumatology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Constance Jensina Ulff-Møller
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Science, University of Copenhagen, Denmark..
| |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW Identification of function and potential pathogenic mechanisms of SLE risk genes in dendritic cells. RECENT FINDINGS Functional studies of individual SLE risk factors in dendritic cells were performed, and functional alterations of some risk genes in dendritic cells were observed. Recent studies confirmed the pathogenic function of known risk genes. These findings postulate novel pathogenic mechanisms made by dendritic cells. SLE is a complex disease and its etiology is not clearly understood. Dendritic cells are innate immune cells and critical for determining immune activation and immune tolerance. Genetic studies identified several new candidate genes which predispose to development of autoimmune diseases, but the mechanism of those genes has not been identified. This report updates functional implications or pathways in dendritic cells which are putatively important for the development or propagation of SLE based on genetic and functional studies performed in both human and animal models.
Collapse
Affiliation(s)
- Sun Jung Kim
- Center for Autoimmune and Musculoskeletal Disease, Department of Molecular Medicine, The Feinstein Institute for Medical Research, School of Medicine at Northwell-Hofstra University, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
95
|
Balci S, Ekinci RMK, Bayazit AK, Melek E, Dogruel D, Altintas DU, Yilmaz M. Juvenile systemic lupus erythematosus: a single-center experience from southern Turkey. Clin Rheumatol 2019; 38:1459-1468. [PMID: 30648229 DOI: 10.1007/s10067-019-04433-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 01/03/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study was conducted to analyze clinical characteristics, laboratory data, disease activity, and outcome of juvenile systemic lupus erythematosus (jSLE) patients from southern Turkey. METHODS Fifty-three patients with jSLE diagnosed according to the revised American College of Rheumatology 1997 criteria between January 2005 and June 2018 were included in the present study. RESULTS The median age at the diagnosis was 12.8 (range, 5.1-17.7) years. The female to male ratio was 9.6:1. The most prevalent clinical features were mucocutaneous involvement (96.2%) and constitutional manifestations (94.3%). Renal manifestations, hematological manifestations, and neuropsychiatric involvement were detected in 40 (75%), in 38 (71.7%), and in 13 (24.5%) patients, respectively. Renal biopsy was performed to 49 patients (92.5%). Class IV lupus nephritis (LN) (34%) and class II LN (20.4%) were the most common findings. Mycophenolate mofetil, cyclophosphamide with corticosteroid were the main treatment options. Eighteen patients received rituximab and one tocilizumab. The mean SLE Disease Activity Index (SLEDAI) score at the time of diagnosis was 22.47 ± 8.8 (range = 3-49), and 1.34 ± 1.85 (range = 0-7) at last visit. Twenty-one patients (39.6%) had damage in agreement with Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (PedSDI; mean = 0.60 ± 0.94; range = 0-5) criteria. Growth failure was the most prevalent cause of damage (n = 13, 26%). One patient deceased due to severe pulmonary hemorrhage and multiple cerebral thromboses. CONCLUSION jSLE patients in this cohort have severe disease in view of the higher frequency of renal and neurologic involvement. Nevertheless, multicenter studies are needed to make a conclusion for all Turkish children with jSLE.
Collapse
Affiliation(s)
- Sibel Balci
- Department of Pediatric Rheumatology, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | | | - Aysun Karabay Bayazit
- Department of Pediatric Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Engin Melek
- Department of Pediatric Nephrology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Dilek Dogruel
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Derya Ufuk Altintas
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Mustafa Yilmaz
- Department of Pediatric Rheumatology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
96
|
Luo W, Mao P, Zhang L, Yang Z. Association between systemic lupus erythematosus and thyroid dysfunction: a meta-analysis. Lupus 2019; 27:2120-2128. [PMID: 30376437 DOI: 10.1177/0961203318805849] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a chronic autoimmune disease, the pathogenesis of which remains elusive. The deficiency or excess of thyroid hormone is defined as thyroid dysfunction, including (subclinical) hypothyroidism and (subclinical) hyperthyroidism. Autoimmune factors are likely to be relevant to the development of SLE and thyroid dysfunction. Recently, many studies have indicated that the prevalence of thyroid dysfunction is higher in SLE patients than in the general population. The objective of our study was to perform a systematic review and meta-analysis to find out the relationship between SLE and thyroid dysfunction. METHODS Literature databases were searched, including PubMed, Embase, Web of science, Cochrane, CNKI, CHINESE WANFANG, China Science and Technology Database (VIP). Studies comparing presence of thyroid dysfunction in SLE patients to healthy controls were extracted. All the statistical analyses were performed with STATA 12.0 software. RESULTS Ten studies with 10,500 SLE patients and 44,170 healthy controls were included in this study. The meta-analysis results showed that the prevalence of (subclinical) hypothyroidism in SLE patients was higher than in the healthy controls (hypothyroidism: OR = 2.93, 95% CI = 1.81-4.75; subclinical hypothyroidism: OR = 5.67, 95% CI = 3.50-9.18). No statistical difference of (subclinical) hyperthyroidism was found between SLE patients and controls. CONCLUSION Our meta-analysis suggests that SLE is significantly associated with increased risk of (subclinical) hypothyroidism, but it has little influence on (subclinical) hyperthyroidism.
Collapse
Affiliation(s)
- W Luo
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - P Mao
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - L Zhang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Z Yang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
97
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PS, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95:100-123. [DOI: 10.1016/j.jaut.2018.10.012] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
|
98
|
Alperin JM, Ortiz-Fernández L, Sawalha AH. Monogenic Lupus: A Developing Paradigm of Disease. Front Immunol 2018; 9:2496. [PMID: 30459768 PMCID: PMC6232876 DOI: 10.3389/fimmu.2018.02496] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Monogenic lupus is a form of systemic lupus erythematosus (SLE) that occurs in patients with a single gene defect. This rare variant of lupus generally presents with early onset severe disease, especially affecting the kidneys and central nervous system. To date, a significant number of genes have been implicated in monogenic lupus, providing valuable insights into a very complex disease process. Throughout this review, we will summarize the genes reported to be associated with monogenic lupus or lupus-like diseases, and the pathogenic mechanisms affected by the mutations involved upon inducing autoimmunity.
Collapse
Affiliation(s)
- Jessie M Alperin
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lourdes Ortiz-Fernández
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
99
|
Teng YKO, Bredewold EOW, Rabelink TJ, Huizinga TWJ, Eikenboom HCJ, Limper M, Fritsch-Stork RDE, Bloemenkamp KWM, Sueters M. An evidence-based approach to pre-pregnancy counselling for patients with systemic lupus erythematosus. Rheumatology (Oxford) 2018; 57:1707-1720. [PMID: 29165607 DOI: 10.1093/rheumatology/kex374] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Indexed: 12/17/2022] Open
Abstract
Patients with SLE are often young females of childbearing age and a pregnancy wish in this patient group is common. However, SLE patients are at high risk for adverse pregnancy outcomes that require adequate guidance. It is widely acknowledged that pre-pregnancy counselling is the pivotal first step in the management of SLE patients with a wish to become pregnant. Next, management of these patients is usually multidisciplinary and often requires specific expertise from the different physicians involved. Very recently a EULAR recommendation was published emphasizing the need for adequate preconception counselling and risk stratification. Therefore the present review specifically addresses the issue of pre-pregnancy counselling for SLE patients with an evidence-based approach. The review summarizes data retrieved from recently published, high-quality cohort studies that have contributed to a better understanding and estimation of pregnancy-related risks for SLE patients. The present review categorizes risks from a patient-oriented point of view, that is, the influence of pregnancy on SLE, of SLE on pregnancy, of SLE on the foetus/neonate and of SLE-related medication. Lastly, pre-pregnancy counselling of SLE patients with additional secondary APS is reviewed. Collectively these data can guide clinicians to formulate appropriate preventive strategies and patient-tailored monitoring plans during pre-pregnancy counselling of SLE patients.
Collapse
Affiliation(s)
- Y K Onno Teng
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin O W Bredewold
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - H C Jeroen Eikenboom
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten Limper
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ruth D E Fritsch-Stork
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.,1st Medical Department & Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Hanusch Hospital.,Sigmund Freud University, Vienna, Austria
| | - Kitty W M Bloemenkamp
- Department of Obstetrics, Wilhelmina's Children Hospital, Division Woman and Baby, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marieke Sueters
- Department of Gynaecology and Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
100
|
Wolf BJ, Ramos PS, Hyer JM, Ramakrishnan V, Gilkeson GS, Hardiman G, Nietert PJ, Kamen DL. An Analytic Approach Using Candidate Gene Selection and Logic Forest to Identify Gene by Environment Interactions (G × E) for Systemic Lupus Erythematosus in African Americans. Genes (Basel) 2018; 9:genes9100496. [PMID: 30326636 PMCID: PMC6211136 DOI: 10.3390/genes9100496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Development and progression of many human diseases, such as systemic lupus erythematosus (SLE), are hypothesized to result from interactions between genetic and environmental factors. Current approaches to identify and evaluate interactions are limited, most often focusing on main effects and two-way interactions. While higher order interactions associated with disease are documented, they are difficult to detect since expanding the search space to all possible interactions of p predictors means evaluating 2p − 1 terms. For example, data with 150 candidate predictors requires considering over 1045 main effects and interactions. In this study, we present an analytical approach involving selection of candidate single nucleotide polymorphisms (SNPs) and environmental and/or clinical factors and use of Logic Forest to identify predictors of disease, including higher order interactions, followed by confirmation of the association between those predictors and interactions identified with disease outcome using logistic regression. We applied this approach to a study investigating whether smoking and/or secondhand smoke exposure interacts with candidate SNPs resulting in elevated risk of SLE. The approach identified both genetic and environmental risk factors, with evidence suggesting potential interactions between exposure to secondhand smoke as a child and genetic variation in the ITGAM gene associated with increased risk of SLE.
Collapse
Affiliation(s)
- Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Paula S Ramos
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
- Division of Rheumatology and Immunology, Department of Medicine, Medical Univeristy of South Carolina, Charleston, SC 29425, USA.
| | - J Madison Hyer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Gary S Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical Univeristy of South Carolina, Charleston, SC 29425, USA.
| | - Gary Hardiman
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
- Center for Genomic Medicine, Department of Medicine, Medical Univeristy of South Carolina, Charleston, SC 29425, USA.
- Division of Nephrology, Department of Medicine, Medical Univeristy of South Carolina, Charleston, SC 29425, USA.
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Diane L Kamen
- Division of Rheumatology and Immunology, Department of Medicine, Medical Univeristy of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|