51
|
Das S, Chowdhury AR, Datta P. Modelling cell deformations in bioprinting process using a multicompartment-smooth particle hydrodynamics approach. Proc Inst Mech Eng H 2022; 236:867-881. [PMID: 35411836 DOI: 10.1177/09544119221089720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bioprinting using cell-laden bioink is a rapidly emerging additive manufacturing method to fabricate engineered tissue constructs and in vitro models of disease biology. Amongst different bioprinting modalities, extrusion-based bioprinting is the most conveniently adopted technique due to its affordability. Bioinks consisting of living cells are suspended in hydrogels and extruded through syringe-needle assemblies, which subsequently undergo gelation at the collector plate. During the process, pressure is exerted on living cells which may cause cell deaths. Thus, for selected combination of cell and hydrogel, exerted pressure and the extrusion play key roles in determining the cell viability. Experimental evaluation to characterise stresses experienced by the cells in a bioink during bioprinting is a tedious exercise. Herein, computational modelling can be applied efficiently for rapid screening of bioinks. In the present study, a smoothed particle hydrodynamics model is developed for the analysis of stresses exerted on the cells during bioprinting process. Cells are modelled by assigning different mechanical properties to nucleus, cytoskeleton and cell membrane regions of the cell to get a more realistic understanding of cell deformation. The cytoplasm and nucleus are modelled as finite element meshes and a spring model of the cell membrane is coupled to the finite element model to develop a three-compartment model of the cell. Cell deformation is taken as a potential indicator of cell death. Effect of different process parameters such as flow rate, syringe-nozzle geometry and cell density are investigated. A submodeling approach is further introduced to predict deformation with higher resolution in a unit volume containing 104 to 108 cells. Results suggest that the generated bioink flow dynamic model can be a useful tool for the computational study of fluid flow involving cell suspensions during a bioprinting process.
Collapse
Affiliation(s)
- Samir Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India
| | - Amit Roy Chowdhury
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Howrah, West Bengal, India
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| |
Collapse
|
52
|
Brunel LG, Hull SM, Heilshorn SC. Engineered assistive materials for 3D bioprinting: support baths and sacrificial inks. Biofabrication 2022; 14:032001. [PMID: 35487196 PMCID: PMC10788121 DOI: 10.1088/1758-5090/ac6bbe] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional (3D) bioprinting is a promising technique for spatially patterning cells and materials into constructs that mimic native tissues and organs. However, a trade-off exists between printability and biological function, where weak materials are typically more suited for 3D cell culture but exhibit poor shape fidelity when printed in air. Recently, a new class of assistive materials has emerged to overcome this limitation and enable fabrication of more complex, biologically relevant geometries, even when using soft materials as bioinks. These materials include support baths, which bioinks are printed into, and sacrificial inks, which are printed themselves and then later removed. Support baths are commonly yield-stress materials that provide physical confinement during the printing process to improve resolution and shape fidelity. Sacrificial inks have primarily been used to create void spaces and pattern perfusable networks, but they can also be combined directly with the bioink to change its mechanical properties for improved printability or increased porosity. Here, we outline the advantages of using such assistive materials in 3D bioprinting, define their material property requirements, and offer case study examples of how these materials are used in practice. Finally, we discuss the remaining challenges and future opportunities in the development of assistive materials that will propel the bioprinting field forward toward creating full-scale, biomimetic tissues and organs.
Collapse
Affiliation(s)
- Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States of America
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States of America
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
53
|
Panja N, Maji S, Choudhuri S, Ali KA, Hossain CM. 3D Bioprinting of Human Hollow Organs. AAPS PharmSciTech 2022; 23:139. [PMID: 35536418 PMCID: PMC9088731 DOI: 10.1208/s12249-022-02279-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/09/2022] [Indexed: 01/12/2023] Open
Abstract
3D bioprinting is a rapidly evolving technique that has been found to have extensive applications in disease research, tissue engineering, and regenerative medicine. 3D bioprinting might be a solution to global organ shortages and the growing aversion to testing cell patterning for novel tissue fabrication and building superior disease models. It has the unrivaled capability of layer-by-layer deposition using different types of biomaterials, stem cells, and biomolecules with a perfectly regulated spatial distribution. The tissue regeneration of hollow organs has always been a challenge for medical science because of the complexities of their cell structures. In this mini review, we will address the status of the science behind tissue engineering and 3D bioprinting of epithelialized tubular hollow organs. This review will also cover the current challenges and prospects, as well as the application of these complicated 3D-printed organs.
Collapse
|
54
|
Robinson M, Bedford E, Witherspoon L, Willerth SM, Flannigan R. Using clinically derived human tissue to 3-dimensionally bioprint personalized testicular tubules for in vitro culturing: first report. F&S SCIENCE 2022; 3:130-139. [PMID: 35560010 DOI: 10.1016/j.xfss.2022.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To study the feasibility and spermatogenic potential of 3-dimensional (3D) bioprinting personalized human testicular cells derived from a patient with nonobstructive azoospermia (NOA). DESIGN A human testicular biopsy from a single donor with NOA was dissociated into single cells, expanded in vitro, and 3D bioprinted into tubular structures akin to the seminiferous tubule using AGC-10 bioink and an RX1 bioprinter with a CENTRA coaxial microfluidic printhead from Aspect Biosystems. Three-dimensional organoid cultures were used as a nonbioprinted in vitro control. SETTING Academic medical center. PATIENT(S) A 31-year-old man with NOA with testis biopsy demonstrating Sertoli cell-only syndrome. INTERVENTION(S) Three-dimensional bioprinting and in vitro culturing of patient-derived testis cells. MAIN OUTCOME MEASURE(S) Cellular viability after printing was determined, along with the expression of phenotypic and spermatogenic functional genetic markers after 12 days of in vitro culture. RESULT(S) Testicular cultures were expandable in vitro and generated sufficiently large numbers for 3D bioprinting at 35 million cells per mL of bioink. Viability 24 hours after printing was determined to be 93.4% ± 2.4%. Immunofluorescence staining for the phenotype markers SRY-Box transcription factor 9, insulin-like 3, actin alpha 2 smooth muscle, and synaptonemal complex protein 3 after 12 days was positive, confirming the presence of Sertoli, Leydig, peritubular myoid, and meiotic germ cells. Reverse transcription qualitative polymerase chain reaction analysis showed that after 12 days in spermatogenic media, the bioprints substantially up-regulated spermatogenic gene expression on par with nonbioprinted controls and showed a particularly significant improvement in genes involved in spermatogonial stem cell maintenance: inhibitor of deoxyribonucleic acid binding 4 by 365-fold; fibroblast growth factor 3 by 94,152-fold; stem cell growth factor receptor KIT by twofold; stimulated by retinoic acid 8 by 125-fold; deleted in azoospermia-like by 114-fold; synaptonemal complex protein 3 by sevenfold; zona pellucida binding protein by twofold; transition protein 1 by 2,908-fold; and protamine 2 by 11-fold. CONCLUSION(S) This study demonstrates for the first time the feasibility of 3D bioprinting adult human testicular cells. We show that the bioprinting process is compatible with high testicular cell viability and without loss of the main somatic phenotypes within the testis tissue. We demonstrate an increase in germ cell markers in the 3D bioprinted tubules after 12 days of in vitro culture. This platform may carry future potential for disease modeling and regenerative opportunities in a personalized medicine framework.
Collapse
Affiliation(s)
- Meghan Robinson
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Erin Bedford
- Aspect Biosystems, Vancouver, British Columbia, Canada
| | - Luke Witherspoon
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Stephanie M Willerth
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Flannigan
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
55
|
Yuan TY, Zhang J, Yu T, Wu JP, Liu QY. 3D Bioprinting for Spinal Cord Injury Repair. Front Bioeng Biotechnol 2022; 10:847344. [PMID: 35519617 PMCID: PMC9065470 DOI: 10.3389/fbioe.2022.847344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is considered to be one of the most challenging central nervous system injuries. The poor regeneration of nerve cells and the formation of scar tissue after injury make it difficult to recover the function of the nervous system. With the development of tissue engineering, three-dimensional (3D) bioprinting has attracted extensive attention because it can accurately print complex structures. At the same time, the technology of blending and printing cells and related cytokines has gradually been matured. Using this technology, complex biological scaffolds with accurate cell localization can be manufactured. Therefore, this technology has a certain potential in the repair of the nervous system, especially the spinal cord. So far, this review focuses on the progress of tissue engineering of the spinal cord, landmark 3D bioprinting methods, and landmark 3D bioprinting applications of the spinal cord in recent years.
Collapse
|
56
|
Malekpour A, Chen X. Printability and Cell Viability in Extrusion-Based Bioprinting from Experimental, Computational, and Machine Learning Views. J Funct Biomater 2022; 13:jfb13020040. [PMID: 35466222 PMCID: PMC9036289 DOI: 10.3390/jfb13020040] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Extrusion bioprinting is an emerging technology to apply biomaterials precisely with living cells (referred to as bioink) layer by layer to create three-dimensional (3D) functional constructs for tissue engineering. Printability and cell viability are two critical issues in the extrusion bioprinting process; printability refers to the capacity to form and maintain reproducible 3D structure and cell viability characterizes the amount or percentage of survival cells during printing. Research reveals that both printability and cell viability can be affected by various parameters associated with the construct design, bioinks, and bioprinting process. This paper briefly reviews the literature with the aim to identify the affecting parameters and highlight the methods or strategies for rigorously determining or optimizing them for improved printability and cell viability. This paper presents the review and discussion mainly from experimental, computational, and machine learning (ML) views, given their promising in this field. It is envisioned that ML will be a powerful tool to advance bioprinting for tissue engineering.
Collapse
Affiliation(s)
- Ali Malekpour
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada
- Correspondence: (A.M.); (X.C.)
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N5A9, Canada
- Correspondence: (A.M.); (X.C.)
| |
Collapse
|
57
|
Green Bioprinting with Layer-by-Layer Photo-Crosslinking: A Designed Experimental Investigation on Shape Fidelity and Cell Viability of Printed Constructs. JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING 2022. [DOI: 10.3390/jmmp6020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Process variables of bioprinting (including extrusion pressure, nozzle size, and bioink composition) can affect the shape fidelity and cell viability of printed constructs. Reported studies show that increasing extrusion pressure or decreasing nozzle size would decrease cell viability in printed constructs. However, a smaller nozzle size is often necessary for printing constructs of higher shape fidelity, and a higher extrusion pressure is usually needed to extrude bioink through nozzles with a smaller diameter. Because values of printing process variables that increase shape fidelity can be detrimental to cell viability, the optimum combination of variables regarding both shape fidelity and cell viability must be determined for specific bioink compositions. This paper reports a designed experimental investigation (full factorial design with three variables and two levels) on bioprinting by applying layer-by-layer photo-crosslinking and using the alginate-methylcellulose-GelMA bioink containing algae cells. The study investigates both the main effects and interaction effects of extrusion pressure, nozzle size, and bioink composition on the shape fidelity and cell viability of printed constructs. Results show that, as extrusion pressure changed from its low level to its high level, shape fidelity and cell viability decreased. As nozzle size changed from its low level to its high level, shape fidelity decreased while cell viability increased. As bioink composition changed from its low level (with more methylcellulose content in the bioink) to its high level (with less methylcellulose content in the bioink), shape fidelity and cell viability increased.
Collapse
|
58
|
Abstract
Three-dimensional printing is a still-emerging technology with high impact for the medical community, particularly in the development of tissues for the clinic. Many types of printers are under development, including extrusion, droplet, melt, and light-curing technologies. Herein we discuss the various types of 3D printers and their strengths and weaknesses concerning tissue engineering. Despite the advantages of 3D printing, challenges remain in the development of large, clinically relevant tissues. Advancements in bioink development, printer technology, tissue vascularization, and cellular sourcing/expansion are discussed, alongside future opportunities for the field. Trends regarding in situ printing, personalized medicine, and whole organ development are highlighted. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kelsey Willson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA;
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, North Carolina, USA;
| |
Collapse
|
59
|
Ghelich P, Kazemzadeh-Narbat M, Najafabadi AH, Samandari M, Memic A, Tamayol A. (Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100073. [PMID: 35935166 PMCID: PMC9355310 DOI: 10.1002/anbr.202100073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone defects, with second highest demand for surgeries around the globe, may lead to serious health issues and negatively influence patient lives. The advances in biomedical engineering and sciences have led to the development of several creative solutions for bone defect treatment. This review provides a brief summary of bone graft materials, an organized overview of top-down and bottom-up (bio)manufacturing approaches, plus a critical comparison between advantages and limitations of each method. We specifically discuss additive manufacturing techniques and their operation mechanisms in detail. Next, we review the hybrid methods and promising future directions for bone grafting, while giving a comprehensive US-FDA regulatory science perspective, biocompatibility concepts and assessments, and clinical considerations to translate a technology from a research laboratory to the market. The topics covered in this review could potentially fuel future research efforts in bone tissue engineering, and perhaps could also provide novel insights for other tissue engineering applications.
Collapse
Affiliation(s)
- Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| | | | | | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| |
Collapse
|
60
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|
61
|
Jin S, Oh YN, Son YR, Kwon B, Park JH, Gang MJ, Kim BW, Kwon HJ. Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells. J Microbiol Biotechnol 2022; 32:238-247. [PMID: 34949744 PMCID: PMC9628848 DOI: 10.4014/jmb.2111.11042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Since the skin covers most surfaces of the body, it is susceptible to damage, which can be fatal depending on the degree of injury to the skin because it defends against external attack and protects internal structures. Various types of artificial skin are being studied for transplantation to repair damaged skin, and recently, the production of replaceable skin using three-dimensional (3D) bioprinting technology has also been investigated. In this study, skin tissue was produced using a 3D bioprinter with human skin cell lines and cells extracted from mouse skin, and the printing conditions were optimized. Gelatin was used as a bioink, and fibrinogen and alginate were used for tissue hardening after printing. Printed skin tissue maintained a survival rate of 90% or more when cultured for 14 days. Culture conditions were established using 8 mM calcium chloride treatment and the skin tissue was exposed to air to optimize epidermal cell differentiation. The skin tissue was cultured for 14 days after differentiation induction by this optimized culture method, and immunofluorescent staining was performed using epidermal cell differentiation markers to investigate whether the epidermal cells had differentiated. After differentiation, loricrin, which is normally found in terminally differentiated epidermal cells, was observed in the cells at the tip of the epidermal layer, and cytokeratin 14 was expressed in the lower cells of the epidermis layer. Collectively, this study may provide optimized conditions for bioprinting and keratinization for three-dimensional skin production.
Collapse
Affiliation(s)
- Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - You Na Oh
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Yu Ri Son
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Boguen Kwon
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Jung-ha Park
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Min jeong Gang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea,Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan 47340, Republic of Korea,
B.W. Kim Phone: +82-51-890-2900 Fax: +82-505-182-6951 E-mail:
| | - Hyun Ju Kwon
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea,Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan 47340, Republic of Korea,Corresponding authors H.J. Kwon Phone: +82-51-890-4471 Fax: +82-505-182-6871 E-mail:
| |
Collapse
|
62
|
Shin J, Lee Y, Li Z, Hu J, Park SS, Kim K. Optimized 3D Bioprinting Technology Based on Machine Learning: A Review of Recent Trends and Advances. MICROMACHINES 2022; 13:mi13030363. [PMID: 35334656 PMCID: PMC8956046 DOI: 10.3390/mi13030363] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023]
Abstract
The need for organ transplants has risen, but the number of available organ donations for transplants has stagnated worldwide. Regenerative medicine has been developed to make natural organs or tissue-like structures with biocompatible materials and solve the donor shortage problem. Using biomaterials and embedded cells, a bioprinter enables the fabrication of complex and functional three-dimensional (3D) structures of the organs or tissues for regenerative medicine. Moreover, conventional surgical 3D models are made of rigid plastic or rubbers, preventing surgeons from interacting with real organ or tissue-like models. Thus, finding suitable biomaterials and printing methods will accelerate the printing of sophisticated organ structures and the development of realistic models to refine surgical techniques and tools before the surgery. In addition, printing parameters (e.g., printing speed, dispensing pressure, and nozzle diameter) considered in the bioprinting process should be optimized. Therefore, machine learning (ML) technology can be a powerful tool to optimize the numerous bioprinting parameters. Overall, this review paper is focused on various ideas on the ML applications of 3D printing and bioprinting to optimize parameters and procedures.
Collapse
Affiliation(s)
- Jaemyung Shin
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
| | - Yoonjung Lee
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (Y.L.); (S.S.P.)
| | - Zhangkang Li
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
| | - Jinguang Hu
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Simon S. Park
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (Y.L.); (S.S.P.)
| | - Keekyoung Kim
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.S.); (Z.L.); (J.H.)
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (Y.L.); (S.S.P.)
- Correspondence:
| |
Collapse
|
63
|
Lin S, Li B, Yang L, Zhai Y, Wang X, Wang C. New method for reducing viscosity and shear stress in hydrogel 3D printing via multidimension vibration. Comput Methods Biomech Biomed Engin 2022; 25:1796-1811. [PMID: 35170395 DOI: 10.1080/10255842.2022.2039129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microextrusion 3D bioprinting is a comparatively easy method to fabricate structures in tissue engineering. But high viscosity and wall shear stress in the tube and nozzle often lead to low cell survival rate of printed tissue. To reduce the viscosity and shear stress of materials in biological 3D printing, a multidimension microvibration assisted hydrogel 3D printing method was proposed. The compliant mechanism driven by piezoceramic was applied to 3D printing of hydrogels. The shear stress and viscosity of hydrogels could be effectively reduced by multidimension microvibration. Simulation analysis of the extrusion device was carried out to study the influence of vibration parameters on viscosity and shear stress, and optimized multidimension vibration forms and vibration parameters were selected for experiments. The experiment results show that multidimension microvibration can effectively reduce the viscosity of hydrogels and improve printing resolution and print speed.
Collapse
Affiliation(s)
- Sheng Lin
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Bicong Li
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Liang Yang
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Xiaoyu Wang
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Chun Wang
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| |
Collapse
|
64
|
Faulkner-Jones A, Zamora V, Hortigon-Vinagre MP, Wang W, Ardron M, Smith GL, Shu W. A Bioprinted Heart-on-a-Chip with Human Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Evaluation. Bioengineering (Basel) 2022; 9:bioengineering9010032. [PMID: 35049741 PMCID: PMC8773426 DOI: 10.3390/bioengineering9010032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
In this work, we show that valve-based bioprinting induces no measurable detrimental effects on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The aim of the current study was three-fold: first, to assess the response of hiPSC-CMs to several hydrogel formulations by measuring electrophysiological function; second, to customise a new microvalve-based cell printing mechanism in order to deliver hiPSC-CMs suspensions, and third, to compare the traditional manual pipetting cell-culture method and cardiomyocytes dispensed with the bioprinter. To achieve the first and third objectives, iCell2 (Cellular Dynamics International) hiPSC-CMs were used. The effects of well-known drugs were tested on iCell2 cultured by manual pipetting and bioprinting. Despite the results showing that hydrogels and their cross-linkers significantly reduced the electrophysiological performance of the cells compared with those cultured on fibronectin, the bio-ink droplets containing a liquid suspension of live cardiomyocytes proved to be an alternative to standard manual handling and could reduce the number of cells required for drug testing, with no significant differences in drug-sensitivity between both approaches. These results provide a basis for the development of a novel bioprinter with nanolitre resolution to decrease the required number of cells and to automate the cell plating process.
Collapse
Affiliation(s)
- Alan Faulkner-Jones
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (A.F.-J.); (W.W.)
| | - Victor Zamora
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Maria P. Hortigon-Vinagre
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Facultad de Ciencias, 06006 Badajoz, Spain
- Correspondence: ; Tel.: +34-924-289-300 (ext. 89053)
| | - Wenxing Wang
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (A.F.-J.); (W.W.)
| | - Marcus Ardron
- Renishaw PLC, Research Avenue North, Edinburgh EH14 4AP, UK;
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
- Clyde Biosciences, Glasgow G12 8QQ, UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow G4 0NW, UK;
| |
Collapse
|
65
|
Bonany M, del-Mazo-Barbara L, Espanol M, Ginebra MP. Microsphere incorporation as a strategy to tune the biological performance of bioinks. J Tissue Eng 2022; 13:20417314221119895. [PMID: 36199978 PMCID: PMC9527984 DOI: 10.1177/20417314221119895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Although alginate is widely used as a matrix in the formulation of cell-laden inks, this polymer often requires laborious processing strategies due to its lack of cell adhesion moieties. The main objective of the present work was to explore the incorporation of microspheres into alginate-based bioinks as a simple and tuneable way to solve the cell adhesion problems, while adding extra biological functionality and improving their mechanical properties. To this end, three types of microspheres with different mineral contents (i.e. gelatine with 0% of hydroxyapatite, gelatine with 25 wt% of hydroxyapatite nanoparticles and 100 wt% of calcium -deficient hydroxyapatite) were synthesised and incorporated into the formulation of cell-laden inks. The results showed that the addition of microspheres generally improved the rheological properties of the ink, favoured cell proliferation and positively affected osteogenic cell differentiation. Furthermore, this differentiation was found to be influenced by the type of microsphere and the ability of the cells to migrate towards them, which was highly dependent on the stiffness of the bioink. In this regard, Ca2+ supplementation in the cell culture medium had a pronounced effect on the relaxation of the stiffness of these cell-loaded inks, influencing the overall cell performance. In conclusion, we have developed a powerful and tuneable strategy for the fabrication of alginate-based bioinks with enhanced biological characteristics by incorporating microspheres into the initial ink formulation.
Collapse
Affiliation(s)
- Mar Bonany
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
| | - Laura del-Mazo-Barbara
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
| | - Montserrat Espanol
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, UPC, Barcelona, Spain
- Biomedical Engineering Research Center (CREB), UPC, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
66
|
Hull SM, Brunel LG, Heilshorn SC. 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103691. [PMID: 34672027 PMCID: PMC8988886 DOI: 10.1002/adma.202103691] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/15/2021] [Indexed: 05/03/2023]
Abstract
The encapsulation of cells within gel-phase materials to form bioinks offers distinct advantages for next-generation 3D bioprinting. 3D bioprinting has emerged as a promising tool for patterning cells, but the technology remains limited in its ability to produce biofunctional, tissue-like constructs due to a dearth of materials suitable for bioinks. While early demonstrations commonly used viscous polymers optimized for printability, these materials often lacked cell compatibility and biological functionality. In response, advanced materials that exist in the gel phase during the entire printing process are being developed, since hydrogels are uniquely positioned to both protect cells during extrusion and provide biological signals to embedded cells as the construct matures during culture. Here, an overview of the design considerations for gel-phase materials as bioinks is presented, with a focus on their mechanical, biochemical, and dynamic gel properties. Current challenges and opportunities that arise due to the fact that bioprinted constructs are active, living hydrogels composed of both acellular and cellular components are also evaluated. Engineering hydrogels with consideration of cells as an intrinsic component of the printed bioink will enable control over the evolution of the living construct after printing to achieve greater biofunctionality.
Collapse
Affiliation(s)
- Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
67
|
Ouyang L. Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends Biotechnol 2022; 40:891-902. [DOI: 10.1016/j.tibtech.2022.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
|
68
|
Yildirim Ö, Arslan-Yildiz A. Development of a hydrocolloid bio-ink for 3D bioprinting. Biomater Sci 2022; 10:6707-6717. [DOI: 10.1039/d2bm01184k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of new hydrocolloid bio-ink from quince seed and utilization for 3D cell culture.
Collapse
Affiliation(s)
- Özüm Yildirim
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), 35430 Izmir, Turkey
| | - Ahu Arslan-Yildiz
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), 35430 Izmir, Turkey
| |
Collapse
|
69
|
Puertas-Bartolomé M, Włodarczyk-Biegun MK, Del Campo A, Vázquez-Lasa B, San Román J. Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112515. [PMID: 34857294 DOI: 10.1016/j.msec.2021.112515] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing. Thus, NPs wound healing promoting activities, potential for drug encapsulation and controlled release, and further incorporation in a hydrogel bioink formulation to fabricate cell-laden 3D scaffolds are studied. NPs with 2 and 29 M % catechol contents (named NP2 and NP29) were obtained by nanoprecipitation and presented hydrodynamic diameters of 100 and 75 nm respectively. These nanocarriers encapsulated the hydrophobic compound coumarin-6 with 70% encapsulation efficiency values. In cell culture studies, the NPs had a protective effect in RAW 264.7 macrophages against oxidative stress damage induced by radical oxygen species (ROS). They also presented a regulatory effect on the inflammatory response of stimulated macrophages and promoted upregulation of the vascular endothelial growth factor (VEGF) in fibroblasts and endothelial cells. In particular, NP29 were used in a hydrogel bioink formulation using carboxymethyl chitosan and hyaluronic acid as polymeric matrices. Using a reactive mixing bioprinting approach, NP-loaded hydrogel scaffolds with good structural integrity, shape fidelity and homogeneous NPs dispersion, were obtained. The in vitro catechol NPs release profile of the printed scaffolds revealed a sustained delivery. The bioprinted scaffolds supported viability and proliferation of encapsulated L929 fibroblasts over 14 days. We envision that the catechol functionalized NPs and resulting bioactive bioink presented in this work offer promising advantages for wound healing applications, as they: 1) support controlled release of bioactive catechol NPs to the wound site; 2) can incorporate additional therapeutic functions by co-encapsulating drugs; 3) can be printed into 3D scaffolds with tailored geometries based on patient requirements.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain; INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | | | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain; CIBER's Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Health Institute Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
70
|
Yan X, Yang B, Chen Y, Song Y, Ye J, Pan Y, Zhou B, Wang Y, Mao F, Dong Y, Liu D, Yu J. Anti-Friction MSCs Delivery System Improves the Therapy for Severe Osteoarthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104758. [PMID: 34657320 DOI: 10.1002/adma.202104758] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Osteoarthritis (OA) is a musculoskeletal disorder disease affecting about 500 million people worldwide and mesenchymal sem cells (MSCs) therapy has been demonstrated as a potential strategy to treat OA. However, the shear forces during direct injection and the harsher shear condition of OA environments would lead to significant cell damage and inhibit the therapeutic efficacy. Herein, DNA supramolecular hydrogel has been applied as delivering material for MSCs to treat severe OA model, which perform extraordinary protection in MSCs against the shear force both in vitro and in vivo. It is demonstrated that the DNA supramolecular hydrogel can promote formation of quality cartilage, reduce osteophyte, and normalize subchondral bone under the high friction condition of OA, whose molecular mechanisms underlying therapeutic effects are also investigated. It can be anticipated that DNA supramolecular hydrogel would be a promising cell delivery system for multiple potential MSCs therapy.
Collapse
Affiliation(s)
- Xin Yan
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Bo Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yourong Chen
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Yifan Song
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Jing Ye
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Yufan Pan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuqing Wang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiakuo Yu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| |
Collapse
|
71
|
Tharakan S, Khondkar S, Ilyas A. Bioprinting of Stem Cells in Multimaterial Scaffolds and Their Applications in Bone Tissue Engineering. SENSORS (BASEL, SWITZERLAND) 2021; 21:7477. [PMID: 34833553 PMCID: PMC8618842 DOI: 10.3390/s21227477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Bioprinting stem cells into three-dimensional (3D) scaffolds has emerged as a new avenue for regenerative medicine, bone tissue engineering, and biosensor manufacturing in recent years. Mesenchymal stem cells, such as adipose-derived and bone-marrow-derived stem cells, are capable of multipotent differentiation in a 3D culture. The use of different printing methods results in varying effects on the bioprinted stem cells with the appearance of no general adverse effects. Specifically, extrusion, inkjet, and laser-assisted bioprinting are three methods that impact stem cell viability, proliferation, and differentiation potential. Each printing method confers advantages and disadvantages that directly influence cellular behavior. Additionally, the acquisition of 3D bioprinters has become more prominent with innovative technology and affordability. With accessible technology, custom 3D bioprinters with capabilities to print high-performance bioinks are used for biosensor fabrication. Such 3D printed biosensors are used to control conductivity and electrical transmission in physiological environments. Once printed, the scaffolds containing the aforementioned stem cells have a significant impact on cellular behavior and differentiation. Natural polymer hydrogels and natural composites can impact osteogenic differentiation with some inducing chondrogenesis. Further studies have shown enhanced osteogenesis using cell-laden scaffolds in vivo. Furthermore, selective use of biomaterials can directly influence cell fate and the quantity of osteogenesis. This review evaluates the impact of extrusion, inkjet, and laser-assisted bioprinting on adipose-derived and bone-marrow-derived stem cells along with the effect of incorporating these stem cells into natural and composite biomaterials.
Collapse
Affiliation(s)
- Shebin Tharakan
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA; (S.T.); (S.K.)
- New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Shams Khondkar
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA; (S.T.); (S.K.)
- Department of Bioengineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA; (S.T.); (S.K.)
- Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
72
|
Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021; 10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Negar Mansouri
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| |
Collapse
|
73
|
McGivern S, Boutouil H, Al-Kharusi G, Little S, Dunne NJ, Levingstone TJ. Translational Application of 3D Bioprinting for Cartilage Tissue Engineering. Bioengineering (Basel) 2021; 8:144. [PMID: 34677217 PMCID: PMC8533558 DOI: 10.3390/bioengineering8100144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage is an avascular tissue with extremely limited self-regeneration capabilities. At present, there are no existing treatments that effectively stop the deterioration of cartilage or reverse its effects; current treatments merely relieve its symptoms and surgical intervention is required when the condition aggravates. Thus, cartilage damage remains an ongoing challenge in orthopaedics with an urgent need for improved treatment options. In recent years, major advances have been made in the development of three-dimensional (3D) bioprinted constructs for cartilage repair applications. 3D bioprinting is an evolutionary additive manufacturing technique that enables the precisely controlled deposition of a combination of biomaterials, cells, and bioactive molecules, collectively known as bioink, layer-by-layer to produce constructs that simulate the structure and function of native cartilage tissue. This review provides an insight into the current developments in 3D bioprinting for cartilage tissue engineering. The bioink and construct properties required for successful application in cartilage repair applications are highlighted. Furthermore, the potential for translation of 3D bioprinted constructs to the clinic is discussed. Overall, 3D bioprinting demonstrates great potential as a novel technique for the fabrication of tissue engineered constructs for cartilage regeneration, with distinct advantages over conventional techniques.
Collapse
Affiliation(s)
- Sophie McGivern
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
| | - Halima Boutouil
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
| | - Ghayadah Al-Kharusi
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
| | - Suzanne Little
- Insight SFI Research Centre for Data Analytics, Dublin City University, D09 NA55 Dublin, Ireland;
| | - Nicholas J. Dunne
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, D02 PN40 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tanya J. Levingstone
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (S.M.); (H.B.); (G.A.-K.); (N.J.D.)
- Centre for Medical Engineering Research (MEDeng), Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
74
|
Gerdes S, Ramesh S, Mostafavi A, Tamayol A, Rivero IV, Rao P. Extrusion-based 3D (Bio)Printed Tissue Engineering Scaffolds: Process-Structure-Quality Relationships. ACS Biomater Sci Eng 2021; 7:4694-4717. [PMID: 34498461 DOI: 10.1021/acsbiomaterials.1c00598] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological additive manufacturing (Bio-AM) has emerged as a promising approach for the fabrication of biological scaffolds with nano- to microscale resolutions and biomimetic architectures beneficial to tissue engineering applications. However, Bio-AM processes tend to introduce flaws in the construct during fabrication. These flaws can be traced to material nonhomogeneity, suboptimal processing parameters, changes in the (bio)printing environment (such as nozzle clogs), and poor construct design, all with significant contributions to the alteration of a scaffold's mechanical properties. In addition, the biological response of endogenous and exogenous cells interacting with the defective scaffolds could become unpredictable. In this review, we first described extrusion-based Bio-AM. We highlighted the salient architectural and mechanotransduction parameters affecting the response of cells interfaced with the scaffolds. The process phenomena leading to defect formation and some of the tools for defect detection are reviewed. The limitations of the existing developments and the directions that the field should grow in order to overcome said limitations are discussed.
Collapse
Affiliation(s)
- Samuel Gerdes
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, United States
| | - Srikanthan Ramesh
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, New York. 14623, United States
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, United States
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, United States.,Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06269, United States
| | - Iris V Rivero
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, Rochester, New York. 14623, United States.,Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York. 14623, United States
| | - Prahalada Rao
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, United States
| |
Collapse
|
75
|
Recent Advancements in 3D Printing and Bioprinting Methods for Cardiovascular Tissue Engineering. Bioengineering (Basel) 2021; 8:bioengineering8100133. [PMID: 34677206 PMCID: PMC8533407 DOI: 10.3390/bioengineering8100133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023] Open
Abstract
Recent decades have seen a plethora of regenerating new tissues in order to treat a multitude of cardiovascular diseases. Autografts, xenografts and bioengineered extracellular matrices have been employed in this endeavor. However, current limitations of xenografts and exogenous scaffolds to acquire sustainable cell viability, anti-inflammatory and non-cytotoxic effects with anti-thrombogenic properties underline the requirement for alternative bioengineered scaffolds. Herein, we sought to encompass the methods of biofabricated scaffolds via 3D printing and bioprinting, the biomaterials and bioinks recruited to create biomimicked tissues of cardiac valves and vascular networks. Experimental and computational designing approaches have also been included. Moreover, the in vivo applications of the latest studies on the treatment of cardiovascular diseases have been compiled and rigorously discussed.
Collapse
|
76
|
Lee G, Kim SJ, Chun H, Park JK. Multilayered and heterogeneous hydrogel construct printing system with crosslinking aerosol. Biofabrication 2021; 13. [PMID: 34507302 DOI: 10.1088/1758-5090/ac25ca] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/10/2021] [Indexed: 01/20/2023]
Abstract
Microextrusion bioprinting has been used to recreate the complex architecture and composition of a physiological system through the quick and accurate handling of various biomaterials. However, existing techniques are limited in precisely fabricating complex constructs, including multilayers and heterogeneous patterns with distinct regions, because the extruded bioink spreads rapidly upon contact with the substrate and is partially mixed with subsequently printed bioinks. This issue leads to difficulties in accurately and stably constructing multi-material structures with clear interfaces for prolonged printing before gelation. To fabricate multilayered and heterogeneous constructs, a bioprinting system should be able to continuously extrude various biomaterials and simultaneously crosslink the extruded bioink to stabilize the printed construct. In this study, a multiple-bioink printing system was developed by integrating a multibarrel nozzle for extruding multiple bioinks with a nebulizer for simultaneous crosslinking. The crosslinking aerosol sprayed from the nebulizer was able to gelate the various hydrogel bioinks as they were extruded through the multibarrel nozzle. Such aerosol-based crosslinking improved printing resolution and stability. The developed bioprinting system showed the possibility of recapitulating the physiological complex architecture such as a cancer microenvironment with well-defined interfaces between regions of different mechanical properties and cellular compositions. Using the integrated bioprinting system, a multilayered and heterogeneous construct was printed with four bioinks, including three types of cells (breast cancer cells, stromal cells, and vascular endothelial cells). The printed biological model was characterized by analyzing cancer cell migration and vascular network formation. The developed multiple-bioink printing system is expected to be highly efficient in recapitulating complex tissues and their environments with compartmentalized regions.
Collapse
Affiliation(s)
- Gihyun Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Soo Jee Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
77
|
What can biofabrication do for space and what can space do for biofabrication? Trends Biotechnol 2021; 40:398-411. [PMID: 34544616 DOI: 10.1016/j.tibtech.2021.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023]
Abstract
Biofabrication in space is one of the novel promising and prospective research directions in the rapidly emerging field of space STEM. There are several advantages of biofabrication in space. Under microgravity, it is possible to engineer constructs using more fluidic channels and thus more biocompatible bioinks. Microgravity enables biofabrication of tissue and organ constructs of more complex geometries, thus facilitating novel scaffold-, label-, and nozzle-free technologies based on multi-levitation principles. However, when exposed to microgravity and cosmic radiation, biofabricated tissues could be used to study pathophysiological phenomena that will be useful on Earth and for deep space manned missions. Here, we provide leading concepts about the potential mutual benefits of the application of biofabrication technologies in space.
Collapse
|
78
|
Reina-Romo E, Mandal S, Amorim P, Bloemen V, Ferraris E, Geris L. Towards the Experimentally-Informed In Silico Nozzle Design Optimization for Extrusion-Based Bioprinting of Shear-Thinning Hydrogels. Front Bioeng Biotechnol 2021; 9:701778. [PMID: 34422780 PMCID: PMC8378215 DOI: 10.3389/fbioe.2021.701778] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Research in bioprinting is booming due to its potential in addressing several manufacturing challenges in regenerative medicine. However, there are still many hurdles to overcome to guarantee cell survival and good printability. For the 3D extrusion-based bioprinting, cell viability is amongst one of the lowest of all the bioprinting techniques and is strongly influenced by various factors including the shear stress in the print nozzle. The goal of this study is to quantify, by means of in silico modeling, the mechanical environment experienced by the bioink during the printing process. Two ubiquitous nozzle shapes, conical and blunted, were considered, as well as three common hydrogels with material properties spanning from almost Newtonian to highly shear-thinning materials following the power-law behavior: Alginate-Gelatin, Alginate and PF127. Comprehensive in silico testing of all combinations of nozzle geometry variations and hydrogels was achieved by combining a design of experiments approach (DoE) with a computational fluid dynamics (CFD) of the printing process, analyzed through a machine learning approach named Gaussian Process. Available experimental results were used to validate the CFD model and justify the use of shear stress as a surrogate for cell survival in this study. The lower and middle nozzle radius, lower nozzle length and the material properties, alone and combined, were identified as the major influencing factors affecting shear stress, and therefore cell viability, during printing. These results were successfully compared with those of reported experiments testing viability for different nozzle geometry parameters under constant flow rate or constant pressure. The in silico 3D bioprinting platform developed in this study offers the potential to assist and accelerate further development of 3D bioprinting.
Collapse
Affiliation(s)
- Esther Reina-Romo
- Department of Mechanical Engineering and Manufacturing, University of Seville, Seville, Spain
| | - Sourav Mandal
- Biomechanics Research Unit, GIGA In Silico Medicine, Université de Liège, Liege, Belgium
| | - Paulo Amorim
- Prometheus, The Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Materials Technology TC, Campus Group T, KU Leuven, Leuven, Belgium
| | - Veerle Bloemen
- Prometheus, The Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Materials Technology TC, Campus Group T, KU Leuven, Leuven, Belgium
| | - Eleonora Ferraris
- Department of Mechanical Engineering, Campus de Nayer, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA In Silico Medicine, Université de Liège, Liege, Belgium.,Prometheus, The Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Section, Department of Mechanical Engineering, KU Leuven , Leuven, Belgium
| |
Collapse
|
79
|
Towards bioengineered skeletal muscle: recent developments in vitro and in vivo. Essays Biochem 2021; 65:555-567. [PMID: 34342361 DOI: 10.1042/ebc20200149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is a functional tissue that accounts for approximately 40% of the human body mass. It has remarkable regenerative potential, however, trauma and volumetric muscle loss, progressive disease and aging can lead to significant muscle loss that the body cannot recover from. Clinical approaches to address this range from free-flap transfer for traumatic events involving volumetric muscle loss, to myoblast transplantation and gene therapy to replace muscle loss due to sarcopenia and hereditary neuromuscular disorders, however, these interventions are often inadequate. The adoption of engineering paradigms, in particular materials engineering and materials/tissue interfacing in biology and medicine, has given rise to the rapidly growing, multidisciplinary field of bioengineering. These methods have facilitated the development of new biomaterials that sustain cell growth and differentiation based on bionic biomimicry in naturally occurring and synthetic hydrogels and polymers, as well as additive fabrication methods to generate scaffolds that go some way to replicate the structural features of skeletal muscle. Recent advances in biofabrication techniques have resulted in significant improvements to some of these techniques and have also offered promising alternatives for the engineering of living muscle constructs ex vivo to address the loss of significant areas of muscle. This review highlights current research in this area and discusses the next steps required towards making muscle biofabrication a clinical reality.
Collapse
|
80
|
Cadena M, Ning L, King A, Hwang B, Jin L, Serpooshan V, Sloan SA. 3D Bioprinting of Neural Tissues. Adv Healthc Mater 2021; 10:e2001600. [PMID: 33200587 PMCID: PMC8711131 DOI: 10.1002/adhm.202001600] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Indexed: 02/06/2023]
Abstract
The human nervous system is a remarkably complex physiological network that is inherently challenging to study because of obstacles to acquiring primary samples. Animal models offer powerful alternatives to study nervous system development, diseases, and regenerative processes, however, they are unable to address some species-specific features of the human nervous system. In vitro models of the human nervous system have expanded in prevalence and sophistication, but still require further advances to better recapitulate microenvironmental and cellular features. The field of neural tissue engineering (TE) is rapidly adopting new technologies that enable scientists to precisely control in vitro culture conditions and to better model nervous system formation, function, and repair. 3D bioprinting is one of the major TE technologies that utilizes biocompatible hydrogels to create precisely patterned scaffolds, designed to enhance cellular responses. This review focuses on the applications of 3D bioprinting in the field of neural TE. Important design parameters are considered when bioprinting neural stem cells are discussed. The emergence of various bioprinted in vitro platforms are also reviewed for developmental and disease modeling and drug screening applications within the central and peripheral nervous systems, as well as their use as implants for in vivo regenerative therapies.
Collapse
Affiliation(s)
- Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Steven A. Sloan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
81
|
Poologasundarampillai G, Haweet A, Jayash SN, Morgan G, Moore JE, Candeo A. Real-time imaging and analysis of cell-hydrogel interplay within an extrusion-bioprinting capillary. BIOPRINTING 2021; 23:e00144. [DOI: 10.1016/j.bprint.2021.e00144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
|
82
|
Sharma A, Rawal P, Tripathi DM, Alodiya D, Sarin SK, Kaur S, Ghosh S. Upgrading Hepatic Differentiation and Functions on 3D Printed Silk-Decellularized Liver Hybrid Scaffolds. ACS Biomater Sci Eng 2021; 7:3861-3873. [PMID: 34318665 DOI: 10.1021/acsbiomaterials.1c00671] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We developed hybrid liver-specific three-dimensional (3D) printed scaffolds using a solubilized native decellularized liver (DCL) matrix and silk fibroin (SF) and investigated their ability to support functional cultures of hepatic cells. Rat livers were decellularized by perfusing detergents via the portal vein, solubilized using pepsin to form DCL, and characterized. SF blended with gelatin (8% w/v) was optimized with varying percentages of DCL to obtain silk gelatin-DCL bioink (SG-DCL). Different compositions of SG-DCL were studied by rheology for optimum versatility and print fidelity. 3D printed six-layered scaffolds were fabricated using a sophisticated direct-write 3D bioprinter. Huh7 cells were cultured on the 3D printed scaffolds for 3 weeks. 3D printed SG scaffolds without DCL along with 2D films (SG and SG-DCL) and 2D culture on tissue culture Petri dish control were used for comparative studies. The DCL matrix showed the absence of cells in histology and SEM. The combined SG-DCL ink at all of the studied DCL percentages (1-10%) revealed shear-thinning behavior in the printable range. The storage modulus value for the SG-DCL ink at all DCL percentages was higher than the loss modulus. In comparison to 2D controls, hepatic cells cultured on 3D SG-DCL revealed increased proliferation until 2 weeks and an upregulated expression of hepatocyte markers, including asialoglycoprotein receptor 1 (ASGR1). The Wnt pathway gene β-catenin was upregulated by more than 4-fold in 3D SG-DCL on day 3, while it showed a decline on day 7 as compared to 3D SG and also 2D controls. The expression of the epithelial cell adhesion molecule (EpCAM) was however lower in both 2D SG-DCL (2-fold) and 3D SG-DCL (2.5-fold) as compared to that in 2D controls. Immunofluorescence studies validated the protein expression of ASGR1 in 3D SG-DCL. Albumin (ALB) was not identified on SG scaffolds but prominently expressed in 3D SG-DCL constructs. In comparison to 2D SG, both ALB (1.8-fold) and urea (5-fold) were enhanced in cells cultured on 3D SG-DCL on day 7 of culture. Hence, the SG-DCL 3D printed scaffolds provide a conducive microenvironment for elevating differentiation and functions of hepatic cells possibly through an involvement of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Aarushi Sharma
- Regenerative Engineering Laboratory, Department of Textile and Fiber Technology, Indian Institute of Technology-Delhi, New Delhi 110016, India
| | - Preety Rawal
- Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | | | - Dashrath Alodiya
- Regenerative Engineering Laboratory, Department of Textile and Fiber Technology, Indian Institute of Technology-Delhi, New Delhi 110016, India
| | - Shiv K Sarin
- Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fiber Technology, Indian Institute of Technology-Delhi, New Delhi 110016, India
| |
Collapse
|
83
|
Kreimendahl F, Kniebs C, Tavares Sobreiro AM, Schmitz-Rode T, Jockenhoevel S, Thiebes AL. FRESH bioprinting technology for tissue engineering - the influence of printing process and bioink composition on cell behavior and vascularization. J Appl Biomater Funct Mater 2021; 19:22808000211028808. [PMID: 34282976 DOI: 10.1177/22808000211028808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The rapid and tailored biofabrication of natural materials is of high interest for the field of tissue engineering and regenerative medicine. Scaffolds require both high biocompatibility and tissue-dependent mechanical strength to function as basis for tissue-engineered implants. Thus, natural hydrogels such as fibrin are promising but their rapid biofabrication remains challenging. Printing of low viscosity and slow polymerizing solutions with good spatial resolution can be achieved by freeform reversible embedding of suspended hydrogels (FRESH) bioprinting of cell-laden natural hydrogels. In this study, fibrin and hyaluronic acid were used as single components as well as blended ink mixtures for the FRESH bioprinting. Rheometry revealed that single materials were less viscous than the blended bioink showing higher values for viscosity over a shear rate of 10-1000 s-1. While fibrin showed viscosities between 0.1624 and 0.0017 Pa·s, the blended ink containing fibrin and hyaluronic acid were found to be in a range of 0.1-1 Pa·s. In 3D vascularization assays, formation of vascular structures within the printed constructs was investigated indicating that the printing process did not harm cells and allowed formation of vasculature comparable to moulded control samples. Best values for vascularization were achieved in bioinks consisting of 1.0% fibrin-0.5% hyaluronic acid. The vascular structure area and length were three times higher compared to other tested bioinks, and structure volume as well as number of branches revealed almost four times higher values. In this study, we combined the benefits of the FRESH printing technique with in vitro vascularization, showing that it is possible to achieve a mechanically stable small-scale hydrogel construct incorporating vascular network formation.
Collapse
Affiliation(s)
- Franziska Kreimendahl
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany.,Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Caroline Kniebs
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany.,Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Ana Margarida Tavares Sobreiro
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany.,Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| | - Anja Lena Thiebes
- Department of Biohybrid and Medical Textiles (BioTex), Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Aachen, Germany.,Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Geleen, The Netherlands
| |
Collapse
|
84
|
Zhang S, Li Q, Liu P, Lin C, Tang Z, Wang HL. Three-Dimensional Cell Printed Lock-Key Structure for Oral Soft and Hard Tissue Regeneration. Tissue Eng Part A 2021; 28:13-26. [PMID: 33957771 DOI: 10.1089/ten.tea.2021.0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alveolar ridge absorbs rapidly following tooth extraction. To promote implant rehabilitation, an adequate bone and soft tissue volume are required. Three-dimensional (3D) cell printing technique provides the advantages of precise spatial distribution and personalization. In this study, 3D cell printing was used to establish a soft-hard construct that is composed of alginate/gelatin (AG)/gingival fibroblast cells (GFs) and alginate/gelatin/nano-hydroxyapatite (AGH)/bone marrow-derived mesenchymal stem cells (BMSCs). Physicochemical results showed that nano-hydroxyapatite (nHA) added in the bioink maintained its crystalline phase. In addition, an increase of viscosity, the improvement of compressive modulus (p < 0.01), and slow degradation rate (p < 0.01) were found after adding nHA. SEM showed cell stretched and attached well on the surface of the 3D printed construct. At day 7 after printing, the viability of GFs in AG was 94.80% ± 1.14%, while BMSC viability in AGH was 86.59% ± 0.75%. Polymerase chain reaction results indicated that the expression levels of ALP, RUNX-2, and OCN in BMSCs were higher in AGH than AG bioink (p < 0.01). After 8-week implantation into the dorsum of 6- to 8-week-old male athymic and inbred (BALB/c) nude mice, the cellular printed construct displayed a more integrated structure and better healing of subcutaneous tissue compared with the acellular printed construct. In conclusion, this 3D cell printed soft-hard construct exhibits favorable biocompatibility and has potential for alveolar ridge preservation. Impact statement Alveolar ridge resorption after tooth extraction has posed great difficulty in the subsequent restorative procedure. Clinically, to preserve the dimension of alveolar ridge, covering soft tissue healing and underlying bone formation is necessary after tooth extraction. Three-dimensional (3D) cell printing, which can distribute different biomaterials and cells with spatial control, provides a novel approach to develop a customized plug to put in the fresh socket to minimize bone resorption and improve gingiva growth. In this study, an integrated and heterogeneous soft-hard construct with lock-key structure was successfully developed using 3D cell printing. The physicochemical and biological properties were tested in vitro and in vivo. This 3D cell printed soft-hard construct will be a customized plug in alveolar ridge preservation in the future.
Collapse
Affiliation(s)
- Shihan Zhang
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Qing Li
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Peng Liu
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Chunping Lin
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
85
|
Machine Assisted Experimentation of Extrusion-Based Bioprinting Systems. MICROMACHINES 2021; 12:mi12070780. [PMID: 34209404 PMCID: PMC8305959 DOI: 10.3390/mi12070780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time- and resource-intensive and not easily translatable to other laboratories. This study approaches EBB parameter optimization through machine learning (ML) models trained using data collected from the published literature. We investigated regression-based and classification-based ML models and their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite bioinks. In addition, we interrogated if regression-based models can predict suitable extrusion pressure given the desired cell viability when keeping other experimental parameters constant. We also compared models trained across data from general literature to models trained across data from one literature source that utilized alginate and gelatin bioinks. The results indicate that models trained on large amounts of data can impart physical trends on cell viability, filament diameter, and extrusion pressure seen in past literature. Regression models trained on the larger dataset also predict cell viability closer to experimental values for material concentration combinations not seen in training data of the single-paper-based regression models. While the best performing classification models for cell viability can achieve an average prediction accuracy of 70%, the cell viability predictions remained constant despite altering input parameter combinations. Our trained models on bioprinting literature data show the potential usage of applying ML models to bioprinting experimental design.
Collapse
|
86
|
Mirani B, Stefanek E, Godau B, Hossein Dabiri SM, Akbari M. Microfluidic 3D Printing of a Photo-Cross-Linkable Bioink Using Insights from Computational Modeling. ACS Biomater Sci Eng 2021; 7:3269-3280. [PMID: 34142796 DOI: 10.1021/acsbiomaterials.1c00084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional (3D) bioprinting of photo-cross-linkable hydrogel precursors has attracted great interest in various tissue engineering and drug screening applications, as the biochemical and biophysical properties of the resultant hydrogel structures can be tuned spatiotemporally to provide cells with physiologically relevant microenvironments. In particular, these bioinks benefit from great biofunctional versatility that can be designed to direct cells toward a desired behavior. Despite significant progress in the field, the 3D printing of cell-laden photo-cross-linkable bioinks with low polymer concentrations has remained a challenge, as rapidly stabilizing these bioinks and transforming them to hydrogel filaments is hindered by their low viscosity. Additionally, reaching an optimized print condition has often been challenging due to the large number of print parameters involved in 3D bioprinting setups. Therefore, computational modeling has occasionally been employed to understand the impact of various print parameters and reduce the time and resources required to determine these effects in experimental settings. Here, we report a novel 3D bioprinting strategy for fabricating hydrogel fibrous structures of gelatin methacryloyl (GelMA) with superior control over polymer concentration, particularly in a relatively low range from ∼1% (w/v) to 6% (w/v), using a microfluidic printhead. The printhead features a coaxial core-sheath flow, coupled with a photo-cross-linking system, allowing for the in situ cross-linking of GelMA and the generation of hydrogel filaments. A computational model was developed to determine the optimal ranges of process parameters and inform about the diffusive and fluid dynamic behavior of the coaxial flow. The cytocompatibility of the biofabrication system was determined via bioprinting cell-laden bioinks containing U87-MG cells. Notably, the established pipeline from computational modeling to bioprinting has great potential to be applied to a wide range of photo-cross-linkable bioinks to generate living tissues with various material and cellular characteristics.
Collapse
Affiliation(s)
- Bahram Mirani
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Evan Stefanek
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Brent Godau
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| |
Collapse
|
87
|
Han S, Kim CM, Jin S, Kim TY. Study of the process-induced cell damage in forced extrusion bioprinting. Biofabrication 2021; 13. [PMID: 34020427 DOI: 10.1088/1758-5090/ac0415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/21/2021] [Indexed: 11/12/2022]
Abstract
With remarkable developments in technologies, the possibility of replacing injured tissue or organs with artificial ones via three-dimensional bioprinting is being improved. The basic prerequisite for successful application of bioprinting is high cell survival following printing. In this study, numerical calculations and experiments were performed to understand cell damage process incurred by forced extrusion bioprinters. Compressible and shear stresses were presumed to play a pivotal role within the syringe and needle, respectively, based on numerical calculation. To verify the numerical results, two experiments-pressurization in a clogged syringe and extrusion through syringe-needle-were conducted, and the damaged cell ratio (DCR) were measured by live/dead assays. Shear stress of needle flow had a great influence on DCR of discharged bioink, whereas effect of compressible stress in clogged syringe was relatively small. Cell damage in the needle flow is affected by moving distance under load as well as magnitude of shear stress. Applying this concept the differential equation of DCR growing was established, similar to the historied logistic equation for population dynamics, and the mathematical formula to predict DCR was explicitly represented splendidly as a function of only one independent variable, pressure work. The proposed formula was able to effectively predict DCR measurements for 43 bioprinting conditions, and the exactness confirmed the hypothesis for the theory. The presence of safe core zone, which may be related to the critical shear stress and stressed duration on cells, was theoretically conjectured from the DCR measurements, and further studies are necessary for an extensive and profound understanding. Fast printing is required for efficiency of a bio-structure fabrication; however, the higher shear stress accompanying increased operating pressure to speed up bioink discharge rate causes more cell damage. Employing the accurate formula presented, the optimal bioprinting conditions can be designed with ensuring targeted cell viability.
Collapse
Affiliation(s)
- Seungsu Han
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Republic of Korea
| | - Chul Min Kim
- Department of Mechatronics, Gyeongsang National University, JinJu, Gyeongsangnam-do 52828, Republic of Korea
| | - Songwan Jin
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Republic of Korea
| | - Taig Young Kim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung-si 15073, Republic of Korea
| |
Collapse
|
88
|
Muthusamy S, Kannan S, Lee M, Sanjairaj V, Lu WF, Fuh JYH, Sriram G, Cao T. 3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink. Biotechnol Bioeng 2021; 118:3150-3163. [PMID: 34037982 DOI: 10.1002/bit.27838] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/19/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022]
Abstract
Bioprinting three-dimensional (3D) tissue equivalents have progressed tremendously over the last decade. 3D bioprinting is currently being employed to develop larger and more physiologic tissues, and it is of particular interest to generate vasculature in biofabricated tissues to aid better perfusion and transport of nutrition. Having an advantage over manual culture systems by bringing together biological scaffold materials and cells in precise 3D spatial orientation, bioprinting could assist in placing endothelial cells in specific spatial locations within a 3D matrix to promote vessel formation at these predefined areas. Hence, in the present study, we investigated the use of bioprinting to generate tissue-level capillary-like networks in biofabricated tissue constructs. First, we developed a bioink using collagen type-1 supplemented with xanthan gum (XG) as a thickening agent. Using a commercial extrusion-based multi-head bioprinter and collagen-XG bioink, the component cells were spatially assembled, wherein the endothelial cells were bioprinted in a lattice pattern and sandwiched between bioprinted fibroblasts layers. 3D bioprinted constructs thus generated were stable, and maintained structural shape and form. Post-print culture of the bioprinted tissues resulted in endothelial sprouting and formation of interconnected capillary-like networks within the lattice pattern and between the fibroblast layers. Bioprinter-assisted spatial placement of endothelial cells resulted in fabrication of patterned prevascularized constructs that enable potential regenerative applications in the future.
Collapse
Affiliation(s)
| | - Sathya Kannan
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Marcus Lee
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Vijayavenkataraman Sanjairaj
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,Department of Mechanical Engineering, Tandon School of Engineering, New York University, New York, New York, USA
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore.,NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| | - Jerry Y H Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore.,NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore.,NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
89
|
Jentsch S, Nasehi R, Kuckelkorn C, Gundert B, Aveic S, Fischer H. Multiscale 3D Bioprinting by Nozzle-Free Acoustic Droplet Ejection. SMALL METHODS 2021; 5:e2000971. [PMID: 34927902 DOI: 10.1002/smtd.202000971] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/03/2021] [Indexed: 06/14/2023]
Abstract
Bioprinting allows the manufacture of complex cell-laden hydrogel constructs that can mature into tissue replacements in subsequent cell culture processes. The nozzles used in currently available bioprinters limit the print resolution and at dimensions below 100 µm clogging is expected. Most critically, the reduction of nozzle diameter also increases shear stress during printing. At critical shear stress, mechanical damage to printed cells triggers cell death. To overcome these limitations, a novel 3D bioprinting method based on the principle of acoustic droplet ejection (ADE) is introduced here. The absence of a nozzle in this method minimizes critical shear stress. A numerical simulation reveals that maximum shear stress during the ADE process is 2.7 times lower than with a Ø150 µm microvalve nozzle. Printing of cell clusters contained in droplets at the millimeter length scale, as well as in droplets the size of a single cell, is feasible. The precise 3D build-up of cell-laden structures is demonstrated and evidence is provided that there are no negative effects on stem cell morphology, proliferation, or differentiation capacities. This multiscale acoustic bioprinting technique thus holds promise for cell-preserving creation of complex and individualized cell-laden 3D hydrogel structures.
Collapse
Affiliation(s)
- Stefan Jentsch
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ramin Nasehi
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Christoph Kuckelkorn
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Benedikt Gundert
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
90
|
Anandakrishnan N, Ye H, Guo Z, Chen Z, Mentkowski KI, Lang JK, Rajabian N, Andreadis ST, Ma Z, Spernyak JA, Lovell JF, Wang D, Xia J, Zhou C, Zhao R. Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models. Adv Healthc Mater 2021; 10:e2002103. [PMID: 33586366 PMCID: PMC8212355 DOI: 10.1002/adhm.202002103] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/07/2022]
Abstract
Large size cell-laden hydrogel models hold great promise for tissue repair and organ transplantation, but their fabrication using 3D bioprinting is limited by the slow printing speed that can affect the part quality and the biological activity of the encapsulated cells. Here a fast hydrogel stereolithography printing (FLOAT) method is presented that allows the creation of a centimeter-sized, multiscale solid hydrogel model within minutes. Through precisely controlling the photopolymerization condition, low suction force-driven, high-velocity flow of the hydrogel prepolymer is established that supports the continuous replenishment of the prepolymer solution below the curing part and the nonstop part growth. The rapid printing of centimeter-sized hydrogel models using FLOAT is shown to significantly reduce the part deformation and cellular injury caused by the prolonged exposure to the environmental stresses in conventional 3D printing methods. Embedded vessel networks fabricated through multiscale printing allows media perfusion needed to maintain the high cellular viability and metabolic functions in the deep core of the large-sized models. The endothelialization of this vessel network allows the establishment of barrier functions. Together, these studies demonstrate a rapid 3D hydrogel printing method and represent a first step toward the fabrication of large-sized engineered tissue models.
Collapse
Affiliation(s)
- Nanditha Anandakrishnan
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Hang Ye
- Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zipeng Guo
- Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zhaowei Chen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Kyle I Mentkowski
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jennifer K Lang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
- VA WNY Healthcare System, Buffalo, NY, 14215, USA
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Stelios T Andreadis
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Depeng Wang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chi Zhou
- Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
91
|
Nulty J, Freeman FE, Browe DC, Burdis R, Ahern DP, Pitacco P, Lee YB, Alsberg E, Kelly DJ. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater 2021; 126:154-169. [PMID: 33705989 DOI: 10.1016/j.actbio.2021.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/06/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
For 3D bioprinted tissues to be scaled-up to clinically relevant sizes, effective prevascularisation strategies are required to provide the necessary nutrients for normal metabolism and to remove associated waste by-products. The aim of this study was to develop a bioprinting strategy to engineer prevascularised tissues in vitro and to investigate the capacity of such constructs to enhance the vascularisation and regeneration of large bone defects in vivo. From a screen of different bioinks, a fibrin-based hydrogel was found to best support human umbilical vein endothelial cell (HUVEC) sprouting and the establishment of a microvessel network. When this bioink was combined with HUVECs and supporting human bone marrow stem/stromal cells (hBMSCs), these microvessel networks persisted in vitro. Furthermore, only bioprinted tissues containing both HUVECs and hBMSCs, that were first allowed to mature in vitro, supported robust blood vessel development in vivo. To assess the therapeutic utility of this bioprinting strategy, these bioinks were used to prevascularise 3D printed polycaprolactone (PCL) scaffolds, which were subsequently implanted into critically-sized femoral bone defects in rats. Micro-computed tomography (µCT) angiography revealed increased levels of vascularisation in vivo, which correlated with higher levels of new bone formation. Such prevascularised constructs could be used to enhance the vascularisation of a range of large tissue defects, forming the basis of multiple new bioprinted therapeutics. STATEMENT OF SIGNIFICANCE: This paper demonstrates a versatile 3D bioprinting technique to improve the vascularisation of tissue engineered constructs and further demonstrates how this method can be incorporated into a bone tissue engineering strategy to improve vascularisation in a rat femoral defect model.
Collapse
|
92
|
Sung K, Patel NR, Ashammakhi N, Nguyen KL. 3-Dimensional Bioprinting of Cardiovascular Tissues: Emerging Technology. JACC Basic Transl Sci 2021; 6:467-482. [PMID: 34095635 PMCID: PMC8165127 DOI: 10.1016/j.jacbts.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
Three-dimensional (3D) bioprinting may overcome challenges in tissue engineering. Unlike conventional tissue engineering approaches, 3D bioprinting has a proven ability to support vascularization of larger scale constructs and has been used for several cardiovascular applications. An overview of 3D bioprinting techniques, in vivo translation, and challenges are described.
Collapse
Affiliation(s)
- Kevin Sung
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Nisha R. Patel
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois, USA
| | - Nureddin Ashammakhi
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California-Los Angeles, Los Angeles, California, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Division of Cardiology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
- Physics and Biology in Medicine Graduate Program, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
93
|
Cui J, Wang HP, Shi Q, Sun T. Pulsed Microfluid Force-Based On-Chip Modular Fabrication for Liver Lobule-Like 3D Cellular Models. CYBORG AND BIONIC SYSTEMS 2021; 2021:9871396. [PMID: 36285127 PMCID: PMC9494728 DOI: 10.34133/2021/9871396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/09/2021] [Indexed: 12/31/2022] Open
Abstract
In vitro three-dimensional (3D) cellular models with native tissue-like architectures and functions have potential as alternatives to human tissues in regenerative medicine and drug discovery. However, it is difficult to replicate liver constructs that mimic in vivo microenvironments using current approaches in tissue engineering because of the vessel-embedded 3D structure and complex cell distribution of the liver. This paper reports a pulsed microflow-based on-chip 3D assembly method to construct 3D liver lobule-like models that replicate the spatial structure and functions of the liver lobule. The heterogeneous cell-laden assembly units with hierarchical cell distribution are fabricated through multistep photopatterning of different cell-laden hydrogels. Through fluid force interaction by pulsed microflow, the hierarchical assembly units are driven to a stack, layer by layer, and thus spatially assemble into 3D cellular models in the closed liquid chamber of the assembly chip. The 3D models with liver lobule-like hexagonal morphology and radial cell distribution allow the dynamic perfusion culture to maintain high cell viability and functional expression during long-term culture in vitro. These results demonstrate that the fabricated 3D liver lobule-like models are promising for drug testing and the study of individual diagnoses and treatments.
Collapse
Affiliation(s)
- J. Cui
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - H. P. Wang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Q. Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - T. Sun
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
94
|
Horder H, Guaza Lasheras M, Grummel N, Nadernezhad A, Herbig J, Ergün S, Teßmar J, Groll J, Fabry B, Bauer-Kreisel P, Blunk T. Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model. Cells 2021; 10:cells10040803. [PMID: 33916870 PMCID: PMC8066030 DOI: 10.3390/cells10040803] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell–cell and cell–matrix interplay within the tumor-stroma microenvironment.
Collapse
Affiliation(s)
- Hannes Horder
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Mar Guaza Lasheras
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Nadine Grummel
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany; (N.G.); (B.F.)
| | - Ali Nadernezhad
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Johannes Herbig
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Süleyman Ergün
- Department of Medicine, Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany;
| | - Jörg Teßmar
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Jürgen Groll
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany; (N.G.); (B.F.)
| | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
- Correspondence: ; Tel.: +49-931-201-37115
| |
Collapse
|
95
|
Dine A, Bentley E, PoulmarcK LA, Dini D, Forte AE, Tan Z. A dual nozzle 3D printing system for super soft composite hydrogels. HARDWAREX 2021; 9:e00176. [PMID: 35492040 PMCID: PMC9041176 DOI: 10.1016/j.ohx.2021.e00176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 05/21/2023]
Abstract
Due to their inability to sustain their own weight, 3D printing materials as soft as human tissues is challenging. Hereby we describe the development of an extrusion additive manufacturing (AM) machine able to 3D print super soft hydrogels with micro-scale precision. By designing and integrating new subsystems into a conventional extrusion-based 3D printer, we obtained hardware that encompasses a range of new capabilities. In particular, we integrated a heated dual nozzle extrusion system and a cooling platform in the new system. In addition, we altered the electronics and software of the 3D printer to ensure fully automatized procedures are delivered by the 3D printing device, and super-soft tissue mimicking parts are produced. With regards to the electronics, we added new devices to control the temperature of the extrusion system. As for the software, the firmware of the conventional 3D printer was changed and modified to allow for the flow rate control of the ink, thus eliminating overflows in sections of the printing path where the direction/speed changes sharply.
Collapse
Affiliation(s)
- Andi Dine
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Edward Bentley
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Loic A PoulmarcK
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Antonio E. Forte
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
- Corresponding author at: Department of Mechanical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK.
| | - Zhengchu Tan
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
- Corresponding author at: Department of Mechanical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
96
|
Maturavongsadit P, Narayanan LK, Chansoria P, Shirwaiker R, Benhabbour SR. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. ACS APPLIED BIO MATERIALS 2021; 4:2342-2353. [PMID: 35014355 DOI: 10.1021/acsabm.0c01108] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
3D bioprinting has recently emerged as a very useful tool in tissue engineering and regenerative medicine. However, developing suitable bioinks to fabricate specific tissue constructs remains a challenging task. Herein, we report on a nanocellulose/chitosan-based bioink, which is compatible with a 3D extrusion-based bioprinting technology, to design and engineer constructs for bone tissue engineering and regeneration applications. Bioinks were prepared using thermogelling chitosan, glycerophosphate, hydroxyethyl cellulose, and cellulose nanocrystals (CNCs). Formulations were optimized by varying the concentrations of glycerophosphate (80-300 mM), hydroxyethyl cellulose (0-0.5 mg/mL), and CNCs (0-2% w/v) to promote fast gelation kinetics (<7 s) at 37 °C and retain the shape integrity of constructs post 3D bioprinting. We investigated the effect of CNCs and pre-osteoblast cells (MC3T3-E1) on the rheological properties of bioinks, bioink printability, and mechanical properties of bioprinted scaffolds. We demonstrate that the addition of CNCs and cells (5 million cells/mL) significantly improved the viscosity of bioinks and the mechanical properties of chitosan scaffolds post-fabrication. The bioinks were biocompatible and printable at an optimized range of printing pressures (12-20 kPa) that did not compromise cell viability. The presence of CNCs promoted greater osteogenesis of MC3T3-E1 cells in chitosan scaffolds as shown by the upregulation of alkaline phosphatase activity, higher calcium mineralization, and extracellular matrix formation. The versatility of this CNCs-incorporated chitosan hydrogel makes it attractive as a bioink for 3D bioprinting to engineer scaffolds for bone tissue engineering and other therapeutic applications.
Collapse
Affiliation(s)
- Panita Maturavongsadit
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lokesh Karthik Narayanan
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, North Dakota 58105, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Parth Chansoria
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Rohan Shirwaiker
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.,Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - S Rahima Benhabbour
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
97
|
Bionic Organs: Shear Forces Reduce Pancreatic Islet and Mammalian Cell Viability during the Process of 3D Bioprinting. MICROMACHINES 2021; 12:mi12030304. [PMID: 33799490 PMCID: PMC7999205 DOI: 10.3390/mi12030304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Background: 3D bioprinting is the future of constructing functional organs. Creating a bioactive scaffold with pancreatic islets presents many challenges. The aim of this paper is to assess how the 3D bioprinting process affects islet viability. Methods: The BioX 3D printer (Cellink), 600 μm inner diameter nozzles, and 3% (w/v) alginate cell carrier solution were used with rat, porcine, and human pancreatic islets. Islets were divided into a control group (culture medium) and 6 experimental groups (each subjected to specific pressure between 15 and 100 kPa). FDA/PI staining was performed to assess the viability of islets. Analogous studies were carried out on α-cells, β-cells, fibroblasts, and endothelial cells. Results: Viability of human pancreatic islets was as follows: 92% for alginate-based control and 94%, 90%, 74%, 48%, 61%, and 59% for 15, 25, 30, 50, 75, and 100 kPa, respectively. Statistically significant differences were observed between control and 50, 75, and 100 kPa, respectively. Similar observations were made for porcine and rat islets. Conclusions: Optimal pressure during 3D bioprinting with pancreatic islets by the extrusion method should be lower than 30 kPa while using 3% (w/v) alginate as a carrier.
Collapse
|
98
|
Park YL, Park K, Cha JM. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering. MICROMACHINES 2021; 12:mi12030287. [PMID: 33800485 PMCID: PMC8000586 DOI: 10.3390/mi12030287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.
Collapse
Affiliation(s)
- Ye Lin Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
| | - Kiwon Park
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon 22012, Korea;
- 3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon 22012, Korea
- Correspondence: (K.P.); (J.M.C.); Tel.: +82-32-835-8685 (K.P.); +82-32-835-8686 (J.M.C.)
| |
Collapse
|
99
|
Garcia Cruz MDR, Postma A, Frith JE, Meagher L. Printability and bio-functionality of a shear thinning methacrylated xanthan - gelatin composite bioink. Biofabrication 2021; 13. [PMID: 33662950 DOI: 10.1088/1758-5090/abec2d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/04/2021] [Indexed: 11/12/2022]
Abstract
3D bioprinting is a recent technique that can create complex cell seeded scaffolds and therefore holds great promise to revolutionize the biomedical sector by combining materials and structures that more closely mimic the 3D cell environment in tissues. The most commonly used biomaterials for printing are hydrogels, however, many of the hydrogels used still present issues of printability, stability, or poor cell-material interactions. We propose that bio-inks with intrinsic self-assembling and shear thinning properties, such as xanthan gum, can be methacrylated (XGMA) and combined with a bio-functional material such as gelatin methacryloyl (GelMa) to create a stable, cell-interactive bio-ink with improved properties for 3D bioprinting. These biomaterials have reduced viscosity under high shear and recover their viscosity rapidly after the shear is removed, retaining their shape, which translates to easier extrusion whilst maintaining good fidelity after printing. This was confirmed in printing studies, with measured normalized strand widths of 1.2 obtained for high gel concentrations (5+5 % XGMA-GelMA). Furthermore, the introduction of a secondary photo-cross-linking method allowed tuning of the mechanical properties of the hydrogel with stiffness between 15 and 30 kPa, as well as improving the stability of the hydrogel with retention of 75 % of its mass after 90 days. The hydrogel was shown to be biocompatible and bio-active with 97 % cell viability, and cell spreading after 7 days of culture for low gel concentrations (3+3 % XGMA-GelMA). Shear stresses were relatively low while printing (1 kPa) as a result of the shear thinning property of the material, which supported cell viability during extrusion. Finally, printed hydrogels retained high cell viability for lower gel concentrations, and showed improved cell viability for more concentrated hydrogels when compared to cells cultured in bulk hydrogels, presumably due to improved nutrient/oxygen diffusion and cell migration. In conclusion, stability and formulation of a XGMA-GelMA shear thinning composite hydrogel has been optimized to create a bio-functional bio-ink, with improved printability, and in vitro culture stability via secondary photo-induced cross-linking, making this composite a promising bio-ink for 3D bioprinting.
Collapse
Affiliation(s)
- Maria Del Rocio Garcia Cruz
- Material Science and Engineering, Monash University Faculty of Engineering, Wellington Rd, 3800, Clayton, Victoria, 3800, AUSTRALIA
| | - Almar Postma
- Manufacturing, CSIRO Manufacturing and Materials Technology, Research Way, Clayton, Victoria, 3168, AUSTRALIA
| | - Jessica Ellen Frith
- Material Science and Engineering, Monash University Faculty of Engineering, Wellington Rd, Clayton, Victoria, 3800, AUSTRALIA
| | - Laurence Meagher
- Materials Science and Engineering, Monash University, 22/109 Alliance Lane, Clayton, Clayton, Victoria, 3800, AUSTRALIA
| |
Collapse
|
100
|
Lemarié L, Anandan A, Petiot E, Marquette C, Courtial EJ. Rheology, simulation and data analysis toward bioprinting cell viability awareness. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bprint.2020.e00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|