51
|
Biological phosphorus removal from real wastewater in a sequencing batch reactor operated as aerobic/extended-idle regime. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
52
|
Wang X, Liu J, Qu B, Ren NQ, Qu J. Role of carbon substrates in facilitating energy reduction and resource recovery in a traditional activated sludge process: investigation from a biokinetics modeling perspective. BIORESOURCE TECHNOLOGY 2013; 140:312-318. [PMID: 23711939 DOI: 10.1016/j.biortech.2013.04.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 06/02/2023]
Abstract
Three activated sludge processes (ASPs) were modeled and driven by dissolved complex organics (F-ASP), propionic acid (P-ASP), and acetic acid (A-ASP), and various parameters were subsequently estimated. The energy depletion for carbon removal was 0.146, 0.120, and 0.119 kWh/m(3) of treated wastewater for F-ASP, P-ASP, and A-ASP, respectively, suggesting that acetic acid can forward energy conservation. The ratio of substrate storage to oxidation in F-ASP, P-ASP, and A-ASP was 0, 0.25, and 0.52, respectively, further demonstrating that substrate eliminations from P-ASP and A-ASP were both dominated by substrate storage for polymer production, not by total oxidation; thus, they exhibited lower energy-consuming levels than F-ASP. Quantification of bioenergy production and nutrient acquisition from the excess sludge of the three ASPs were conducted subsequently, and A-ASP was found to facilitate phosphorus capture.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | | | | | | | | |
Collapse
|
53
|
McMahon KD, Read EK. Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater. Annu Rev Microbiol 2013; 67:199-219. [PMID: 23799816 DOI: 10.1146/annurev-micro-092412-155713] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphorus is a key element controlling the productivity of freshwater ecosystems, and microbes drive most of its relevant biogeochemistry. Eutrophic lakes are generally dominated by cyanobacteria that compete fiercely with algae and heterotrophs for the element. In wastewater treatment, engineers select for specialized bacteria capable of sequestering phosphorus from the water, to protect surface waters from further loading. The intracellular storage molecule polyphosphate plays an important role in both systems, allowing key taxa to control phosphorus availability. The importance of dissolved organic phosphorus in eutrophic lakes and mineralization mechanisms is still underappreciated and understudied. The need for functional redundancy through biological diversity in wastewater treatment plants is also clear. In both systems, a holistic ecosystems biology approach is needed to understand the molecular mechanisms controlling phosphorus metabolism and the ecological interactions and factors controlling ecosystem-level process rates.
Collapse
|
54
|
Tayà C, Guerrero J, Vanneste G, Guisasola A, Baeza JA. Methanol-driven enhanced biological phosphorus removal with a syntrophic consortium. Biotechnol Bioeng 2012; 110:391-400. [DOI: 10.1002/bit.24625] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/16/2012] [Accepted: 07/26/2012] [Indexed: 11/06/2022]
|
55
|
Wang D, Li X, Yang Q, Zheng W, Wu Y, Zeng T, Zeng G. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source. WATER RESEARCH 2012; 46:3868-3878. [PMID: 22609408 DOI: 10.1016/j.watres.2012.04.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/15/2012] [Accepted: 04/22/2012] [Indexed: 06/01/2023]
Abstract
Our previous studies proved that biological phosphorus removal (BPR) could be achieved in an aerobic/extended-idle (AEI) process employing two typical substrates of glucose and acetate as the carbon sources. This paper further evaluated the feasibility of another important substrate, propionate, serving as the carbon source for BPR in the AEI process, and compared the BPR performance between the AEI and anaerobic/oxic (A/O) processes. Two sequencing batch reactors (SBRs) were operated, respectively, as the AEI and A/O regimes for BPR using propionate as the sole substrate. The results showed that the AEI-reactor removed 2.98 ± 0.04-4.06 ± 0.06 mg of phosphorus per g of total suspended solids during the course of the steady operational trial, and the phosphorus content of the dried sludge was reached 8.0 ± 0.4% after 56-day operation, demonstrating the good performance of phosphorus removal. Then, the efficiencies of BPR and the transformations of the intracellular storages were compared between two SBRs. It was observed that the phosphorus removal efficiency was maintained around 95% in the AEI-reactor, and about 83% in the A/O-reactor, although the latter showed much greater transformations of both polyhydroxyalkanoates and glycogen. The facts clearly showed that BPR could be enhanced by the AEI regime using propionate as the carbon source. Finally, the mechanisms for the propionate fed AEI-reactor improving BPR were investigated. It was found that the sludge cultured by the AEI regime had more polyphosphate containing cells than that by the A/O regime. Further investigation revealed that the residual nitrate generated in the last aerobic period was readily deteriorated BPR in the A/O-SBR, but a slight deterioration was observed in the AEI-SBR. Moreover, the lower glycogen transformation measured in the AEI-SBR indicated that the biomass cultured by the AEI regime contained less glycogen accumulating organisms activities than that by the A/O regime.
Collapse
Affiliation(s)
- Dongbo Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | | | | | | | | | | | | |
Collapse
|
56
|
Guerrero J, Tayà C, Guisasola A, Baeza JA. Glycerol as a sole carbon source for enhanced biological phosphorus removal. WATER RESEARCH 2012; 46:2983-2991. [PMID: 22459328 DOI: 10.1016/j.watres.2012.02.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 05/31/2023]
Abstract
Wastewaters with low organic matter content are one of the major causes of EBPR failures in full-scale WWTP. This carbon source deficit can be solved by external carbon addition and glycerol is a perfect candidate since it is nowadays obtained in excess from biodiesel production. This work shows for the first time that glycerol-driven EBPR with a single-sludge SBR configuration is feasible (i.e. anaerobic glycerol degradation linked to P release and aerobic P uptake). Two different strategies were studied: direct replacement of the usual carbon source for glycerol and a two-step consortium development with glycerol anaerobic degraders and PAO. The first strategy provided the best results. The implementation of glycerol as external carbon source in full-scale WWTP would require a suitable anaerobic hydraulic retention time. An example using dairy wastewater with a low COD/P ratio confirms the feasibility of using glycerol as an external carbon source to increase P removal activity. The approach used in this work opens a new range of possibilities and, similarly, other fermentable substrates can be used as electron donors for EBPR.
Collapse
Affiliation(s)
- Javier Guerrero
- Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
57
|
Kleyböcker A, Liebrich M, Kasina M, Kraume M, Wittmaier M, Würdemann H. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: influence of aggregate formation on process stability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:1122-1130. [PMID: 22405750 DOI: 10.1016/j.wasman.2012.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 05/31/2023]
Abstract
Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH>7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance after re-activation of biogas production. In contrast, during the counter measure with NaOH aggregate formation was only minor resulting in a rapid process failure subsequent the increase of the organic loading rate.
Collapse
Affiliation(s)
- A Kleyböcker
- Microbial GeoEngineering, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Bucci V, Majed N, Hellweger FL, Gu AZ. Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal (EBPR)--observation and modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3244-3252. [PMID: 22360302 DOI: 10.1021/es204052p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A number of agent-based models (ABMs) for biological wastewater treatment processes have been developed, but their skill in predicting heterogeneity of intracellular storage states has not been tested against observations due to the lack of analytical methods for measuring single-cell intracellular properties. Further, several mechanisms can produce and maintain heterogeneity (e.g., different histories, uneven division) and their relative importance has not been explored. This article presents an ABM for the enhanced biological phosphorus removal (EBPR) treatment process that resolves heterogeneity in three intracellular polymer storage compounds (i.e., polyphosphate, polyhydroxybutyrate, and glycogen) in three functional microbial populations (i.e., polyphosphate-accumulating, glycogen-accumulating, and ordinary heterotrophic organisms). Model predicted distributions were compared to those based on single-cell estimates obtained using a Raman microscopy method for a laboratory-scale sequencing batch reactor (SBR) system. The model can reproduce many features of the observed heterogeneity. Two methods for introducing heterogeneity were evaluated. First, biological variability in individual cell behavior was simulated by randomizing model parameters (e.g., maximum acetate uptake rate) at division. This method produced the best fit to the data. An optimization algorithm was used to determine the best variability (i.e., coefficient of variance) for each parameter, which suggests large variability in acetate uptake. Second, biological variability in individual cell states was simulated by randomizing state variables (e.g., internal nutrient) at division, which was not able to maintain heterogeneity because the memory in the internal states is too short. These results demonstrate the ability of ABM to predict heterogeneity and provide insights into the factors that contribute to it. Comparison of the ABM with an equivalent population-level model illustrates the effect of accounting for the heterogeneity in models.
Collapse
Affiliation(s)
- Vanni Bucci
- Dept of Civil and Environmental Engineering, Northeastern University, Boston Massachusetts 02115, United States
| | | | | | | |
Collapse
|
59
|
Microbial selection on enhanced biological phosphorus removal systems fed exclusively with glucose. World J Microbiol Biotechnol 2012; 28:2181-93. [DOI: 10.1007/s11274-012-1024-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
|
60
|
Guerrero J, Guisasola A, Baeza JA. The nature of the carbon source rules the competition between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus removal. WATER RESEARCH 2011; 45:4793-4802. [PMID: 21774957 DOI: 10.1016/j.watres.2011.06.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 05/31/2023]
Abstract
The presence of nitrate in the theoretical anaerobic reactor of a municipal WWTP aiming at simultaneous C, N and P removal usually leads to Enhanced Biological Phosphorus Removal (EBPR) failure due to the competition between PAO and denitrifiers for organic substrate. This problem was studied in a continuous anaerobic-anoxic-aerobic (A2/O) pilot plant (146 L) operating with good removal performance and a PAO-enriched sludge (72%). Nitrate presence in the initially anaerobic reactor was studied by switching the operation of the plant to an anoxic-aerobic configuration. When the influent COD composition was a mixture of different carbon sources (acetic acid, propionic acid and sucrose) the system was surprisingly able to maintain EBPR, even with internal recycle ratios up to ten times the influent flow rate and COD limiting conditions. However, the utilisation of sucrose as sole carbon source resulted in a fast EBPR failure. Batch tests with different nitrate concentrations (0-40 mg L(-1)) were performed in order to gain insight into the competition for the carbon source in terms of P-release or denitrification rates and P-release/C-uptake ratio. Surprisingly, no inhibitory or detrimental effect on EBPR performance due to nitrate was observed. A model based on ASM2d but considering two step nitrification and denitrification was developed and experimentally validated. Simulation studies showed that anaerobic VFA availability is critical to maintain EBPR activity.
Collapse
Affiliation(s)
- Javier Guerrero
- Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | |
Collapse
|
61
|
Kapagiannidis AG, Zafiriadis I, Aivasidis A. Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic–anoxic activated sludge system. Bioprocess Biosyst Eng 2011; 35:371-82. [DOI: 10.1007/s00449-011-0575-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 11/29/2022]
|
62
|
Abstract
‘Candidatus Accumulibacter’ is a biotechnologically important bacterial group that can accumulate large amounts of intracellular polyphosphate, contributing to biological phosphorus removal in wastewater treatment. Since its first molecular identification more than a decade ago, this bacterial group has drawn significant research attention due to its high abundance in many biological phosphorus removal systems. In the past 6 years, our understanding of Accumulibacter microbiology and ecophysiology has advanced rapidly, largely owing to genomic information obtained through shotgun metagenomic sequencing efforts. In this review, we focus on the metabolism, physiology, fine‐scale population structure and ecological distribution of Accumulibacter, aiming to integrate the information learned so far and to present a more complete picture of the microbiology of this important bacterial group.
Collapse
Affiliation(s)
- Shaomei He
- Department of Civil and Environmental Engineering Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
63
|
Majed N, Gu AZ. Application of Raman microscopy for simultaneous and quantitative evaluation of multiple intracellular polymers dynamics functionally relevant to enhanced biological phosphorus removal processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:8601-8608. [PMID: 20949949 DOI: 10.1021/es1016526] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polyphosphate (poly-P), polyhydroxyalkanoates (PHAs), and glycogen are the key functionally relevant intracellular polymers involved in the enhanced biological phosphorus removal (EBPR) process. Further understanding of the mechanisms of EBPR has been hampered by the lack of cellular level quantification tools to accurately measure the dynamics of these polymers during the EBPR process. In this study, we developed a novel Raman microscopy method for simultaneous identification and quantification of poly-P, PHB, and glycogen abundance in each individual cell and their distribution among the populations in EBPR. Validation of the method was demonstrated via a batch phosphorus uptake and release test, in which the total intracellular polymers abundance determined via Raman approach correlated well with those measured via conventional bulk chemical analysis (correlation coefficient r = 0.8 for poly-P, r = 0.94 for PHB, and r = 0.7 for glycogen). Raman results, for the first time, clearly showed the distributions of microbial cells containing different abundance levels of the three intracellular polymers under the same environmental conditions (at a given time point), indicating population heterogeneity exists. The results revealed the intracellular distribution and dynamics of the functionally relevant polymers in different metabolic stages of the EBPR process and elucidated the association of cellular metabolic state with the fate of these polymers during various substrates availability conditions.
Collapse
Affiliation(s)
- Nehreen Majed
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
64
|
Li H, Chen X, Chen Y. Effect of the addition of organic carbon sources on nitrous oxide emission in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactors. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11783-010-0248-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
Research on polyhydroxyalkanoates and glycogen transformations: Key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11783-010-0243-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
66
|
'Candidatus Accumulibacter' gene expression in response to dynamic EBPR conditions. ISME JOURNAL 2010; 5:329-40. [PMID: 20703317 DOI: 10.1038/ismej.2010.127] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enhanced biological phosphorus removal (EBPR) activated sludge communities enriched in 'Candidatus Accumulibacter' relatives are widely used in wastewater treatment, but much remains to be learned about molecular-level controls on the EBPR process. The expression of genes found in the carbon and polyphosphate metabolic pathways in Accumulibacter was investigated using reverse transcription quantitative PCR. During a normal anaerobic/aerobic EBPR cycle, gene expression exhibited a dynamic change in response to external acetate, oxygen, phosphate concentrations and probably internal chemical pools. Anaerobic acetate addition induced expression of genes associated with the methylmalonyl-CoA pathway enabling the split mode of the tricarboxylic acid (TCA) cycle. Components of the full TCA cycle were induced after the switch to aerobic conditions. The induction of a key gene in the glyoxylate shunt pathway was observed under both anaerobic and aerobic conditions, with a higher induction by aeration. Polyphosphate kinase 1 from Accumulibacter was expressed, but did not appear to be regulated by phosphate limitation. To understand how Accumulibacter responds to disturbed electron donor and acceptor conditions, we perturbed the process by adding acetate aerobically. When high concentrations of oxygen were present simultaneously with acetate, phosphate-release was almost completely inhibited, and polyphosphate kinase 1 transcript abundance decreased. Genes associated with the methylmalonyl-CoA pathway were repressed and genes associated with the aerobic TCA cycle exhibited higher expression under this perturbation, suggesting that more acetyl-CoA was metabolized through the TCA cycle. These findings suggest that several genes involved in EBPR are tightly regulated at the transcriptional level.
Collapse
|
67
|
Oehmen A, Lopez-Vazquez CM, Carvalho G, Reis MAM, van Loosdrecht MCM. Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes. WATER RESEARCH 2010; 44:4473-4486. [PMID: 20580055 DOI: 10.1016/j.watres.2010.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/31/2010] [Accepted: 06/07/2010] [Indexed: 05/29/2023]
Abstract
In this study, enhanced biological phosphorus removal (EBPR) metabolic models are expanded in order to incorporate the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) under sequential anaerobic/anoxic/aerobic conditions, which are representative of most full-scale EBPR plants. Since PAOs and GAOs display different denitrification tendencies, which is dependent on the phylogenetic identity of the organism, the model was separated into six distinct biomass groups, constituting Accumulibacter Types I and II, as well as denitrifying and non-denitrifying Competibacter and Defluviicoccus GAOs. Denitrification was modelled as a multi-step process, with nitrate (NO(3)), nitrite (NO(2)), nitrous oxide (N(2)O) and di-nitrogen gas (N(2)) being the primary components. The model was calibrated and validated using literature data from enriched cultures of PAOs and GAOs, obtaining a good description of the observed biochemical transformations. A strong correlation was observed between Accumulibacter Types I and II, and nitrate-reducing and non-nitrate-reducing PAOs, respectively, where the abundance of each PAO subgroup was well predicted by the model during an acclimatization period from anaerobic-aerobic to anaerobic-anoxic conditions. Interestingly, a strong interdependency was observed between the anaerobic, anoxic and aerobic kinetic parameters of PAOs and GAOs. This could be exploited when metabolic models are calibrated, since all of these parameters should be changed by an identical factor from their default value. Factors that influence these kinetic parameters include the fraction of active biomass, relative aerobic/anoxic fraction and the ratio of acetyl-CoA to propionyl-CoA. Employing a metabolic approach was found to be advantageous in describing the performance and population dynamics in such complex microbial ecosystems.
Collapse
Affiliation(s)
- A Oehmen
- REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | | | | | |
Collapse
|
68
|
Lo CW, Wu HS, Wei YH. Optimizing acidic methanolysis of poly(3-hydroxyalkanoates) in gas chromatography analysis. ASIA-PAC J CHEM ENG 2009. [DOI: 10.1002/apj.260] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
69
|
Feng L, Chen Y, Zheng X. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:4373-80. [PMID: 19603649 DOI: 10.1021/es8037142] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Volatile fatty acids (VFAs), the carbon source of biological nutrients removal, can be produced by waste activated sludge (WAS) anaerobic fermentation. However, because of high protein content and low carbon to nitrogen mass ratio (C/N) of WAS, the production of VFAs, especially propionic acid, a more preferred VFA than acetic acid for enhanced biological phosphorus removal (EBPR), is limited. After the addition of carbohydrate (rice was used as the model matter) to the WAS anaerobic fermentation system to balance the C/N ratio, the effect of pH on WAS protein conversion and VFAs production was investigated in this paper. Experimental results showed that the addition of carbohydrate matter caused a remarkable enhancement of WAS protein conversion and protease activity, and an apparent synergistic effect between WAS and carbohydrate matter was observed. The study of pH effect revealed that pH influenced not only the total VFAs production but the percentage of individual VFA. The maximal VFAs production (520.1 mg COD per gram of volatile suspended solids (VSS)) occurred at pH 8.0 and a fermentation time of 8 d, which was more than three times that at uncontrolled pH (150.2 mg COD/g VSS). The analysis of the composition of VFAs showed that propionic acid ranked first at pH 6.0-9.0 (around 50%) whereas acetic acid was the dominant product at other pHs investigated. Thus, the suitable conditions for propionic acid-enriched VFAs production were pH 8.0 and a time of 8 d. Further investigation showed that as there was more fermentation substrate consumption with lower biogas generation at pH 8.0, improved VFAs production was observed. Also, the key enzymes relevant to propionic acid formation exhibited the highest activities at pH 8.0, which resulted in the greatest propionic acid content in the fermentative VFAs. The 16S rRNA gene clone library demonstrated that Clostridia, beta-Proteobacteria, and Bacteroidetes were the dominant microbial community when the current anaerobic fermentation system was operated at pH 8.0. With the fermentative VFAs as the additional carbon source of municipal wastewater, the EBPR performance was significantly increased.
Collapse
Affiliation(s)
- Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | | | | |
Collapse
|
70
|
Vargas M, Casas C, Baeza J. Maintenance of phosphorus removal in an EBPR system under permanent aerobic conditions using propionate. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
71
|
Lopez-Vazquez CM, Oehmen A, Hooijmans CM, Brdjanovic D, Gijzen HJ, Yuan Z, van Loosdrecht MCM. Modeling the PAO-GAO competition: effects of carbon source, pH and temperature. WATER RESEARCH 2009; 43:450-62. [PMID: 19022471 DOI: 10.1016/j.watres.2008.10.032] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 05/24/2023]
Abstract
The influence of different carbon sources (acetate to propionate ratios), temperature and pH levels on the competition between polyphosphate- and glycogen-accumulating organisms (PAO and GAO, respectively) was evaluated using a metabolic model that incorporated the carbon source, temperature and pH dependences of these microorganisms. The model satisfactorily described the bacterial activity of PAO (Accumulibacter) and GAO (Competibacter and Alphaproteobacteria-GAO) laboratory-enriched cultures cultivated on propionate (HPr) and acetate (HAc) at standard conditions (20 degrees C and pH 7.0). Using the calibrated model, the effects of different influent HAc to HPr ratios (100-0, 75-25, 50-50 and 0-100%), temperatures (10, 20 and 30 degrees C) and pH levels (6.0, 7.0 and 7.5) on the competition among Accumulibacter, Competibacter and Alphaproteobacteria-GAO were evaluated. The main aim was to assess which conditions were favorable for the existence of PAO and, therefore, beneficial for the biological phosphorus removal process in sewage treatment plants. At low temperature (10 degrees C), PAO were the dominant microorganisms regardless of the used influent carbon source or pH. At moderate temperature (20 degrees C), PAO dominated the competition when HAc and HPr were simultaneously supplied (75-25 and 50-50% HAc to HPr ratios). However, the use of either HAc or HPr as sole carbon source at 20 degrees C was not favorable for PAO unless a high pH was used (7.5). Meanwhile, at higher temperature (30 degrees C), GAO tended to be the dominant microorganisms. Nevertheless, the combined presence of acetate and propionate in the influent (75-25 and 50-50% HAc to HPr ratios) as well as a high pH (7.5) appear to be potential factors to favor the metabolism of PAO over GAO at higher sewage temperature (30 degrees C).
Collapse
Affiliation(s)
- Carlos M Lopez-Vazquez
- Department of Environmental Resources, UNESCO-IHE Institute for Water Education, Wesvest 7, 2611 AX Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
72
|
Pijuan M, Casas C, Baeza JA. Polyhydroxyalkanoate synthesis using different carbon sources by two enhanced biological phosphorus removal microbial communities. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
73
|
A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater. Biodegradation 2008; 20:339-50. [DOI: 10.1007/s10532-008-9225-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 10/03/2008] [Indexed: 11/27/2022]
|
74
|
Yilmaz LS, Bergsven LI, Noguera DR. Systematic evaluation of single mismatch stability predictors for fluorescence in situ hybridization. Environ Microbiol 2008; 10:2872-85. [PMID: 18707615 DOI: 10.1111/j.1462-2920.2008.01719.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mismatch discrimination potential of probes in fluorescence in situ hybridization can be defined as the difference between the melting formamide points of perfect complementary and mismatched duplexes (Delta[FA](m)). Using a combined experimental and theoretical approach, Delta[FA](m) was determined for a set of 35 mismatched probes targeting seven locations in the 16S rRNA of Escherichia coli. The mismatches were created by changing single nucleotides on the probes, while maintaining the target unmodified. Estimated Delta[FA](m) values were used to systematically evaluate four predictors of mismatch stability: weighted mismatch (WM) scores from the software arb, published statistical summary of microarray hybridizations, free energy of mismatch stability (DeltaDeltaG degrees (1)) and theoretical Delta[FA](m) estimations obtained with a thermodynamic model. Based on the predictors' ability to explain variability in Delta[FA](m) and to discriminate weak mismatches from strong ones, DeltaDeltaG degrees (1) and WM scores from arb (with an updated set of relative strength parameters) were demonstrated to be adequate estimators of mismatch stability, with DeltaDeltaG degrees (1) offering the benefit of capturing the variability associated with nearest-neighbour effects and being compatible with thermodynamic models of in situ hybridization. The use of DeltaDeltaG degrees (1) and WM in probe design was illustrated as a tool that complements experimental design approaches.
Collapse
Affiliation(s)
- L Safak Yilmaz
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706-1691, USA
| | | | | |
Collapse
|
75
|
Li H, Chen Y, Gu G. The effect of propionic to acetic acid ratio on anaerobic-aerobic (low dissolved oxygen) biological phosphorus and nitrogen removal. BIORESOURCE TECHNOLOGY 2008; 99:4400-7. [PMID: 17919901 DOI: 10.1016/j.biortech.2007.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/19/2007] [Accepted: 08/21/2007] [Indexed: 05/08/2023]
Abstract
In this paper, three lab-scale sequencing batch reactors (SBR-A, B, and C) operated with anaerobic/aerobic (low dissolved oxygen, 0.15-0.45 mg L(-1)) configuration were long-term cultured, respectively with single acetic acid and propionic/acetic acid of 1/1 and 2/1 (carbon molar ratio), and the comparisons of anaerobic and aerobic transformations of phosphorus and nitrogen among them were made. With the increase of propionic/acetic acid, lower anaerobic phosphorus release and higher phosphorus release to short-chain fatty acids uptake ratio were observed, and less anaerobic and aerobic transformations of glycogen and poly-3-hydroxybutyrate as well as total polyhydroxyalkanoates occurred, but the transformations of poly-3-hydroxyvalerate and poly-3-hydroxy-2-methyvalerate increased. The phosphorus removal efficiency was respectively 81, 94 and 97% in SBR-A, B and C. Almost all ammonium was removed and no significant nitrite was accumulated at different propionic/acetic acid ratios. However, the nitrate accumulation and total nitrogen removal were observed to be affected by propionic/acetic acid ratio. The total nitrogen removal efficiency was 61, 68 and 82%, and the aerobic end nitrate concentration was 8.05, 6.40 and 3.54 mg L(-1) in three SBRs, respectively. All the above studies indicated that the sole acetic acid caused more nitrate accumulation than propionic and acetic acids mixture, and a pertinent increase of wastewater propionic/acetic acid ratio was of benefit to both nitrogen and phosphorus removal in an anaerobic/aerobic (low dissolved oxygen) biological wastewater treatment process.
Collapse
Affiliation(s)
- Hongjing Li
- State Key Lab of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | |
Collapse
|
76
|
Broughton A, Pratt S, Shilton A. Enhanced biological phosphorus removal for high-strength wastewater with a low rbCOD:P ratio. BIORESOURCE TECHNOLOGY 2008; 99:1236-41. [PMID: 17391958 DOI: 10.1016/j.biortech.2007.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/11/2007] [Accepted: 02/12/2007] [Indexed: 05/14/2023]
Abstract
In order to assess the feasibility of enhanced biological phosphorus removal (EBPR) for dairy processing wastewater, which in New Zealand have rbCOD:P ratios that can be as low as 13:1, a sequencing batch reactor treating a synthetic wastewater with a COD(VFA) of 800 mg/l (representing a dissolved air flotation (DAF) treated, pre-fermented dairy wastewater with a raw COD of 3000 mg/l) was operated at COD:P ratios of 25:1, 15:1 and 10:1. Full (>99%) phosphate removal was achieved for COD:P loadings of 25:1 and 15:1. The trial using 10:1 COD:P loading showed less consistency but still achieved 82% phosphate removal. Based on further analysis of the final trial this study proposes that the minimum COD:P loading for complete phosphate removal is 13:1 indicating that EBPR could indeed be feasible for effective treatment of dairy processing wastewaters. With regard to the type of COD consumed, propionate was found to be favoured over acetate as a substrate. Further research into increasing the propionate content of pre-fermented dairy wastewaters is suggested.
Collapse
Affiliation(s)
- Alistair Broughton
- Centre for Environmental Technology and Engineering, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
77
|
Puig S, Coma M, Monclús H, van Loosdrecht MCM, Colprim J, Balaguer MD. Selection between alcohols and volatile fatty acids as external carbon sources for EBPR. WATER RESEARCH 2008; 42:557-66. [PMID: 17764715 DOI: 10.1016/j.watres.2007.07.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/20/2007] [Accepted: 07/27/2007] [Indexed: 05/17/2023]
Abstract
The purpose of this paper is to provide a basis for selecting alcohols (i.e. ethanol and methanol) or short-chain volatile fatty acids (VFAs) (i.e. acetate and propionate) as the external carbon sources for enhanced biological phosphorus removal (EBPR) from wastewaters in adapted or unadapted activated sludge. When ethanol is used in an unacclimated process, a period of adaptation is required by polyphosphate-accumulating organisms (PAOs). From 0 to 140 days of ethanol acclimatizing, the P release and uptake rates increased to 6.2 and 7.0 mgP-PO(3)4(-)g(-1)VSSh(-1), respectively. PAOs in ethanol-enriched sludge produced poly-beta-hydroxyvalerate (PHV) (81.9%) as the main polyhydroxyalkanoate (PHA) and reached an effluent phosphate concentration close to zero (0.10 mgP-PO(3)4(-)L(-1)). On the other hand, methanol was not used by PAOs in 30-day ethanol-acclimated sludge in short-term tests. If EBPR needs to be incidentally supported by substrate addition, VFAs are preferred; for long-term addition also ethanol can be considered.
Collapse
Affiliation(s)
- S Puig
- Laboratory of Chemical and Environmental Engineering, Institute of the Environment, University of Girona, Campus Montilivi, Facultat de Ciències, E-17071 Girona, Catalonia, Spain.
| | | | | | | | | | | |
Collapse
|
78
|
Pijuan M, Oehmen A, Baeza JA, Casas C, Yuan Z. Characterizing the biochemical activity of full-scale enhanced biological phosphorus removal systems: A comparison with metabolic models. Biotechnol Bioeng 2008; 99:170-9. [PMID: 17514755 DOI: 10.1002/bit.21502] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The metabolism of polyphosphate accumulating organisms (PAOs) has been widely studied through the use of lab-scale enrichments. Various metabolic models have been formulated, based on the results from lab-scale experiments using enriched PAO cultures. A comparison between the anaerobic stoichiometry predicted by metabolic models with that exhibited by full-scale sludge in enhanced biological phosphorus removal (EBPR) wastewater treatment plants (WWTPs) was performed in this study. Batch experiments were carried out with either acetate or propionate as the sole carbon source, using sludges from two different EBPR-WWTPs in Australia that achieved different phosphorus removal performances. The results support the hypothesis that the anaerobic degradation of glycogen is the primary source of reducing equivalents generated by PAOs, however, they also suggested a partial contribution of the tricarboxylic acid (TCA) cycle in some cases. The experimental results obtained when acetate was the carbon source suggest the involvement of the modified succinate-propionate pathway for the generation of poly-beta-hydroxyvalerate (PHV). Overall, the batch test results obtained from full-scale EBPR sludge with both substrates were generally well described by metabolic model predictions for PAOs.
Collapse
Affiliation(s)
- M Pijuan
- Advanced Wastewater Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
79
|
Ahmed Z, Lim BR, Cho J, Song KG, Kim KP, Ahn KH. Biological nitrogen and phosphorus removal and changes in microbial community structure in a membrane bioreactor: effect of different carbon sources. WATER RESEARCH 2008; 42:198-210. [PMID: 17640701 DOI: 10.1016/j.watres.2007.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/15/2007] [Accepted: 06/24/2007] [Indexed: 05/16/2023]
Abstract
Bacterial community structures in four sequencing anoxic/anaerobic-aerobic membrane bioreactors (SAMs) that were fed with synthetic medium composed of different organic compounds in substrate as carbon source; acetate-dominant (acetate/propionate = 4/1), propionate-dominant (acetate/propionate = 1/4), glucose-dominant (glucose/acetate = 4/1) and methanol-dominant (methanol/acetate/propionate = 6/3/1) were analyzed by respiratory quinone profile and fluorescent in situ hybridization (FISH) techniques. The SAMs were operated at controlled pH range 7-8.5 and at constant temperature 25 degrees C. Total nitrogen (TN), total phosphorus (TP) and COD removal performances were also evaluated and compared. In addition, trans-membrane pressure was monitored to observe the impact of substrate composition on membrane fouling. The dominance of the mole fraction of ubiquinone (UQ-8) in the SAMs indicated dominance of the beta-subclass of Proteobacteria; however, its population comparatively decreased when the substrate was glucose dominant or methanol dominant. A relatively higher and stable enhanced biological phosphorus removal performance was observed when methanol-dominant substrate was used concurrently with an increase in the gamma-subclass of Proteobacteria. The population of the alpha-subclass of Proteobacteria slightly increased along with a decrease in phosphate removal activity when the substrate was glucose-dominant. Results from FISH analysis also supported the findings of the quinone profile. The trans-membrane pressure variation in the SAMs indicated that fouling was relatively rapid when propionate-dominant or methanol-dominant substrate was used and most stable when glucose-dominant substrate was used. A combination of methanol and acetate would be a better choice as an external carbon source when nutrients removals, as well as fouling, are considered in the membrane bioreactor- (MBR-) coupled biological nutrients removing (BNR) process.
Collapse
Affiliation(s)
- Zubair Ahmed
- Center for Environmental Technology Research, Energy & Environment Research Division, Korea Institute of Science and Technology, Seoul 130-650, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
80
|
Carvalho G, Lemos PC, Oehmen A, Reis MAM. Denitrifying phosphorus removal: linking the process performance with the microbial community structure. WATER RESEARCH 2007; 41:4383-96. [PMID: 17669460 DOI: 10.1016/j.watres.2007.06.065] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 06/26/2007] [Accepted: 06/29/2007] [Indexed: 05/16/2023]
Abstract
This study investigated the link between the process performance of two denitrifying phosphorus (P) removal systems and their microbial community structure. Two sequencing batch reactors (SBRs) were operated with either acetate or propionate as the sole carbon source, and were gradually acclimatised from anaerobic-aerobic to anaerobic-anoxic conditions. It was found that the propionate SBR was able to sustain denitrifying P removal after acclimatisation, while the enhanced biological phosphorus removal (EBPR) activity in the acetate reactor collapsed after the aerobic phase was eliminated. The results suggested that the anoxic glycogen production rate in the acetate SBR was insufficient to support the anaerobic glycogen demand for acetate uptake. The chemical transformations in each SBR suggested that different types of polyphosphate-accumulating organisms (PAOs) were present in each system, possessing different affinities for nitrate. Microbial characterisation with fluorescence in situ hybridisation (FISH) revealed that Accumulibacter was the dominant organism in each reactor, although different cell morphotypes were observed. A coccus morphotype was predominant in the acetate SBR while the propionate SBR was enriched in a rod morphotype. It is hypothesised that the coccus morphotype corresponds to an Accumulibacter strain that is unable to use nitrate as electron acceptor but is able to use oxygen, and possibly nitrite. The rod morphotype is proposed to be a PAO able to use nitrate, nitrite and oxygen. This hypothesis is in agreement with literature studies focussed on the identity of denitrifying PAOs (DPAOs), as well as a recent metagenomic study on Accumulibacter.
Collapse
Affiliation(s)
- Gilda Carvalho
- REQUIMTE/CQFB, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | |
Collapse
|
81
|
Zhang C, Chen Y, Liu Y. The long-term effect of initial pH control on the enrichment culture of phosphorus- and glycogen-accumulating organisms with a mixture of propionic and acetic acids as carbon sources. CHEMOSPHERE 2007; 69:1713-21. [PMID: 17662338 DOI: 10.1016/j.chemosphere.2007.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 06/03/2007] [Accepted: 06/05/2007] [Indexed: 05/16/2023]
Abstract
In most studies on phosphorus- and glycogen-accumulating organisms (PAO and GAO), pH was controlled constantly throughout the entire anaerobic and aerobic periods, and acetic acid was used as the carbon source. In this paper, the effect of long-term initial pH values on PAO and GAO was investigated with mixed propionic and acetic acids as carbon sources. It was observed that with pH increasing from 6.4 to 8.0, the anaerobic propionic acid uptake rate by PAO linearly increased but that by GAO proportionally decreased. At pH 6.70 and pH 7.51, PAO and GAO exhibited the same acetic and propionic acid uptake rates, respectively. The acetic acid uptake rate by PAO was greater than that by GAO at pH>6.70, and the propionic acid uptake rate by PAO was higher than that by GAO at pH>7.51, which indicated that PAO would take predominance over GAO at pH>7.51. Poly-3-hydroxybutyrate, poly-3-hydroxyvalerate and poly-3-hydroxy-2-methylvalerate shared 7%, 62% and 31%, respectively in the PAO system, and 11%, 44% and 45% respectively in the GAO system, and these fractions were observed independent of pH either in the PAO or in the GAO system. In the PAO system, with the increase of pH, the phosphorus removal efficiency was improved greatly, and a phosphorus removal efficiency of 100% was achieved at 8.0. Further investigation showed that the higher phosphorus removal efficiency at higher pH was mainly caused by a biological effect instead of chemical one.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | |
Collapse
|
82
|
Tong J, Chen Y. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:7126-7130. [PMID: 17993158 DOI: 10.1021/es071002n] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This paper examines the feasibility of using alkaline fermentative short-chain fatty acids (SCFAs) as the carbon sources of enhanced biological phosphorus removal (EBPR) microorganisms. First, the released phosphorus was recovered from the SCFA-containing alkaline fermentation liquid by the formation of struvite precipitation, and 92.8% of the soluble ortho-phosphorus (SOP) could be recovered under conditions of Mg/P = 1.8 (mol/mol), pH 10.0, and a reaction time of 2 min. One reason for a Mg addition required in this study that was higher than the theoretical value was thatthe organic compounds consumed Mg. Then, two sequencing batch reactors (SBRs) were operated, respectively, with acetic acid and alkaline fermentative SCFAs as the carbon source of EBPR. The transformations of SOP, polyhydroxyalkanoates (PHAs), and glycogen and the removal of phosphorus were compared between two SBRs. It was observed that the phosphorus removal efficiency was around 98% with the fermentative SCFAs, and about 71% with acetic acid, although the former showed much lower transformations of both PHAs and glycogen. The reasons that fermentative SCFAs caused much higher SOP removal than acetic acid were due to less PHAs used for glycogen synthesis and a higher PHA utilization efficiency for SOP uptake. Finally, the toxicity of fermentation liquid to EBPR microorganisms was examined, and no inhibitory effect was observed. It can be concluded from this studythatthe SCFAs from alkaline fermentation of waste activated sludge were a superior carbon source for EBPR microorganisms than pure acetic acid.
Collapse
Affiliation(s)
- Juan Tong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | | |
Collapse
|
83
|
McMahon KD, Yilmaz S, He S, Gall DL, Jenkins D, Keasling JD. Polyphosphate kinase genes from full-scale activated sludge plants. Appl Microbiol Biotechnol 2007; 77:167-73. [PMID: 17671784 DOI: 10.1007/s00253-007-1122-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/05/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
The performance of enhanced biological phosphorus removal (EBPR) wastewater treatment processes depends on the presence of bacteria that accumulate large quantities of polyphosphate. One such group of bacteria has been identified and named Candidatus Accumulibacter phosphatis. Accumulibacter-like bacteria are abundant in many EBPR plants, but not much is known about their community or population ecology. In this study, we used the polyphosphate kinase gene (ppk1) as a high-resolution genetic marker to study population structure in activated sludge. Ppk1 genes were amplified from samples collected from full-scale wastewater treatment plants of different configurations. Clone libraries were constructed using primers targeting highly conserved regions of ppk1, to retrieve these genes from activated sludge plants that did, and did not, perform EBPR. Comparative sequence analysis revealed that ppk1 fragments were retrieved from organisms affiliated with the Accumulibacter cluster from EBPR plants but not from a plant that did not perform EBPR. A new set of more specific primers was designed and validated to amplify a 1,100 bp ppk1 fragment from Accumulibacter-like bacteria. Our results suggest that the Accumulibacter cluster has finer-scale architecture than previously revealed by 16S ribosomal RNA-based analyses.
Collapse
Affiliation(s)
- Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
84
|
On-line monitoring of the enhanced biological phosphorus removal process using respirometry and titrimetry. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
85
|
Elefsiniotis P, Wareham D. Utilization patterns of volatile fatty acids in the denitrification reaction. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.12.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
86
|
Dai Y, Yuan Z, Wang X, Oehmen A, Keller J. Anaerobic metabolism of Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionate as carbon sources. WATER RESEARCH 2007; 41:1885-96. [PMID: 17368713 DOI: 10.1016/j.watres.2007.01.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/19/2007] [Accepted: 01/28/2007] [Indexed: 05/14/2023]
Abstract
The anaerobic uptake of acetate and propionate as single and dual carbon sources by the putative Defluviicoccus vanus related glycogen accumulating organisms (DvGAOs) is investigated. A high enrichment of DvGAOs, representing 95+/-3% of the bacterial community bound to the EUBMIX probes, was achieved in a lab-scale reactor operated under alternating anaerobic and aerobic conditions with acetate as the sole carbon source. The culture is able to take up both acetate and propionate under anaerobic conditions, and the metabolism in both cases is well described by the metabolic models previously proposed for GAOs and verified with experimental data obtained with other types of GAO cultures. In the simultaneous presence of acetate and propionate, DvGAOs take up these two carbon sources sequentially, with propionate uptake preceding acetate uptake. Through model-based analysis, we hypothesise that DvGAOs prefer propionate in order to maximise their production of polyhydroxyalkanoates (PHAs) with the same glycogen consumption, which would enhance their growth potential in the following aerobic period. Despite a low to negligible consumption of acetate in the presence of large amounts of propionate, the presence of acetate considerably stimulated the uptake of propionate with the rate increased by over 60% in comparison to the case where only propionate was present. This property enhances the competitive capability of DvGAOs in enhanced biological phosphorus removal (EBPR) wastewater treatment systems, given the fact that wastewater typically contains both acetate and propionate.
Collapse
Affiliation(s)
- Yu Dai
- Advanced Wastewater Management Centre, The University of Queensland, St Lucia, 4072, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
87
|
|
88
|
Liu Y, Chen Y, Zhou Q. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids. CHEMOSPHERE 2007; 66:123-9. [PMID: 16781762 DOI: 10.1016/j.chemosphere.2006.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 04/30/2006] [Accepted: 05/01/2006] [Indexed: 05/10/2023]
Abstract
In the literature most of the studies on the effect of pH on enhanced biological phosphorous removal were conducted with the acetate wastewater, and the pH was controlled during the entire anaerobic and aerobic stages. This paper investigated the influence of anaerobic initial pH control, which will be more practical than the entire process pH control strategy, on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids. Typical pH profile showed that both the initial alkaline and acidic pH tended to neutralize due to the consumption of short-chain fatty acid (SCFA) and intracellular pH regulation by polyphosphate accumulating organisms (PAOs). It was observed that the glycogen degradation and polyhydroxyalkanoates (PHA) accumulation decreased with increasing initial pH, which disagreed with previous reports. In the literature the metabolisms of both glycogen and PHA by PAOs in the acetate wastewater were independent of pH. An anaerobic mechanism model was proposed to explain the intra- and extra-cellular pH buffer nature of PAOs, and to address the reasons for increased polyphosphate degradation and decreased PHA synthesis and glycogen degradation at higher pH. The optimal initial pH for higher soluble ortho-phosphorus (SOP) removal efficiency should be controlled between 6.4 and 7.2. This pH control strategy will be easier to use in practice of wastewater treatment plant.
Collapse
Affiliation(s)
- Yan Liu
- State Key Lab. of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | |
Collapse
|
89
|
Lu H, Oehmen A, Virdis B, Keller J, Yuan Z. Obtaining highly enriched cultures of Candidatus Accumulibacter phosphates through alternating carbon sources. WATER RESEARCH 2006; 40:3838-48. [PMID: 17070894 DOI: 10.1016/j.watres.2006.09.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/29/2006] [Accepted: 09/05/2006] [Indexed: 05/12/2023]
Abstract
Candidatus Accumulibacter Phosphatis is widely considered to be a polyphosphate accumulating organism (PAO) of prime importance in enhanced biological phosphorus removal (EBPR) systems. This organism has yet to be isolated, despite many attempts. Previous studies on the biochemical and physiological aspects of this organism, as well as its response to different EBPR operational conditions, have generally relied on the use of mixed culture enrichments. One frequent problem in obtaining highly enriched cultures of this organism is the proliferation of glycogen accumulating organisms (GAO) that can compete with PAOs for limited carbon sources under similar operational conditions. In this study, Candidatus Accumulibacter Phosphatis has been enriched in a lab-scale bioreactor to a level greater than 90% as quantified by fluorescence in situ hyrbridisation (FISH). This is the highest enrichment of this organism that has been reported thus far, and was obtained by alternating the sole carbon source in the feed between acetate and propionate every one to two sludge ages, and operating the bioreactor within a pH range of 7.0-8.0. Simultaneously, the presence of two known groups of GAOs was eliminated under these operational conditions. Excellent phosphorus removal performance and stability were maintained in this system, where the phosphorous concentration in the effluent was below 0.2 mg/L for more than 7 months. When a disturbance was introduced to this system by adding sludge from an enriched GAO culture, Candidatus Accumulibacter Phosphatis once again became highly enriched, while the GAOs were out-competed. This feeding strategy is recommended for future studies focused on describing the physiology and biochemistry of Accumulibacter, where a highly-enriched culture of this organism is of high importance.
Collapse
Affiliation(s)
- Huabing Lu
- Advanced Wastewater Management Centre (AWMC), The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | | | | | | | | |
Collapse
|
90
|
Patel J, Nakhla G. Simultaneous nitrification and denitrification with anoxic phosphorus uptake in a membrane bioreactor system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2006; 78:2193-202. [PMID: 17120438 DOI: 10.2175/106143005x82226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The performance of an innovative membrane bioreactor (MBR) process using anoxic phosphorus uptake with nitrification and denitrification for the treatment of municipal wastewater with respect to operational performance and effluent quality is addressed in this paper. The system was operated at steady-state conditions with a synthetic acetate-based wastewater at a hydraulic retention time (HRT) of 12 hours and on degritted municipal wastewater at a total system HRT of 6 hours. The MBR system was able to achieve 99% biochemical oxygen demand (BOD), chemical oxygen demand (COD), and ammonia-nitrogen (NH4(+)-N); 98% total Kjeldahl nitrogen (TKN); and 97% phosphorus removal, producing effluent BOD, COD, NH4+-N, TKN, nitrate-nitrogen, nitrite-nitrogen, and phosphate-phosphorus of <3, 14, 0.2, 0.26, 5.8, 0.21, and <0.01 mg/L, respectively, at the 6-hour HRT. The comparison of the synthetic and municipal wastewater run is presented in this paper. Steady-state mass balance on municipal wastewater was performed to reveal some key features of the modified MBR system.
Collapse
Affiliation(s)
- Jignesh Patel
- Department of Chemical Engineering and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
91
|
Oehmen A, Zeng RJ, Saunders AM, Blackall LL, Keller J, Yuan Z. Anaerobic and aerobic metabolism of glycogen-accumulating organisms selected with propionate as the sole carbon source. Microbiology (Reading) 2006; 152:2767-2778. [PMID: 16946271 DOI: 10.1099/mic.0.28065-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the microbial competition observed in enhanced biological phosphorus removal (EBPR) systems, an undesirable group of micro-organisms known as glycogen-accumulating organisms (GAOs) compete for carbon in the anaerobic period with the desired polyphosphate-accumulating organisms (PAOs). Some studies have suggested that a propionate carbon source provides PAOs with a competitive advantage over GAOs in EBPR systems; however, the metabolism of GAOs with this carbon source has not been previously investigated. In this study, GAOs were enriched in a laboratory-scale bioreactor with propionate as the sole carbon source, in an effort to better understand their biochemical processes. Based on comprehensive solid-, liquid- and gas-phase chemical analytical data from the bioreactor, a metabolic model was proposed for the metabolism of propionate by GAOs. The model adequately described the anaerobic stoichiometry observed through chemical analysis, and can be a valuable tool for further investigation of the competition between PAOs and GAOs, and for the optimization of the EBPR process. A group of Alphaproteobacteria dominated the biomass (96 % of Bacteria) from this bioreactor, while post-fluorescence in situ hybridization (FISH) chemical staining confirmed that these Alphaproteobacteria produced poly-β-hydroxyalkanoates (PHAs) anaerobically and utilized them aerobically, demonstrating that they were putative GAOs. Some of the Alphaproteobacteria were related to Defluvicoccus vanus (16 % of Bacteria), but the specific identity of many could not be determined by FISH. Further investigation into the identity of other GAOs is necessary.
Collapse
Affiliation(s)
- Adrian Oehmen
- Advanced Wastewater Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Raymond J Zeng
- Advanced Wastewater Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Aaron M Saunders
- Advanced Wastewater Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Linda L Blackall
- Advanced Wastewater Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Jürg Keller
- Advanced Wastewater Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane 4072, Australia
| | - Zhiguo Yuan
- Advanced Wastewater Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane 4072, Australia
| |
Collapse
|
92
|
Meyer RL, Saunders AM, Blackall LL. Putative glycogen-accumulating organisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing. MICROBIOLOGY-SGM 2006; 152:419-429. [PMID: 16436430 DOI: 10.1099/mic.0.28445-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deterioration of enhanced biological phosphorus removal (EBPR) has been linked to the proliferation of glycogen-accumulating organisms (GAOs), but few organisms possessing the GAO metabolic phenotype have been identified. An unidentified GAO was highly enriched in a laboratory-scale bioreactor and attempts to identify this organism using conventional 16S rRNA gene cloning had failed. Therefore, rRNA-based stable isotope probing followed by full-cycle rRNA analysis was used to specifically identify the putative GAOs based on their characteristic metabolic phenotype. The study obtained sequences from a group of Alphaproteobacteria not previously shown to possess the GAO phenotype, but 90 % identical by 16S rRNA gene analysis to a phylogenetic clade containing cloned sequences from putative GAOs and the isolate Defluvicoccus vanus. Fluorescence in situ hybridization (FISH) probes (DF988 and DF1020) were designed to target the new group and post-FISH chemical staining demonstrated anaerobic-aerobic cycling of polyhydroxyalkanoates, as per the GAO phenotype. The successful use of probes DF988 and DF1020 required the use of unlabelled helper probes which increased probe signal intensity up to 6.6-fold, thus highlighting the utility of helper probes in FISH. The new group constituted 33 % of all Bacteria in the lab-scale bioreactor from which they were identified and were also abundant (51 and 55 % of Bacteria) in two other similar bioreactors in which phosphorus removal had deteriorated. Unlike the previously identified Defluvicoccus-related organisms, the group identified in this study were also found in two full-scale treatment plants performing EBPR, suggesting that this group may be industrially relevant.
Collapse
Affiliation(s)
- Rikke Louise Meyer
- Advanced Wastewater Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Aaron Marc Saunders
- Advanced Wastewater Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Linda Louise Blackall
- Advanced Wastewater Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
93
|
Oehmen A, Saunders AM, Vives MT, Yuan Z, Keller J. Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J Biotechnol 2006; 123:22-32. [PMID: 16293332 DOI: 10.1016/j.jbiotec.2005.10.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 04/02/2005] [Accepted: 10/14/2005] [Indexed: 11/19/2022]
Abstract
Enhanced biological phosphorus removal (EBPR) is a widely used process for achieving phosphorus removal from wastewater. A potential reason for EBPR failure is the undesirable growth of glycogen accumulating organisms (GAOs), which can compete for carbon sources with the bacterial group responsible for phosphorus removal from wastewater: the polyphosphate accumulating organisms (PAOs). This study investigates the impact of carbon source on EBPR performance and the competition between PAOs and GAOs. Two sequencing batch reactors (SBRs) were operated during a 4-6 month period and fed with a media containing acetate or propionate, respectively, as the sole carbon source. It was found that the acetate fed SBR rarely achieved a high level of phosphorus removal, and that a large portion of the microbial community was comprised of "Candidatus Competibacter phosphatis", a known GAO. The propionate fed SBR, however, achieved stable phosphorus removal throughout the study, apart from one brief disturbance. The bacterial community of the propionate fed SBR was dominated by "Candidatus Accumulibacter phosphatis", a known PAO, and did not contain Competibacter. In a separate experiment, another SBR was seeded with a mixture of PAOs and a group of alphaproteobacterial GAOs, both enriched with propionate as the sole carbon source. Stable EBPR was achieved and the PAO population increased while the GAOs appeared to be out-competed. The results of this paper suggest that propionate may provide PAOs with a selective advantage over GAOs in the PAO-GAO competition, particularly through the minimisation of Competibacter. Propionate may be a more suitable substrate than acetate for enhancing phosphorus removal in EBPR systems.
Collapse
Affiliation(s)
- Adrian Oehmen
- Advanced Wastewater Management Centre (AWMC), The University of Queensland, St. Lucia, Brisbane, Qld 4072, Australia
| | | | | | | | | |
Collapse
|
94
|
Lopez C, Pons MN, Morgenroth E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal. WATER RESEARCH 2006; 40:1519-30. [PMID: 16631226 DOI: 10.1016/j.watres.2006.01.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 12/21/2005] [Accepted: 01/14/2006] [Indexed: 05/08/2023]
Abstract
In many biological wastewater treatment systems, bacterial growth and the amount of active biomass are limited by the availability of substrate. Under these low growth conditions, endogenous processes have a significant influence on the amount of active biomass and therefore, the overall system performance. In enhanced biological phosphorus removal (EBPR) systems endogenous processes can also influence the levels of the internal storage compounds of the polyphosphate accumulating organisms (PAO), directly affecting phosphorus removal performance. The purpose of this study was to evaluate the significance of different endogenous processes that occur during the long-term starvation of EBPR sludge under aerobic and anaerobic conditions. Activated sludge obtained from a laboratory sequencing batch reactor was used to perform a series of batch starvation experiments. Under aerobic starvation conditions we observed a significant decay of PAO (first-order decay rate of 0.15/d) together with a rapid utilization of polyhydroxyalkanoates (PHA) and a slower utilization of glycogen and polyphosphate to generate maintenance energy. On the other hand, anaerobic starvation was best described by maintenance processes that rapidly reduce the levels of polyphosphate and glycogen under starvation conditions while no significant decay of PAO was observed. The endogenous utilization of glycogen for maintenance purposes is currently not included in available EBPR models. Our experimental results suggest that mathematical models for in EBPR should differentiate between aerobic and anaerobic endogenous processes, as they influence active biomass and storage products differently.
Collapse
Affiliation(s)
- C Lopez
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3219 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
95
|
Yuan H, Chen Y, Zhang H, Jiang S, Zhou Q, Gu G. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:2025-9. [PMID: 16570631 DOI: 10.1021/es052252b] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The production of short-chain fatty acids (SCFAs) from excess sludge was conducted in batch fermentation tests at different pH values ranging from 4.0 to 11.0. Experimental results of the impacts of different pHs on SCFAs production showed that during the first 8-day fermentation time the total SCFAs production at either pH 9.0 or pH 10.0 was much greater than that at acidic or neutral pH, and the maximal yield of 256.2 mg SCFAs-COD per gram of volatile suspended solids (VSS) was at pH 10.0, which was, respectively, over3 and 4times that at pH 5.0 and uncontrolled pH. Clearly, SCFAs production from excess sludge could be significantly improved and maintained stable by controlling the fermentation pH at 10.0. The composition of SCFAs and the percent distribution of individual SCFAs accounting for total SCFAs at pH 10.0 were analyzed. The SCFAs consisted of acetic, propionic, iso-butyric, n-butyric, iso-valeric, and n-valeric acids, and acetic acid was the most prevalent product with a fraction of 40-55%. Because the results of this study were differentfrom those of previous studies of SCFAs production, the mechanism of increased SCFAs production under alkaline conditions was investigated. Results showed that as soluble COD increased, more soluble protein was provided as the substrate for producing SCFAs. In addition, less or even no SCFAs were consumed by methanogens at alkaline pH, so the SCFAs production was therefore remarkably improved. Further investigation revealed thatthe formation of SCFA at pH 10.0 was dominated by biological effects rather than by chemical hydrolysis.
Collapse
Affiliation(s)
- Hongying Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
96
|
Kong Y, Xia Y, Nielsen JL, Nielsen PH. Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants. Environ Microbiol 2006; 8:479-89. [PMID: 16478454 DOI: 10.1111/j.1462-2920.2005.00914.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of glycogen-accumulating organisms (GAOs) in enhanced biological phosphorus removal (EBPR) plants can seriously deteriorate the biological P-removal by out-competing the polyphosphate-accumulating organisms (PAOs). In this study, uncultured putative GAOs (the GB group, belonging to the Gammaproteobacteria) were investigated in detail in 12 full-scale EBPR plants. Fluorescence in situ hybridization (FISH) revealed that the biovolume of the GB bacteria constituted 2-6% of total bacterial biovolume. At least six different subgroups of the GB bacteria were found, and the number of dominant subgroups present in each plant varied between one and five. Ecophysiological investigations using microautoradiography in combination with FISH showed that, under aerobic or anaerobic conditions, all subgroups of the GB bacteria could take up acetate, pyruvate, propionate and some amino acids, while some subgroups in addition could take up formate and thymidine. Glucose, ethanol, butyrate and several other organic substrates were not taken up. Glycolysis was essential for the anaerobic uptake of organic substrates. Polyhydroxyalkanoates (PHA) but not polyphosphate (polyP) granules were detected in all GB bacterial cells. Polyhydroxyalkanoate formation after anaerobic uptake of acetate was confirmed by measuring the increase in fluorescence intensity of PHA granules inside GB bacterial cells after Nile blue staining. One GB subgroup was possibly able to denitrify, and several others were able to reduce nitrate to nitrite. PAOs were also enumerated by FISH in the same treatment plants. Rhodocyclus-related PAOs and Actinobacteria-related PAOs constituted up to 7% and 29% of total bacterial biovolume respectively. Rhodocyclus-related PAOs always coexisted with the GB bacteria and showed many physiological similarities. Factors of importance for the competition between the three groups of important bacteria in EBPR plants are discussed.
Collapse
Affiliation(s)
- Yunhong Kong
- Department of Life Science, Section of Environmental Engineering, Aalborg University, DK-9000 Aalborg, Denmark
| | | | | | | |
Collapse
|
97
|
Pijuan M, Guisasola A, Baeza JA, Carrera J, Casas C, Lafuente J. Net P-removal deterioration in enriched PAO sludge subjected to permanent aerobic conditions. J Biotechnol 2005; 123:117-26. [PMID: 16324760 DOI: 10.1016/j.jbiotec.2005.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 10/05/2005] [Accepted: 10/24/2005] [Indexed: 11/27/2022]
Abstract
Recently, some research in the field of enhanced biological phosphorus removal (EBPR) has been focused on studying systems where the electron donor (substrate) and the electron acceptor (nitrate or oxygen) are present simultaneously. This can occur, for example, in a full scale wastewater treatment plant during heavy rainfall periods when the anaerobic hydraulic retention time is temporarily shortened. To study this situation that could induce EBPR failure, the operation of a sequencing batch reactor (SBR) working under alternating anaerobic-aerobic conditions with an enriched EBPR population (50% Candidatus Accumulibacter phosphatis and less than 1% Candidatus Competibacter phosphatis) was shifted to strict aerobic operation. Seven cycle studies were performed during the 11 days of aerobic operation. Net P-removal was observed in this aerobic SBR during the first 4 days of operation but the system could not achieve net-P removal after this period, although the microbial composition, in terms of percentage of Accumulibacter and Competibacter, did not change significantly. The observed changes in the different compounds analysed (phosphorus, acetate, glycogen and PHB) as well as in the OUR profile indicate that metabolic changes are produced for the adaptation of PAO to aerobic conditions.
Collapse
Affiliation(s)
- Maite Pijuan
- Departament d'Enginyeria Química, ETSE, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
98
|
Pijuan M, Guisasola A, Baeza J, Carrera J, Casas C, Lafuente J. Aerobic phosphorus release linked to acetate uptake: Influence of PAO intracellular storage compounds. Biochem Eng J 2005. [DOI: 10.1016/j.bej.2005.04.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
99
|
Oehmen A, Teresa Vives M, Lu H, Yuan Z, Keller J. The effect of pH on the competition between polyphosphate-accumulating organisms and glycogen-accumulating organisms. WATER RESEARCH 2005; 39:3727-37. [PMID: 16098556 DOI: 10.1016/j.watres.2005.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 06/28/2005] [Accepted: 06/29/2005] [Indexed: 05/04/2023]
Abstract
In enhanced biological phosphorus removal (EBPR) processes, glycogen-accumulating organisms (GAOs) may compete with polyphosphate-accumulating organisms (PAOs) for the often-limited carbon substrates, potentially resulting in disturbances to phosphorus removal. A detailed investigation of the effect of pH on the competition between PAOs and GAOs is reported in this study. The results show that a high external pH ( approximately 8) provided PAOs with an advantage over GAOs in EBPR systems. The phosphorus removal performance improved due to a population shift favouring PAOs over GAOs, which was shown through both chemical and microbiological methods. Two lab-scale reactors fed with propionate as the carbon source were subjected to an increase in pH from 7 to 8. The phosphorus removal and PAO population (as measured by quantitative fluorescence in situ hybridisation analysis of "Candidatus Accumulibacter phosphatis") increased in each system, where the PAOs appeared to out-compete a group of Alphaproteobacteria GAOs. A considerable improvement in the P removal was also observed in an acetate fed reactor, where the GAO population (primarily "Candidatus Competibacter phosphatis") decreased substantially after a similar increase in the pH. The results from this study suggest that pH could be used as a control parameter to reduce the undesirable proliferation of GAOs and improve phosphorus removal in EBPR systems.
Collapse
Affiliation(s)
- Adrian Oehmen
- Advanced Wastewater Management Centre (AWMC), The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| | | | | | | | | |
Collapse
|
100
|
Oehmen A, Keller-Lehmann B, Zeng RJ, Yuan Z, Keller J. Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J Chromatogr A 2005; 1070:131-6. [PMID: 15861796 DOI: 10.1016/j.chroma.2005.02.020] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB) and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methylvalerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems.
Collapse
Affiliation(s)
- Adrian Oehmen
- Advanced Wastewater Management Centre, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | | | | | | | | |
Collapse
|