51
|
Yamaguchi MS, McCartney MM, Linderholm AL, Ebeler SE, Schivo M, Davis CE. Headspace sorptive extraction-gas chromatography-mass spectrometry method to measure volatile emissions from human airway cell cultures. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1090:36-42. [PMID: 29783172 DOI: 10.1016/j.jchromb.2018.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
The human respiratory tract releases volatile metabolites into exhaled breath that can be utilized for noninvasive health diagnostics. To understand the origin of this metabolic process, our group has previously analyzed the headspace above human epithelial cell cultures using solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). In the present work, we improve our model by employing sorbent-covered magnetic stir bars for headspace sorptive extraction (HSSE). Sorbent-coated stir bar analyte recovery increased by 52 times and captured 97 more compounds than SPME. Our data show that HSSE is preferred over liquid extraction via stir bar sorptive extraction (SBSE), which failed to distinguish volatiles unique to the cell samples compared against media controls. Two different cellular media were also compared, and we found that Opti-MEM® is preferred for volatile analysis. We optimized HSSE analytical parameters such as extraction time (24 h), desorption temperature (300 °C) and desorption time (7 min). Finally, we developed an internal standard for cell culture VOC studies by introducing 842 ng of deuterated decane per 5 mL of cell medium to account for error from extraction, desorption, chromatography and detection. This improved model will serve as a platform for future metabolic cell culture studies to examine changes in epithelial VOCs caused by perturbations such as viral or bacterial infections, opening opportunities for improved, noninvasive pulmonary diagnostics.
Collapse
Affiliation(s)
- Mei S Yamaguchi
- Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA
| | - Mitchell M McCartney
- Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA
| | - Angela L Linderholm
- Center for Comparative Respiratory Biology and Medicine, UC Davis Medical School, Davis, CA 95616, USA
| | - Susan E Ebeler
- Viticulture and Enology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael Schivo
- Division of Pulmonary and Critical Care Medicine, University of California Davis, Davis, CA 95616, USA
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
52
|
Purcaro G, Stefanuto PH, Franchina FA, Beccaria M, Wieland-Alter WF, Wright PF, Hill JE. SPME-GC×GC-TOF MS fingerprint of virally-infected cell culture: Sample preparation optimization and data processing evaluation. Anal Chim Acta 2018; 1027:158-167. [PMID: 29866265 DOI: 10.1016/j.aca.2018.03.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 02/01/2023]
Abstract
Untargeted metabolomics study of volatile organic compounds produced by different cell cultures is a field that has gained increasing attention over the years. Solid-phase microextraction has been the sampling technique of choice for most of the applications mainly due to its simplicity to implement. However, a careful optimization of the analytical conditions is necessary to obtain the best performances, which are highly matrix-dependent. In this work, five different solid-phase microextraction fibers were compared for the analysis of the volatiles produced by cell culture infected with the human respiratory syncytial virus. A central composite design was applied to determine the best time-temperature combination to maximize the extraction efficiency and the salting-out effect was evaluated as well. The linearity of the optimized method, along with limits of detection and quantification and repeatability was assessed. Finally, the effect of i) different normalization techniques (i.e. z-score and probabilistic quotient normalization), ii) data transformation (i.e. in logarithmic scale), and iii) different feature selection algorithms (i.e. Fisher ratio and random forest) on the capability of discriminating between infected and not-infected cell culture was evaluated.
Collapse
Affiliation(s)
- Giorgia Purcaro
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States.
| | | | - Flavio A Franchina
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States
| | - Marco Beccaria
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States
| | | | - Peter F Wright
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States; Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, United States
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States; Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States
| |
Collapse
|
53
|
Purcaro G, Rees CA, Wieland-Alter WF, Schneider MJ, Wang X, Stefanuto PH, Wright PF, Enelow RI, Hill JE. Volatile fingerprinting of human respiratory viruses from cell culture. J Breath Res 2018; 12:026015. [PMID: 29199638 PMCID: PMC5912890 DOI: 10.1088/1752-7163/aa9eef] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
Volatile metabolites are currently under investigation as potential biomarkers for the detection and identification of pathogenic microorganisms, including bacteria, fungi, and viruses. Unlike bacteria and fungi, which produce distinct volatile metabolic signatures associated with innate differences in both primary and secondary metabolic processes, viruses are wholly reliant on the metabolic machinery of infected cells for replication and propagation. In the present study, the ability of volatile metabolites to discriminate between respiratory cells infected and uninfected with virus, in vitro, was investigated. Two important respiratory viruses, namely respiratory syncytial virus (RSV) and influenza A virus (IAV), were evaluated. Data were analyzed using three different machine learning algorithms (random forest (RF), linear support vector machines (linear SVM), and partial least squares-discriminant analysis (PLS-DA)), with volatile metabolites identified from a training set used to predict sample classifications in a validation set. The discriminatory performances of RF, linear SVM, and PLS-DA were comparable for the comparison of IAV-infected versus uninfected cells, with area under the receiver operating characteristic curves (AUROCs) between 0.78 and 0.82, while RF and linear SVM demonstrated superior performance in the classification of RSV-infected versus uninfected cells (AUROCs between 0.80 and 0.84) relative to PLS-DA (0.61). A subset of discriminatory features were assigned putative compound identifications, with an overabundance of hydrocarbons observed in both RSV- and IAV-infected cell cultures relative to uninfected controls. This finding is consistent with increased oxidative stress, a process associated with viral infection of respiratory cells.
Collapse
Affiliation(s)
- Giorgia Purcaro
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States of America,
| | - Christiaan A Rees
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States of America
| | - Wendy F Wieland-Alter
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States of America
| | - Mark J Schneider
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States of America
| | - Xi Wang
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States of America
| | - Pierre-Hugues Stefanuto
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States of America,
| | - Peter F Wright
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States of America
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, United States of America
| | - Richard I Enelow
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States of America
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, United States of America
| | - Jane E Hill
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, United States of America,
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, United States of America
| |
Collapse
|
54
|
Aksenov AA, Zamuruyev KO, Pasamontes A, Brown JF, Schivo M, Foutouhi S, Weimer BC, Kenyon NJ, Davis CE. Analytical methodologies for broad metabolite coverage of exhaled breath condensate. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:17-25. [PMID: 28697414 DOI: 10.1016/j.jchromb.2017.06.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023]
Abstract
Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage could be enhanced significantly with the use of organic solvent as a device rinse after breath sampling to collect the non-aqueous fraction as opposed to neat breath condensate sample. Here, we show the detected ranges of compounds in each case and provide a practical guide for methodology selection for optimal detection of specific compounds.
Collapse
Affiliation(s)
- Alexander A Aksenov
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Konstantin O Zamuruyev
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Alberto Pasamontes
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Joshua F Brown
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Michael Schivo
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA; Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA
| | - Soraya Foutouhi
- School of Veterinary Medicine,1089 Veterinary Medicine Drive, University of California, Davis, Davis, CA 95616, USA
| | - Bart C Weimer
- School of Veterinary Medicine,1089 Veterinary Medicine Drive, University of California, Davis, Davis, CA 95616, USA
| | - Nicholas J Kenyon
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA; Center for Comparative Respiratory Biology and Medicine, University of California, Davis, CA 95616, USA
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
55
|
Filipiak W, Mochalski P, Filipiak A, Ager C, Cumeras R, Davis CE, Agapiou A, Unterkofler K, Troppmair J. A Compendium of Volatile Organic Compounds (VOCs) Released By Human Cell Lines. Curr Med Chem 2017; 23:2112-31. [PMID: 27160536 PMCID: PMC5086670 DOI: 10.2174/0929867323666160510122913] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022]
Abstract
Volatile organic compounds (VOCs) offer unique insights into ongoing biochemical processes in healthy and diseased humans. Yet, their diagnostic use is hampered by the limited understanding of their biochemical or cellular origin and their frequently unclear link to the underlying diseases. Major advancements are expected from the analyses of human primary cells, cell lines and cultures of microorganisms. In this review, a database of 125 reliably identified VOCs previously reported for human healthy and diseased cells was assembled and their potential origin is discussed. The majority of them have also been observed in studies with other human matrices (breath, urine, saliva, feces, blood, skin emanations). Moreover, continuing improvements of qualitative and quantitative analyses, based on the recommendations of the ISO-11843 guidelines, are suggested for the necessary standardization of analytical procedures and better comparability of results. The data provided contribute to arriving at a more complete human volatilome and suggest potential volatile biomarkers for future validation. Dedication: This review is dedicated to the memory of Prof. Dr. Anton Amann, who sadly passed away on January 6, 2015. He was motivator and motor for the field of breath research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral-, Transplant- and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
56
|
Novel Isoprene Sensor for a Flu Virus Breath Monitor. SENSORS 2017; 17:s17010199. [PMID: 28117692 PMCID: PMC5298772 DOI: 10.3390/s17010199] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
A common feature of the inflammatory response in patients who have actually contracted influenza is the generation of a number of volatile products of the alveolar and airway epithelium. These products include a number of volatile organic compounds (VOCs) and nitric oxide (NO). These may be used as biomarkers to detect the disease. A portable 3-sensor array microsystem-based tool that can potentially detect flu infection biomarkers is described here. Whether used in connection with in-vitro cell culture studies or as a single exhale breathalyzer, this device may be used to provide a rapid and non-invasive screening method for flu and other virus-based epidemics.
Collapse
|
57
|
Schivo M, Aksenov AA, Pasamontes A, Cumeras R, Weisker S, Oberbauer AM, Davis CE. A rabbit model for assessment of volatile metabolite changes observed from skin: a pressure ulcer case study. J Breath Res 2017; 11:016007. [PMID: 28068292 DOI: 10.1088/1752-7163/aa51d7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human skin presents a large, easily accessible matrix that is potentially useful for diagnostic applications based on whole body metabolite changes-some of which will be volatile and detected using minimally invasive tools. Unfortunately, identifying skin biomarkers that can be reliably linked to a particular condition is challenging due to a large variability of genetics, dietary intake, and environmental exposures within human populations. This leads to a paucity of clinically validated volatile skin biomarker compounds. Animal models present a very convenient and attractive way to circumvent many of the variability issues. The rabbit (Leporidae) is a potentially logistically useful model to study the skin metabolome, but very limited knowledge of its skin metabolites exists. Here we present the first comprehensive assessment of the volatile fraction of rabbit skin metabolites using polydimethylsiloxane sorbent patch sampling in conjunction with gas chromatography/mass spectrometry. A collection of compounds that are secreted from rabbit skin was documented, and predominantly acyclic long-chain alkyls and alcohols were detected. We then utilized this animal model to study differences between intact skin and skin with early pressure ulcers, as the latter are a major problem in intensive care units. Four New Zealand female white rabbits underwent ulcer formation on one ear with the other ear as a control. Early-stage ulcers were created with neodymium magnets. Histologic analysis showed acute heterophilic dermatitis, edema, and micro-hemorrhage on the ulcerated ears with normal findings on the control ears. The metabolomic analysis revealed subtle but noticeable differences, with several compounds associated with the oxidative stress-related degradation of lipids found to be present in greater abundances in ulcerated ears. The metabolomic findings correlate with histologic evidence of early-stage ulcers. We postulate that the Leporidae model recapitulated the vascular changes associated with ulcer formation. This study illustrates the potential usefulness of the Leporidae model for skin metabolome studies. Additionally, skin metabolome analysis may enhance an understanding of non-skin sources such as urine or breath.
Collapse
Affiliation(s)
- Michael Schivo
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of California, Davis, Sacramento, CA 95617, USA. Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Beale DJ, Jones OAH, Karpe AV, Dayalan S, Oh DY, Kouremenos KA, Ahmed W, Palombo EA. A Review of Analytical Techniques and Their Application in Disease Diagnosis in Breathomics and Salivaomics Research. Int J Mol Sci 2016; 18:E24. [PMID: 28025547 PMCID: PMC5297659 DOI: 10.3390/ijms18010024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
The application of metabolomics to biological samples has been a key focus in systems biology research, which is aimed at the development of rapid diagnostic methods and the creation of personalized medicine. More recently, there has been a strong focus towards this approach applied to non-invasively acquired samples, such as saliva and exhaled breath. The analysis of these biological samples, in conjunction with other sample types and traditional diagnostic tests, has resulted in faster and more reliable characterization of a range of health disorders and diseases. As the sampling process involved in collecting exhaled breath and saliva is non-intrusive as well as comparatively low-cost and uses a series of widely accepted methods, it provides researchers with easy access to the metabolites secreted by the human body. Owing to its accuracy and rapid nature, metabolomic analysis of saliva and breath (known as salivaomics and breathomics, respectively) is a rapidly growing field and has shown potential to be effective in detecting and diagnosing the early stages of numerous diseases and infections in preclinical studies. This review discusses the various collection and analyses methods currently applied in two of the least used non-invasive sample types in metabolomics, specifically their application in salivaomics and breathomics research. Some of the salient research completed in this field to date is also assessed and discussed in order to provide a basis to advocate their use and possible future scientific directions.
Collapse
Affiliation(s)
- David J Beale
- Commonwealth Scientific & Industrial Research Organization (CSIRO), Land & Water, P.O. Box 2583, Brisbane, QLD 4001, Australia.
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science, School of Science, RMIT University, P.O. Box 2547, Melbourne, VIC 3001, Australia.
| | - Avinash V Karpe
- Commonwealth Scientific & Industrial Research Organization (CSIRO), Land & Water, P.O. Box 2583, Brisbane, QLD 4001, Australia.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia.
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010, Australia.
| | - Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.
- School of Applied and Biomedical Sciences, Federation University, Churchill, VIC 3350, Australia.
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010, Australia.
| | - Warish Ahmed
- Commonwealth Scientific & Industrial Research Organization (CSIRO), Land & Water, P.O. Box 2583, Brisbane, QLD 4001, Australia.
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia.
| |
Collapse
|
59
|
Angle C, Waggoner LP, Ferrando A, Haney P, Passler T. Canine Detection of the Volatilome: A Review of Implications for Pathogen and Disease Detection. Front Vet Sci 2016; 3:47. [PMID: 27446935 PMCID: PMC4919317 DOI: 10.3389/fvets.2016.00047] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/03/2016] [Indexed: 02/01/2023] Open
Abstract
The volatilome is the entire set of volatile organic compounds (VOC) produced by an organism. The accumulation of VOC inside and outside of the body reflects the unique metabolic state of an organism. Scientists are developing technologies to non-invasively detect VOC for the purposes of medical diagnosis, therapeutic monitoring, disease outbreak containment, and disease prevention. Detection dogs are proven to be a valuable real-time mobile detection technology for the detection of VOC related to explosives, narcotics, humans, and many other targets of interests. Little is known about what dogs are detecting when searching for biological targets. It is important to understand where biological VOC originates and how dogs might be able to detect biological targets. This review paper discusses the recent scientific literature involving VOC analysis and postulates potential biological targets for canine detection. Dogs have shown their ability to detect pathogen and disease-specific VOC. Future research will determine if dogs can be employed operationally in hospitals, on borders, in underserved areas, on farms, and in other operational environments to give real-time feedback on the presence of a biological target.
Collapse
Affiliation(s)
- Craig Angle
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University , Auburn, AL , USA
| | - Lowell Paul Waggoner
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University , Auburn, AL , USA
| | - Arny Ferrando
- Center for Translational Research in Aging and Longevity, University of Arkansas for Medical Sciences , Little Rock, AR , USA
| | - Pamela Haney
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University , Auburn, AL , USA
| | - Thomas Passler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University , Auburn, AL , USA
| |
Collapse
|
60
|
Gao J, Zou Y, Wang Y, Wang F, Lang L, Wang P, Zhou Y, Ying K. Breath analysis for noninvasively differentiating Acinetobacter baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients. J Breath Res 2016; 10:027102. [PMID: 27272697 DOI: 10.1088/1752-7155/10/2/027102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A number of multiresistant pathogens including Acinetobacter baumannii (A. baumannii) place a heavy burden on ventilator-associated pneumonia (VAP) patients in intensive care units (ICU). It is critically important to differentiate between bacterial infection and colonization to avoid prescribing unnecessary antibiotics. Quantitative culture of lower respiratory tract (LRT) specimens, however, requires invasive procedures. Nowadays, volatile organic compounds (VOCs) have been studied in vitro and in vivo to identify pathogen-derived biomarkers. Therefore, an exploratory pilot study was conceived for a proof of concept that the appearance and level of A. baumannii-derived metabolites might be correlated with the presence of the pathogen and its ecological niche (i.e. the infection and colonization states) in ICU ventilated patients. Twenty patients with A. baumannii VAP (infection group), 20 ventilated patients with LRT A. baumannii colonization (colonization group) and 20 ventilated patients with neurological disorders, but without pneumonia or A. baumannii colonization (control group) were enrolled in the in vivo pilot study. A clinical isolate of A. baumannii strains was used for the in vitro culture experiment. The adsorptive preconcentration (solid-phase microextraction fiber and Tenax(®) TA) and analysis technique of gas chromatography-mass spectrometry were applied in the studies. Breath profiles could be visually differentiated between A. baumannii cultivation in vitro and culture medium, and among in vivo groups. In the in vitro experiment, nine compounds of interest (2,5-dimethyl-pyrazine, 1-undecene, isopentyl 3-methylbutanoate, decanal, 1,3-naphthalenediol, longifolene, tetradecane, iminodibenzyl and 3-methyl-indene) in the headspace were found to be possible A. baumannii derivations. While there were eight target VOCs (1-undecene, nonanal, decanal, 2,6,10-trimethyl-dodecane, 5-methyl-5-propyl-nonane, longifolene, tetradecane and 2-butyl-1-octanol) exhibiting characteristics of A. baumannii VAP derivations. The selected VOC profile in vivo could be adopted to efficiently differentiate the presence of LRT A. baumannii from its absence, and LRT A. baumannii infection from its colonization (AUC = 0.89 and 0.88, respectively). It is not feasible to simply transfer the metabolic biomarkers from the in vitro condition to in vivo. The direct detection of exhaled A. baumannii-derived VOCs may be adopted for an early alert of the LRT bacterial presence in ventilated ICU patients, and even in different parasitic states of A. baumannii (i.e. infection and colonization). However, further refinement and validation are required before its clinical use.
Collapse
Affiliation(s)
- Jianping Gao
- Critical Care Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Angle TC, Passler T, Waggoner PL, Fischer TD, Rogers B, Galik PK, Maxwell HS. Real-Time Detection of a Virus Using Detection Dogs. Front Vet Sci 2016; 2:79. [PMID: 26779494 PMCID: PMC4705269 DOI: 10.3389/fvets.2015.00079] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/14/2015] [Indexed: 02/01/2023] Open
Abstract
Viral infections are ubiquitous in humans, animals, and plants. Real-time methods to identify viral infections are limited and do not exist for use in harsh or resource-constrained environments. Previous research identified that tissues produce unique volatile organic compounds (VOC) and demonstrated that VOC concentrations change during pathologic states, including infection, neoplasia, or metabolic disease. Patterns of VOC expression may be pathogen specific and may be associated with an odor that could be used for disease detection. We investigated the ability of two trained dogs to detect cell cultures infected with bovine viral diarrhea virus (BVDV) and to discriminate BVDV-infected cell cultures from uninfected cell cultures and from cell cultures infected with bovine herpes virus 1 (BHV 1) and bovine parainfluenza virus 3 (BPIV 3). Dogs were trained to recognize cell cultures infected with two different biotypes of BVDV propagated in Madin-Darby bovine kidney cells using one of three culture media. For detection trials, one target and seven distractors were presented on a scent wheel by a dog handler unaware of the location of targets and distractors. Detection of BVDV-infected cell cultures by Dog 1 had a diagnostic sensitivity of 0.850 (95% CI: 0.701-0.942), which was lower than Dog 2 (0.967, 95% CI: 0.837-0.994). Both dogs exhibited very high diagnostic specificity (0.981, 95% CI: 0.960-0.993) and (0.993, 95% CI: 0.975-0.999), respectively. These findings demonstrate that trained dogs can differentiate between cultured cells infected with BVDV, BHV1, and BPIV3 and are a realistic real-time mobile pathogen sensing technology for viral pathogens. The ability to discriminate between target and distractor samples plausibly results from expression of unique VOC patterns in virus-infected and -uninfected cells.
Collapse
Affiliation(s)
- T Craig Angle
- Canine Performance Sciences Program, Auburn University , Auburn, AL , USA
| | - Thomas Passler
- Department of Clinical Sciences, Auburn University , Auburn, AL , USA
| | - Paul L Waggoner
- Canine Performance Sciences Program, Auburn University , Auburn, AL , USA
| | - Terrence D Fischer
- Canine Performance Sciences Program, Auburn University , Auburn, AL , USA
| | - Bart Rogers
- Canine Performance Sciences Program, Auburn University , Auburn, AL , USA
| | | | - Herris S Maxwell
- Department of Clinical Sciences, Auburn University , Auburn, AL , USA
| |
Collapse
|
62
|
Weidemaier K, Carrino J, Curry A, Connor JH, Liebmann-Vinson A. Advancing rapid point-of-care viral diagnostics to a clinical setting. Future Virol 2015. [DOI: 10.2217/fvl.14.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT We discuss here critical factors in ensuring the success of a viral diagnostic at the point of care. Molecular and immunoassay approaches are reviewed with a focus on their ability to meet the infrastructure and workflow limitations in clinical settings in both the developed and developing world. In addition to being low cost, easy-to-use, accurate and adapted for the intended laboratory and healthcare environment, viral diagnostics must also provide information that appropriately directs clinical treatment decisions. We discuss the challenges and implications of linking diagnostics to clinical decision-making at the point of care using three examples: respiratory viruses in the developed world, differential fever diagnosis in the developing world and HPV detection in resource-limited settings.
Collapse
Affiliation(s)
- Kristin Weidemaier
- Diagnostic Sciences Department, BD Technologies, 21 Davis Drive, Research Triangle Park, NC 27709, USA
| | - John Carrino
- BD Diagnostics, 10865 Road to the Cure, Suite 200, San Diego, CA 92121, USA
| | - Adam Curry
- Diagnostic Sciences Department, BD Technologies, 21 Davis Drive, Research Triangle Park, NC 27709, USA
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Andrea Liebmann-Vinson
- Diagnostic Sciences Department, BD Technologies, 21 Davis Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
63
|
Schivo M, Aksenov AA, Linderholm AL, McCartney MM, Simmons J, Harper RW, Davis CE. Volatile emanations from in vitro airway cells infected with human rhinovirus. J Breath Res 2014; 8:037110. [PMID: 25189196 DOI: 10.1088/1752-7155/8/3/037110] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Respiratory viral infections such as human rhinovirus (HRV) can lead to substantial morbidity and mortality, especially in people with underlying lung diseases such as asthma and COPD. One proposed strategy to detect viral infections non-invasively is by volatile organic compound (VOC) assessment via analysis of exhaled breath. The epithelial cells are one of the most important cell lines affected during respiratory infections as they are the first line of pathogen defense. Efforts to discover infection-specific biomarkers can be significantly aided by understanding the VOC emanations of respiratory epithelial cells. Here we test the hypothesis that VOCs obtained from the headspace of respiratory cell culture will differentiate healthy cells from those infected with HRV. Primary human tracheobronchial cells were cultured and placed in a system designed to trap headspace VOCs. HRV-infected cells were compared to uninfected control cells. In addition, cells treated with heat-killed HRV and poly(I:C), a TLR3 agonist, were compared to controls. The headspace was sampled with solid-phase microextraction fibers and VOCs were analyzed by gas chromatography/mass spectrometry. We determined differential expression of compounds such as aliphatic alcohols, branched hydrocarbons, and dimethyl sulfide by the infected cells, VOCs previously associated with oxidative stress and bacterial infection. We saw no major differences between the killed-HRV, poly(I:C), and control cell VOCs. We postulate that these compounds may serve as biomarkers of HRV infection, and that the production of VOCs is not due to TLR3 stimulation but does require active viral replication. Our novel approach may be used for the in vitro study of other important respiratory viruses, and ultimately it may aid in identifying VOC biomarkers of viral infection for point-of-care diagnostics.
Collapse
Affiliation(s)
- Michael Schivo
- Department of Internal Medicine, University of California, Davis, Sacramento, CA 95617, USA. Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Amann A, Costello BDL, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res 2014; 8:034001. [PMID: 24946087 DOI: 10.1088/1752-7155/8/3/034001] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer, but also during surgery and in intensive care units. The investigation of cell cultures opens up new possibilities for elucidation of the biochemical background of volatile compounds. In future studies, combined investigations of a particular compound with regard to human matrices such as breath, urine, saliva and cell culture investigations will lead to novel scientific progress in the field.
Collapse
Affiliation(s)
- Anton Amann
- Univ-Clinic for Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr, 35, A-6020 Innsbruck, Austria. Breath Research Institute of the University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
| | | | | | | | | | | | | | | |
Collapse
|