51
|
Jonas H, Schall P, Bolhuis PG. Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy particles under extreme confinement. J Chem Phys 2022; 157:094903. [DOI: 10.1063/5.0098882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colloidal patchy particles with divalent attractive interaction can self-assemble into linear polymer chains. Their equilibrium properties in 2D and 3D are well described by Wertheim's thermodynamic perturbation theory which predicts a well-defined exponentially decaying equilibrium chain length distribution. In experi- mental realizations, due to gravity, particles sediment to the bottom of the suspension forming a monolayer of particles with a gravitational height smaller than the particle diameter. In accordance with experiments, an anomalously high monomer concentration is observed in simulations which is not well understood. To account for this observation, we interpret the polymerization as taking place in a highly confined quasi-2D plane and extend the Wertheim thermodynamic perturbation theory by defining addition reactions constants as functions of the chain length. We derive the theory, test it on simple square well potentials, and apply it to the experimental case of synthetic colloidal patchy particles immersed in a binary liquid mixture that are described by an accurate effective critical Casimir patchy particle potential. The important interaction parameters entering the theory are explicitly computed using the integral method in combination with Monte Carlo sampling. Without any adjustable parameter, the predictions of the chain length distribution are in excellent agreement with explicit simulations of self-assembling particles. We discuss generality of the approach, and its application range.
Collapse
Affiliation(s)
- Hannah Jonas
- University of Amsterdam Van 't Hoff Institute for Molecular Sciences, Netherlands
| | - Peter Schall
- Institute of Physics, Universiteit van Amsterdam Faculteit der Natuurwetenschappen Wiskunde en Informatica, Netherlands
| | - Peter G. Bolhuis
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam Van 't Hoff Institute for Molecular Sciences, Netherlands
| |
Collapse
|
52
|
Shi W, Wei R, Zhang D, Meng L, Xie J, Cai K, Zhao D. Dual Cooperatively Grown J‐aggregates with Different Nucleus Size. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenjing Shi
- Peking University College of Chemistry CHINA
| | - Rong Wei
- Peking University College of Chemistry CHINA
| | - Di Zhang
- Peking University college of Chemistry CHINA
| | | | - Jiajun Xie
- Peking University College of Chemistry CHINA
| | - Kang Cai
- Nankai University Chemistry CHINA
| | - Dahui Zhao
- Peking University College of Chemistry and Molecular Engineering College of ChemistryPeking University 100871 Beijing CHINA
| |
Collapse
|
53
|
Ghosh G, Chakraborty A, Pal P, Jana B, Ghosh S. Direct Participation of Solvent Molecules in the Formation of Supramolecular Polymers. Chemistry 2022; 28:e202201082. [PMID: 35475531 DOI: 10.1002/chem.202201082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/05/2022]
Abstract
This article reports supramolecular polymerization of two bis-amide functionalized naphthalene-diimide (NDI) building blocks (NDI-L and NDI-C) in two solvents, namely n-heptane (Hep) and methylcyclohexane (MCH). NDI-L and NDI-C differ only by the peripheral hydrocarbon wedges, consisting of linear C7 chains or cyclic methylcyclohexane rings, respectively. UV/Vis and FTIR spectroscopy studies reveal distinct internal order and H-bonding pattern for NDI-L and NDI-C aggregates irrespective of the solvent system, indicating the dominant role of the intrinsic packing parameters of the individual building block, possibly influenced by the peripheral steric crowding. However, NDI-L produces a significantly stronger gel in Hep compared to MCH as evident from the rheological and thermal properties. In contrast, NDI-C exhibits a clear preference for MCH, producing gel with moderate strength but in Hep it fails to produce 1D morphology or gelation. All-atom molecular dynamics (MD) simulation studies corroborate with the experimental observation and provide the rationale for the observed solvent-shape effect by revealing a quantitative estimate regarding the thermodynamics of self-assembly in these four combinations. Such clear-cut shape-matching effect (between the peripheral hydrocarbon wedge and the solvent system) unambiguously support a direct participation of the solvent molecules during supramolecular polymerization and presence of a closely-adhered solvent shell around the supramolecular polymers, similar to the first layer of water molecules around the protein surface. Solvent induced CD experiments support this hypothesis as induced CD band was observed only from a chiral co-solvent of matching shape. This is reconfirmed by the higher de-solvation temperature of the shape-matching NDI/solvent system combination compared to the shape mis-match combination in variable temperature UV/Vis experiments, revealing transformation to a different aggregate at higher temperatures rather than disassembly to the monomer for all four combinations.
Collapse
Affiliation(s)
- Goutam Ghosh
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Anwesha Chakraborty
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Prasun Pal
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Biman Jana
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
54
|
Tan M, Takeuchi M, Takai A. Cooperative self-assembling process of core-substituted naphthalenediimide induced by amino-yne click reaction. Chem Commun (Camb) 2022; 58:7196-7199. [PMID: 35671101 DOI: 10.1039/d2cc02331h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a cooperative (i.e., nucleation-elongation) self-assembling process of a core-substituted naphthalenediimide induced by a catalyst-free amino-yne click reaction at 298 K. The self-assembling process was initiated immediately in the presence of nuclei (seeds). The combination of the click reaction and the seeded self-assembling process paves the way for precise control over supramolecular assemblies of electron-deficient π-systems.
Collapse
Affiliation(s)
- Minghan Tan
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan. .,Department of Materials Science and Engineering, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan. .,Department of Materials Science and Engineering, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Atsuro Takai
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
| |
Collapse
|
55
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt(II) Complexes that Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seok Gyu Kang
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Ka Young Kim
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Yumi Cho
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Dong Yeun Jeong
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Ji Ha Lee
- Hiroshima University: Hiroshima Daigaku Chemical Engineering Program KOREA, REPUBLIC OF
| | - Tomoki Nishimura
- Shinshu Daigaku Department of Chemistry and Materials KOREA, REPUBLIC OF
| | - Shim Sung Lee
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Sang Kyu Kwak
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Youngmin You
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Jong Hwa Jung
- Gyeongsang National University Department of Chemistry Gyeongsang National University 501 jinjudaero 52828 Jinju KOREA, REPUBLIC OF
| |
Collapse
|
56
|
Kotha S, Sahu R, Srideep D, Yamijala SSRKC, Reddy SK, Rao KV. Cooperative supramolecular polymerization guided by dispersive interactions. Chem Asian J 2022; 17:e202200494. [DOI: 10.1002/asia.202200494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Srinu Kotha
- IITH: Indian Institute of Technology Hyderabad Chemistry INDIA
| | - Rahul Sahu
- IIT Kharagpur: Indian Institute of Technology Kharagpur Centre for Computational and Data Science INDIA
| | - Dasari Srideep
- IITH: Indian Institute of Technology Hyderabad Chemistry INDIA
| | - Sharma S. R. K. C. Yamijala
- IIT Madras: Indian Institute of Technology Madras Department of Chemistry and Center for Atomistic Modelling and Materials Design INDIA
| | - Sandeep Kumar Reddy
- IIT Kharagpur: Indian Institute of Technology Kharagpur Centre for Computational and Data Science INDIA
| | | |
Collapse
|
57
|
Molecular communications in complex systems of dynamic supramolecular polymers. Nat Commun 2022; 13:2162. [PMID: 35443756 PMCID: PMC9021206 DOI: 10.1038/s41467-022-29804-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Supramolecular polymers are composed of monomers that self-assemble non-covalently, generating distributions of monodimensional fibres in continuous communication with each other and with the surrounding solution. Fibres, exchanging molecular species, and external environment constitute a sole complex system, which intrinsic dynamics is hard to elucidate. Here we report coarse-grained molecular simulations that allow studying supramolecular polymers at the thermodynamic equilibrium, explicitly showing the complex nature of these systems, which are composed of exquisitely dynamic molecular entities. Detailed studies of molecular exchange provide insights into key factors controlling how assemblies communicate with each other, defining the equilibrium dynamics of the system. Using minimalistic and finer chemically relevant molecular models, we observe that a rich concerted complexity is intrinsic in such self-assembling systems. This offers a new dynamic and probabilistic (rather than structural) picture of supramolecular polymer systems, where the travelling molecular species continuously shape the assemblies that statistically emerge at the equilibrium. The dynamic structure of supramolecular polymers is challenging to determine both in experiments and in simulations. Here the authors use coarse-grained molecular models to provide a comprehensive analysis of the molecular communication in these complex molecular systems.
Collapse
|
58
|
Helmers I, Hossain MS, Bäumer N, Wesarg P, Soberats B, Shimizu LS, Fernández G. Anti-cooperative Self-Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angew Chem Int Ed Engl 2022; 61:e202200390. [PMID: 35112463 PMCID: PMC9311066 DOI: 10.1002/anie.202200390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 12/28/2022]
Abstract
Herein, we present a strategy to enable a maintained emissive behavior in the self-assembled state by enforcing an anti-cooperative self-assembly involving weak intermolecular dye interactions. To achieve this goal, we designed a conformationally flexible monomer unit 1 with a central 1,3-substituted (diphenyl)urea hydrogen bonding synthon that is tethered to two BODIPY dyes featuring sterically bulky trialkoxybenzene substituents at the meso-position. The competition between attractive forces (H-bonding and aromatic interactions) and destabilizing effects (steric and competing conformational effects) limits the assembly, halting the supramolecular growth at the stage of small oligomers. Given the presence of weak dye-dye interactions, the emission properties of molecularly dissolved 1 are negligibly affected upon aggregation. Our findings contribute to broadening the scope of emissive supramolecular assemblies and controlled supramolecular polymerization.
Collapse
Affiliation(s)
- Ingo Helmers
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | | | - Nils Bäumer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Paul Wesarg
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Bartolome Soberats
- Department of ChemistryUniversity of the Balearic IslandsCra. Valldemossa, Km. 7.507122Palma de MallorcaSpain
| | - Linda S. Shimizu
- Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaSC 29208USA
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
59
|
Takahashi M, Sakai KI, Sambe K, Akutagawa T. Supramolecular Complexation and Collective Optical Properties Induced by Linking Two Methyl Salicylates via a σ-Bridge. J Phys Chem B 2022; 126:3116-3124. [DOI: 10.1021/acs.jpcb.2c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miku Takahashi
- Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology (CIST), Chitose 066-8655, Japan
| | - Ken-ichi Sakai
- Department of Applied Chemistry and Bioscience, Chitose Institute of Science and Technology (CIST), Chitose 066-8655, Japan
| | - Kohei Sambe
- Polymer Hybrid Materials Research Center, Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Tomoyuki Akutagawa
- Polymer Hybrid Materials Research Center, Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
60
|
Tan M, Takeuchi M, Takai A. Spatiotemporal dynamics of supramolecular polymers by in situ quantitative catalyst-free hydroamination. Chem Sci 2022; 13:4413-4423. [PMID: 35509456 PMCID: PMC9006958 DOI: 10.1039/d2sc00035k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
Implementing chemical reactivity into synthetic supramolecular polymers based on π-conjugated molecules has been of great interest to create functional materials with spatiotemporal dynamic properties. However, the development of an in situ chemical reaction within supramolecular polymers is still in its infancy, because one needs to design optimal π-conjugated monomers having excellent reactivity under mild conditions possibly without byproducts or a catalyst. Herein we report the synthesis of a supramolecular polymer based on ethynyl core-substituted naphthalenediimide (S-NDI2) molecules that react with various amines quantitatively in a nonpolar solvent, without a catalyst, at 298 K. Most interestingly, the in situ reaction of the S-NDI2 supramolecular polymer with a linear aliphatic diamine proceeded much faster than the homogeneous reaction of a monomeric naphthalenediimide with the same diamine, affording diamine-linked S-NDI2 oligomers and polymers. The acceleration of in situ hydroamination was presumably due to rapid intra-supramolecular cross-linking between ethynyl and amino groups fixed in close proximity within the supramolecular polymer. Such intra-supramolecular cross-linking did not occur efficiently with an incompatible diamine. The systematic kinetic studies of in situ catalyst-free hydroamination within supramolecular polymers provide us with a useful, facile and versatile tool kit for designing dynamic supramolecular polymeric materials based on electron-deficient π-conjugated monomers.
Collapse
Affiliation(s)
- Minghan Tan
- Molecular Design and Function Group, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan .,Department of Materials Science and Engineering, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan .,Department of Materials Science and Engineering, Faculty of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Atsuro Takai
- Molecular Design and Function Group, National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| |
Collapse
|
61
|
Elucidation of the key role of Pt···Pt interactions in the directional self-assembly of platinum(II) complexes. Proc Natl Acad Sci U S A 2022; 119:e2116543119. [PMID: 35298336 PMCID: PMC8944581 DOI: 10.1073/pnas.2116543119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular self-assembly provides a bottom-up platform to design supramolecular functional materials, attracting numerous interests in material sciences. The utilization of platinum(II) complexes as building blocks of supramolecular assemblies opens up the unique noncovalent Pt···Pt interaction as one of the driving forces, imparting the supramolecular materials with rich spectroscopic features. However, the exact role of Pt···Pt interactions in molecular assembly remains elusive. The current study combines experimental and computational techniques to elucidate the role of Pt···Pt interactions in the self-assembly process of a representative amphiphilic platinum(II) complex. This work demonstrates the directional role of Pt···Pt interactions in assisting the molecular assembly in an anisotropic manner, achieving the formation of ordered self-assembled structures. Here, we report the use of an amphiphilic Pt(II) complex, K[Pt{(O3SCH2CH2CH2)2bzimpy}Cl] (PtB), as a model to elucidate the key role of Pt···Pt interactions in directing self-assembly by combining temperature-dependent ultraviolet-visible (UV-Vis) spectroscopy, stopped-flow kinetic experiments, quantum mechanics (QM) calculations, and molecular dynamics (MD) simulations. Interestingly, we found that the self-assembly mechanism of PtB in aqueous solution follows a nucleation-free isodesmic model, as revealed by the temperature-dependent UV-Vis experiments. In contrast, a cooperative growth is found for the self-assembly of PtB in acetone–water (7:1, vol/vol) solution, which is further verified by the stopped-flow experiments, which clearly indicates the existence of a nucleation phase in the acetone–water (7:1, vol/vol) solution. To reveal the underlying reasons and driving forces for these self-assembly processes, we performed QM calculations and show that the Pt···Pt interactions arising from the interaction between the pz and dz2 orbitals play a crucial role in determining the formation of ordered self-assembled structures. In subsequent oligomer MD simulations, we demonstrate that this directional Pt···Pt interaction can indeed facilitate the formation of linear structures packed in a helix-like fashion. Our results suggest that the self-assembly of PtB in acetone–water (7:1, vol/vol) solution is predominantly driven by the directional noncovalent Pt···Pt interaction, leading to the cooperative growth and the formation of fibrous nanostructures. On the contrary, the self-assembly in aqueous solution forms spherical nanostructures of PtB, which is primarily due to the predominant contribution from the less directional hydrophobic interactions over the directional Pt···Pt and π−π interactions that result in an isodesmic growth.
Collapse
|
62
|
Insua I, Bergueiro J, Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Bottom-up supramolecular assembly in two dimensions. Chem Sci 2022; 13:3057-3068. [PMID: 35414883 PMCID: PMC8926289 DOI: 10.1039/d1sc05667k] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/19/2022] [Indexed: 01/17/2023] Open
Abstract
The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. Attracted by the interesting properties of two-dimensional inorganic analogues, monomers of different chemical natures are being explored for the assembly of dynamic 2D systems. Although many important discoveries have been already achieved, great challenges are still to be addressed in this field. Hierarchical multicomponent assembly, directional non-covalent growth and internal structural control are a just a few of the examples that will be discussed in this perspective about the exciting present and the bright future of two-dimensional supramolecular assemblies. The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. This perspective discusses the main strategies to direct the supramolecular self-assembly of organic monomers in 2D.![]()
Collapse
Affiliation(s)
- Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Julian Bergueiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| |
Collapse
|
63
|
|
64
|
Okuda S, Ousaka N, Iwata T, Ishida R, Urushima A, Suzuki N, Nagano S, Ikai T, Yashima E. Supramolecular Helical Assemblies of Dirhodium(II) Paddlewheels with 1,4-Diazabicyclo[2.2.2]octane: A Remarkable Substituent Effect on the Helical Sense Preference and Amplification of the Helical Handedness Excess of Metallo-Supramolecular Helical Polymers. J Am Chem Soc 2022; 144:2775-2792. [PMID: 35119857 DOI: 10.1021/jacs.1c12652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report unique coordination-driven supramolecular helical assemblies of a series of dirhodium(II) tetracarboxylate paddlewheels bearing chiral phenyl- or methyl-substituted amide-bound m-terphenyl residues with triethylene glycol monomethyl ether (TEG) or n-dodecyl tails through a 1:1 complexation with 1,4-diazabicyclo[2.2.2]octane (DABCO). The chiral dirhodium complexes with DABCO in CHCl3/n-hexane (1:1) form one-handed helical coordination polymers with a controlled propeller chirality at the m-terphenyl groups, which are stabilized by intermolecular hydrogen-bonding networks between the adjacent amide groups at the periphery mainly via a cooperative nucleation-elongation mechanism as supported by circular dichroism (CD), vibrational CD, and variable-temperature (VT) absorption and CD analyses. The VT visible-absorption titrations revealed the temperature-dependent changes in the degree of polymerization. The columnar supramolecular helical structures were elucidated by X-ray diffraction and atomic force microscopy. The helix sense of the homopolymer carrying the bulky phenyl and n-dodecyl substituents is opposite those of other chiral homopolymers despite having the same absolute configuration at the pendants. A remarkably strong "sergeants and soldiers" (S&S) effect was observed in most of the chiral/achiral copolymers, while the copolymers of the bulky chiral phenyl-substituted dirhodium complexes with n-dodecyl chains displayed an "abnormal" S&S effect accompanied by an inversion of the helix sense, which could be switched to a "normal" S&S effect by changing the solvent composition. A nonracemic dirhodium complex of 20% enantiomeric excess bearing the less bulky chiral methyl substituents with n-dodecyl chains assembled with DABCO to form an almost one-handed helix (the "majority rule" (MR) effect), whereas the three other nonracemic copolymers showed a weak MR effect.
Collapse
Affiliation(s)
- Shogo Okuda
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takuya Iwata
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Riku Ishida
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Akio Urushima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nozomu Suzuki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shusaku Nagano
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
65
|
Kang JS, Kang S, Suh JM, Park SM, Yoon DK, Lim MH, Kim WY, Seo M. Circularly Polarized Light Can Override and Amplify Asymmetry in Supramolecular Helices. J Am Chem Soc 2022; 144:2657-2666. [PMID: 35112850 DOI: 10.1021/jacs.1c11306] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Circularly polarized light (CPL) is an inherently chiral entity and is considered one of the possible deterministic signals that led to the evolution of homochirality. While accumulating examples indicate that chirality beyond the molecular level can be induced by CPL, not much is yet known about circumstances where the spin angular momentum of light competes with existing molecular chiral information during the chirality induction and amplification processes. Here we present a light-triggered supramolecular polymerization system where chiral information can both be transmitted and nonlinearly amplified in a "sergeants-and-soldiers" manner. While matching handedness with CPL resulted in further amplification, we determined that opposite handedness could override molecular information at the supramolecular level when the enantiomeric excess was low. The presence of a critical chiral bias suggests a bifurcation point in the homochirality evolution under random external chiral perturbation. Our results also highlight opportunities for the orthogonal control of supramolecular chirality decoupled from molecular chirality preexisting in the system.
Collapse
Affiliation(s)
- Jun Su Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sungwoo Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jong-Min Suh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Soon Mo Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,KAIST Institute for the Nanocentury, KAIST, Daejeon 34141, Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Woo Youn Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,KAIST Institute for the Nanocentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
66
|
Helmers I, Hossain MS, Bäumer N, Wesarg P, Soberats B, Shimizu LS, Fernandez G. Anti‐cooperative Self‐Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ingo Helmers
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | | | - Nils Bäumer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Paul Wesarg
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Bartolome Soberats
- Universitat de les Illes Balears Facultat de Ciencies Quimica Organica SPAIN
| | - Linda S. Shimizu
- University of South Carolina Chemistry and Biochemistry UNITED STATES
| | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
67
|
Abstract
Many structures in nature look symmetric, but this is not completely accurate, because absolute symmetry is close to death. Chirality (handedness) is one form of living asymmetry. Chirality has been extensively investigated at different levels. Many rules were coined in attempts made for many decades to have control over the selection of handedness that seems to easily occur in nature. It is certain that if good control is realized on chirality, the roads will be ultimately open towards numerous developments in pharmaceutical, technological, and industrial applications. This tutorial review presents a report on chirality from single molecules to supramolecular assemblies. The realized functions are still in their infancy and have been scarcely converted into actual applications. This review provides an overview for starters in the chirality field of research on concepts, common methodologies, and outstanding accomplishments. It starts with an introductory section on the definitions and classifications of chirality at the different levels of molecular complexity, followed by highlighting the importance of chirality in biological systems and the different means of realizing chirality and its inversion in solid and solution-based systems at molecular and supramolecular levels. Chirality-relevant important findings and (bio-)technological applications are also reported accordingly.
Collapse
|
68
|
Ukai S, Takamatsu A, Nobuoka M, Tsutsui Y, Fukui N, Ogi S, Seki S, Yamaguchi S, Shinokubo H. A Supramolecular Polymer Constituted of Antiaromatic Ni
II
Norcorroles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shusaku Ukai
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Aiko Takamatsu
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Masaki Nobuoka
- Department of Molecular Engineering Graduate School of, Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering Graduate School of, Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Soichiro Ogi
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Shu Seki
- Department of Molecular Engineering Graduate School of, Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
69
|
Guevara-Vela JM, Hess K, Rocha-Rinza T, Martín Pendás Á, Flores-Álamo M, Moreno-Alcántar G. Stronger-together: the cooperativity of aurophilic interactions. Chem Commun (Camb) 2022; 58:1398-1401. [PMID: 34994363 DOI: 10.1039/d1cc05241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystallographic distances and the electron density of bi- and tri-nuclear gold(I) compounds reveal that the existence of multiple Au⋯Au interactions increases their individual strength in the order of 0.9-2.9 kcal mol-1. We observed this behaviour both experimentally and theoretically in multinuclear systems, confirming a novel important cooperative character in aurophilic contacts.
Collapse
Affiliation(s)
- José Manuel Guevara-Vela
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Kristopher Hess
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico.
| | - Tomás Rocha-Rinza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica, Universidad de Oviedo, C/ Julián Clavería 8, Oviedo, 33006, Spain
| | - Marcos Flores-Álamo
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico.
| | - Guillermo Moreno-Alcántar
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, Mexico.
| |
Collapse
|
70
|
Coste M, Suárez-Picado E, Ulrich S. Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chem Sci 2022; 13:909-933. [PMID: 35211257 PMCID: PMC8790784 DOI: 10.1039/d1sc05589e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
Supramolecular polymers are self-assembled materials displaying adaptive and responsive "life-like" behaviour which are often made of aromatic compounds capable of engaging in π-π interactions to form larger assemblies. Major advances have been made recently in controlling their mode of self-assembly, from thermodynamically-controlled isodesmic to kinetically-controlled living polymerization. Dynamic covalent chemistry has been recently implemented to generate dynamic covalent polymers which can be seen as dynamic analogues of biomacromolecules. On the other hand, peptides are readily-available and structurally-rich building blocks that can lead to secondary structures or specific functions. In this context, the past decade has seen intense research activity in studying the behaviour of aromatic-peptide conjugates through supramolecular and/or dynamic covalent chemistries. Herein, we review those impressive key achievements showcasing how aromatic- and peptide-based self-assemblies can be combined using dynamic covalent and/or supramolecular chemistry, and what it brings in terms of the structure, self-assembly pathways, and function of supramolecular and dynamic covalent polymers.
Collapse
Affiliation(s)
- Maëva Coste
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Esteban Suárez-Picado
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| |
Collapse
|
71
|
Sang Y, Liu M. Hierarchical self-assembly into chiral nanostructures. Chem Sci 2022; 13:633-656. [PMID: 35173928 PMCID: PMC8769063 DOI: 10.1039/d1sc03561d] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
One basic principle regulating self-assembly is associated with the asymmetry of constituent building blocks or packing models. Using asymmetry to manipulate molecular-level devices and hierarchical functional materials is a promising topic in materials sciences and supramolecular chemistry. Here, exemplified by recent major achievements in chiral hierarchical self-assembly, we show how chirality may be utilized in the design, construction and evolution of highly ordered and complex chiral nanostructures. We focus on how unique functions can be developed by the exploitation of chiral nanostructures instead of single basic units. Our perspective on the future prospects of chiral nanostructures via the hierarchical self-assembly strategy is also discussed.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
72
|
de Windt LNJ, Fernández Z, Fernández‐Míguez M, Freire F, Palmans ARA. Elucidating the Supramolecular Copolymerization of N- and C-Centered Benzene-1,3,5-Tricarboxamides: The Role of Parallel and Antiparallel Packing of Amide Groups in the Copolymer Microstructure. Chemistry 2022; 28:e202103691. [PMID: 34766652 PMCID: PMC9300128 DOI: 10.1002/chem.202103691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 12/23/2022]
Abstract
An in-depth study of the supramolecular copolymerization behavior of N- and C-centered benzene-1,3,5-tricarboxamides (N- and C-BTAs) has been conducted in methylcyclohexane and in the solid state. The connectivity of the amide groups in the BTAs differs, and mixing N- and C-BTAs results in supramolecular copolymers with a blocky microstructure in solution. The blocky microstructure results from the formation of weaker and less organized, antiparallel hydrogen bonds between N- and C-BTAs. In methylcyclohexane, the helical threefold hydrogen-bonding network present in C- and N-BTAs is retained in the mixtures. In the solid state, in contrast, the hydrogen bonds of pure BTAs as well as their mixtures organize in a sheet-like pattern, and in the mixtures long-range order is lost. Drop-casting to kinetically trap the solution microstructures shows that C-BTAs retain the helical hydrogen bonds, but N-BTAs immediately adopt the sheet-like pattern, a direct consequence of the lower stabilization energy of the helical hydrogen bonds. In the copolymers, the stability of the helical aggregates depends on the copolymer composition, and helical aggregates are only preserved when a high amount of C-BTAs is present. The method outlined here is generally applicable to elucidate the copolymerization behavior of supramolecular monomers both in solution as well as in the solid state.
Collapse
Affiliation(s)
- Lafayette N. J. de Windt
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600 MBEindhovenThe Netherlands
| | - Zulema Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Manuel Fernández‐Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Anja R. A. Palmans
- Laboratory of Macromolecular and Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600 MBEindhovenThe Netherlands
| |
Collapse
|
73
|
Ok M, Kim KY, Choi H, Kim S, Lee SS, Cho J, Jung SH, Jung JH. Helicity-driven chiral self-sorting supramolecular polymerization with Ag+: right- and left-helical aggregates. Chem Sci 2022; 13:3109-3117. [PMID: 35414882 PMCID: PMC8926169 DOI: 10.1039/d1sc06413d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
The study of chiral self-sorting is extremely important for understanding biological systems and for developing applications for the biomedical field. In this study, we attempted an unprecedented chiral self-sorting supramolecular...
Collapse
Affiliation(s)
- Mirae Ok
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Korea
| | - Ka Young Kim
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Korea
| | - Heekyoung Choi
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Korea
| | - Seonghan Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Korea
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology Daegu 42988 Korea
| | - Shim Sung Lee
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology Ulsan 44919 Korea
| | - Sung Ho Jung
- Department of Liberal Arts, Gyeongsang National University Jinju 52828 Korea
| | - Jong Hwa Jung
- Department of Chemistry, Research Institute of Natural Sciences, Gyeongsang National University Jinju 52828 Korea
| |
Collapse
|
74
|
Wang H, Chen M, Zhu Y, Li Y, Zhang H, Shi T. A novel pathway and seeded polymerizations of aggregates at the thermodynamic state for an amido-anthraquinone compound. Org Chem Front 2022. [DOI: 10.1039/d1qo01848e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rationally designed monomer 1 underwent supramolecular polymerization to form aggregates via a novel pathway in which the intramolecular H-bond remained intact.
Collapse
Affiliation(s)
- Houchen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Mingyue Chen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yuanyuan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yu Li
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Han Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Tiesheng Shi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
75
|
Ding J, Pan H, Wang H, Ren XK, Chen Z. Asymmetric living supramolecular polymerization of an achiral aza-BODIPY dye by solvent-mediated chirality induction and memory. Org Chem Front 2022. [DOI: 10.1039/d2qo00623e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetic self-assembly properties of an achiral aza-BODIPY dye 1 bearing two hydrophobic fan-shaped tridodecyloxybenzamide pendants through 1,2,3-triazole linkages was investigated in detail in chiral solvents (S)- and (R)-limonene by...
Collapse
|
76
|
Yoshida M, Hirao T, Haino T. Self-assembly of neutral platinum complexes controlled by thermal inputs. Chem Commun (Camb) 2022; 58:8356-8359. [DOI: 10.1039/d2cc02571j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we describe the self-assembly behavior of neutral platinum complexes in toluene. The platinum complexes were seen to form two different types of assemblies depending on the preparation...
Collapse
|
77
|
Li C, Ok M, Choi H, Jung JH. Metallosupramolecular polymers formed with silver(i) ions in aqueous solution. NEW J CHEM 2022. [DOI: 10.1039/d1nj05146f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymers of a terpyridine-based ligand (L) at three different concentrations of AgNO3 (0, 0.5, and 1.0 equiv.).
Collapse
Affiliation(s)
- Chenxing Li
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Mirae Ok
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Heekyoung Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
78
|
Aizawa T, Kawaura M, Kajitani T, Hengphasatporn K, Shigeta Y, Yagai S. Supramolecular polymerization of thiobarbituric acid naphthalene dye. Chem Commun (Camb) 2022; 58:9365-9368. [DOI: 10.1039/d2cc02984g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Thiobarbituric acid-functionalized naphthalene dye selectively self-assembles into crystalline fibers to show material properties that are different from those of a previously reported oxo-barbituric acid derivative affording curved supramolecular polymers via...
Collapse
|
79
|
Narita H, Choi H, Ito M, Ando N, Ogi S, Yamaguchi S. Fully fused boron-doped polycyclic aromatic hydrocarbons: their synthesis, structure–property relationships, and self-assembly behavior in aqueous media. Chem Sci 2022; 13:1484-1491. [PMID: 35222933 PMCID: PMC8809413 DOI: 10.1039/d1sc06710a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Planarized triarylboranes are attracting increasing attention not only as models of boron-doped graphenes, but also as promising materials for organic optoelectronics. In particular, polycyclic aromatic hydrocarbon (PAH) skeletons with embedded boron atom(s) in the inner positions are of importance in light of their high chemical stability and π-stacking ability derived from their planar geometries. Herein, we disclose a robust synthesis of such fully fused boron-doped PAHs and their self-assembly behavior in aqueous media to explore their potential utility in biological applications. The synthesis using in situ-generated planar diarylboranes as a key precursor afforded a series of fully fused boron-doped PAHs, even including an amphiphilic derivative with hydrophilic side chains. These compounds exhibited red emission in solution, and slight structural modification resulted in increased fluorescence brightness. While these compounds showed relatively low Lewis acidity compared to their partially ring-fused counterparts, their Lewis acidities were slightly increased in polar solvents compared to those in nonpolar solvents. In addition, their B–N Lewis acid–base adducts, even those with a strong, charge-neutral Lewis base such as N,N-dimethylaminopyridine (DMAP), exhibited photo-dissociation behavior in the excited state. The amphiphilic derivative showed significant spectral changes with increased water content in DMSO/H2O mixed media and formed sheet-like aggregates. The disassembly and assembly processes of the aggregates were externally controlled by the addition of DMAP and an acid, accompanied by a change in the fluorescence intensity. A series of fully fused boron-doped polycyclic aromatic hydrocarbons is synthesized. Self-assembly of an amphiphilic derivative can be controlled by addition of a Lewis base or an acid in aqueous media.![]()
Collapse
Affiliation(s)
- Hiroki Narita
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Heekyoung Choi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masato Ito
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Soichiro Ogi
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
80
|
Li B, Li Y, Chan MHY, Yam VWW. Phosphorescent Cyclometalated Platinum(II) Enantiomers with Circularly Polarized Luminescence Properties and Their Assembly Behaviors. J Am Chem Soc 2021; 143:21676-21684. [PMID: 34907777 DOI: 10.1021/jacs.1c10943] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platinum(II) complexes as supramolecular luminescent materials have received considerable attention due to their unique planar structures and fascinating photophysical properties. However, the molecular design of platinum(II) complexes with impressive circularly polarized luminescence properties still remains challenging and rarely explored. Herein, we reported a series of cyclometalated platinum(II) complexes with benzaldehyde and its derived imine-containing alkynyl ligands to investigate their phosphorescent, chiroptical, and self-assembly behaviors. An isodesmic growth mechanism is found for their temperature-dependent self-assembly process. The chiral sense of the enantiomers can be transferred from the chiral alkynyl ligands to the cyclometalated platinum(II) dipyridylbenzene N^C^N chromophore and further amplified through supramolecular assembly via intermolecular noncovalent interactions. Notably, distinctive phosphorescent properties and nanostructured morphologies have been found for enantiomers 4R and 4S. Their intriguing self-assembled nanostructures and phosphorescence behaviors are supported by crystal structure determination, 1H NMR, emission, and UV-vis absorption spectroscopy, scanning electron microscopy, and X-ray powder diffraction studies.
Collapse
Affiliation(s)
- Baoning Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.,State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Yongguang Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Michael Ho-Yeung Chan
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Vivian Wing-Wah Yam
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.,State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| |
Collapse
|
81
|
Kato SI, Naito Y, Moriguchi R, Kitamura C, Matsumoto T, Yoshihara T, Ishi-I T, Nagata Y, Takeshita H, Yoshizawa K, Shiota Y, Suzuki K. Augmented Self-Association by Electrostatic Forces in Thienopyrrole-Fused Thiadiazoles that Contain an Ester instead of an Ether Linker. Chem Asian J 2021; 17:e202101341. [PMID: 34939334 DOI: 10.1002/asia.202101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Indexed: 11/11/2022]
Abstract
During the self-assembly of π-conjugated molecules, linkers and substituents can potentially add supportive noncovalent intermolecular interactions to π-stacking interactions. Here, we report the self-assembly behavior of thienopyrrole-fused thiadiazole (TPT) fluorescent dyes that possess ester or ether linkers and dodecyloxy side chains in solution and the condensed phase. A comparison of the self-association behavior of the ester- and ether-bridged compounds in solution using detailed UV-vis, fluorescence, and NMR spectroscopic studies revealed that the subtle replacement of the ether linkers by ester linkers leads to a distinct increase in the association constant (ca. 3-4 fold) and the enthalpic contribution (ca. 3 kcal mol-1). Theoretical calculations suggest that the ester linkers, which are in close proximity to one another due to the π-stacking interactions, induce attractive electrostatic forces and augment self-association. The self-assembly of TPT dyes into well-defined 1D clusters with high aspect ratios was observed, and their morphologies and crystallinity were investigated using SEM and X-ray diffraction analyses. TPTs with ester linkers exhibit a columnar liquid crystalline mesophase in the condensed phase.
Collapse
Affiliation(s)
- Shin-Ichiro Kato
- The University of Shiga Prefecture, Department of Materials Science, 2500 Hassaka-cho, 522-8533, Hikone, JAPAN
| | - Yukako Naito
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Ryo Moriguchi
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Chitoshi Kitamura
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Taisuke Matsumoto
- Kyushu University: Kyushu Daigaku, Institute for Materials Chemistry and Engineering, JAPAN
| | - Toshitada Yoshihara
- Gunma University Faculty of Engineering Graduate School of Engineering: Gunma Daigaku Rikogakubu Daigakuin Riko Gakufu, Molecular Science, JAPAN
| | - Tsutomu Ishi-I
- National Institute of Technology Kurume College, Biochemistry and Applied Chemistry, JAPAN
| | - Yuka Nagata
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Hiroki Takeshita
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| | - Kazunari Yoshizawa
- Kyushu University: Kyushu Daigaku, Institute of Materials Chemistry and Engineering, JAPAN
| | - Yoshihito Shiota
- Kyushu University: Kyushu Daigaku, Institute of Materials Chemistry and Engineering, JAPAN
| | - Kazumasa Suzuki
- The University of Shiga Prefecture: Shiga Kenritsu Daigaku, Materials Science, JAPAN
| |
Collapse
|
82
|
Tashiro K, Katayama K, Tamaki K, Pesce L, Shimizu N, Takagi H, Haruki R, Hollamby MJ, Pavan GM, Yagai S. Non-uniform Photoinduced Unfolding of Supramolecular Polymers Leading to Topological Block Nanofibers. Angew Chem Int Ed Engl 2021; 60:26986-26993. [PMID: 34623014 PMCID: PMC9298767 DOI: 10.1002/anie.202110224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Indexed: 01/01/2023]
Abstract
Synthesis of one-dimensional nanofibers with distinct topological (higher-order structural) domains in the same main chain is one of the challenging topics in modern supramolecular polymer chemistry. Non-uniform structural transformation of supramolecular polymer chains by external stimuli may enable preparation of such nanofibers. To demonstrate feasibility of this post-polymerization strategy, we prepared a photoresponsive helically folded supramolecular polymers from a barbiturate monomer containing an azobenzene-embedded rigid π-conjugated scaffold. In contrast to previous helically folded supramolecular polymers composed of a more flexible azobenzene monomer, UV-light induced unfolding of the newly prepared helically folded supramolecular polymers occurred nonuniformly, affording topological block copolymers consisting of folded and unfolded domains. The formation of such blocky copolymers indicates that the photoinduced unfolding of the helically folded structures initiates from relatively flexible parts such as termini or defects. Spontaneous refolding of the unfolded domains was observed after visible-light irradiation followed by aging to restore fully folded structures.
Collapse
Affiliation(s)
- Keigo Tashiro
- Institute for Global Prominent Research (IGPR)Chiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| | - Kosuke Katayama
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| | - Kenta Tamaki
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| | - Luca Pesce
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandVia La Santa 16962Lugano-ViganelloSwitzerland
| | - Nobutaka Shimizu
- Photon FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukuba305–0801Japan
| | - Hideaki Takagi
- Photon FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukuba305–0801Japan
| | - Rie Haruki
- Photon FactoryInstitute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukuba305–0801Japan
| | - Martin J. Hollamby
- School of Physical and Geographical SciencesKeele UniversityKeeleStaffordshireST55BGUK
| | - Giovanni M. Pavan
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandVia La Santa 16962Lugano-ViganelloSwitzerland
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR)Chiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33 Yayoi-choInage-kuChiba263–8522Japan
| |
Collapse
|
83
|
Tashiro K, Katayama K, Tamaki K, Pesce L, Shimizu N, Takagi H, Haruki R, Hollamby MJ, Pavan GM, Yagai S. Non‐uniform Photoinduced Unfolding of Supramolecular Polymers Leading to Topological Block Nanofibers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Keigo Tashiro
- Institute for Global Prominent Research (IGPR) Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| | - Kosuke Katayama
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| | - Kenta Tamaki
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| | - Luca Pesce
- Department of Innovative Technologies University of Applied Sciences and Arts of Southern Switzerland Via La Santa 1 6962 Lugano-Viganello Switzerland
| | - Nobutaka Shimizu
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization Tsukuba 305–0801 Japan
| | - Hideaki Takagi
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization Tsukuba 305–0801 Japan
| | - Rie Haruki
- Photon Factory Institute of Materials Structure Science High Energy Accelerator Research Organization Tsukuba 305–0801 Japan
| | - Martin J. Hollamby
- School of Physical and Geographical Sciences Keele University Keele Staffordshire ST55BG UK
| | - Giovanni M. Pavan
- Department of Innovative Technologies University of Applied Sciences and Arts of Southern Switzerland Via La Santa 1 6962 Lugano-Viganello Switzerland
- Department of Applied Science and Technology Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR) Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University 1–33 Yayoi-cho Inage-ku Chiba 263–8522 Japan
| |
Collapse
|
84
|
Ukai S, Takamatsu A, Nobuoka M, Tsutsui Y, Fukui N, Ogi S, Seki S, Yamaguchi S, Shinokubo H. A Supramolecular Polymer Constituted of Antiaromatic Ni II Norcorroles. Angew Chem Int Ed Engl 2021; 61:e202114230. [PMID: 34862699 DOI: 10.1002/anie.202114230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/10/2022]
Abstract
For the creation of next-generation organic electronic materials, the integration of π-systems has recently become a central theme. Such functional materials can be assembled by supramolecular polymerization when aromatic π-systems are used as monomers, and the properties of the resulting supramolecular polymer strongly depend on the electronic structure of the monomers. Here, we demonstrate the construction of a supramolecular polymer consisting of an antiaromatic π-system as the monomer. An amide-functionalized NiII norcorrole derivative formed a one-dimensional supramolecular polymer through π-π stacking and hydrogen-bonding interactions, ensuring the persistency of the conducting pathway against thermal perturbation, which results in higher charge mobility along the tightly bound linear aggregates than that of the aromatic analogue composed of ZnII porphyrins.
Collapse
Affiliation(s)
- Shusaku Ukai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Aiko Takamatsu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masaki Nobuoka
- Department of Molecular Engineering, Graduate School of, Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of, Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Soichiro Ogi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of, Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
85
|
Cera G, Bazzoni M, Andreoni L, Cester Bonati F, Massera C, Silvi S, Credi A, Secchi A, Arduini A. Thioureidocalix[6]arenes Pseudorotaxanes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gianpiero Cera
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Margherita Bazzoni
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Leonardo Andreoni
- Dipartimento di Chimica “G. Ciamician” Università di Bologna Via Selmi 2 40126 Bologna Italy
- CLAN-Center for Light Activated Nanostructures Istituto per la Sintesi Organica e la Fotoreattività Consiglio Nazionale delle Ricerche Via Gobetti 101 40129 Bologna Italy
| | - Federica Cester Bonati
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Chiara Massera
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Serena Silvi
- Dipartimento di Chimica “G. Ciamician” Università di Bologna Via Selmi 2 40126 Bologna Italy
- CLAN-Center for Light Activated Nanostructures Istituto per la Sintesi Organica e la Fotoreattività Consiglio Nazionale delle Ricerche Via Gobetti 101 40129 Bologna Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto per la Sintesi Organica e la Fotoreattività Consiglio Nazionale delle Ricerche Via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna Viale del Risorgimento 4 40136 Bologna Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
86
|
Dey A, Ramlal VR, Sankar SS, Kundu S, Mandal AK, Das A. Self-assembled cationic organic nanosheets: role of positional isomers in a guanidinium-core for efficient lithium-ion conduction. Chem Sci 2021; 12:13878-13887. [PMID: 34760173 PMCID: PMC8549776 DOI: 10.1039/d1sc04017k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
The growing energy demand with the widespread use of smart portable electronics, as well as an exponential increase in demand for smart batteries for electric vehicles, entails the development of efficient portable batteries with high energy density and safe power storage systems. Li-ion batteries arguably have superior energy density to all other traditional batteries. Developing mechanically robust solid-state electrolytes (SSEs) for lithium-ion conduction for an efficient portable energy storage unit is vital to empower this technology and overcome the safety constraints of liquid electrolytes. Herein, we report the formation of self-assembled organic nanosheets (SONs) utilizing positional isomers of small organic molecules (AM-2 and AM-3) for use as SSEs for lithium-ion conduction. Solvent-assisted exfoliation of the bulk powder yielded SONs having near-atomic thickness (∼4.5 nm) with lateral dimensions in the micrometer range. In contrast, self-assembly in the DMF/water solvent system produced a distinct flower-like morphology. Thermodynamic parameters, crystallinity, elemental composition, and nature of H-bonding for two positional isomers are established through various spectroscopic and microscopic studies. The efficiency of the lithium-ion conducting properties is correlated with factors like nanostructure morphology, ionic scaffold, and locus of the functional group responsible for forming the directional channel through H-bonding in the positional isomer. Amongst the three different morphologies studied, SONs display higher ion conductivity. In between the cationic and zwitterionic forms of the monomer, integration of the cationic scaffold in the SON framework led to higher conductivity. Amongst the two positional isomers, the meta-substituted carboxyl group forms a more rigid directional channel through H-bonding to favor ionic mobility and accounts for the highest ion conductivity of 3.42 × 10-4 S cm-1 with a lithium-ion transference number of 0.49 at room temperature. Presumably, this is the first demonstration that signifies the importance of the cationic scaffold, positional isomers, and nanostructure morphologies in improving ionic conductivity. The ion-conducting properties of such SONs having a guanidinium-core may have significance for other interdisciplinary energy-related applications.
Collapse
Affiliation(s)
- Ananta Dey
- Analytical and Environmental Science Division, Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat-364002 India .,Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre (HRDC) Campus Sector 19, Kamla Nehru Nagar Ghaziabad Uttar Pradesh-201 002 India
| | - Vishwakarma Ravikumar Ramlal
- Analytical and Environmental Science Division, Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat-364002 India .,Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre (HRDC) Campus Sector 19, Kamla Nehru Nagar Ghaziabad Uttar Pradesh-201 002 India
| | - Selvasundarasekar Sam Sankar
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi Tamil Nadu 630003 India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI) Karaikudi Tamil Nadu 630003 India
| | - Amal Kumar Mandal
- Analytical and Environmental Science Division, Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute Bhavnagar Gujarat-364002 India .,Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre (HRDC) Campus Sector 19, Kamla Nehru Nagar Ghaziabad Uttar Pradesh-201 002 India
| | - Amitava Das
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre (HRDC) Campus Sector 19, Kamla Nehru Nagar Ghaziabad Uttar Pradesh-201 002 India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741 246 West Bengal India
| |
Collapse
|
87
|
Su H, Jansen SAH, Schnitzer T, Weyandt E, Rösch AT, Liu J, Vantomme G, Meijer EW. Unraveling the Complexity of Supramolecular Copolymerization Dictated by Triazine-Benzene Interactions. J Am Chem Soc 2021; 143:17128-17135. [PMID: 34612646 PMCID: PMC8532160 DOI: 10.1021/jacs.1c07690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Supramolecular copolymers
formed by the noncovalent synthesis of
multiple components expand the complexity of functional molecular
systems. However, varying the composition and microstructure of copolymers
through tuning the interactions between building blocks remains a
challenge. Here, we report a remarkable discovery of the temperature-dependent
supramolecular copolymerization of the two chiral monomers 4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tribenzamide
(S-T) and 4,4′,4″-(benzene-1,3,5-triyl)tribenzamide
(S-B). We first demonstrate
in the homopolymerization of the two individual monomers that a subtle
change from the central triazine to benzene in the chemical structure
of the monomers significantly affects the properties of the resulting
homopolymers in solution. Homopolymers formed by S-T exhibit enhanced stability in comparison
to S-B. More importantly,
through a combination of spectroscopic analysis and theoretical simulation,
we reveal the complex process of copolymerization: S-T aggregates into homopolymers at elevated
temperature, and upon slow cooling S-B gradually intercalates into the copolymers, to finally
give copolymers with almost 80% alternating bonds at 10 °C. The
formation of the predominantly alternating copolymers is plausibly
contributed by preferred heterointeractions between triazine and benzene
cores in S-T and S-B, respectively, at lower temperatures.
Overall, this work unravels the complexity of a supramolecular copolymerization
process where an intermediate heterointeraction (higher than one homointeraction
and lower than the other homointeraction) presents and proposes a
general method to elucidate the microstructures of copolymers responsive
to temperature changes.
Collapse
Affiliation(s)
- Hao Su
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Stef A H Jansen
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tobias Schnitzer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Elisabeth Weyandt
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Andreas T Rösch
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jie Liu
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ghislaine Vantomme
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
88
|
Mirzakhani M, Nozary H, Naseri S, Besnard C, Guénée L, Piguet C. Bottom-Up Approach for the Rational Loading of Linear Oligomers and Polymers with Lanthanides. Inorg Chem 2021; 60:15529-15542. [PMID: 34601875 DOI: 10.1021/acs.inorgchem.1c02157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The adducts between luminescent lanthanide tris(β-diketonate)s and diimine or triimine ligands have been explored exhaustively for their exceptional photophysical properties. Their formation, stability, and structures in solution, together with the design of extended metallopolymers exploiting these building blocks, remain, however, elusive. The systematic peripheral substitution of tridentate 2,6-bis(benzimidazol-2-yl)pyridine binding units (Lk = L1-L5), taken as building blocks for linear oligomers and polymers, allows a fine-tuning of their affinity toward neutral [Ln(hfa)3] (hfa = hexafluoroacetylacetonate) lanthanide containers in the [LkLn(hfa)3] adducts. Two trends emerge with (i) an unusual pronounced thermodynamic selectivity for midrange lanthanides (Ln = Eu) and (ii) an intriguing influence of remote peripheral substitutions of the benzimidazole rings on the affinity of the tridentate unit for [Ln(hfa)3]. These trends are amplified upon the connection of several tridentate binding units via their benzimidazole rings to give linear segmental dimers (L6) and trimers (L7), which are considered as models for programming linear Wolf-Type II metallopollymers. Modulation of the affinity between the terminal and central binding units in the linear multitridentate ligands deciphers the global decrease of metal-ligand binding strengths with an increase in the length of the receptors (monomer → dimer → trimer → polymer). Application of the site binding model shed light onto the origin of the variation of the thermodynamic affinities: a prerequisite for the programmed loading of a polymer backbone with luminescent lanthanide β-diketonates. Analysis of the crystal structures for these adducts reveals delicate correlations between the chemical bond lengths measured in the solid state (or bond valence parameters) and the metal-ligand affinities operating in solution.
Collapse
Affiliation(s)
- Mohsen Mirzakhani
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Soroush Naseri
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography. University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography. University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry. University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
89
|
Li LK, Leung SYL, Chu A, Yim KC, Cheung WL, Chan MY, Yam VWW. Synthesis of luminescent phosphine-containing rigid-rod dinuclear alkynylgold(I) complexes and their X-Ray structural, photophysical, self-assembly and electroluminescence studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
90
|
Vonhausen Y, Lohr A, Stolte M, Würthner F. Two-step anti-cooperative self-assembly process into defined π-stacked dye oligomers: insights into aggregation-induced enhanced emission. Chem Sci 2021; 12:12302-12314. [PMID: 34603660 PMCID: PMC8480337 DOI: 10.1039/d1sc03813c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Aggregation-induced emission enhancement (AIEE) phenomena received great popularity during the last decade but in most cases insights into the packing structure – fluorescence properties remained scarce. Here, an almost non-fluorescent merocyanine dye was equipped with large solubilizing substituents, which allowed the investigation of it's aggregation behaviour in unpolar solvents over a large concentration range (10−2 to 10−7 M). In depth analysis of the self-assembly process by concentration-dependent UV/Vis spectroscopy at different temperatures revealed a two-step anti-cooperative aggregation mechanism. In the first step a co-facially stacked dimer is formed driven by dipole–dipole interactions. In a second step these dimers self-assemble to give an oligomer stack consisting of about ten dyes. Concentration- and temperature-dependent UV/Vis spectroscopy provided insight into the thermodynamic parameters and allowed to identify conditions where either the monomer, the dimer or the decamer prevails. The centrosymmetric dimer structure could be proven by 2D NMR spectroscopy. For the larger decamer atomic force microscopy (AFM), diffusion ordered spectroscopy (DOSY) and vapour pressure osmometric (VPO) measurements consistently indicated that it is of small and defined size. Fluorescence, circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy provided insights into the photofunctional properties of the dye aggregates. Starting from an essentially non-fluorescent monomer (ΦFl = 0.23%) a strong AIEE effect with excimer-type fluorescence (large Stokes shift, increased fluorescence lifetime) is observed upon formation of the dimer (ΦFl = 2.3%) and decamer (ΦFl = 4.5%) stack. This increase in fluorescence is accompanied for both aggregates by an aggregation-induced CPL enhancement with a strong increase of the glum from ∼0.001 for the dimer up to ∼0.011 for the higher aggregate. Analysis of the radiative and non-radiative decay rates corroborates the interpretation that the AIEE effect originates from a pronounced decrease of the non-radiative rate due to π–π-stacking induced rigidification that outmatches the effect of the reduced radiative rate that originates from the H-type exciton coupling in the co-facially stacked dyes. The self-assembly of a dipolar merocyanine into preferred dimers and small-sized chiral aggregates leads to enhanced emission due to a reduced non-radiative rate as well as amplified circular polarized luminescence.![]()
Collapse
Affiliation(s)
- Yvonne Vonhausen
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Lohr
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Matthias Stolte
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
91
|
Ono Y, Hirao T, Haino T. Solvent-directed formation of helically twisted stacking constructs via self-assembly of tris(phenylisoxazolyl)benzene dimers. Org Biomol Chem 2021; 19:7165-7171. [PMID: 34369543 DOI: 10.1039/d1ob01277k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ureido-pyrimidinone (UPy)-appended tris(phenylisoxazolyl)benzenes were synthesized. The UPy moieties of the tris(phenylisoxazolyl)benzenes stably formed self-complementary dimers in solution. The dimers self-assembled to form helically twisted stacking constructs in a process driven by π-π stacking interactions of UPy dimer moieties and dipole-dipole interactions of isoxazole units. Strong association affinity was seen within the stacking constructs compared with the previously reported isoxazole derivatives owing to the auxiliary π-π stacking interaction. Notably, tris(phenylisoxazolyl)benzenes showed an environmentally responsive nature. The absorption bands, emission intensities, and sizes of ensembles depended significantly on the mixing ratio of CHCl3 and methylcyclohexane (MCH). Additionally, sharp on-off switching phenomena were seen in their circular dichroism (CD) and circularly polarized luminescence (CPL) spectra in response to the mixing ratio of CHCl3 and MCH. CD and CPL were activated only at a certain mixing ratio of CHCl3/MCH, thus showing potential for the creation of molecular sensors.
Collapse
Affiliation(s)
- Yudai Ono
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | | | | |
Collapse
|
92
|
Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg Top Life Sci 2021; 4:307-329. [PMID: 33078839 DOI: 10.1042/etls20190164] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Intrinsically disordered protein regions (IDRs) - regions that do not fold into a fixed three-dimensional structure but instead exist in a heterogeneous ensemble of conformations - have recently entered mainstream cell biology in the context of liquid-liquid phase separation (LLPS). IDRs are frequently found to be enriched in phase-separated compartments. Due to this observation, the presence of an IDR in a protein is frequently assumed to be diagnostic of its ability to phase separate. In this review, we clarify the role of IDRs in biological assembly and explore the physical principles through which amino acids can confer the attractive molecular interactions that underlie phase separation. While some disordered regions will robustly drive phase separation, many others will not. We emphasize that rather than 'disorder' driving phase separation, multivalency drives phase separation. As such, whether or not a disordered region is capable of driving phase separation will depend on the physical chemistry encoded within its amino acid sequence. Consequently, an in-depth understanding of that physical chemistry is a prerequisite to make informed inferences on how and why an IDR may be involved in phase separation or, more generally, in protein-mediated intermolecular interactions.
Collapse
|
93
|
Samanta S, Raval P, Manjunatha Reddy GN, Chaudhuri D. Cooperative Self-Assembly Driven by Multiple Noncovalent Interactions: Investigating Molecular Origin and Reassessing Characterization. ACS CENTRAL SCIENCE 2021; 7:1391-1399. [PMID: 34471682 PMCID: PMC8393228 DOI: 10.1021/acscentsci.1c00604] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 05/20/2023]
Abstract
Cooperative interactions play a pivotal role in programmable supramolecular assembly. Emerging from a complex interplay of multiple noncovalent interactions, achieving cooperativity has largely relied on empirical knowledge. Its development as a rational design tool in molecular self-assembly requires a detailed characterization of the underlying interactions, which has hitherto been a challenge for assemblies that lack long-range order. We employ extensive one- and two-dimensional magic-angle-spinning (MAS) solid-state NMR spectroscopy to elucidate key structure-directing interactions in cooperatively bound aggregates of a perylene bisimide (PBI) chromophore. Analysis of 1H-13C cross-polarization heteronuclear correlation (CP-HETCOR) and 1H-1H double-quantum single-quantum (DQ-SQ) correlation spectra allow the identification of through-space 1H···13C and 1H···1H proximities in the assembled state and reveals the nature of molecular organization in the solid aggregates. Emergence of cooperativity from the synergistic interaction between a stronger π-stacking and a weaker interstack hydrogen-bonding is elucidated. Finally, using a combination of optical absorption, circular dichroism, and high-resolution MAS NMR spectroscopy based titration experiments, we investigate the anomalous solvent-induced disassembly of aggregates. Our results highlight the disparity between two well-established approaches of characterizing cooperativity, using thermal and good solvent-induced disassembly. The anomaly is explained by elucidating the difference between two disassembly pathways.
Collapse
Affiliation(s)
- Samaresh Samanta
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Parth Raval
- Univ.
Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181, Unité
de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - G. N. Manjunatha Reddy
- Univ.
Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181, Unité
de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Debangshu Chaudhuri
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
94
|
A dissipative pathway for the structural evolution of DNA fibres. Nat Chem 2021; 13:843-849. [PMID: 34373598 DOI: 10.1038/s41557-021-00751-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Biochemical networks interconnect, grow and evolve to express new properties as different chemical pathways are selected during a continuous cycle of energy consumption and transformation. In contrast, synthetic systems that push away from equilibrium usually return to the same self-assembled state, often generating waste that limits system recyclability and prevents the formation of adaptable networks. Here we show that annealing by slow proton dissipation selects for otherwise inaccessible morphologies of fibres built from DNA and cyanuric acid. Using single-molecule fluorescence microscopy, we observe that proton dissipation influences the growth mechanism of supramolecular polymerization, healing gaps within fibres and converting highly branched, interwoven networks into nanocable superstructures. Just as the growth kinetics of natural fibres determine their structural attributes to modulate function, our system of photoacid-enabled depolymerization and repolymerization selects for healed materials to yield organized, robust fibres. Our method provides a chemical route for error-checking, distinct from thermal annealing, that improves the morphologies and properties of supramolecular materials using out-of-equilibrium systems.
Collapse
|
95
|
Sarkar A, Sasmal R, Das A, Venugopal A, Agasti SS, George SJ. Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angew Chem Int Ed Engl 2021; 60:18209-18216. [PMID: 34111324 DOI: 10.1002/anie.202105342] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Indexed: 01/28/2023]
Abstract
Synthesis of supramolecular block co-polymers (BCP) with small monomers and predictive sequence requires elegant molecular design and synthetic strategies. Herein we report the unparalleled synthesis of tri-component supramolecular BCPs with tunable microstructure by a kinetically controlled sequential seeded supramolecular polymerization of fluorescent π-conjugated monomers. Core-substituted naphthalene diimide (cNDI) derivatives with different core substitutions and appended with β-sheet forming peptide side chains provide perfect monomer design with spectral complementarity, pathway complexity and minimal structural mismatch to synthesize and characterize the multi-component BCPs. The distinct fluorescent nature of various cNDI monomers aids the spectroscopic probing of the seeded growth process and the microscopic visualization of resultant supramolecular BCPs using Structured Illumination Microscopy (SIM). Kinetically controlled sequential seeded supramolecular polymerization presented here is reminiscent of the multi-step synthesis of covalent BCPs via living chain polymerization. These findings provide a promising platform for constructing unique functional organic heterostructures for various optoelectronic and catalytic applications.
Collapse
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Angshuman Das
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Akhil Venugopal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Sarit S Agasti
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Subi J George
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
96
|
Wei D, Yu Y, Ge L, Wang Z, Chen C, Guo R. Chiral Supramolecular Polymers Assembled by Amphiphilic Oligopeptide-Perylene Diimides and High Electrochemical Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9232-9243. [PMID: 34308642 DOI: 10.1021/acs.langmuir.1c01430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Various secondary structures, for example, β-sheet hydrogen bonds formed by oligopeptides exhibiting high directionality and selectivity provide a new avenue to regulate optoelectronic performances of supramolecular assemblies constructed by π-conjugated chromophores. In this work, oligopeptide-perylene diimides (AUPDIs) are synthesized to generate β-sheet strands which guide the formation of chiral supramolecular polymers with a diversity of morphologies in combination with the π-π stacking even in aqueous media. Complex morphology transitions are successfully controlled by simply adjusting the water volume fraction in the binary solvent of water and tetrahydrofuran from spherical hollow aggregates to long helical nanowires and to short nanofibers. The mechanism of the assembly changes from cooperative to the isodesmic model relying on AUPDI concentrations. This originates from the transformation in the β-sheet that regulates profoundly the arrangement of the AUPDI molecules. Prominently efficient and positive electronic sensing to triethylamine for highly helical nanowires engenders due to the highly ordered helical arrangement within the nanowires, fourfold of the short nanofibers.
Collapse
Affiliation(s)
- Duo Wei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Yaozheng Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhifeng Wang
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Chong Chen
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
97
|
A case study of monomer design for controlled/living supramolecular polymerization. Polym J 2021. [DOI: 10.1038/s41428-021-00478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
98
|
Ishizaki T, Karasaki H, Kage Y, Kamioka M, Wang Y, Mori S, Ishikawa N, Fukuda T, Furuta H, Shimizu S. Janus Pyrrolopyrrole Aza-dipyrrin: Hydrogen-Bonded Assemblies and Slow Magnetic Relaxation of the Cobalt(II) Complex in the Solid State. Chemistry 2021; 27:12686-12692. [PMID: 34137468 DOI: 10.1002/chem.202101755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 11/12/2022]
Abstract
A novel pyrrolopyrrole azadipyrrin (Janus-PPAD) with Janus duality was synthesized by a Schiff base-forming reaction of diketopyrrolopyrrole. The orthogonal interactions of the hydrogen-bonding ketopyrrole and metal-coordinating azadipyrrin moieties in Janus-PPAD enabled the metal ions to be arranged at regular intervals: zinc(II) and cobalt(II) coordination provided metal-coordinated Janus-PPAD dimers, which can subsequently form hydrogen-bonded one-dimensional arrays both in solution and in the solid state. The supramolecular assembly of the zinc(II) complex in solution was investigated by 1 H NMR spectroscopy based on the isodesmic model, in which a binding constant for the elongation of assemblies is constant. Owing to the tetrahedral coordination, in the solid state, the cobalt(II) complex exhibited a slow magnetic relaxation due to the negative D value of -27.1 cm-1 with an effective relaxation energy barrier Ueff of 38.0 cm-1 . The effect of magnetic dilution on the relaxation behavior is discussed. The relaxation mechanism at low temperature was analyzed by considering spin lattice interactions and quantum tunneling effects. The easy-axis magnetic anisotropy was confirmed, and the relevant wave functions were obtained by ab initio CASSCF calculations.
Collapse
Affiliation(s)
- Toshiharu Ishizaki
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.,Current address: Department of Chemistry, College of Humanities and Sciences, Nihon University, Tokyo, 156-8550, Japan
| | - Hideaki Karasaki
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuto Kage
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Misaki Kamioka
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Yitong Wang
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigeki Mori
- Advanced Research Support Center (ADRES), Ehime University, Matsuyama, 790-8577, Japan
| | - Naoto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| | - Soji Shimizu
- Department of Chemistry and Biochemistry, Graduate School of Engineering and, Center for Molecular Systems (CMS), Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
99
|
Gruschwitz FV, Klein T, Kuchenbrod MT, Moriyama N, Fujii S, Nischang I, Hoeppener S, Sakurai K, Schubert US, Brendel JC. Kinetically Controlling the Length of Self-Assembled Polymer Nanofibers Formed by Intermolecular Hydrogen Bonds. ACS Macro Lett 2021; 10:837-843. [PMID: 35549195 DOI: 10.1021/acsmacrolett.1c00296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strong directional hydrogen bonds represent a suitable supramolecular force to drive the one-dimensional (1D) aqueous self-assembly of polymeric amphiphiles resulting in cylindrical polymer brushes. However, our understanding of the kinetics in these assembly processes is still limited. We here demonstrate that the obtained morphologies for our recently reported benzene tris-urea and tris-peptide conjugates are strongly pathway-dependent. A controlled transfer from solutions in organic solvents to aqueous environments enabled a rate-dependent formation of kinetically trapped but stable nanostructures ranging from small cylindrical or spherical objects (<50 nm) to remarkably large fibers (>2 μm). A detailed analysis of the underlying assembly mechanism revealed a cooperative nature despite the steric demands of the polymers. Nucleation is induced by hydrophobic interactions crossing a critical water content, followed by an elongation process due to the strong hydrogen bonds. These findings open an interesting new pathway to control the length of 1D polymer nanostructures.
Collapse
Affiliation(s)
- Franka V. Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Tobias Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Maren T. Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Naoto Moriyama
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Johannes C. Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| |
Collapse
|
100
|
Sarkar A, Sasmal R, Das A, Venugopal A, Agasti SS, George SJ. Tricomponent Supramolecular Multiblock Copolymers with Tunable Composition via Sequential Seeded Growth. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aritra Sarkar
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Ranjan Sasmal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Angshuman Das
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Akhil Venugopal
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Sarit S. Agasti
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| | - Subi J. George
- New Chemistry Unit (NCU) and School of Advanced Materials (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Bangalore 560064 India
| |
Collapse
|