51
|
Kelley CA, Sellers JR, Gard DL, Bui D, Adelstein RS, Baines IC. Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities. J Biophys Biochem Cytol 1996; 134:675-87. [PMID: 8707847 PMCID: PMC2120948 DOI: 10.1083/jcb.134.3.675] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
There are two isoforms of the vertebrate nonmuscle myosin heavy chain, MHC-A and MHC-B, that are encoded by two separate genes. We compared the enzymatic activities as well as the subcellular localizations of these isoforms in Xenopus cells. MHC-A and MHC-B were purified from cells by immunoprecipitation with isoform-specific peptide antibodies followed by elution with their cognate peptides. Using an in vitro motility assay, we found that the velocity of movement of actin filaments by MHC-A was 3.3-fold faster than that by MHC-B. Likewise, the Vmax of the actin-activated Mg(2+)-ATPase activity of MHC-A was 2.6-fold greater than that of MHC-B. Immunofluorescence microscopy demonstrated distinct localizations for MHC-A and MHC-B. In interphase cells, MHC-B was present in the cell cortex and diffusely arranged in the cytoplasm. In highly polarized, rapidly migrating interphase cells, the lamellipodium was dramatically enriched for MHC-B suggesting a possible involvement of MHC-B based contractions in leading edge extension and/or retraction. In contrast, MHC-A was absent from the cell periphery and was arranged in a fibrillar staining pattern in the cytoplasm. The two myosin heavy chain isoforms also had distinct localizations throughout mitosis. During prophase, the MHC-B redistributed to the nuclear membrane, and then resumed its interphase localization by metaphase. MHC-A, while diffuse within the cytoplasm at all stages of mitosis, also localized to the mitotic spindle in two different cultured cell lines as well as in Xenopus blastomeres. During telophase both isoforms colocalized to the contractile ring. The different subcellular localizations of MHC-A and MHC-B, together with the data demonstrating that these myosins have markedly different enzymatic activities, strongly suggests that they have different functions.
Collapse
Affiliation(s)
- C A Kelley
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
52
|
DeBiasio RL, LaRocca GM, Post PL, Taylor DL. Myosin II transport, organization, and phosphorylation: evidence for cortical flow/solation-contraction coupling during cytokinesis and cell locomotion. Mol Biol Cell 1996; 7:1259-82. [PMID: 8856669 PMCID: PMC275977 DOI: 10.1091/mbc.7.8.1259] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanism of cytokinesis has been difficult to define because of the short duration and the temporal-spatial dynamics involved in the formation, activation, force production, and disappearance of the cleavage furrow. We have investigated the structural and chemical dynamics of myosin II in living Swiss 3T3 cells from prometaphase through the separation and migration of daughter cells. The structural and chemical dynamics of myosin II have been defined using the semiautomated, multimode light microscope, together with a fluorescent analogue of myosin II and a fluorescent biosensor of myosin II regulatory light chain (RLC) phosphorylation at serine 19. The correlation of image data from live cells using different modes of light microscopy allowed interpretations not possible from single-mode investigations. Myosin II transported toward the equatorial plane from adjacent regions, forming three-dimensional fibers that spanned the volume of the equator during anaphase and telophase. A global phosphorylation of myosin II at serine 19 of the RLC was initiated at anaphase when cortical myosin II transport started. The phosphorylation of myosin II remained high near the equatorial plane through telophase and into cytokinesis, whereas the phosphorylation of myosin II at serine 19 of the RLC decreased at the poles. The timing and pattern of phosphorylation was the same as the shortening of myosin II-based fibers in the cleavage furrow. Myosin II-based fibers shortened and transported out of the cleavage furrow into the tails of the two daughter cells late in cytokinesis. The patterns of myosin II transport, phosphorylation, and shortening of fibers in the migrating daughter cells were similar to that previously defined for cells migrating in a wound in vitro. The temporal-spatial patterns and dynamics of myosin II transport, phosphorylation at serine 19 of the RLC, and the shortening and disappearance of myosin II-based fibers support the proposal that a combination of the cortical flow hypothesis and the solation-contraction coupling hypothesis explain key aspects of cytokinesis and polarized cell locomotion.
Collapse
Affiliation(s)
- R L DeBiasio
- Division of Molecular Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
53
|
Chang DC, Meng C. A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish embryo. J Cell Biol 1995; 131:1539-45. [PMID: 8522610 PMCID: PMC2120692 DOI: 10.1083/jcb.131.6.1539] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cytokinesis, a key step in cell division, is known to be precisely regulated both in its timing and location. At present, the regulatory mechanism of cytokinesis is not well understood, although it has been suggested that calcium signaling may play an important role in this process. To test this notion, we introduced a sensitive fluorescent Ca2+ indicator into the zebrafish embryo and used confocal microscopy to measure the spatiotemporal variation of intracellular free Ca2+ concentration ([Ca2+]i) during cell cleavage. It was evident that a localized elevation of [Ca2+]i is closely associated with cytokinesis. First, we found that during cytokinesis, the level of free Ca2+ was elevated locally precisely at the cleavage site. Second, the rise of free Ca2+ was very rapid and occurred just preceding the initiation of furrow contraction. These observations strongly suggest that cytokinesis may be triggered by a calcium signal. In addition, we found that this cytokinesis-associated calcium signal arose mainly from internal stores of Ca2+ rather than from external free Ca2+; it could be blocked by the antagonist of inositol trisphosphate (InsP3) receptors. These findings suggest that the localized elevation of [Ca2+]i is caused by the release of free Ca2+ from the endoplasmic reticulum through the InsP3-regulated calcium channels.
Collapse
Affiliation(s)
- D C Chang
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | | |
Collapse
|
54
|
Sanger JM, Golla R, Safer D, Choi JK, Yu KR, Sanger JW, Nachmias VT. Increasing intracellular concentrations of thymosin beta 4 in PtK2 cells: effects on stress fibers, cytokinesis, and cell spreading. CELL MOTILITY AND THE CYTOSKELETON 1995; 31:307-22. [PMID: 7553917 DOI: 10.1002/cm.970310407] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thymosin beta 4 (T beta 4) binds to G-actin in vitro and inhibits actin polymerization. We studied the effects of increasing T beta 4 concentration within living PtK2 cells, comparing its effects on the disassembly of stress fibers and membrane-associated actin with its ability to inhibit cytokinesis and cell spreading after mitosis. We chose PtK2 cells for the study because these cells have many striking actin bundles in both stress fibers and cleavage furrows. They also have prominent concentrations of membrane-associated actin and remain flattened during mitosis. We have found that PtK2 cells contain an endogenous homologue of T beta 4 at a concentration (approximately 28 microM) sufficient to complex a third or more of the cell's unpolymerized actin. Intracellular T beta 4 concentrations were increased by three different methods: 1) microinjection of an RSV vector containing a cDNA for T beta 4; 2) transfection with the same vector; and 3) microinjection of purified T beta 4 protein. The plasmid coding for T beta 4 was microinjected into PtK2 cells together with fluorescently labeled alpha-actinin as a reporter molecule. Immediately after microinjection fluorescently labeled alpha-actinin was detected in a periodic pattern along the stress fibers just as in control cells injected solely with the reporter. However, after 13 h, cells microinjected with reporter and plasmid showed marked disassembly of the fiber bundles. PtK2 cells transfected with this RSV vector for 2-3 days showed disassembly of stress fibers as detected by rhodamine-phalloidin staining; in these cells the membrane actin was also greatly diminished or absent and the border of the cells was markedly retracted. Microinjection of pure T beta 4 protein into interphase PtK2 cells induced disassembly of the stress fibers within 10 min, while membrane actin appeared only somewhat reduced. If the PtK2 cells were mitotic, similar microinjection of pure thymosin beta 4 protein at times from early prophase to metaphase resulted in an unusual pattern of delayed cytokinesis. Furrowing occurred but at a much slower rate than in controls and the amount of actin in the cleavage furrow was greatly reduced. The cells constricted to apparent completion, but after about 30 min the furrow regressed, forming a binucleate cell, much as after treatment with cytochalasin B or D. Postcytokinesis spreading of these T beta 4-injected cells was often inhibited. These experiments suggest that an insufficient number of actin filaments prolongs the contractile phase of cytokinesis and abolishes the final sealing process.
Collapse
Affiliation(s)
- J M Sanger
- Department of Cell and Developmental Biology, Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia 19104-6058, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Nagaoka R, Abe H, Kusano K, Obinata T. Concentration of cofilin, a small actin-binding protein, at the cleavage furrow during cytokinesis. CELL MOTILITY AND THE CYTOSKELETON 1995; 30:1-7. [PMID: 7728864 DOI: 10.1002/cm.970300102] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cofilin is a small actin-binding protein which regulates actin polymerization in a pH-dependent manner. Immunofluorescence microscopy with a monoclonal antibody for cofilin revealed that this protein is temporarily concentrated at the contractile ring during cytokinesis. Cofilin appeared to accumulate rapidly at the contractile ring during late stages of furrowing, and was finally enriched at the midbody. The concentration of cofilin at the contractile ring was observed in several kinds of cultured cells. Furthermore, cofilin introduced into living cells by a microinjection method was also concentrated at the contractile ring. These results suggest that cofilin is involved in actin reorganization during cytokinesis.
Collapse
Affiliation(s)
- R Nagaoka
- Department of Biology, Faculty of Science, Chiba University, Japan
| | | | | | | |
Collapse
|
56
|
Conrad AH, Stephens AP, Conrad GW. Effect of hexylene glycol-altered microtubule distributions on cytokinesis and polar lobe formation in fertilized eggs of Ilyanassa obsoleta. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1994; 269:188-204. [PMID: 11536633 DOI: 10.1002/jez.1402690304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Some effects of gravity on early morphogenesis are correlated with microtubule locations within cells. During first cleavage in Ilyanassa obsoleta embryos, a transitory polar lobe constriction forms and then relaxes, allowing the polar lobe to merge with one daughter cell. If the polar lobe is equally divided or removed, morphogenesis is severely disrupted. To examine microtuble locations during early Ilyanassa development, eggs were fixed and stained for polymerized alpha-tubulin during first cleavage. The mitotic apparatus assembles at the animal pole. The cleavage furrow forms between the asters, constricting to a stabilized intercellular bridge encircling midbody-bound microtubules, whereas the polar lobe constriction forms below and parallel to the spindle, constricting to a transitory intercellular bridge encircling no detectable microtubules. At metaphase an alpha-tubulin epitope is distributed throughout the spindle, whereas a beta-tubulin epitope is present predominantly in the asters. Incubation in hexylene glycol, a drug that increases microtubule polymerization, during mitosis causes the polar lobe constriction to tighten around polymerized alpha-tubulin and remain stably constricted. If hexylene glycol is removed, alpha-tubulin staining disappears from the polar lobe constriction, which relaxes, whereas microtubules remain in the cleavage furrow, which remains constricted. These observations suggest that asymmetric distribution of microtubules affects early Ilyanassa cleavage patterns, and that continued presence of microtubules extending through an intercellular bridge is important for stabilization of the bridge constriction prior to completion of cytokinesis. These data provide the basis for further analysis of the role of microtubules in possible microgravity disruptions of Ilyanassa development.
Collapse
Affiliation(s)
- A H Conrad
- Division of Biology, Kansas State University, Manhattan 66506, USA
| | | | | |
Collapse
|
57
|
Breckler J, Burnside B. Myosin I localizes to the midbody region during mammalian cytokinesis. CELL MOTILITY AND THE CYTOSKELETON 1994; 29:312-20. [PMID: 7859294 DOI: 10.1002/cm.970290404] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During cytokinesis, daughter cells are cleaved in two by the constriction of an actin-rich contractile ring which encircles the equator of the dividing cell. Filamentous myosin II is present in the contractile ring and necessary for constriction of the furrow, as shown in several cell types [Satterwhite and Pollard, 1992: Curr. Opin. Cell Biol. 4:43-52]. However, no functional role nor distinctive localization has been previously identified for non-filamentous "unconventional" myosins, such as myosin I, during cytokinesis. Using antibodies to adrenal medullary myosin I, we report that myosin I is localized in 3T3 fibroblasts to the mid-equatorial plane during late-cytokinesis, as well as to the polar edges as previously described in ameboid cells [Fukui et al., 1989: Nature 341:328-331]. Confocal microscopy revealed that myosin I is concentrated at the midbody region in a nearly continuous transverse disk, extending from the cortical region of the furrow through the midbody itself. These findings suggest that, in addition to the accepted role of filamentous myosin II in constriction of the contractile ring, nonfilamentous myosin I might contribute to motile events occurring late in cytokinesis.
Collapse
Affiliation(s)
- J Breckler
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
58
|
Conrad AH, Stephens AP, Paulsen AQ, Schwarting SS, Conrad GW. Effects of silver ions (Ag+) on contractile ring function and microtubule dynamics during first cleavage in Ilyanassa obsoleta. CELL MOTILITY AND THE CYTOSKELETON 1994; 27:117-32. [PMID: 8162620 DOI: 10.1002/cm.970270204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The terminal phase of cell division involves tight constriction of the cleavage furrow contractile ring, stabilization/elongation of the intercellular bridge, and final separation of the daughter cells. At first cleavage, the fertilized eggs of the mollusk, Ilyanassa obsoleta, form two contractile rings at right angles to each other in the same cytoplasm that constrict to tight necks and partition the egg into a trefoil shape. The cleavage furrow contractile ring (CF) normally constricts around many midbody microtubules (MTs) and results in cleavage; the polar lobe constriction contractile ring (PLC) normally constricts around very few MTs and subsequently relaxes without cleavage. In the presence of Ag+ ions, the PLC 1) begins MT-dependent rapid constriction sooner than controls, 2) encircles more MTs than control egg PLCs, 3) elongates much more than control PLCs, and 4) remains tightly constricted and effectively cleaves the polar lobe from the egg. If Ag(+)-incubated eggs are returned to normal seawater at trefoil, tubulin fluorescence disappears from the PLC neck and the neck relaxes. If nocodazole, a drug that depolymerizes MTs, is added to Ag(+)-incubated eggs during early PLC constriction, the PLC is not stabilized and eventually relaxes. However, if nocodazole is added to Ag(+)-incubated eggs at trefoil, tubulin fluorescence disappears from the PLC neck but the neck remains constricted. These results suggest that Ag+ accelerates and gradually stabilizes the PLC constriction by a mechanism that is initially MT-dependent, but that progressively becomes MT-independent.
Collapse
Affiliation(s)
- A H Conrad
- Mount Desert Island Biological Laboratory, Salsbury Cove, Maine
| | | | | | | | | |
Collapse
|
59
|
Nanavati D, Ashton FT, Sanger JM, Sanger JW. Dynamics of actin and alpha-actinin in the tails of Listeria monocytogenes in infected PtK2 cells. CELL MOTILITY AND THE CYTOSKELETON 1994; 28:346-58. [PMID: 7954861 DOI: 10.1002/cm.970280408] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Listeria monocytogenes can penetrate and multiply within a variety of cell types, including the PtK2 kidney epithelial line. Once released within the cytoplasm, L. monocytogenes acquires the capacity for rapid movement through the host cell [Dabiri et al., 1990: Proc. Natl. Acad. Sci. 87:6068-6072]. In the process, actin monomers are inserted in proximity to one end of the bacterium, forming a column or tail of actin filaments [Sanger et al., 1992: Infect. Immun. 60:3609-3619]. The rate of new actin filament growth correlates closely with the speed of bacterial migration. In this study we have used fluorescently labeled actin and alpha-actinin to monitor the movement and turnover rate of actin and alpha-actinin molecules in the tails. The half-lives of the actin and alpha-actinin present in the tails are approximately the same: actin, 58.7 sec; alpha-actinin, 55.3 sec. The half-life of alpha-actinin surrounding a dividing bacterium was 30 sec, whereas its half-life in the tails that formed behind the two daughter cells was about 20-30% longer. We discovered that the speeds of the bacteria are not constant, but show aperiodic episodes of decreased and increased speeds. There is a fluctuation also in the intensities of the fluorescent probes at the bacterium/tail interface, implying that there is a fluctuation in the number of actin filaments forming there. There was no strong correlation, however, between these fluctuating intensities and changes in speed of the bacteria. These measurements suggest that while actin polymerization at the bacterial surface is coupled to the movement of the bacterium, the periodic changes in intracellular motility are not a simple function of the number of actin filaments nucleating at the bacterial surfaces.
Collapse
Affiliation(s)
- D Nanavati
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | |
Collapse
|
60
|
Sanger JM, Dome JS, Hock RS, Mittal B, Sanger JW. Occurrence of fibers and their association with talin in the cleavage furrows of PtK2 cells. CELL MOTILITY AND THE CYTOSKELETON 1994; 27:26-40. [PMID: 8194108 DOI: 10.1002/cm.970270104] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PtK2 cells of exceptionally large size were microinjected with fluorescently labeled probes for actin, myosin, filamin, and talin in order to follow the assembly of the contractile proteins into the cleavage furrows. Whereas in cells of normal size, there is usually a diffuse pattern of localization of proteins in the cleavage furrow, in these large, flat cells the labeled proteins localized in fibers in the cleavage furrow. Often, the fibers were striated in a pattern comparable to that measured in the stress fibers of the same cell type. The presence of talin in discrete plaques along fibers in the cleavage furrows of the large cells suggests a further similarity between cleavage furrow and stress fiber structure. The presence of filamin in the cleavage furrows also suggests the possibility of an overlapping mechanism in addition to that of a talin mediated mechanism for the attachment of actin filaments to the cell surfaces in the cleavage furrow. A model is presented that emphasizes the interrelationships between stress fibers, myofibrils, and cleavage furrows.
Collapse
Affiliation(s)
- J M Sanger
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | | | |
Collapse
|
61
|
Yamakita Y, Yamashiro S, Matsumura F. In vivo phosphorylation of regulatory light chain of myosin II during mitosis of cultured cells. J Cell Biol 1994; 124:129-37. [PMID: 8294496 PMCID: PMC2119899 DOI: 10.1083/jcb.124.1.129] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phosphorylation of the regulatory light chain of myosin II (MLC) controls the contractility of actomyosin in nonmuscle and muscle cells. It has been reported that cdc2 phosphorylates MLC in vitro at Ser-1 or Ser-2 and Thr-9 which protein kinase C phosphorylates (Satterwhite, L. L., M. J. Lohka, K. L. Wilson, T. Y. Scherson, L. K. Cisek, J. L. Corden, and T. D. Pollard. 1992 J. Cell Biol. 118:595-605). We have examined in vivo phosphorylation of MLC during mitosis and after the release of mitotic arrest. Phosphate incorporation of MLC in mitotic cells is found to be 6-12 times greater than that in nonmitotic cells. Phosphopeptide maps have revealed that the MLC from mitotic cells is phosphorylated at Ser-1 and/or Ser-2 (Ser-1/2), but not at Thr-9. MLC is also phosphorylated to a much lesser extent at Ser-19 which myosin light chain kinase phosphorylates. On the other hand, MLC of nonmitotic cells is phosphorylated at Ser-19 but not at Ser-1/2. The extent of phosphate incorporation is doubled at 30 min after the release of mitotic arrest when some cells start cytokinesis. Phosphopeptide analyses have revealed that the phosphorylation at Ser-19 is increased 20 times, while the phosphorylation at Ser-1/2 is decreased by half. This high extent of MLC phosphorylation at Ser-19 is maintained for another 30 min and gradually decreased to near the level of interphase cells as cells complete spreading at 180 min. On the other hand, phosphorylation at Ser-1/2 is decreased to 18% at 60 min, and is practically undetectable at 180 min after the release of mitotic arrest. The stoichiometry of MLC phosphorylation has been determined by quantitation of phosphorylated and unphosphorylated forms of MLC separated on 2D gels. The molar ratio of phosphorylated MLC to total MLC is found to be 0.16 +/- 0.06 and 0.31 +/- 0.05 in interphase and mitotic cells, respectively. The ratio is increased to 0.49 +/- 0.05 at 30 min after the release of mitotic arrest. These results suggest that the change in the phosphorylation site from Ser-1/2 to Ser-19 plays an important role in signaling cytokinesis.
Collapse
Affiliation(s)
- Y Yamakita
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855-1059
| | | | | |
Collapse
|
62
|
Gordon SR. Cytological and immunocytochemical approaches to the study of corneal endothelial wound repair. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1994; 28:1-64. [PMID: 8058965 DOI: 10.1016/s0079-6336(11)80033-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The vertebrate corneal endothelium represents a unique model system for investigating many cellular aspects of wound repair within an organized tissue in situ. The tissue exists as a cell monolayer that resides upon its own natural basement membrane that can be prepared as a flat mount to observe the entire cell population. Thus, it readily avails itself to many cytological and immunocytochemical methods at both the light microscopic and ultrastructural levels. In addition, the tissue is easily explanted into organ culture where further investigations can be carried out. These techniques have enabled investigators to use many approaches to explore function and changes in response to injury. In vivo, the endothelium acts as a transport tissue to actively pump Na+ and bicarbonate ions from the corneal stroma into the aqueous humor to control corneal transparency. Physiological findings indicate that fluid diffuses back into the stroma, across the endothelium, and thus hydration is said to be controlled by a pump-leak mechanism. Ultrastructural investigations, some employing horseradish peroxidase and lanthanum, have established the morphological basis for this mechanism as apical focal junctions that are not the classical tight junctions and do not constitute a complete zona occludens. Along with these apical focal junctions are gap junctions that appear identical to their counterparts in other cell types. Cytochemical studies localized both Na+K(+)-ATPase and carbonic anhydrase, the main pump enzymes associated with corneal hydration, to the lateral plasma membranes. Corneal endothelial cells of noninjured tissue do not traverse the cell cycle and are considered to be in the "Go" phase of the cell cycle as determined by microfluorometric analysis with DNA binding dyes such as auramin O and pararosaniline-Feulgen. However, injury can initiate cell cycle transverse and histochemical and cytological methods have been used to understand the tissue's response. Classical histochemical studies revealed that increased staining was observed for metabolic (NADase and NADPase) and lysosomal enzymes in cells bordering the wound area. The use of radiolabelled agents has further lead to an understanding of the endothelial wound response. Autoradiographic analyses of 3H-actinomycin D incorporation indicated that injury initiates changes in chromatin leading to increased binding levels of the drug in cells surrounding the wound. This change suggests that those cells undergo heightened macromolecular synthesis and this was confirmed by examining 3H-uridine and 3H-thymidine incorporation. The major mechanism involved in corneal endothelial repair is cell migration. Cytochemical and immunocytochemical investigations have allowed investigators an opportunity to gain some insight into changes that occur during this cellular process.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S R Gordon
- Department of Biological Sciences, Oakland University, Rochester, MI 48309-4401
| |
Collapse
|
63
|
Johnston JA, Sloboda RD, Silver RB. Phosphoprotein phosphatase 1 (PP1) is a component of the isolated sea urchin mitotic apparatus. CELL MOTILITY AND THE CYTOSKELETON 1994; 29:280-90. [PMID: 7895292 DOI: 10.1002/cm.970290311] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A protein component of isolated mitotic apparatus having a relative molecular mass of 62,000 (p62) is a substrate of a calcium/calmodulin dependent protein kinase, and the phosphorylation of p62 in vitro correlates directly with microtubule disassembly. In vivo experiments have determined the phosphorylation of p62 increases after fertilization; maximum incorporation of phosphate occurs during late metaphase/early anaphase and decreases thereafter. Because the level of p62 is constant throughout the cell cycle [Johnston and Sloboda, 1992: J. Cell Biol. 119:843-54] the decrease in phosphorylation of p62 observed after anaphase onset is most likely due to the action of a phosphatase. By examination of the relative amount of phosphorylated p62 which remained radiolabeled as a function of time using a standard in vitro phosphorylation assay, the activity of a phosphoprotein phosphatase capable of dephosphorylating p62 in the isolated mitotic apparatus was observed. To characterize the p62 phosphatase, okadaic acid and calyculin A were used to inhibit the dephosphorylation of p62 in vitro. It was found that specific concentrations of okadaic acid (50-500 nM) and of calyculin A (10-100 nM) were effective at inhibiting the dephosphorylation of p62 in vitro. Lower concentrations of either inhibitor had a negligible effect on dephosphorylation of p62. These data indicate the presence of phosphoprotein phosphatase type 1 activity associated with mitotic apparatus isolated from sea urchin embryos using the procedures described here. The implications of these findings relative to our understanding of the regulation of mitosis and cytokinesis are discussed.
Collapse
Affiliation(s)
- J A Johnston
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | | | | |
Collapse
|
64
|
Fishkind DJ, Wang YL. Orientation and three-dimensional organization of actin filaments in dividing cultured cells. J Biophys Biochem Cytol 1993; 123:837-48. [PMID: 8227144 PMCID: PMC2200143 DOI: 10.1083/jcb.123.4.837] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The current hypothesis of cytokinesis suggests that contractile forces in the cleavage furrow are generated by a circumferential band of actin filaments. However, relatively little is known about the global organization of actin filaments in dividing cells. To approach this problem we have used fluorescence-detected linear dichroism (FDLD) microscopy to measure filament orientation, and digital optical sectioning microscopy to perform three-dimensional reconstructions of dividing NRK cells stained with rhodamine-phalloidin. During metaphase, actin filaments in the equatorial region show a slight orientation along the spindle axis, while those in adjacent regions appear to be randomly distributed. Upon anaphase onset and through cytokinesis, the filaments become oriented along the equator in the furrow region, and along the spindle axis in adjacent regions. The degree of orientation appears to be dependent on cell-cell and cell-substrate adhesions. By performing digital optical sectioning microscopy on a highly spread NRK subclone, we show that actin filaments organize as a largely isotropic cortical meshwork in metaphase cells and convert into an anisotropic network shortly after anaphase onset, becoming more organized as cytokinesis proceeds. The conversion is most dramatic on the adhering ventral surface which shows little or no cleavage activity, and results in the formation of large bundles along the equator. On the dorsal surface, where cleavage occurs actively, actin filaments remain isotropic, showing only subtle alignment late in cytokinesis. In addition, stereo imaging has led to the discovery of a novel set of filaments that are associated with the cortex and traverse through the cytoplasm. Together, these studies provide important insights into the process of actin remodeling during cell division and point to possible additional mechanisms for force generation.
Collapse
Affiliation(s)
- D J Fishkind
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|
65
|
Conrad AH, Consigli RA, Conrad GW. Infection with the avian polyomavirus, BFDV, selectively affects myofibril structure in embryonic chick ventricle cardiomyocytes. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1993; 267:253-66. [PMID: 8228865 DOI: 10.1002/jez.1402670303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Embryonic cardiomyocytes can both beat and divide. They assemble cardiac muscle-specific proteins into sarcomeric myofibrils and contract. In addition, they periodically synthesize DNA, complete mitosis, disassemble sarcomeric myofibrils in the area of the mitotic spindle, assemble cytoplasmic isoform-specific proteins into a cleavage furrow contractile ring, undergo cytokinesis, and then reform sarcomeric myofibrils in daughter cells. Little is known about how embryonic cardiomyocytes disassemble their myofibrils as they traverse the cell cycle and divide. In the present study, beating embryonic avian ventricular cardiomyocytes in primary culture were stimulated to initiate DNA synthesis without subsequent mitosis or cytokinesis by infection with the lytic avian polyomavirus, Budgerigar Fledgling Disease Virus (BFDV). Within 48 hours, infected, adherent cardiomyocytes disassemble most of their sarcomeric myofibrils, retaining cardiac myosin only in thin myofibrils with disrupted sarcomeric periodicity and in amorphous nonfibrillar pools. By 72 hours, infected cardiomyocytes contain no myofibrils and no longer react with antibodies to cardiac myosin. In contrast, infected cardiomyocytes continue to display cytoplasmic myosin localized in stress-fiber-like-structures in adherent cells, or in disrupted fibers and dispersed pools in detaching cells. Infected cardiomyocytes also continue to display interphase-like arrays of polymerized microtubules, even when rounded-up just prior to lysis. These results suggest that polyomavirus infection may provide a useful model system for further study of the regulation of myofibrils disassembly in embryonic cardiomyocytes.
Collapse
Affiliation(s)
- A H Conrad
- Division of Biology, Kansas State University, Manhattan 66506
| | | | | |
Collapse
|
66
|
Kolega J, Taylor DL. Gradients in the concentration and assembly of myosin II in living fibroblasts during locomotion and fiber transport. Mol Biol Cell 1993; 4:819-36. [PMID: 8241568 PMCID: PMC300995 DOI: 10.1091/mbc.4.8.819] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Assembly and motor activity of myosin II affect shape, contractility, and locomotion of nonmuscle cells. We used fluorescent analogues and imaging techniques to elucidate the state of assembly and three-dimensional distribution of myosin II in living Swiss 3T3 fibroblasts. An analogue of myosin II that was covalently cross-linked in the 10S conformation and unable to assemble served as an indicator of the cytoplasmic volume accessible to 10S myosin II. Ratio-imaging of an analogue that can undergo 10S-->6S conversion versus the volume indicator revealed localized concentration of assembly-competent myosin II. In stationary serum-deprived cells and in cells locomoting at the edge of a wound, it was most concentrated in the peripheral cytoplasm, where fibers containing myosin II assemble, and least concentrated in the perinuclear cytoplasm, where they disassemble. Furthermore, fluorescence photobleaching recovery showed myosin II to be less mobile in the periphery than in perinuclear cytoplasm. These results indicate a gradient in the assembly of myosin II. Three-dimensional microscopy of living cells revealed that fibers containing myosin II were localized in the cortical cytoplasm, whereas myosin II was diffusely distributed in the deeper cytoplasm, suggesting that myosin II is assembled preferentially near the cell surface. Localized protein phosphorylation may play a role, because a kinase inhibitor, staurosporine, abolished the gradient of myosin II assembly.
Collapse
Affiliation(s)
- J Kolega
- Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
67
|
Hosoya N, Hosoya H, Yamashiro S, Mohri H, Matsumura F. Localization of caldesmon and its dephosphorylation during cell division. J Cell Biol 1993; 121:1075-82. [PMID: 8388877 PMCID: PMC2119681 DOI: 10.1083/jcb.121.5.1075] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mitosis-specific phosphorylation by cdc2 kinase causes nonmuscle caldesmon to dissociate from microfilaments during prometaphase. (Yamashiro, S., Y. Yamakita, R. Ishikawa, and F. Matsumura. 1990. Nature (Lond.). 344:675-678; Yamashiro, S., Y. Yamakita, H. Hosoya, and F. Matsumura. 1991. Nature (Lond.) 349:169-172). To explore the functions of caldesmon phosphorylation during cytokinesis, we have examined the relationship between the phosphorylation level, actin-binding, and in vivo localization of caldesmon in cultured cells after their release of metaphase arrest. Immunofluorescence studies have revealed that caldesmon is localized diffusely throughout cytoplasm in metaphase. During early stages of cytokinesis, caldesmon is still diffusely present and not concentrated in contractile rings, in contrast to the accumulation of actin in cleavage furrows during cytokinesis. In later stages of cytokinesis, most caldesmon is observed to be yet diffusely localized although some concentration of caldesmon is observed in cortexes as well as in cleavage furrows. When daughter cells begin to spread, caldesmon shows complete colocalization with F-actin-containing structures. These observations are consistent with changes in the levels of microfilament-associated caldesmon during synchronized cell division. Caldesmon is missing from microfilaments in prometaphase cells arrested by nocodazole treatment, as shown previously (Yamashiro, S., Y. Yamakita, R. Iskikawa, and F. Matsumura. 1990. Nature (Lond.). 344:675-678). The level of microfilament-associated caldesmon stays low (12% of that of interphase cells) when some cells start cytokinesis at 40 min after the release of metaphase arrest. When 60% of cells finish cytokinesis at 60 min, the level of microfilament-associated caldesmon is recovered to 50% of that of interphase cells. The level of microfilament-associated caldesmon is then gradually increased to 80% when cells show spreading at 120 min. Dephosphorylation appears to occur during cytokinesis. It starts when cells begin to show cytokinesis at 40 min and completes when most cells finish cytokinesis at 60 min. These results suggest that caldesmon is not associated with microfilaments of cleavage furrows at least in initial stages of cytokinesis and that dephosphorylation of caldesmon appears to couple with its reassociation with microfilaments. Because caldesmon is known to inhibit actomyosin ATPase and/or regulate actin assembly, its continued dissociation from microfilaments may be required for the assembly and/or activation of contractile rings.
Collapse
Affiliation(s)
- N Hosoya
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855
| | | | | | | | | |
Collapse
|
68
|
Thompson-Coffe C, Zickler D. Cytoskeleton interactions in the ascus development and sporulation of Sordaria macrospora. J Cell Sci 1993. [DOI: 10.1242/jcs.104.3.883] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organization of actin during meiosis and sporulation in the ascus of the filamentous ascomycete Sordaria macrospora was determined by immunofluorescence without removal of the cell wall. Actin is present as a dense cortical network of microfilaments (MF) and plaques, a perinuclear shell of actin in prophase I of meiosis, and a complex array of MF involved in alignment of prespore nuclei and closure of spore cell membranes. The relationship of actin to the previously examined microtubule system of the ascus was determined by double-label immunofluorescence. The cytoskeletal inhibitors nocodazole, cytochalasin D and 2,3-butanedione monoxime were used to examine the roles of actin and myosin in ascus development. Microfilament and microtubule arrays are interdependant; disruption of one network results in abnormalities in the other. Both microfilaments and actin-myosin interaction are required for separation and migration of duplicated spindle pole bodies, septation and sporulation
Collapse
|
69
|
Abstract
Recent research has led to an understanding of the in vitro properties of caldesmon, including the regulation of actomyosin ATPase activity, cross-linking between actin and myosin, enhancement of microfilament stability and stimulation of polymerization of actin. While it remains to be established whether caldesmon functions similarly in vivo, recent studies have suggested that smooth muscle caldesmon regulates the inhibition of vascular smooth muscle tone, and that non-muscle caldesmon plays roles in the regulation of cell motility and cytoskeletal organization in three biological activities: granule movement, hormone secretion and reorganization of microfilaments during mitosis.
Collapse
Affiliation(s)
- F Matsumura
- Department of Molecular Biology and Biochemistry, Nelson Laboratories, Rutgers University, Piscataway, New Jersey 08855-1059
| | | |
Collapse
|
70
|
Yonemura S, Nagafuchi A, Sato N, Tsukita S. Concentration of an integral membrane protein, CD43 (leukosialin, sialophorin), in the cleavage furrow through the interaction of its cytoplasmic domain with actin-based cytoskeletons. J Cell Biol 1993; 120:437-49. [PMID: 8421057 PMCID: PMC2119517 DOI: 10.1083/jcb.120.2.437] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In leukocytes such as thymocytes and basophilic leukemia cells, a glycosilated integral membrane protein called CD43 (leukosialin or sialophorin), which is defective in patients with Wiskott-Aldrich syndrome, was highly concentrated in the cleavage furrow during cytokinesis. Not only at the mitotic phase but also at interphase, CD43 was precisely colocalized with ezrin-radixin-moesin family members. (ERM), which were previously reported to play an important role in the plasma membrane-actin filament association in general. At the electron microscopic level, throughout the cell cycle, both CD43 and ERM were tightly associated with microvilli, providing membrane attachment sites for actin filaments. We constructed a cDNA encoding a chimeric molecule consisting of the extracellular domain of mouse E-cadherin and the transmembrane/cytoplasmic domain of rat CD43, and introduced it into mouse L fibroblasts lacking both endogenous CD43 and E-cadherin. In dividing transfectants, the chimeric molecules were concentrated in the cleavage furrow together with ERM, and both proteins were precisely colocalized throughout the cell cycle. Furthermore, using this transfection system, we narrowed down the domain responsible for the CD43-concentration in the cleavage furrow. Based on these findings, we conclude that CD43 is concentrated in the cleavage furrow through the direct or indirect interaction of its cytoplasmic domain with ERM and actin filaments.
Collapse
Affiliation(s)
- S Yonemura
- Department of Information Physiology, National Institute for Physiological Sciences, Aichi, Japan
| | | | | | | |
Collapse
|
71
|
Larochelle DA, Epel D. Myosin heavy chain dephosphorylation during cytokinesis in dividing sea urchin embryos. ACTA ACUST UNITED AC 1993. [DOI: 10.1002/cm.970250407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
72
|
Waterman-Storer CM, Sanger JW, Sanger JM. Dynamics of organelles in the mitotic spindles of living cells: membrane and microtubule interactions. CELL MOTILITY AND THE CYTOSKELETON 1993; 26:19-39. [PMID: 8106173 DOI: 10.1002/cm.970260104] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The distribution and dynamics of the membranous organelles in two cell types were investigated during cell division. Live cells (either PtK2 or LLC-PK1) labeled with the vital dye 3,3'-dihexyloxacarbocyanine iodide [DiOC6(3)] were observed via serial optical sectioning with the laser-scanning confocal microscope. Z-series of labeled, dividing cells were collected every 1-2 minutes throughout mitosis, beginning at prophase and extending to the spreading of the daughter cells. Membrane distribution began to change from the onset of prophase in both cell types. When the mitotic spindle formed in prometaphase, fine tubular membranes, similar to those extending out to the edges of interphase cells aligned along the kinetochore spindle fibers. The lacy polygonal network typical of interphase cells persisted beneath the spindle, and a membrane network was also associated with the dorsal layer of the cell. As PtK2 cells reached metaphase, their spindles were nearly devoid of membrane staining, whereas the spindles of LLC-PK1 cells contained many tubular and small vesicular membranous structures. X-Z series of the LLC-PK1 metaphase spindle revealed a small cone of membranes that was separated from the rest of the cytoplasm by kinetochore MTs. In both cell types, as chromosome separation proceeded, the interzone remained nearly devoid of membranes until the onset of anaphase B. At this time the elongating interzonal microtubules were closely associated with the polygonal network of endoplasmic reticulum. Cytokinesis caused a compression, and then an exclusion of organelles from the midbody. Immunofluorescence staining with anti-tubulin antibodies suggested that spindle membranes were associated with microtubules throughout mitosis. In addition, taxol induced a dense and extensive collection of small vesicles to collect at the spindle poles of both cell types. Nocodazole treatment induced a distinct loss of organization of the membranous components of the spindles. Together these results suggest that microtubules organize the membrane distribution in mitotic cells, and that this organization may vary in different cell types depending on the quantity of microtubules within the spindle.
Collapse
Affiliation(s)
- C M Waterman-Storer
- Department of Cell and Developmental Biology, University of Pennsyvania School of Medicine, Philadelphia 1904-6058
| | | | | |
Collapse
|
73
|
Imanaka-Yoshida K, Sanger JM, Sanger JW. Contractile protein dynamics of myofibrils in paired adult rat cardiomyocytes. CELL MOTILITY AND THE CYTOSKELETON 1993; 26:301-12. [PMID: 8299146 DOI: 10.1002/cm.970260405] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of this study was to determine how quickly contractile proteins are incorporated into the myofibrils of freshly isolated cardiomyocytes and to determine whether there are regions of the cells that are more dynamic than others in their ability to incorporate the proteins. Paired cardiomyocytes joined at intercalated discs and single cells were isolated from adult rats, and microinjected 3 hours later with fluorescently labeled actin, alpha-actinin, myosin light chains and vinculin. The cells were fixed and permeabilized at various period, 5 seconds and longer, after microinjection. Actin became incorporated throughout the I-Bands in as short a time as 5 seconds. The free edges of the cells, which were formerly intercalated discs, exhibited concentrations of actin greater than that incorporated in the I-Bands. This extra concentration of actin was not detected, however, at intact intercalated discs connecting paired cells. Alpha-actinin was incorporated immediately into Z-Bands and intercalated discs. Vinculin, also, was localized at the Z-Bands and at intercalated discs, but in contrast to alpha-actinin, there was a higher concentration of vinculin in the region of the intact intercalated discs. Both alpha-actinin and vinculin were concentrated at the free ends of the cells that were formerly parts of intercalated discs. Myosin light chains were observed to incorporate into the A-Bands in periods as short as 5 seconds. These results suggest that the myofibrils of adult cardiomyocytes may be capable of rapid isoform transitions along the length of the myofibrils. The rapid accumulation of fluorescent actin, alpha-actinin, and vinculin in membrane sites that were previously parts of intercalated discs, may reflect the response to locomotory activity that is initiated in these areas as cells spread in culture. A similar response after an injury in the intact heart could allow repair to occur.
Collapse
Affiliation(s)
- K Imanaka-Yoshida
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia 19104-6058
| | | | | |
Collapse
|
74
|
Fowler VM, Adam EJ. Spectrin redistributes to the cytosol and is phosphorylated during mitosis in cultured cells. J Biophys Biochem Cytol 1992; 119:1559-72. [PMID: 1469048 PMCID: PMC2289749 DOI: 10.1083/jcb.119.6.1559] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dramatic changes in morphology and extensive reorganization of membrane-associated actin filaments take place during mitosis in cultured cells, including rounding up; appearance of numerous actin filament-containing microvilli and filopodia on the cell surface; and disassembly of intercellular and cell-substratum adhesions. We have examined the distribution and solubility of the membrane-associated actin-binding protein, spectrin, during interphase and mitosis in cultured CHO and HeLa cells. Immunofluorescence staining of substrate-attached, well-spread interphase CHO cells reveals that spectrin is predominantly associated with both the dorsal and ventral plasma membranes and is also concentrated at the lateral margins of cells at regions of cell-cell contacts. In mitotic cells, staining for spectrin is predominantly in the cytoplasm with only faint staining at the plasma membrane on the cell body, and no discernible staining on the membranes of the microvilli and filopodia (retraction fibers) which protrude from the cell body. Biochemical analysis of spectrin solubility in Triton X-100 extracts indicates that only 10-15% of the spectrin is soluble in interphase CHO or HeLa cells growing attached to tissue culture plastic. In contrast, 60% of the spectrin is soluble in mitotic CHO and HeLa cells isolated by mechanical "shake-off" from nocodazole-arrested synchronized cultures, which represents a four- to sixfold increase in the proportion of soluble spectrin. This increase in soluble spectrin may be partly due to cell rounding and detachment during mitosis, since the amount of soluble spectrin in CHO or HeLa interphase cells detached from the culture dish by trypsin-EDTA or by growth in spinner culture is 30-38%. Furthermore, mitotic cells isolated from synchronized spinner cultures of HeLa S3 cells have only 2.5 times as much soluble spectrin (60%) as do synchronous interphase cells from these spinner cultures (25%). The beta subunit of spectrin is phosphorylated exclusively on serine residues both in interphase and mitosis. Comparison of steady-state phosphorylation levels of spectrin in mitotic and interphase cells demonstrates that solubilization of spectrin in mitosis is correlated with a modest increase in the level of phosphorylation of the spectrin beta subunit in CHO and HeLa cells (a 40% and 70% increase, respectively). Two-dimensional phosphopeptide mapping of CHO cell spectrin indicates that this is due to mitosis-specific phosphorylation of beta-spectrin at several new sites. This is independent of cell rounding and dissociation from other cells and the substratum, since no changes in spectrin phosphorylation take place when cells are detached from culture dishes with trypsin-EDTA.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V M Fowler
- Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
75
|
Abstract
During cytokinesis, a cortical contractile ring forms around a cell, constricts to a stable tight neck and terminates in separation of the daughter cells. At first cleavage, Ilyanassa obsoleta embryos form two contractile rings simultaneously. The cleavage furrow (CF), in the animal hemisphere between the spindle poles, constricts to a stable tight neck and separates the daughter cells. The third polar lobe constriction (PLC-3), in the vegetal hemisphere below the spindle, constricts to a transient tight neck, but then relaxes, allowing the polar lobe cytoplasm to merge with one daughter cell. Eggs exposed to taxol, a drug that stabilizes microtubules, before the CF or the PLC-3 develop, fail to form CFs, but form stabilized tight PLCs. Eggs exposed to taxol at the time of PLC-3 formation develop varied numbers of constriction rings in their animal hemispheres and one PLC in their vegetal hemisphere, none of which relax. Eggs exposed to taxol after PLC-3 initiation form stabilized tight CFs and PLCs. At maximum constriction, control embryos display immunolocalization of nonextractable alpha-tubulin in their CFs, but not in their PLCs, and reveal, via electron microscopy, many microtubules extending through their CFs, but not through their PLCs. Embryos which form stabilized tightly constricted CFs and PLCs in the presence of taxol display immunolocalization of nonextractable alpha-tubulin in both constrictions and show many polymerized microtubules extending through both CFs and PLCs. These results suggest that the extension of microtubules through a tight contractile ring may be important for stabilizing that constriction and facilitating subsequent cytokinesis.
Collapse
Affiliation(s)
- A H Conrad
- Division of Biology, Kansas State University, Manhattan 66506
| | | | | |
Collapse
|
76
|
LaFountain JR, Janicke MA, Balczon R, Rickards GK. Cytochalasin induces abnormal anaphase in crane-fly spermatocytes and causes altered distribution of actin and centromeric antigens. Chromosoma 1992. [DOI: 10.1007/bf00582837] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
77
|
Abstract
The actomyosin contractile-ring mechanism remains the paradigm for cytokinesis after 20 years of experimental testing. Recent evidence suggests that Ca2+ triggers the contraction and that cell-cycle kinases regulate the timing of cytokinesis. New work is required to identify the signals from the mitotic spindle that specify the position of the furrow.
Collapse
Affiliation(s)
- L L Satterwhite
- Department of Cell Biology and Anatomy, Johns Hopkins Medical School, Baltimore, Maryland 21205
| | | |
Collapse
|
78
|
Affiliation(s)
- P K Hepler
- Department of Botany, University of Massachusetts, Amherst 01003
| |
Collapse
|
79
|
Abstract
Animal cells are cleaved by the formation and contraction of an extremely thin actomyosin band. In most cases this contractile band seems to form synchronously around the whole equator of the cleaving cell; however in giant cells it first forms near the mitotic apparatus and then slowly grows outwards over the cell. We studied the relationship of calcium to such contractile band growth using aequorin injected medaka fish eggs: we see two successive waves of faint luminescence moving along each of the first three cleavage furrows at approximately 0.5 micron/s. The first, narrower waves accompany furrow extension, while the second, broader ones, accompany the subsequent apposition or slow zipping together of the separating cells. If the first waves travel within the assembling contractile band, they would indicate local increases of free calcium to concentrations of about five to eight micromolar. This is the first report to visualize high free calcium within cleavage furrows. Moreover, this is also the first report to visualize slow (0.3-1.0 micron/s) as opposed to fast (10-100 microns/s) calcium waves. We suggest that these first waves are needed for furrow growth; that in part they further furrow growth by speeding actomyosin filament shortening, while such shortening in turn acts to mechanically release calcium and thus propagates these waves as well as furrow growth. We also suggest that the second waves act to induce the exocytosis which provides new furrow membrane.
Collapse
Affiliation(s)
- R A Fluck
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | | | | |
Collapse
|
80
|
Fishkind DJ, Cao LG, Wang YL. Microinjection of the catalytic fragment of myosin light chain kinase into dividing cells: effects on mitosis and cytokinesis. J Cell Biol 1991; 114:967-75. [PMID: 1874791 PMCID: PMC2289109 DOI: 10.1083/jcb.114.5.967] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myosin light chain kinase (MLCK) is thought to regulate the contractile activity in smooth and non-muscle cells, and may play an important role in controlling the reorganization of the actin-myosin cytoskeleton during cell division. To test this hypothesis we have microinjected the 61-kD catalytic fragment of MLCK into mitotic cells, and examined the effects of unregulated MLCK activity on cell division. The microinjection of active 61 kD causes both a significant delay in the transit time from nuclear envelope breakdown to anaphase onset, and an increase in motile surface activity during and after metaphase. Control experiments with intact MLCK or with inactive catalytic fragment suggest that these effects are specifically induced by the unregulated myosin light chain kinase activity. Immunofluorescence analysis suggests that delays in mitosis are coupled to disruptions of spindle structures, while increased surface motility may be related to changes in the organization of actin and myosin at the cell cortex. Most importantly, despite the expression of strong phenotypes, 61 kD-injected cells still form functional cleavage furrows that progress through cytokinesis at rates identical to those of control cells. Together, these results suggest that the activity of MLCK can affect mitosis and cortical activities, however additional control mechanisms are likely involved in the regulation of cytokinesis.
Collapse
Affiliation(s)
- D J Fishkind
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | | | |
Collapse
|
81
|
Abstract
Actin filaments, microtubules, and intermediate filaments, have all been found to be dynamic structures in living cells. Recent studies have shed important light on the assembly, disassembly, and mobility of these structures. In addition, a growing emphasis has been placed on the regulation of cytoskeletal activities by various signal transduction pathways.
Collapse
Affiliation(s)
- Y L Wang
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts
| |
Collapse
|
82
|
Conrad AH, Clark WA, Conrad GW. Subcellular compartmentalization of myosin isoforms in embryonic chick heart ventricle myocytes during cytokinesis. CELL MOTILITY AND THE CYTOSKELETON 1991; 19:189-206. [PMID: 1878989 DOI: 10.1002/cm.970190307] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Embryonic chick heart ventricle myocytes retain the ability to alternate between proliferation and functional differentiation. A cytoplasmic isoform of myosin is present in cleavage furrows of various nonmuscle cells during cytokinesis, whereas one or more of the cardiac myosin isoforms are localized in sarcomeres of beating cardiomyocytes. Antibodies were employed to reveal the subcellular localizations of cytoplasmic and cardiac myosin isoforms in embryonic chick ventricle cardiomyocytes during cytokinesis. Monoclonal anticytoplasmic myosin antibodies were prepared against myosin purified from brains of 1-day-posthatched chickens and shown to react with chick brain myosin heavy chain by Western blots and/or ELISA tests. One monoclonal antibrain myosin antibody also cross-reacted with chick cardiac myosin but not with skeletal or smooth muscle myosins. Two antichick cardiac myosin monoclonal antibodies and one antichick skeletal myosin polyclonal antibody that cross-reacts with cardiac myosin were employed to identify cardiac sarcomeric myosin. Cells were isolated from day 8 embryonic chick heart ventricles, enriched for myocytes, grown in vitro for 3 days, and then examined by immunofluorescence techniques. Monoclonal antibodies against cytoplasmic myosin preferentially localized in the cleavage furrows of both cardiofibroblasts and cardiomyocytes in all stages of cytokinesis. In contrast, antibodies that recognize cardiac myosin were distributed throughout cardiomyocytes during early stages of cytokinesis, but became progressively excluded from the furrow area during middle and late stages of cytokinesis. These data suggest that in cells that contain both cytoplasmic and sarcomeric myosin isoforms, only cytoplasmic myosin isoforms are mobilized to from the contractile ring for cytokinesis.
Collapse
Affiliation(s)
- A H Conrad
- Division of Biology, Kansas State University, Manhattan 66506
| | | | | |
Collapse
|
83
|
Bement WM, Capco DG. Analysis of inducible contractile rings suggests a role for protein kinase C in embryonic cytokinesis and wound healing. CELL MOTILITY AND THE CYTOSKELETON 1991; 20:145-57. [PMID: 1751967 DOI: 10.1002/cm.970200207] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A semi-in vitro system derived from Xenopus oocytes which allows induction of contractile ring (CR) formation and closure is described and exploited to elucidate regulatory and structural features of cytokinesis. The inducible CRs (ICRs) are composed of actin filaments and closure is actin filament-dependent as is cytokinesis in vivo. ICR closure in this system is calcium-dependent and pH-sensitive, as is cytokinesis in permeabilized cells (Cande: Journal of Cell Biology 87:326, 1980). Closure of ICRs proceeds at a rate and with a kinetic pattern similar to embryonic cytokinesis. Collectively, these data demonstrate that this system is a faithful mimic of cytokinesis in vivo. ICR formation and closure is protein kinase C (PKC)-dependent and neomycin-sensitive, indicating that the PKC branch of the polyphosphoinositide pathway regulates formation of the actomyosin ring which is the effector of cytokinesis. Kinetic measurements show that the rate of ICR closure reaches a peak of 4-8 microns/sec. Since the maximum measured velocity of actin filament translocation by vertebrate, non-muscle myosins is 0.04 micron/sec, the later observations support a model in which the CR is segmented, containing multiple sites where filaments overlap in a "sliding filament" fashion. Because the rate decreases after reaching a peak, the results also suggest that the number of overlap sites decrease with time.
Collapse
Affiliation(s)
- W M Bement
- Department of Zoology, Arizona State University, Tempe 85287-1501
| | | |
Collapse
|
84
|
Sanger JM, Mittal B, Sanger JW. Use of fluorescently labeled probes to analyze cell division in living cells. Ann N Y Acad Sci 1990; 582:185-98. [PMID: 2192595 DOI: 10.1111/j.1749-6632.1990.tb21679.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J M Sanger
- University of Pennsylvania School of Medicine, Department of Anatomy, Philadelphia 19104-6058
| | | | | |
Collapse
|
85
|
Cao LG, Wang YL. Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. J Cell Biol 1990; 110:1089-95. [PMID: 2324193 PMCID: PMC2116085 DOI: 10.1083/jcb.110.4.1089] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytokinesis of animal cells involves the formation of the circumferential actin filament bundle (contractile ring) along the equatorial plane. To analyze the assembly mechanism of the contractile ring, we microinjected a small amount of rhodamine-labeled phalloidin (rh-pha) or rhodamine-labeled actin (rh-actin) into dividing normal rat kidney cells. rh-pha was microinjected during prometaphase or metaphase to label actin filaments that were present at that stage. As mitosis proceeded into anaphase, the labeled filaments became associated with the cortex of the cell. During cytokinesis, rh-pha was depleted from polar regions and became highly concentrated into the equatorial region. The distribution of total actin filaments, as revealed by staining the whole cell with fluorescein phalloidin, showed a much less pronounced difference between the polar and the equatorial regions. The sites of de novo assembly of actin filaments during the formation of the contractile ring were determined by microinjecting rh-actin shortly before cytokinesis, and then extracting and fixing the cell during mid-cytokinesis. Injected rhodamine actin was only slightly concentrated in the contractile ring, as compared to the distribution of total actin filaments. Our results indicate that preexisting actin filaments, probably through movement and reorganization, are used preferentially for the formation of the contractile ring. De novo assembly of filaments, on the other hand, appears to take place preferentially outside the cleavage furrow.
Collapse
Affiliation(s)
- L G Cao
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|
86
|
Heath I. The Roles of Actin in Tip Growth of Fungi. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0074-7696(08)60672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
87
|
Sandig M, Kalnins VI. Reorganization of circumferential microfilament bundles in retinal epithelial cells during mitosis. CELL MOTILITY AND THE CYTOSKELETON 1990; 17:133-41. [PMID: 2257631 DOI: 10.1002/cm.970170208] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To examine the behaviour of the apical circumferential microfilament bundles (CMBs) associated with the zonula adhaerens (ZA)-junctions during mitosis, retinal pigment epithelial cells were labelled for F-actin, and retinas were serially sectioned for TEM. The results show that the ZA-CMB-complex persists throughout all stages of mitosis. At metaphase, the cells round up, but stay joined apically to adjacent cells by ZA-junctions. At telophase, the cleavage furrow forms asymmetrically from the basal end progressively toward the apical end, where the daughter cells remain connected by an intercellular bridge (IB). As the cleavage furrow with the contractile ring (CR) approaches the CMB, the two microfilament (MF) systems are oriented perpendicularly to each other. At the level of the CMB, the MFs of the CR connect the opposite sides of the CMB and bisect it into two CMBs, one for each of the two daughter cells. Subsequently, the CR in the IB splits into two, one on either side of the midbody. The two daughter cells, having acquired a complete CMB of their own, do not become direct neighbours, since adjacent cells, which remain joined to the apical ZA-junction of the dividing cell, are observed in the cleavage furrow, where they meet and form a ZA-junction between themselves, just below the IB. Separation of the daughter cells without losing contact with neighbouring cells at the level of the apical ZA-junction thus maintains the integrity of the epithelial sheet during mitosis.
Collapse
Affiliation(s)
- M Sandig
- Department of Anatomy, University of Toronto, Ontario, Canada
| | | |
Collapse
|
88
|
Giuliano KA, Taylor DL. Formation, transport, contraction, and disassembly of stress fibers in fibroblasts. CELL MOTILITY AND THE CYTOSKELETON 1990; 16:14-21. [PMID: 2354525 DOI: 10.1002/cm.970160104] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Swiss mouse 3T3 fibroblasts grown on a solid substrate in the presence of 10% serum exhibit cell movement, organelle transport, and cytokinesis. When the serum concentration in the culture medium is decreased to 0.2% for 48 h the serum-deprived cells virtually stop locomoting, spread, decreased organelle transport, and exhibit extensive arrays of stress fibers that are visible with video-enhanced differential interference contrast microscopy and that also incorporate fluorescent analogs of actin and conventional myosin (myosin II). The stress fibers form in a constitutive manner at the cytoplasm-membrane interface, transport toward the nucleus, and then disappear. The rate of transport of these fibers is quite heterogeneous with average rates in the range of 10-20 microns/h. When serum-deprived cells are stimulated with mitogens such as 10% serum or 10 nM thrombin, many of the stress fibers immediately begin to shorten, suggesting a contraction. The rate of shortening is approximately two orders of magnitude slower than that of unloaded smooth muscle cells. The fiber shortening is often accompanied by retraction of the edges of the cell and continues for at least the 1st hour post-stimulation.
Collapse
Affiliation(s)
- K A Giuliano
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | | |
Collapse
|