51
|
Park JH, Glass Z, Sayed K, Michurina TV, Lazutkin A, Mineyeva O, Velmeshev D, Ward WF, Richardson A, Enikolopov G. Calorie restriction alleviates the age-related decrease in neural progenitor cell division in the aging brain. Eur J Neurosci 2013; 37:1987-93. [PMID: 23773068 DOI: 10.1111/ejn.12249] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/04/2013] [Accepted: 04/06/2013] [Indexed: 01/02/2023]
Abstract
Production of new neurons from stem cells is important for cognitive function, and the reduction of neurogenesis in the aging brain may contribute to the accumulation of age-related cognitive deficits. Restriction of calorie intake and prolonged treatment with rapamycin have been shown to extend the lifespan of animals and delay the onset of the age-related decline in tissue and organ function. Using a reporter line in which neural stem and progenitor cells are marked by the expression of green fluorescent protein (GFP), we examined the effect of prolonged exposure to calorie restriction (CR) or rapamycin on hippocampal neural stem and progenitor cell proliferation in aging mice. We showed that CR increased the number of dividing cells in the dentate gyrus of female mice. The majority of these cells corresponded to nestin-GFP-expressing neural stem or progenitor cells; however, this increased proliferative activity of stem and progenitor cells did not result in a significant increase in the number of doublecortin-positive newborn neurons. Our results suggest that restricted calorie intake may increase the number of divisions that neural stem and progenitor cells undergo in the aging brain of females.
Collapse
Affiliation(s)
- June-Hee Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Sun D, McGinn M, Hankins JE, Mays KM, Rolfe A, Colello RJ. Aging- and injury-related differential apoptotic response in the dentate gyrus of the hippocampus in rats following brain trauma. Front Aging Neurosci 2013; 5:95. [PMID: 24385964 PMCID: PMC3866524 DOI: 10.3389/fnagi.2013.00095] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/04/2013] [Indexed: 11/24/2022] Open
Abstract
The elderly are among the most vulnerable to traumatic brain injury (TBI) with poor functional outcomes and impaired cognitive recovery. Of the pathological changes that occur following TBI, apoptosis is an important contributor to the secondary insults and subsequent morbidity associated with TBI. The current study investigated age-related differences in the apoptotic response to injury, which may represent a mechanistic underpinning of the heightened vulnerability of the aged brain to TBI. This study compared the degree of TBI-induced apoptotic response and changes of several apoptosis-related proteins in the hippocampal dentate gyrus (DG) of juvenile and aged animals following injury. Juvenile (p28) and aged rats (24 months) were subjected to a moderate fluid percussive injury or sham injury and sacrificed at 2 days post-injury. One group of rats in both ages was sacrificed and brain sections were processed for TUNEL and immunofluorescent labeling to assess the level of apoptosis and to identify cell types which undergo apoptosis. Another group of animals was subjected to proteomic analysis, whereby proteins from the ipsilateral DG were extracted and subjected to 2D-gel electrophoresis and mass spectrometry analysis. Histological studies revealed age- and injury-related differences in the number of TUNEL-labeled cells in the DG. In sham animals, juveniles displayed a higher number of TUNEL+ apoptotic cells located primarily in the subgranular zone of the DG as compared to the aged brain. These apoptotic cells expressed the early neuronal marker PSA-NCAM, suggestive of newly generated immature neurons. In contrast, aged rats had a significantly higher number of TUNEL+ cells following TBI than injured juveniles, which were NeuN-positive mature neurons located predominantly in the granule cell layer. Fluorescent triple labeling revealed that microglial cells were closely associated to the apoptotic cells. In concert with these cellular changes, proteomic studies revealed both age-associated and injury-induced changes in the expression levels of three apoptotic-related proteins: hippocalcin, leucine-rich acidic nuclear protein and heat shock protein 27. Taken together, this study revealed distinct apoptotic responses following TBI in the juvenile and aged brain which may contribute to the differential cognitive recovery observed.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Melissa McGinn
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Jeanette E Hankins
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Katherine M Mays
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Andrew Rolfe
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| | - Raymond J Colello
- Departments of Anatomy and Neurobiology, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
53
|
Shetty GA, Hattiangady B, Shetty AK. Neural stem cell- and neurogenesis-related gene expression profiles in the young and aged dentate gyrus. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2165-2176. [PMID: 23322452 PMCID: PMC3824978 DOI: 10.1007/s11357-012-9507-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Hippocampal neurogenesis, important for memory and mood function, wanes greatly in old age. Studies in rat models have implied that this decrease is not due to loss of neural stem cells (NSCs) in the subgranular zone of the dentate gyrus (DG) but rather due to an increased quiescence of NSCs. Additional studies have suggested that changes in the microenvironment, particularly declines in the concentrations of neurotrophic factors, underlie this change. In this study, we compared the expression of 84 genes that are important for NSC proliferation and neurogenesis between the DG of young (4 months old) and aged (24 months old) Fischer 344 rats, using a quantitative real-time polymerase chain reaction array. Interestingly, the expression of a vast majority of genes that have been reported previously to positively or negatively regulate NSC proliferation was unaltered with aging. Furthermore, most genes important for cell cycle arrest, regulation of cell differentiation, growth factors and cytokine levels, synaptic functions, apoptosis, cell adhesion and cell signaling, and regulation of transcription displayed stable expression in the DG with aging. The exceptions included increased expression of genes important for NSC proliferation and neurogenesis (Stat3 and Shh), DNA damage response and NF-kappaB signaling (Cdk5rap3), neuromodulation (Adora1), and decreased expression of a gene important for neuronal differentiation (HeyL). Thus, age-related decrease in hippocampal neurogenesis is not associated with a decline in the expression of selected genes important for NSC proliferation and neurogenesis in the DG.
Collapse
Affiliation(s)
- Geetha A. Shetty
- />Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, 5701 Airport Road, Module C, Temple, 76502 TX USA
- />Research Service, Olin E. Teague Veterans’ Medical Center, CTVHCS, Temple, TX USA
- />Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX USA
| | - Bharathi Hattiangady
- />Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, 5701 Airport Road, Module C, Temple, 76502 TX USA
- />Research Service, Olin E. Teague Veterans’ Medical Center, CTVHCS, Temple, TX USA
- />Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX USA
- />Division of Neurosurgery, Duke University Medical Center, Durham, NC USA
- />Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC USA
| | - Ashok K. Shetty
- />Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, 5701 Airport Road, Module C, Temple, 76502 TX USA
- />Research Service, Olin E. Teague Veterans’ Medical Center, CTVHCS, Temple, TX USA
- />Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX USA
- />Division of Neurosurgery, Duke University Medical Center, Durham, NC USA
- />Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC USA
| |
Collapse
|
54
|
Galea LAM, Wainwright SR, Roes MM, Duarte-Guterman P, Chow C, Hamson DK. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications. J Neuroendocrinol 2013; 25:1039-61. [PMID: 23822747 DOI: 10.1111/jne.12070] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/23/2013] [Accepted: 06/29/2013] [Indexed: 12/12/2022]
Abstract
The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress.
Collapse
Affiliation(s)
- L A M Galea
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
55
|
Demars MP, Hollands C, Zhao KD(T, Lazarov O. Soluble amyloid precursor protein-α rescues age-linked decline in neural progenitor cell proliferation. Neurobiol Aging 2013; 34:2431-40. [PMID: 23683827 PMCID: PMC3706568 DOI: 10.1016/j.neurobiolaging.2013.04.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/07/2013] [Accepted: 04/14/2013] [Indexed: 11/30/2022]
Abstract
Neurogenesis is thought to play a role in cognitive function and hippocampal plasticity. Previous studies suggest that neurogenesis declines with aging. However, the onset and mechanism of declined neurogenesis are not fully elucidated. Here we show that the major decline in neurogenesis takes place during adulthood, before aging. Decline in neurogenesis takes place in the subgranular layer of the dentate gyrus and in the subventricular zone, and is primarily due to a reduced number of fast-proliferating neural progenitor cells. Importantly, this decline can be rescued by intraventricular injection of recombinant soluble amyloid precursor protein (sAPPα), which regulates neural progenitor cell proliferation in the adult brain. The counterpart, sAPPβ, a product of the amyloidogenic cleavage pathway of amyloid precursor protein, fails to exhibit a proliferative effect in vitro and in vivo, in equimolar concentrations to sAPPα. These observations suggest that adulthood is an appropriate time window for an intervention that upregulates neurogenesis, such as enhancement of sAPPα levels, for the prevention of declining brain plasticity and cognitive function.
Collapse
Affiliation(s)
- Michael P. Demars
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612
| | - Carolyn Hollands
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612
| | - Kai Da (Tommy) Zhao
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
56
|
Lazarov O, Marr RA. Of mice and men: neurogenesis, cognition and Alzheimer's disease. Front Aging Neurosci 2013; 5:43. [PMID: 23986699 PMCID: PMC3753540 DOI: 10.3389/fnagi.2013.00043] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/04/2013] [Indexed: 01/18/2023] Open
Abstract
Neural stem cells are maintained in the subgranular layer of the dentate gyrus and in the subventricular zone in the adult mammalian brain throughout life. Neurogenesis is continuous, but its extent is tightly regulated by environmental factors, behavior, hormonal state, age, and brain health. Increasing evidence supports a role for new neurons in cognitive function in rodents. Recent evidence delineates significant similarities and differences between adult neurogenesis in rodents and humans. Being context-dependent, neurogenesis in the human brain might be manifested differently than in the rodent brain. Decline in neurogenesis may play a role in cognitive deterioration, leading to the development of progressive learning and memory disorders, such as Alzheimer’s disease. This review discusses the different observations concerning neurogenesis in the rodent and human brain, and their functional implications for the healthy and diseased brain.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago Chicago, IL, USA
| | | |
Collapse
|
57
|
van Wijngaarden P, Franklin RJM. Ageing stem and progenitor cells: implications for rejuvenation of the central nervous system. Development 2013; 140:2562-75. [PMID: 23715549 DOI: 10.1242/dev.092262] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The growing burden of the rapidly ageing global population has reinvigorated interest in the science of ageing and rejuvenation. Among organ systems, rejuvenation of the central nervous system (CNS) is arguably the most complex and challenging of tasks owing, among other things, to its startling structural and functional complexity and its restricted capacity for repair. Thus, the prospect of meaningful rejuvenation of the CNS has seemed an impossible goal; however, advances in stem cell science are beginning to challenge this assumption. This Review outlines these advances with a focus on ageing and rejuvenation of key endogenous stem and progenitor cell compartments in the CNS. Insights gleaned from studies of model organisms, chiefly rodents, will be considered in parallel with human studies.
Collapse
Affiliation(s)
- Peter van Wijngaarden
- Wellcome Trust-MRC Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | | |
Collapse
|
58
|
Varela-Nallar L, Inestrosa NC. Wnt signaling in the regulation of adult hippocampal neurogenesis. Front Cell Neurosci 2013; 7:100. [PMID: 23805076 PMCID: PMC3693081 DOI: 10.3389/fncel.2013.00100] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/07/2013] [Indexed: 01/06/2023] Open
Abstract
In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells (NSCs) give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/β-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/β-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | | |
Collapse
|
59
|
Poon A, Goldowitz D. Effects of age and strain on cell proliferation in the mouse rostral migratory stream. Neurobiol Aging 2013; 34:1712.e15-21. [DOI: 10.1016/j.neurobiolaging.2012.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 11/26/2022]
|
60
|
Cox DJ, Racca C. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons. J Comp Neurol 2013; 521:1954-2007. [DOI: 10.1002/cne.23292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022]
|
61
|
Choi H, Park HH, Lee KY, Choi NY, Yu HJ, Lee YJ, Park J, Huh YM, Lee SH, Koh SH. Coenzyme Q10 restores amyloid beta-inhibited proliferation of neural stem cells by activating the PI3K pathway. Stem Cells Dev 2013; 22:2112-20. [PMID: 23509892 DOI: 10.1089/scd.2012.0604] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neurogenesis in the adult brain is important for memory and learning, and the alterations in neural stem cells (NSCs) may be an important part of Alzheimer's disease pathogenesis. The phosphatidylinositol 3-kinase (PI3K) pathway has been suggested to play an important role in neuronal cell survival and is highly involved in adult neurogenesis. Recently, coenzyme Q10 (CoQ10) was found to affect the PI3K pathway. We investigated whether CoQ10 could restore amyloid β (Aβ)25-35 oligomer-inhibited proliferation of NSCs by focusing on the PI3K pathway. To evaluate the effects of CoQ10 on Aβ25-35 oligomer-inhibited proliferation of NSCs, NSCs were treated with several concentrations of CoQ10 and/or Aβ25-35 oligomers. BrdU labeling, Colony Formation Assays, and immunoreactivity of Ki-67, a marker of proliferative activity, showed that NSC proliferation decreased with Aβ25-35 oligomer treatment, but combined treatment with CoQ10 restored it. Western blotting showed that CoQ10 treatment increased the expression levels of p85α PI3K, phosphorylated Akt (Ser473), phosphorylated glycogen synthase kinase-3β (Ser9), and heat shock transcription factor, which are proteins related to the PI3K pathway in Aβ25-35 oligomers-treated NSCs. To confirm a direct role for the PI3K pathway in CoQ10-induced restoration of proliferation of NSCs inhibited by Aβ25-35 oligomers, NSCs were pretreated with a PI3K inhibitor, LY294002; the effects of CoQ10 on the proliferation of NSCs inhibited by Aβ25-35 oligomers were almost completely blocked. Together, these results suggest that CoQ10 restores Aβ25-35 oligomer-inhibited proliferation of NSCs by activating the PI3K pathway.
Collapse
Affiliation(s)
- Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Perera TD, Yaretskiy A, Rozenboym AV, Audi Z, Lipira C, Tang J, Hill J, Thirumangalakudi L, Lee DC, Dwork AJ, Coplan JD. Relationship between Age and Neurogenesis in Old World Monkeys. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/nm.2013.43028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
63
|
Snyder JS, Ferrante SC, Cameron HA. Late maturation of adult-born neurons in the temporal dentate gyrus. PLoS One 2012; 7:e48757. [PMID: 23144957 PMCID: PMC3492442 DOI: 10.1371/journal.pone.0048757] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 10/02/2012] [Indexed: 12/28/2022] Open
Abstract
Hippocampal function varies along its septotemporal axis, with the septal (dorsal) pole more frequently involved in spatial learning and memory and the temporal (ventral) pole playing a greater role in emotional behaviors. One feature that varies across these subregions is adult neurogenesis. New neurons are more numerous in the septal hippocampus but are more active in the temporal hippocampus during water maze training. However, many other aspects of adult neurogenesis remain unexplored in the context of septal versus temporal subregions. In addition, the dentate gyrus contains another functionally important anatomical division along the transverse axis, with the suprapyramidal blade showing greater experience-related activity than the infrapyramidal blade. Here we ask whether new neurons differ in their rates of survival and maturation along the septotemporal and transverse axes. We found that neurogenesis is initially higher in the infrapyramidal than suprapyramidal blade, but these cells are less likely to survive, resulting in similar densities of neurons in the two blades by four weeks. Across the septotemporal axis, neurogenesis was higher in septal than temporal pole, while the survival rate of new neurons did not differ. Maturation was assessed by immunostaining for the neuronal marker, NeuN, which increases in expression level with maturation, and for the immediate-early gene, Arc, which suggests a neuron is capable of undergoing activity-dependent synaptic plasticity. Maturation occurred approximately 1-2 weeks earlier in the septal pole than in the temporal pole. This suggests that septal neurons may contribute to function sooner; however, the prolonged maturation of new temporal neurons may endow them with a longer window of plasticity during which their functions could be distinct from those of the mature granule cell population. These data point to subregional differences in new neuron maturation and suggest that changes in neurogenesis could alter different hippocampus-dependent behaviors with different time courses.
Collapse
Affiliation(s)
- Jason S Snyder
- Unit on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | |
Collapse
|
64
|
Sildenafil enhances neurogenesis and oligodendrogenesis in ischemic brain of middle-aged mouse. PLoS One 2012; 7:e48141. [PMID: 23118941 PMCID: PMC3485244 DOI: 10.1371/journal.pone.0048141] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
Adult neural stem cells give rise to neurons, oligodendrocytes and astrocytes. Aging reduces neural stem cells. Using an inducible nestin-CreERT2/R26R-yellow fluorescent protein (YFP) mouse, we investigated the effect of Sildenafil, a phosphodiesterase type 5 (PDE5) inhibitor, on nestin lineage neural stem cells and their progeny in the ischemic brain of the middle-aged mouse. We showed that focal cerebral ischemia induced nestin lineage neural stem cells in the subventricular zone (SVZ) of the lateral ventricles and nestin expressing NeuN positive neurons and adenomatous polyposis coli (APC) positive mature oligodendrocytes in the ischemic striatum and corpus callosum in the aged mouse. Treatment of the ischemic middle-aged mouse with Sildenafil increased nestin expressing neural stem cells, mature neurons, and oligodendrocytes by 33, 75, and 30%, respectively, in the ischemic brain. These data indicate that Sildenafil amplifies nestin expressing neural stem cells and their neuronal and oligodendrocyte progeny in the ischemic brain of the middle-aged mouse.
Collapse
|
65
|
Marlatt MW, Potter MC, Lucassen PJ, van Praag H. Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev Neurobiol 2012; 72:943-52. [PMID: 22252978 DOI: 10.1002/dneu.22009] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Age-related memory loss is considered to commence at middle-age and coincides with reduced adult hippocampal neurogenesis and neurotrophin levels. Consistent physical activity at midlife may preserve brain-derived neurotrophic factor (BDNF) levels, new cell genesis, and learning. In the present study, 9-month-old female C57Bl/6J mice were housed with or without a running wheel and injected with bromodeoxyuridine (BrdU) to label newborn cells. Morris water maze learning, open field activity and rotarod behavior were tested 1 and 6 months after exercise onset. Here we show that long-term running improved retention of spatial memory and modestly enhanced rotarod performance at 15 months of age. Both hippocampal neurogenesis and mature BDNF peptide levels were elevated after long-term running. Thus, regular exercise from the onset and during middle-age may maintain brain function.
Collapse
Affiliation(s)
- Michael W Marlatt
- Swammerdam Institute for Life Sciences-Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
66
|
Beukelaers P, Vandenbosch R, Caron N, Nguyen L, Moonen G, Malgrange B. Cycling or not cycling: cell cycle regulatory molecules and adult neurogenesis. Cell Mol Life Sci 2012; 69:1493-503. [PMID: 22068613 PMCID: PMC11114951 DOI: 10.1007/s00018-011-0880-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/10/2011] [Accepted: 10/27/2011] [Indexed: 12/11/2022]
Abstract
The adult brain most probably reaches its highest degree of plasticity with the lifelong generation and integration of new neurons in the hippocampus and olfactory system. Neural precursor cells (NPCs) residing both in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles continuously generate neurons that populate the dentate gyrus and the olfactory bulb, respectively. The regulation of NPC proliferation in the adult brain has been widely investigated in the past few years. Yet, the intrinsic cell cycle machinery underlying NPC proliferation remains largely unexplored. In this review, we discuss the cell cycle components that are involved in the regulation of NPC proliferation in both neurogenic areas of the adult brain.
Collapse
Affiliation(s)
- Pierre Beukelaers
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
| | - Renaud Vandenbosch
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
- Present Address: Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Nicolas Caron
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
| | - Laurent Nguyen
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
| | - Gustave Moonen
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
- Department of Neurology, C.H.U. Sart Tilman, B35, 4000 Liège, Belgium
| | - Brigitte Malgrange
- GIGA- Neurosciences, University of Liège, Avenue de l’Hôpital, 1 Bâtiment C.H.U B36, +1, 4000 Liège, Belgium
| |
Collapse
|
67
|
Jinno S. Topographic differences in adult neurogenesis in the mouse hippocampus: a stereology-based study using endogenous markers. Hippocampus 2012; 21:467-80. [PMID: 20087889 DOI: 10.1002/hipo.20762] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hippocampus plays a critical role in various cognitive and affective functions. Increasing evidence shows that these functions are topographically distributed along the dorsoventral (septotemporal) and transverse axes of the hippocampus. For instance, dorsal hippocampus is involved in spatial memory and learning whereas ventral hippocampus is related to emotion. Here, we examined the topographic differences (dorsal vs. ventral; suprapyramidal vs. infrapyramidal) in adult neurogenesis in the mouse hippocampus using endogenous markers. The optical disector was applied to estimate the numerical densities (NDs) of labeled cells in the granule cell layer. The NDs of radial glia-like progenitors labeled by brain lipid binding protein were significantly lower in the infrapyramidal blade of the ventral DG than in other subdivisions. The NDs of doublecortin-expressing cells presumed neural progenitors and immature granule cells were significantly higher in the suprapyramidal blade of the dorsal DG than in the other subdivisions. The NDs of calretinin-expressing cells presumed young granule cells at the postmitotic stage were significantly higher in the suprapyramidal blade than in the infrapyramidal blade in the dorsal DG. No significant regional differences were detected in the NDs of dividing cells identified by proliferating cell nuclear antigen. Taken together, these findings suggest that a larger pool of immature granule cells in dorsal hippocampus might be responsible for spatial learning and memory, whereas a smaller pool of radial glia-like progenitors in ventral hippocampus might be associated with the susceptibility to affective disorders. Cell number estimation using a 300-μm-thick hypothetical slice indicates that regional differences in immature cells might contribute to the formation of topographic gradients in mature granule cells in the adult hippocampus. Our data also emphasizes the importance of considering such differences when evaluating changes in adult neurogenesis in pathological conditions and following experimental procedures.
Collapse
Affiliation(s)
- Shozo Jinno
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
68
|
Artegiani B, Calegari F. Age-related cognitive decline: can neural stem cells help us? Aging (Albany NY) 2012; 4:176-86. [PMID: 22466406 PMCID: PMC3348478 DOI: 10.18632/aging.100446] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 02/07/2023]
Abstract
Several studies suggest that an increase in adult neurogenesis has beneficial effects on emotional behavior and cognitive performance including learning and memory. The observation that aging has a negative effect on the proliferation of neural stem cells has prompted several laboratories to investigate new systems to artificially increase neurogenesis in senescent animals as a means to compensate for age-related cognitive decline. In this review we will discuss the systemic, cellular, and molecular changes induced by aging and affecting the neurogenic niche at the level of neural stem cell proliferation, their fate change, neuronal survival, and subsequent integration in the neuronal circuitry. Particular attention will be given to those manipulations that increase neurogenesis in the aged brain as a potential avenue towards therapy.
Collapse
Affiliation(s)
- Benedetta Artegiani
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | | |
Collapse
|
69
|
Characterization of the "sporadically lurking HAP1-immunoreactive (SLH) cells" in the hippocampus, with special reference to the expression of steroid receptors, GABA, and progenitor cell markers. Neuroscience 2012; 210:67-81. [PMID: 22421101 DOI: 10.1016/j.neuroscience.2012.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/29/2012] [Accepted: 02/14/2012] [Indexed: 02/02/2023]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neural huntingtin interactor that is widely expressed as a core molecule of the stigmoid body (a neurocytoplasmic inclusion) in the limbic and hypothalamic regions and has putative protective functions against some neurodegenerative diseases (HAP1 protection hypothesis). Although HAP1 has been reported to be intimately associated with several steroid receptors, HAP1-immunoreactive (HAP1-ir) cells remain to be identified in the hippocampus, which is one of the major steroidal targets. In this study, we determined the distribution of hippocampal HAP1-ir cells in light and fluorescence microscopy and characterized their morphological relationships with steroid receptors, markers of adult neurogenesis, and the GABAergic system in adult male and female Wistar rats. HAP1-ir cells, which were sporadically distributed particularly in the subgranular zone (SGZ) of the dentate gyrus and in the interface between the stratum lacunosum-moleculare and stratum radiatum of Ammon's horn, were identified as the "sporadically lurking HAP1-ir (SLH)" cells. The SLH cells showed no clear association with neural progenitor/proliferating or migrating cell markers of adult neurogenesis, such as Ki-67, proliferating cell nuclear antigen, doublecortin, and glial fibrillary acidic protein in the SGZ, whereas all the SLH cells expressed a neuronal specific nuclear protein (NeuN). More than 90% of the SLH cells expressed nuclear estrogen receptor (ER) α but neither ERβ nor the androgen receptor, whereas glucocorticoid receptor was differently stained in the SLH cells depending on the antibodies. More than 60% of them exhibited GABA immunoreactivity in the SGZ, suggestive of basket cells, but they were distinct from the ones expressing cholecystokinin or parvalbumin. We conclude that SLH cells, which should be stable against apoptosis due to putative HAP1 protectivity, might be involved in estrogen-dependent maturation, remodeling and activation of hippocampal memory and learning functions via ERα and partly through GABAergic regulation.
Collapse
|
70
|
Amrein I, Isler K, Lipp HP. Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage. Eur J Neurosci 2012; 34:978-87. [PMID: 21929629 DOI: 10.1111/j.1460-9568.2011.07804.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult hippocampal neurogenesis is a prominent event in rodents. In species with longer life expectancies, newly born cells in the adult dentate gyrus of the hippocampal formation are less abundant or can be completely absent. Several lines of evidence indicate that the regulatory mechanisms of adult neurogenesis differ between short- and long-lived mammals. After a critical appraisal of the factors and problems associated with comparing different species, we provide a quantitative comparison derived from seven laboratory strains of mice (BALB, C57BL/6, CD1, outbred) and rats (F344, Sprague-Dawley, Wistar), six other rodent species of which four are wild-derived (wood mouse, vole, spiny mouse and guinea pig), three non-human primate species (marmoset and two macaque species) and one carnivore (red fox). Normalizing the number of proliferating cells to total granule cell number, we observe an overall exponential decline in proliferation that is chronologically equal between species and orders and independent of early developmental processes and life span. Long- and short-lived mammals differ with regard to major life history stages; at the time points of weaning, age at first reproduction and average life expectancy, long-lived primates and foxes have significantly fewer proliferating cells than rodents. Although the database for neuronal differentiation is limited, we find indications that the extent of neuronal differentiation is subject to species-specific selective adaptations. We conclude that absolute age is the critical factor regulating cell genesis in the adult hippocampus of mammals. Ontogenetic and ecological factors primarily influence the regulation of neuronal differentiation rather than the rate of cell proliferation.
Collapse
Affiliation(s)
- Irmgard Amrein
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
71
|
Kurata C, Ichihashi Y, Onishi M, Iinuma M, Tamura Y, Mori D, Kubo KY. Early toothless condition suppresses cell proliferation in the hippocampal dentate gyrus of SAMP8 mice. PEDIATRIC DENTAL JOURNAL 2012. [DOI: 10.1016/s0917-2394(12)70261-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
72
|
McClain JA, Hayes DM, Morris SA, Nixon K. Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics. J Comp Neurol 2011; 519:2697-710. [PMID: 21484803 DOI: 10.1002/cne.22647] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromodeoxyuridine incorporation, and phosphohistone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromodeoxyuridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis and also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure.
Collapse
Affiliation(s)
- Justin A McClain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
73
|
New neurons in an aged brain. Behav Brain Res 2011; 227:497-507. [PMID: 22024433 DOI: 10.1016/j.bbr.2011.10.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 12/21/2022]
Abstract
Adult hippocampal neurogenesis is one of the most robust forms of synaptic plasticity in the nervous system and occurs throughout life. However, the rate of neurogenesis declines dramatically with age. Older animals have significantly less neural progenitor cell proliferation, neuronal differentiation, and newborn neuron survival compared to younger animals. Intrinsic properties of neural progenitor cells, such as gene transcription and telomerase activity, change with age, which may contribute to the observed decline in neurogenesis. In addition, age-related changes in the local cells of the neurogenic niche may no longer provide neural progenitor cells with the cell-cell contact and soluble cues necessary for hippocampal neurogenesis. Astrocytes, microglia, and endothelial cells undergo changes in morphology and signaling properties with age, altering the foundation of the neurogenic niche. While most studies indicate a correlation between decreased hippocampal neurogenesis and impaired performance in hippocampus-dependent cognitive tasks in aged mice, a few have demonstrated that young and aged mice are equivalent in their cognitive ability. Here, we summarize the different behavioral paradigms to test hippocampus-dependent cognition and the need to develop neurogenesis-dependent tasks.
Collapse
|
74
|
Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov A, Enikolopov G. Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 2011; 8:566-79. [PMID: 21549330 DOI: 10.1016/j.stem.2011.03.010] [Citation(s) in RCA: 670] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/21/2010] [Accepted: 03/08/2011] [Indexed: 01/17/2023]
Abstract
Production of new neurons in the adult hippocampus decreases with age; this decline may underlie age-related cognitive impairment. Here we show that continuous depletion of the neural stem cell pool, as a consequence of their division, may contribute to the age-related decrease in hippocampal neurogenesis. Our results indicate that adult hippocampal stem cells, upon exiting their quiescent state, rapidly undergo a series of asymmetric divisions to produce dividing progeny destined to become neurons and subsequently convert into mature astrocytes. Thus, the decrease in the number of neural stem cells is a division-coupled process and is directly related to their production of new neurons. We present a scheme of the neurogenesis cascade in the adult hippocampus that includes a proposed "disposable stem cell" model and accounts for the disappearance of hippocampal neural stem cells, the appearance of new astrocytes, and the age-related decline in the production of new neurons.
Collapse
Affiliation(s)
- Juan M Encinas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Yuan CJ, Quiocho JMD, Kim A, Wee S, Mandyam CD. Extended access methamphetamine decreases immature neurons in the hippocampus which results from loss and altered development of neural progenitors without altered dynamics of the S-phase of the cell cycle. Pharmacol Biochem Behav 2011; 100:98-108. [PMID: 21855565 DOI: 10.1016/j.pbb.2011.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/13/2011] [Accepted: 08/05/2011] [Indexed: 01/07/2023]
Abstract
Methamphetamine addicts demonstrate impaired hippocampal-dependent cognitive function that could result from methamphetamine-induced maladaptive plasticity in the hippocampus. Reduced adult hippocampal neurogenesis observed in a rodent model of compulsive methamphetamine self-administration partially contributes to the maladaptive plasticity in the hippocampus. The potential mechanisms underlying methamphetamine-induced inhibition of hippocampal neurogenesis were identified in the present study. Key aspects of the cell cycle dynamics of hippocampal progenitors, including proliferation and neuronal development, were studied in rats that intravenously self-administered methamphetamine in a limited access (1h/day: short access (ShA)-4 days and ShA-13 days) or extended access (6h/day: long access (LgA)-4 days and LgA-13 days) paradigm. Immunohistochemical analysis of Ki-67 cells with 5-chloro-2'-deoxyuridine (CldU) demonstrated that LgA methamphetamine inhibited hippocampal proliferation by decreasing the proliferating pool of progenitors that are in the synthesis (S)-phase of the cell cycle. Double S-phase labeling with CldU and 5-iodo-2'-deoxyuridine (IdU) revealed that reduced S-phase cells were not due to alterations in the length of the S-phase. Further systematic analysis of Ki-67 cells with GFAP, Sox2, and DCX revealed that LgA methamphetamine-induced inhibition of hippocampal neurogenesis was attributable to impairment in the development of neuronal progenitors from preneuronal progenitors to immature neurons. Methamphetamine concomitantly increased hippocampal apoptosis, changes that were evident during the earlier days of self-administration. These findings demonstrate that methamphetamine self-administration initiates allostatic changes in adult neuroplasticity maintained by the hippocampus, including increased apoptosis, and altered dynamics of hippocampal neural progenitors. These data suggest that altered hippocampal plasticity by methamphetamine could partially contribute to methamphetamine-induced impairments in hippocampal function.
Collapse
Affiliation(s)
- Clara J Yuan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
76
|
Snyder JS, Cameron HA. Could adult hippocampal neurogenesis be relevant for human behavior? Behav Brain Res 2011; 227:384-90. [PMID: 21736900 DOI: 10.1016/j.bbr.2011.06.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/02/2011] [Accepted: 06/20/2011] [Indexed: 12/21/2022]
Abstract
Although the function of adult neurogenesis is still unclear, tools for directly studying the behavioral role of new hippocampal neurons now exist in rodents. Since similar studies are impossible to do in humans, it is important to assess whether the role of new neurons in rodents is likely to be similar to that in humans. One feature of adult neurogenesis that varies tremendously across species is the number of neurons that are generated, so a key question is whether there are enough neurons generated in humans to impact function. In this review we examine neuroanatomy and circuit function in the hippocampus to ask how many granule neurons are needed to impact hippocampal function and then discuss what is known about numbers of new neurons produced in adult rats and humans. We conclude that relatively small numbers of neurons could affect hippocampal circuits and that the magnitude of adult neurogenesis in adult rats and humans is probably larger than generally believed.
Collapse
Affiliation(s)
- Jason S Snyder
- Unit on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Building 35/3C911, MSC3718, Bethesda, MD 20892, USA.
| | | |
Collapse
|
77
|
Kim WR, Sun W. Programmed cell death during postnatal development of the rodent nervous system. Dev Growth Differ 2011; 53:225-35. [DOI: 10.1111/j.1440-169x.2010.01226.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
78
|
Popa-Wagner A, Buga AM, Kokaia Z. Perturbed cellular response to brain injury during aging. Ageing Res Rev 2011; 10:71-9. [PMID: 19900590 DOI: 10.1016/j.arr.2009.10.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 10/28/2009] [Indexed: 12/22/2022]
Abstract
Old age is associated with an enhanced susceptibility to stroke and poor recovery from brain injury, but the cellular processes underlying these phenomena are only partly understood. Therefore, studying the basic mechanisms underlying structural and functional recovery after brain injury in aged subjects is of considerable clinical interest. Behavioral and cytological analyses of rodents that have undergone experimental injury show that: (a) behaviorally, aged rodents are more severely impaired by ischemia than are young animals, and older rodents also show diminished functional recovery; (b) compared to young animals, aged animals develop a larger infarct area, as well as a necrotic zone characterized by a higher rate of cellular degeneration and a larger number of apoptotic cells; (c) both astrocytes and macrophages are activated strongly and early following stroke in aged rodents; (d) in older animals, the premature, intense cytoproliferative activity following brain injury leads to the precipitous formation of growth-inhibiting scar tissue, a phenomenon amplified by the persistent expression of neurotoxic factors; (e) though the timing is altered, the regenerative capability of the brain is largely preserved in rats, at least into early old age. Whether endogenous neurogenesis contributes to spontaneous recovery after stroke has not yet been established. If neurogenesis from endogenous neuronal stem cells is to be used therapeutically, an individual approach will be required to assess the possible extent of neurogenic response as well as the possibilities to alter this response for functional improvement or prevention of further loss of brain function.
Collapse
|
79
|
Jinno S. Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus. J Comp Neurol 2010; 519:451-66. [DOI: 10.1002/cne.22527] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
80
|
Abstract
During normal and diseased aging, it is thought the capacity for tissue regeneration and repair in neuronal tissues diminishes. In the peripheral olfactory system, stem cell reservoirs permit regeneration of olfactory and vomeronasal sensory neurons, a unique capacity among neurons. Following injury, a large number of new neurons can be regenerated in a young animal. However, it is unknown whether this capacity for renewal exists in aged proliferative populations. Here, we report that neuronal replacement-associated proliferation continues in the vomeronasal organ of aged (18-24 months) mice. In addition, the potential for the aged stem cell to yield a mature neuron persisted at the same rate as that observed in young animals. Furthermore, the robust regenerative capacity to respond to both acute and sustained injury following olfactory bulbectomy remains intact even in very old animals. Hence, the neuronal epithelium lining the vomeronasal organ is unique in that it contains stem cells capable of generating functional neurons throughout life and in the aged animal in particular. This persistent regenerative capacity provides hope for neuronal replacement therapies in the aged nervous system.
Collapse
|
81
|
Varela-Nallar L, Aranguiz FC, Abbott AC, Slater PG, Inestrosa NC. Adult hippocampal neurogenesis in aging and Alzheimer's disease. ACTA ACUST UNITED AC 2010; 90:284-96. [DOI: 10.1002/bdrc.20193] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
82
|
Burger C. Region-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Front Aging Neurosci 2010; 2:140. [PMID: 21048902 PMCID: PMC2967426 DOI: 10.3389/fnagi.2010.00140] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 08/17/2010] [Indexed: 01/31/2023] Open
Abstract
Aging is associated with cognitive decline in both humans and animals and of all brain regions, the hippocampus appears to be particularly vulnerable to senescence. Age-related spatial learning deficits result from alterations in hippocampal connectivity and plasticity. These changes are differentially expressed in each of the hippocampal fields known as cornu ammonis 1 (CA1), cornu ammonis 3 (CA3), and the dentate gyrus. Each sub-region displays varying degrees of susceptibility to aging. For example, the CA1 region is particularly susceptible in Alzheimer's disease while the CA3 region shows vulnerability to stress and glucocorticoids. Further, in animals, aging is the main factor associated with the decline in adult neurogenesis in the dentate gyrus. This review discusses the relationship between region-specific hippocampal connectivity, morphology, and gene expression alterations and the cognitive deficits associated with senescence. In particular, data are reviewed that illustrate how the molecular changes observed in the CA1, CA3, and dentate regions are associated with age-related learning deficits. This topic is of importance because increased understanding of how gene expression patterns reflect individual differences in cognitive performance is critical to the process of identifying new and clinically useful biomarkers for cognitive aging.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Neurology, Medical Sciences Center, University of WisconsinMadison, USA
| |
Collapse
|
83
|
Influence of different estrogens on neuroplasticity and cognition in the hippocampus. Biochim Biophys Acta Gen Subj 2010; 1800:1056-67. [DOI: 10.1016/j.bbagen.2010.01.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 11/18/2022]
|
84
|
Christensen T, Bisgaard C, Nielsen H, Wiborg O. Transcriptome differentiation along the dorso–ventral axis in laser-captured microdissected rat hippocampal granular cell layer. Neuroscience 2010; 170:731-41. [DOI: 10.1016/j.neuroscience.2010.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 12/31/2022]
|
85
|
Junek A, Rusak B, Semba K. Short-term sleep deprivation may alter the dynamics of hippocampal cell proliferation in adult rats. Neuroscience 2010; 170:1140-52. [PMID: 20727388 DOI: 10.1016/j.neuroscience.2010.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/15/2010] [Accepted: 08/11/2010] [Indexed: 01/08/2023]
Abstract
Long-term (>48 h) sleep deprivation (SD) reduces adult rat hippocampal cell proliferation and neurogenesis, yet reported effects of short-term (<24 h) SD are inconsistent. We systematically assessed the effects of various durations of SD on adult rat hippocampal cell proliferation. Rats were sleep-deprived for 6, 12, 24, 36 or 48 h and injected with 5-bromo-2'-deoxyuridine (BrdU) 2 h before the end of SD. Immunolabeling for BrdU in the hippocampal subgranular zone increased significantly after 12 h SD but tended to decrease after 48 h SD relative to respective Controls. Surprisingly, SD did not alter immunolabeling for Ki67 protein (Ki67) or proliferating cell nuclear antigen (PCNA), two intrinsic cell proliferation markers. SD did not affect BrdU or Ki67 labeling in the subventricular zone, nor did it affect serum corticosterone levels. Because immunoreactivity for Ki67 and PCNA can identify cells in all phases of the ∼25 h cell cycle in adult rat hippocampus, whereas BrdU labels only cells in S-phase (∼9.5 h), this discrepancy suggests that 12 h SD might have affected cell cycle dynamics. A separate group of rats were injected with BrdU 10 h before the end of 12 h SD, which would allow some time for labeled cells to divide; the results were consistent with an acceleration of the timing of hippocampal progenitor cell division during 12 h SD. These results suggest that short-term (12 h) SD transiently produces more hippocampal progenitor cells via cell cycle acceleration, and confirm the importance of using multiple cell cycle markers or BrdU injection paradigms to assess potential changes in cell proliferation.
Collapse
Affiliation(s)
- A Junek
- Department of Anatomy & Neurobiology, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 1X5, Canada
| | | | | |
Collapse
|
86
|
Marr RA, Thomas RM, Peterson DA. Insights into neurogenesis and aging: potential therapy for degenerative disease? FUTURE NEUROLOGY 2010; 5:527-541. [PMID: 20806052 PMCID: PMC2929019 DOI: 10.2217/fnl.10.33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurogenesis is the process by which new neural cells are generated from a small population of multipotent stem cells in the adult CNS. This natural generation of new cells is limited in its regenerative capabilities and also declines with age. The use of stem cells in the treatment of neurodegenerative disease may hold great potential; however, the age-related incidence of many CNS diseases coincides with reduced neurogenesis. This review concisely summarizes current knowledge related to adult neurogenesis and its alteration with aging and examines the feasibility of using stem cell and gene therapies to combat diseases of the CNS with advancing age.
Collapse
Affiliation(s)
- Robert A Marr
- Department of Neuroscience, Center for Stem Cell & Regenerative Medicine, Rosalind Franklin University of Medicine & Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Rosanne M Thomas
- Department of Physical Therapy, Center for Stem Cell & Regenerative Medicine
| | - Daniel A Peterson
- Department of Neuroscience, Center for Stem Cell & Regenerative Medicine, Rosalind Franklin University of Medicine & Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| |
Collapse
|
87
|
Shetty AK, Hattiangady B, Rao MS, Shuai B. Deafferentation enhances neurogenesis in the young and middle aged hippocampus but not in the aged hippocampus. Hippocampus 2010; 21:631-46. [PMID: 20333732 DOI: 10.1002/hipo.20776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2010] [Indexed: 12/13/2022]
Abstract
Increased neurogenesis in the dentate gyrus (DG) after brain insults such as excitotoxic lesions, seizures, or stroke is a well known phenomenon in the young hippocampus. This plasticity reflects an innate compensatory response of neural stem cells (NSCs) in the young hippocampus to preserve function or minimize damage after injury. However, injuries to the middle-aged and aged hippocampi elicit either no or dampened neurogenesis response, which could be due to an altered plasticity of NSCs and/or the hippocampus with age. We examined whether the plasticity of NSCs to increase neurogenesis in response to a milder injury such as partial deafferentation is preserved during aging. We quantified DG neurogenesis in the hippocampus of young, middle-aged, and aged F344 rats after partial deafferentation. A partial deafferentation of the left hippocampus without any apparent cell loss was induced via administration of Kainic acid (0.5 μg in 1.0 μl) into the right lateral ventricle of the brain. In this model, degeneration of CA3 pyramidal neurons and dentate hilar neurons in the right hippocampus results in loss of commissural axons which leads to partial deafferentation of the dendrites of dentate granule cells and CA1-CA3 pyramidal neurons in the left hippocampus. Quantification of newly born cells that are added to the dentate granule cell layer at postdeafferentation days 4-15 using 5'-bromodeoxyuridine (BrdU) labeling revealed greatly increased addition of newly born cells (∼three fold increase) in the deafferented young and middle-aged hippocampi but not in the deafferented aged hippocampus. Measurement of newly born neurons using doublecortin (DCX) immunostaining also revealed similar findings. Analyses using BrdU-DCX dual immunofluorescence demonstrated no changes in neuronal fate-choice decision of newly born cells after deafferentation, in comparison to the age-matched naive hippocampus in all age groups. Thus, the plasticity of hippocampal NSCs to increase DG neurogenesis in response to a milder injury such as partial hippocampal deafferentation is preserved until middle age but lost at old age.
Collapse
Affiliation(s)
- Ashok K Shetty
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina, USA.
| | | | | | | |
Collapse
|
88
|
Abstract
The hippocampus is a region of the mammalian brain that shows an impressive capacity for structural reorganization. Preexisting neural circuits undergo modifications in dendritic complexity and synapse number, and entirely novel neural connections are formed through the process of neurogenesis. These types of structural change were once thought to be restricted to development. However, it is now generally accepted that the hippocampus remains structurally plastic throughout life. This article reviews structural plasticity in the hippocampus over the lifespan, including how it is investigated experimentally. The modulation of structural plasticity by various experiential factors as well as the possible role it may have in hippocampal functions such as learning and memory, anxiety, and stress regulation are also considered. Although significant progress has been made in many of these areas, we highlight some of the outstanding issues that remain.
Collapse
Affiliation(s)
- Benedetta Leuner
- Department of Psychology, Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
89
|
Nixon K, Morris SA, Liput DJ, Kelso ML. Roles of neural stem cells and adult neurogenesis in adolescent alcohol use disorders. Alcohol 2010; 44:39-56. [PMID: 20113873 DOI: 10.1016/j.alcohol.2009.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 10/24/2009] [Accepted: 11/07/2009] [Indexed: 01/19/2023]
Abstract
This review discusses the contributions of a newly considered form of plasticity, the ongoing production of new neurons from neural stem cells, or adult neurogenesis, within the context of neuropathologies that occur with excessive alcohol intake in the adolescents. Neural stem cells and adult neurogenesis are now thought to contribute to the structural integrity of the hippocampus, a limbic system region involved in learning, memory, behavioral control, and mood. In adolescents with alcohol use disorders (AUDs), the hippocampus appears to be particularly vulnerable to the neurodegenerative effects of alcohol, but the role of neural stem cells and adult neurogenesis in alcoholic neuropathology has only recently been considered. This review encompasses a brief overview of neural stem cells and the processes involved in adult neurogenesis, how neural stem cells are affected by alcohol, and possible differences in the neurogenic niche between adults and adolescents. Specifically, what is known about developmental differences in adult neurogenesis between the adult and adolescent is gleaned from the literature, as well as how alcohol affects this process differently among the age groups. Finally, this review suggests differences that may exist in the neurogenic niche between adults and adolescents and how these differences may contribute to the susceptibility of the adolescent hippocampus to damage. However, many more studies are needed to discern whether these developmental differences contribute to the vulnerability of the adolescent to developing an AUD.
Collapse
|
90
|
Yu S, Patchev AV, Wu Y, Lu J, Holsboer F, Zhang JZ, Sousa N, Almeida OFX. Depletion of the neural precursor cell pool by glucocorticoids. Ann Neurol 2010; 67:21-30. [DOI: 10.1002/ana.21812] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
91
|
Ben Abdallah NMB, Slomianka L, Vyssotski AL, Lipp HP. Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging 2010; 31:151-61. [DOI: 10.1016/j.neurobiolaging.2008.03.002] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 01/12/2023]
|
92
|
Walter J, Keiner S, Witte OW, Redecker C. Age-related effects on hippocampal precursor cell subpopulations and neurogenesis. Neurobiol Aging 2009; 32:1906-14. [PMID: 20006411 DOI: 10.1016/j.neurobiolaging.2009.11.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/18/2009] [Accepted: 11/13/2009] [Indexed: 11/27/2022]
Abstract
Hippocampal neurogenesis continuously declines in the aging brain but only little is known about age-related alterations in the subgranular zone (SGZ) of the dentate gyrus which accommodates different subpopulations of precursor cells. Here, we examined the age-related effects on total number and proliferation rate of distinct precursor cell populations in the dentate gyrus of 3 and 16 months old transgenic pNestin-GFP mice. Following a single injection of bromodeoxyuridine (BrdU) we observed a significant reduction of all proliferating precursor subtypes in aged mice compared to young controls. Stereological analysis further revealed that this decreased proliferation was not only caused by a general reduction in total number of precursor subtypes but also by a subtype-specific alteration of the proliferation rate. Whereas radial glia-like and early neuronal precursor cells demonstrate decreased proliferation rates, no difference was found for doublecortin-positive precursors. Additional long-term experiments further revealed that these age-related alterations in the proliferative zone were accompanied by a strongly decreased neurogenesis while hippocampal function was not impaired.
Collapse
Affiliation(s)
- Josephine Walter
- Department of Neurology, University Hospital Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | | | | | | |
Collapse
|
93
|
Snyder JS, Glover LR, Sanzone KM, Kamhi JF, Cameron HA. The effects of exercise and stress on the survival and maturation of adult-generated granule cells. Hippocampus 2009; 19:898-906. [PMID: 19156854 DOI: 10.1002/hipo.20552] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stress strongly inhibits proliferation of granule cell precursors in the adult dentate gyrus, whereas voluntary running has the opposite effect. Few studies, however, have examined the possible effects of these environmental manipulations on the maturation and survival of young granule cells. We examined the number of surviving granule cells and the proportion of young neurons that were functionally mature, as defined by seizure-induced immediate-early gene (IEG) expression, in 14- and 21-day-old granule cells in mice that were given access to a running wheel, restrained daily for 2 h, or given no treatment during this period. Treatments began 2 days after BrdU injection, to isolate effects on survival from those on cell proliferation. We found a large increase in granule cell survival in running mice when compared with controls at both time points. In addition, running increased the proportion of granule cells expressing the IEG Arc in response to seizures, suggesting that it speeds incorporation into circuits, i.e., functional maturation. Stressed mice showed no change in Arc expression, compared with control animals, but, surprisingly, showed a transient increase in survival of 14-day-old granule cells, which was gone 7 days later. Examination of cell proliferation, using the endogenous mitotic marker PCNA showed an increase in cell proliferation after 12 days of running but not after 19 days of running. The number of proliferating cells was unchanged 24 h after the 12th or 19th episode of daily restraint stress. These findings demonstrate that running has strong effects on survival and maturation of young granule cells as well as their birth and that stress can have positive but short-lived effects on granule cell survival. Published 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jason S Snyder
- Unit on Neuroplasticity, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
94
|
Snyder JS, Radik R, Wojtowicz JM, Cameron HA. Anatomical gradients of adult neurogenesis and activity: young neurons in the ventral dentate gyrus are activated by water maze training. Hippocampus 2009; 19:360-70. [PMID: 19004012 DOI: 10.1002/hipo.20525] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hippocampal function varies in a subregion-specific fashion: spatial processing is thought to rely on the dorsal hippocampus, whereas anxiety-related behavior relies more on the ventral hippocampus. During development, neurogenesis in the dentate gyrus (DG) proceeds along ventral to dorsal as well as suprapyramidal to infrapyramidal gradients, but it is unclear whether regional differences in neurogenesis are maintained in adulthood. Moreover, it is unknown whether young neurons in the adult exhibit subregion-specific patterns of activation. We therefore examined the magnitude of neurogenesis and the activation of young and mature granule cells in DG subregions in adult rats that learned a spatial water maze task, swam with no platform, or were left untouched. We found that both adult neurogenesis and granule cell activation, as defined by c-fos expression in the granule cell population as a whole, were higher in the dorsal than the ventral DG. In contrast, c-fos expression in adult-born granule cells, identified by PSA-NCAM or location in the subgranular zone, occurred at a higher rate in the opposite subregion, the ventral DG. Interestingly, c-fos expression in the entire granule cell population was equivalent in water maze-trained rats and swim control rats, but was increased in the young granule cells only in the learning condition. These results provide new evidence that hippocampally-relevant experience activates young and mature neurons in different DG subregions and with different experiential specificity, and suggest that adult-born neurons may play a specific role in anxiety-related behavior or other nonspatial aspects of hippocampal function.
Collapse
Affiliation(s)
- Jason S Snyder
- National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
95
|
Ahlenius H, Visan V, Kokaia M, Lindvall O, Kokaia Z. Neural stem and progenitor cells retain their potential for proliferation and differentiation into functional neurons despite lower number in aged brain. J Neurosci 2009; 29:4408-19. [PMID: 19357268 PMCID: PMC6665731 DOI: 10.1523/jneurosci.6003-08.2009] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/05/2009] [Accepted: 03/02/2009] [Indexed: 12/18/2022] Open
Abstract
Neurogenesis in the subventricular zone (SVZ), which gives rise to new neurons in the olfactory bulb, continues throughout life but declines with increasing age. Little is known about how aging affects the intrinsic properties of the neural stem and progenitor cells (NSCs) in SVZ and the functional characteristics of their neuronal progeny. Here, we have compared the properties of NSCs isolated from embryonic lateral ganglionic eminence and adult and aged SVZ in mice using in vivo and in vitro systems, analyzed their gene expression profile, and studied their electrophysiological characteristics before and after differentiation into neurons. We show a loss of NSCs in SVZ from aged mice accompanied by reduced expression of genes for NSC markers, developmentally important transcription factors, and neurogenic factors. However, when isolated in vitro, the NSCs from SVZ of aged animals have capacity for proliferation and multilineage differentiation, including production of functional neurons, similar to that of NSCs in adult mice, albeit with lower efficacy. These properties are of major importance when considering therapeutic applications of neuronal replacement from endogenous NSCs in the injured, aged brain.
Collapse
Affiliation(s)
- Henrik Ahlenius
- Laboratory of Neural Stem Cell Biology
- Lund Stem Cell Center, SE-221 84 Lund, Sweden
| | - Violeta Visan
- Laboratory of Neurogenesis and Cell Therapy, and
- Lund Stem Cell Center, SE-221 84 Lund, Sweden
| | - Merab Kokaia
- Experimental Epilepsy Group, Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, SE-221 84 Lund, Sweden, and
| | - Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, and
- Lund Stem Cell Center, SE-221 84 Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Neural Stem Cell Biology
- Lund Stem Cell Center, SE-221 84 Lund, Sweden
| |
Collapse
|
96
|
The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain. J Neural Transm (Vienna) 2009; 116:995-1005. [PMID: 19291360 DOI: 10.1007/s00702-009-0207-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/19/2009] [Indexed: 01/03/2023]
Abstract
Neurogenesis occurs in two regions of the adult brain, namely, the subventricular zone (SVZ) throughout the wall of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG) in hippocampal formation. Adult neurogenesis requires several neurotrophic factors to sustain and regulate the proliferation and differentiation of the adult stem cell population. In the present review, we examine the cellular and functional aspects of a trophic system mediated by fibroblast growth factor-2 (FGF-2) and its receptors (FGFRs) related to neurogenesis in the SVZ and SGZ of the adult rat brain. In the SVZ, FGF-2 is expressed in GFAP-positive cells of SVZ but is not present in proliferating precursor cells, which instead express FGFR-1 and FGFR-2, but not FGFR-3 mRNA, although expressed in the SVZ, and FGFR-4. Therefore, it seems that in the SVZ FGF-2 may be released by GFAP-positive cells, different from the precursor cell lineage, and via volume transmission it reaches the proliferating precursor cells. FGFR-1 mRNA is also expressed in the SGZ and is localized in BrdU-labeled precursor cells, whereas FGFR-2 and FGFR-3 mRNA, although expressed in the SGZ, are not located within proliferating precursor cells. An aged-related decline of proliferating precursor cells in the SVZ and DG of old rats has been well documented, and there is the suggestion that in part it could be the consequence of alterations in growth factor expression levels. Thus, the old precursors may respond to growth factors, suggesting that during aging the basic components for neuronal precursor cell proliferation are retained and the capacity to increase neurogenesis after appropriate stimulation is still preserved. In conclusion, the trophic system mediated by FGF-2 and its receptors contributes to create an important micro-environmental niche that promotes neurogenesis in the adult and aged brain.
Collapse
|
97
|
Aizawa K, Ageyama N, Terao K, Hisatsune T. Primate-specific alterations in neural stem/progenitor cells in the aged hippocampus. Neurobiol Aging 2009; 32:140-50. [PMID: 19201065 DOI: 10.1016/j.neurobiolaging.2008.12.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 12/11/2008] [Accepted: 12/22/2008] [Indexed: 11/17/2022]
Abstract
In the dentate gyrus of the hippocampus, new neurons are generated from neural stem/progenitor cells (NPCs) throughout life. As aging progresses, the rate of neurogenesis decreases exponentially, which might be responsible, in part, for age-dependent cognitive decline in animals and humans. However, few studies have analyzed the alterations in NPCs during aging, especially in primates. Here, we labeled NPCs by triple immunostaining for FABP7, Sox2, and GFAP and found that their numbers decreased in aged macaque monkeys (>20 years old), but not in aged mice. Importantly, we observed marked morphological alterations of the NPCs in only the aged monkeys. In the aged monkey hippocampus, the processes of the NPCs were short and ran horizontally rather than vertically. Despite these alterations, the proliferation rate of the NPCs in aged monkeys was similar to that in young monkeys. Thus, morphological alterations do not affect the proliferation rate of NPCs, but may be involved in the maintenance of NPCs in aged primates, including elderly humans.
Collapse
Affiliation(s)
- Ken Aizawa
- Department of Integrated Biosciences, University of Tokyo, Bioscience Building 402, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| | | | | | | |
Collapse
|
98
|
Puverel S, Nakatani H, Parras C, Soussi-Yanicostas N. Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice. J Comp Neurol 2009; 512:232-42. [DOI: 10.1002/cne.21888] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
99
|
AIZAWA K, AGEYAMA N, YOKOYAMA C, HISATSUNE T. Age-Dependent Alteration in Hippocampal Neurogenesis Correlates with Learning Performance of Macaque Monkeys. Exp Anim 2009; 58:403-7. [PMID: 19654438 DOI: 10.1538/expanim.58.403] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Ken AIZAWA
- Department of Integrated Biosciences, The University of Tokyo
| | - Naohide AGEYAMA
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation
| | - Chihiro YOKOYAMA
- Functional Probe Research Laboratory, Molecular Imaging Research Program, RIKEN Kobe Institute
| | | |
Collapse
|
100
|
Drapeau E, Nora Abrous D. Stem cell review series: role of neurogenesis in age-related memory disorders. Aging Cell 2008; 7:569-89. [PMID: 18221417 PMCID: PMC2990912 DOI: 10.1111/j.1474-9726.2008.00369.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2007] [Indexed: 02/06/2023] Open
Abstract
Neuroplasticity is characterized by growth and branching of dendrites, remodeling of synaptic contacts, and neurogenesis, thus allowing the brain to adapt to changes over time. It is maintained in adulthood but strongly repressed during aging. An age-related decline in neurogenesis is particularly pronounced in the two adult neurogenic areas, the subventricular zone and the dentate gyrus. This age-related decline seems to be attributable mainly to limited proliferation, associated with an age-dependent increase in quiescence and/or a lengthening of the cell cycle, and is closely dependent on environmental changes. Indeed, when triggered by appropriate signals, neurogenesis can be reactivated in senescent brains, thus confirming the idea that the age-related decrease in new neuron production is not an irreversible, cell-intrinsic process. The coevolution of neurogenesis and age-related memory deficits--especially regarding spatial memory--during senescence supports the idea that new neurons in the adult brain participate in memory processing, and that a reduction in the ability to generate new neurons contributes to the appearance of memory deficits with advanced age. Furthermore, the age-related changes in hippocampal plasticity and function are under environmental influences that can favor successful or pathological aging. A better understanding of the mechanisms that regulate neurogenesis is necessary to develop new therapeutic tools to cure or prevent the development of memory disorders that may appear during the course of aging in some individuals.
Collapse
Affiliation(s)
- Elodie Drapeau
- Doetsch's Laboratory, Columbia University, Department of PathologyP&S 14-511, 630 W 168th Street, New York, NY 10032, USA
| | - Djoher Nora Abrous
- INSERM U862, Bordeaux Neuroscience Research Center, University of Bordeaux 2Bordeaux Cedex 33077, France
| |
Collapse
|