51
|
Microbial communities associated with honey bees in Brazil and in the United States. Braz J Microbiol 2021; 52:2097-2115. [PMID: 34264502 DOI: 10.1007/s42770-021-00539-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
Honey bee colony losses worldwide call for a more in-depth understanding of the pathogenic and mutualistic components of the honey bee microbiota and their relation with the environment. In this descriptive study, we characterized the yeast and bacterial communities that arise from six substrates associated with honey bees: corbicular pollen, beebread, hive debris, intestinal contents, body surface of nurses and forager bees, comparing two different landscapes, Minas Gerais, Brazil and Maryland, United States. The sampling of five hives in Brazil and four in the USA yielded 217 yeast and 284 bacterial isolates. Whereas the yeast community, accounted for 47 species from 29 genera, was dominated in Brazil by Aureobasidium sp. and Candida orthopsilosis, the major yeast recovered from the USA was Debaryomyces hansenii. The bacterial community was more diverse, encompassing 65 species distributed across 31 genera. Overall, most isolates belonged to Firmicutes, genus Bacillus. Among LAB, species from Lactobacillus were the most prevalent. Cluster analysis evidenced high structuration of the microbial communities, with two distinguished microbial groups between Brazil and the United States. In general, the higher difference among sites and substrates were dependents on the turnover effect (~ 93% of the beta diversity), with a more pronounced effect of nestedness (~ 28%) observed from Brazil microbiota change. The relative abundance of yeasts and bacteria also showed the dissimilarity of the microbial communities between both environments. These results provide a comprehensive view of microorganisms associated with A. mellifera, highlighting the importance of the environment in the establishment of the microbiota associated with honey bees.
Collapse
|
52
|
Castelli L, Balbuena S, Branchiccela B, Zunino P, Liberti J, Engel P, Antúnez K. Impact of Chronic Exposure to Sublethal Doses of Glyphosate on Honey Bee Immunity, Gut Microbiota and Infection by Pathogens. Microorganisms 2021; 9:microorganisms9040845. [PMID: 33920750 PMCID: PMC8071123 DOI: 10.3390/microorganisms9040845] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
Glyphosate is the most used pesticide around the world. Although different studies have evidenced its negative effect on honey bees, including detrimental impacts on behavior, cognitive, sensory and developmental abilities, its use continues to grow. Recent studies have shown that it also alters the composition of the honey bee gut microbiota. In this study we explored the impact of chronic exposure to sublethal doses of glyphosate on the honey bee gut microbiota and its effects on the immune response, infection by Nosema ceranae and Deformed wing virus (DWV) and honey bee survival. Glyphosate combined with N. ceranae infection altered the structure and composition of the honey bee gut microbiota, for example by decreasing the relative abundance of the core members Snodgrassella alvi and Lactobacillus apis. Glyphosate increased the expression of some immune genes, possibly representing a physiological response to mitigate its negative effects. However, this response was not sufficient to maintain honey bee health, as glyphosate promoted the replication of DWV and decreased the expression of vitellogenin, which were accompanied by a reduced life span. Infection by N. ceranae also alters honey bee immunity although no synergistic effect with glyphosate was observed. These results corroborate previous findings suggesting deleterious effects of widespread use of glyphosate on honey bee health, and they contribute to elucidate the physiological mechanisms underlying a global decline of pollination services.
Collapse
Affiliation(s)
- Loreley Castelli
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
| | - Sofía Balbuena
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
| | - Belén Branchiccela
- Sección Apicultura, Instituto Nacional de Investigación Agropecuaria, Colonia 70002, Uruguay;
| | - Pablo Zunino
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
| | - Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland; (J.L.); (P.E.)
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland; (J.L.); (P.E.)
| | - Karina Antúnez
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda, Italia 3318, Montevideo 11600, Uruguay; (L.C.); (S.B.); (P.Z.)
- Correspondence: ; Tel.: +598-2-4871616
| |
Collapse
|
53
|
Daisley BA, Reid G. BEExact: a Metataxonomic Database Tool for High-Resolution Inference of Bee-Associated Microbial Communities. mSystems 2021; 6:e00082-21. [PMID: 33824193 PMCID: PMC8546966 DOI: 10.1128/msystems.00082-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
High-throughput 16S rRNA gene sequencing technologies have robust potential to improve our understanding of bee (Hymenoptera: Apoidea)-associated microbial communities and their impact on hive health and disease. Despite recent computation algorithms now permitting exact inferencing of high-resolution exact amplicon sequence variants (ASVs), the taxonomic classification of these ASVs remains a challenge due to inadequate reference databases. To address this, we assemble a comprehensive data set of all publicly available bee-associated 16S rRNA gene sequences, systematically annotate poorly resolved identities via inclusion of 618 placeholder labels for uncultivated microbial dark matter, and correct for phylogenetic inconsistencies using a complementary set of distance-based and maximum likelihood correction strategies. To benchmark the resultant database (BEExact), we compare performance against all existing reference databases in silico using a variety of classifier algorithms to produce probabilistic confidence scores. We also validate realistic classification rates on an independent set of ∼234 million short-read sequences derived from 32 studies encompassing 50 different bee types (36 eusocial and 14 solitary). Species-level classification rates on short-read ASVs range from 80 to 90% using BEExact (with ∼20% due to "bxid" placeholder names), whereas only ∼30% at best can be resolved with current universal databases. A series of data-driven recommendations are developed for future studies. We conclude that BEExact (https://github.com/bdaisley/BEExact) enables accurate and standardized microbiota profiling across a broad range of bee species-two factors of key importance to reproducibility and meaningful knowledge exchange within the scientific community that together, can enhance the overall utility and ecological relevance of routine 16S rRNA gene-based sequencing endeavors.IMPORTANCE The failure of current universal taxonomic databases to support the rapidly expanding field of bee microbiota research has led to many investigators relying on "in-house" reference sets or manual classification of sequence reads (usually based on BLAST searches), often with vague identity thresholds and subjective taxonomy choices. This time-consuming, error- and bias-prone process lacks standardization, cripples the potential for comparative cross-study analysis, and in many cases is likely to incorrectly sway study conclusions. BEExact is structured on and leverages several complementary bioinformatic techniques to enable refined inference of bee host-associated microbial communities without any other methodological modifications necessary. It also bridges the gap between current practical outcomes (i.e., phylotype-to-genus level constraints with 97% operational taxonomic units [OTUs]) and the theoretical resolution (i.e., species-to-strain level classification with 100% ASVs) attainable in future microbiota investigations. Other niche habitats could also likely benefit from customized database curation via implementation of the novel approaches introduced in this study.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
- Department of Surgery, Schulich School of Medicine, London, Ontario, Canada
| |
Collapse
|
54
|
Calvelo J, D'Anatro A. Mitochondrial genome architecture and phylogenetic relationships of Odontesthes argentinensis within Atherinomorpha. Genetica 2021; 149:129-141. [PMID: 33817771 DOI: 10.1007/s10709-021-00116-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/15/2021] [Indexed: 12/30/2022]
Abstract
Silversides are a widely distributed group across South America, with several species occupying marine, freshwater and estuarine environments. Several authors suggest main transitions among these environments took place during Pleistocene, and were accompanied with rapid speciation events. This scenario produced very limited genetic and morphological differentiation among the species. However, most of these surveys have an incomplete coverage of the intraspecific genetic diversity of the taxa studied. In this work, we reconstructed six mitochondrial genomes of O. argentinensis using transcriptomic data, and used them-in combination with several nuclear markers retrieved from the same transcriptomes-to explore the effect of additional coverage of intraspecific diversity of this species in phylogenetic reconstructions. Unlike previous works, phylogenetic analyses failed to identify O. argentinensis as a monophyletic group in relation with closely related taxa. Our results suggest that several species of the genus, especially those related to O. argentinensis, need further taxonomic revision.
Collapse
Affiliation(s)
- Javier Calvelo
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Alejandro D'Anatro
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay.
| |
Collapse
|
55
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|
56
|
Yu Y, Wang Y, Li H, Yu X, Shi W, Zhai J. Comparison of Microbial Communities in Colorado Potato Beetles ( Leptinotarsa decemlineata Say) Collected From Different Sources in China. Front Microbiol 2021; 12:639913. [PMID: 33815327 PMCID: PMC8017321 DOI: 10.3389/fmicb.2021.639913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial communities in insects are related to their geographical sources and contribute to adaptation to the local habitat. The Colorado potato beetle (Leptinotarsa decemlineata) (CPB) is a potato pest that causes serious economic losses in Xinjiang Uygur Autonomous Region (XJ) and Heilongjiang Province (HL), China. The influence of microorganisms in the invasion and dispersal of CPB is unclear. We studied microbial communities of CPB collected from nine geographic sources in China using high throughput sequencing technology. Bacteroidetes, Firmicutes, and Proteobacteria were the most dominant phyla, Clostridia, Bacteroidetes, and γ-Proteobacteria were the most dominant classes, Enterobacterales, Lactobacillales, Clostridiales, and Bacteroidales were the most dominant orders, and Enterobacteriaceae, Streptococcidae, Verrucomicrobiaceae, and Rikenellaceae were the most dominant families. There were significant differences, among sources, in the relative abundance of taxa at the genus level. A total of 383 genera were identified, and the dominant bacteria at the genus level were compared between XJ and HL. Pseudomonas was the unique dominant microorganism in the HL area, and the other four microorganisms (Lelliottia, Enterococcus, Enterobacter, and Lactococcus) were common within the 2 regions. Bacterial community diversity in CPB from Urumqi, Jimunai, and Wenquan was higher than diversity in other regions. T-Distributed Stochastic Neighbor Embedding (tSNE) analysis indicated that order and genus were appropriate taxonomic levels to distinguish geographical sources of CPB. These findings provide insight into the diversity of microorganisms of CPB in the differences among geographically isolated populations.
Collapse
Affiliation(s)
- Yanxue Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | | | - Hongwei Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xin Yu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China.,Department of Insects, School of Plant Protection, China Agricultural University, Beijing, China
| | - Wangpeng Shi
- Department of Insects, School of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Zhai
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
57
|
|
58
|
Aziz G, Tariq M, Zaidi AH. Mining indigenous honeybee gut microbiota for Lactobacillus with probiotic potential. MICROBIOLOGY-SGM 2021; 167. [PMID: 33587693 DOI: 10.1099/mic.0.001032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study was done to explore the diversity of lactic acid bacteria (LAB) associated with the gastrointestinal tract (GIT) of honeybee species endemic to northeastern Pakistan. Healthy worker bees belonging to Apis mellifera, A. dorsata, A. cerana and A. florea were collected from hives and the surroundings of a major apiary in the region. The 16S rRNA amplicon sequencing revealed a microbial community in A. florea that was distinct from the others in having an abundance of Lactobacillus and Bifidobacteria. However, this was not reflected in the culturable bacteria obtained from these species. The isolates were characterized for safety parameters, and 20 LAB strains deemed safe were evaluated for resistance to human GIT stresses like acid and bile, adhesion and adhesiveness, and anti-pathogenicity. The five most robust strains, Enterococcus saigonensis NPL780a, Lactobacillus rapi NPL782a, Lactobacillus kunkeei NPL783a, and NPL784, and Lactobacillus paracasei NPL783b, were identified through normalized Pearson (n) principal components analysis (PCA). These strains were checked for inhibition of human pathogens, antibiotic resistance, osmotic tolerance, metabolic and enzymatic functions, and carbohydrate utilization, along with antioxidative and cholesterol-removing potential. The findings suggest at least three strains (NPL 783a, 784 and 782a) as candidates for further in vitro and in vivo investigations of their potential health benefits and application as novel probiotic adjuncts.
Collapse
Affiliation(s)
- Ghazal Aziz
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan
| | - Muhammad Tariq
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan.,National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan
| | - Arsalan Haseeb Zaidi
- National Probiotic Lab-NIBGE, Jhang Road, Faisalabad 38000 (Punjab), Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
59
|
Hupfauf S, Etemadi M, Fernández-Delgado Juárez M, Gómez-Brandón M, Insam H, Podmirseg SM. CoMA - an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. PLoS One 2020; 15:e0243241. [PMID: 33264369 PMCID: PMC7710066 DOI: 10.1371/journal.pone.0243241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
In recent years, there has been a veritable boost in next-generation sequencing (NGS) of gene amplicons in biological and medical studies. Huge amounts of data are produced and need to be analyzed adequately. Various online and offline analysis tools are available; however, most of them require extensive expertise in computer science or bioinformatics, and often a Linux-based operating system. Here, we introduce "CoMA-Comparative Microbiome Analysis" as a free and intuitive analysis pipeline for amplicon-sequencing data, compatible with any common operating system. Moreover, the tool offers various useful services including data pre-processing, quality checking, clustering to operational taxonomic units (OTUs), taxonomic assignment, data post-processing, data visualization, and statistical appraisal. The workflow results in highly esthetic and publication-ready graphics, as well as output files in standardized formats (e.g. tab-delimited OTU-table, BIOM, NEWICK tree) that can be used for more sophisticated analyses. The CoMA output was validated by a benchmark test, using three mock communities with different sample characteristics (primer set, amplicon length, diversity). The performance was compared with that of Mothur, QIIME and QIIME2-DADA2, popular packages for NGS data analysis. Furthermore, the functionality of CoMA is demonstrated on a practical example, investigating microbial communities from three different soils (grassland, forest, swamp). All tools performed well in the benchmark test and were able to reveal the majority of all genera in the mock communities. Also for the soil samples, the results of CoMA were congruent to those of the other pipelines, in particular when looking at the key microbial players.
Collapse
Affiliation(s)
- Sebastian Hupfauf
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - María Gómez-Brandón
- Department of Ecology and Animal Biology, GEA Group, University of Vigo, Vigo, Spain
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
60
|
Tola YH, Waweru JW, Hurst GDD, Slippers B, Paredes JC. Characterization of the Kenyan Honey Bee ( Apis mellifera) Gut Microbiota: A First Look at Tropical and Sub-Saharan African Bee Associated Microbiomes. Microorganisms 2020; 8:microorganisms8111721. [PMID: 33153032 PMCID: PMC7692941 DOI: 10.3390/microorganisms8111721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota plays important roles in many physiological processes of the host including digestion, protection, detoxification, and development of immune responses. The honey bee (Apis mellifera) has emerged as model for gut-microbiota host interaction studies due to its gut microbiota being highly conserved and having a simple composition. A key gap in this model is understanding how the microbiome differs regionally, including sampling from the tropics and in particular from Africa. The African region is important from the perspective of the native diversity of the bees, and differences in landscape and bee management. Here, we characterized the honey bee gut microbiota in sub-Saharan Africa using 16S rRNA amplicon sequencing. We confirm the presence of the core gut microbiota members and highlight different compositions of these communities across regions. We found that bees from the coastal regions harbor a higher relative abundance and diversity on core members. Additionally, we showed that Gilliamella, Snodgrassella, and Frischella dominate in all locations, and that altitude and humidity affect Gilliamella abundance. In contrast, we found that Lactobacillus was less common compared temperate regions of the world. This study is a first comprehensive characterization of the gut microbiota of honey bees from sub-Saharan Africa and underscores the need to study microbiome diversity in other indigenous bee species and regions.
Collapse
Affiliation(s)
- Yosef Hamba Tola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Jacqueline Wahura Waweru
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Juan C. Paredes
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
- Correspondence:
| |
Collapse
|
61
|
Castelli L, Branchiccela B, Garrido M, Invernizzi C, Porrini M, Romero H, Santos E, Zunino P, Antúnez K. Impact of Nutritional Stress on Honeybee Gut Microbiota, Immunity, and Nosema ceranae Infection. MICROBIAL ECOLOGY 2020; 80:908-919. [PMID: 32666305 DOI: 10.1007/s00248-020-01538-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/08/2020] [Indexed: 05/25/2023]
Abstract
Honeybees are important pollinators, having an essential role in the ecology of natural and agricultural environments. Honeybee colony losses episodes reported worldwide and have been associated with different pests and pathogens, pesticide exposure, and nutritional stress. This nutritional stress is related to the increase in monoculture areas which leads to a reduction of pollen availability and diversity. In this study, we examined whether nutritional stress affects honeybee gut microbiota, bee immunity, and infection by Nosema ceranae, under laboratory conditions. Consumption of Eucalyptus grandis pollen was used as a nutritionally poor-quality diet to study nutritional stress, in contraposition to the consumption of polyfloral pollen. Honeybees feed with Eucalyptus grandis pollen showed a lower abundance of Lactobacillus mellifer and Lactobacillus apis (Firm-4 and Firm-5, respectively) and Bifidobacterium spp. and a higher abundance of Bartonella apis, than honeybees fed with polyfloral pollen. Besides the impact of nutritional stress on honeybee microbiota, it also decreased the expression levels of vitellogenin and genes associated to immunity (glucose oxidase, hymenoptaecin and lysozyme). Finally, Eucalyptus grandis pollen favored the multiplication of Nosema ceranae. These results show that nutritional stress impacts the honeybee gut microbiota, having consequences on honeybee immunity and pathogen development. Those results may be useful to understand the influence of modern agriculture on honeybee health.
Collapse
Affiliation(s)
- L Castelli
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - B Branchiccela
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - M Garrido
- Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM-CONICET-CIC). Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Provincia de Buenos Aires, Argentina
| | - C Invernizzi
- Sección Etología, Facultad de Ciencias, Montevideo, Uruguay
| | - M Porrini
- Centro de Investigación en Abejas Sociales (CIAS). Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM-CONICET-CIC). Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Provincia de Buenos Aires, Argentina
| | - H Romero
- Departamento de Ecología y Evolución, Laboratorio de Organización y Evolución del Genoma. Facultad de Ciencias, Montevideo, Uruguay
| | - E Santos
- Sección Etología, Facultad de Ciencias, Montevideo, Uruguay
| | - P Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | - K Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
62
|
Parasite defense mechanisms in bees: behavior, immunity, antimicrobials, and symbionts. Emerg Top Life Sci 2020; 4:59-76. [PMID: 32558901 DOI: 10.1042/etls20190069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.
Collapse
|
63
|
Bacterial Composition, Community Structure, and Diversity in Apis nigrocincta Gut. Int J Microbiol 2020; 2020:6906921. [PMID: 32802072 PMCID: PMC7414324 DOI: 10.1155/2020/6906921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the honeybee gut bacteria is an essential aspect as honeybees are the primary pollinators of many crops. In this study, the honeybee-associated gut bacteria were investigated by targeting the V3-V4 region of 16S rRNA genes using the Illumina MiSeq. The adult worker was captured in an urban area in a dense settlement. In total, 83,018 reads were obtained, revealing six phyla from 749 bacterial operational taxonomic units (OTUs). The gut was dominated by Proteobacteria (58% of the total reads, including Enterobacteriaceae 28.2%, Erwinia 6.43%, and Klebsiella 4.90%), Firmicutes (29% of the total reads, including Lactococcus garvieae 13.45%, Lactobacillus spp. 8.19%, and Enterococcus spp. 4.47%), and Actinobacteria (8% of the total reads, including Bifidobacterium spp. 7.96%). Many of these bacteria belong to the group of lactic acid bacteria (LAB), which was claimed to be composed of beneficial bacteria involved in maintaining a healthy host. The honeybee was identified as Apis nigrocincta based on an identity BLAST search of its COI region. This study is the first report on the gut microbial community structure and composition of A. nigrocincta from Indonesia.
Collapse
|
64
|
Balzan S, Carraro L, Merlanti R, Lucatello L, Capolongo F, Fontana F, Novelli E, Larini I, Vitulo N, Cardazzo B. Microbial metabarcoding highlights different bacterial and fungal populations in honey samples from local beekeepers and market in north-eastern Italy. Int J Food Microbiol 2020; 334:108806. [PMID: 32805512 DOI: 10.1016/j.ijfoodmicro.2020.108806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/04/2023]
Abstract
Due to its chemical properties, honey does not foster the growth of microorganisms, however it may contain a rich microbial community, including viable, stressed, and not viable microbes. In order to characterize honey microbiota focusing on the difference between products from beekeepers and large retail in the present study a culture-independent approach based on DNA metabarcoding was applied. Honey samples were collected from Local Beekeepers (LB) and Market sales (M) during four years with the aim to investigate the microbiological quality in the honey market. Extraction and amplification of DNA from honey samples showed reduced efficiency with increasing age of honey, with the loss of 50-80% of samples four years old (2014). For this reason, only samples of similar age were compared and the analysis of microbial communities focused on year 2017, for a total of 75 samples. Differences in alpha and beta-diversity were evidenced comparing microbial communities between LB and M samples. In particular, contaminant bacteria dominated the microbiota in M samples while LB samples were enriched in Lactic Acid Bacteria (LAB) that cannot be isolated with culture-dependent approaches.
Collapse
Affiliation(s)
- Stefania Balzan
- Dept. of Comparative Biomedicine and Food Science, University of Padua, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Lisa Carraro
- Dept. of Comparative Biomedicine and Food Science, University of Padua, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Roberta Merlanti
- Dept. of Comparative Biomedicine and Food Science, University of Padua, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Lorena Lucatello
- Dept. of Comparative Biomedicine and Food Science, University of Padua, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Francesca Capolongo
- Dept. of Comparative Biomedicine and Food Science, University of Padua, Viale Università 16, 35020 Legnaro, PD, Italy.
| | - Federico Fontana
- Dept. of Comparative Biomedicine and Food Science, University of Padua, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Enrico Novelli
- Dept. of Comparative Biomedicine and Food Science, University of Padua, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Ilaria Larini
- Dept. of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Nicola Vitulo
- Dept. of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| | - Barbara Cardazzo
- Dept. of Comparative Biomedicine and Food Science, University of Padua, Viale Università 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
65
|
Chmiel JA, Daisley BA, Pitek AP, Thompson GJ, Reid G. Understanding the Effects of Sublethal Pesticide Exposure on Honey Bees: A Role for Probiotics as Mediators of Environmental Stress. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
66
|
Daisley BA, Pitek AP, Chmiel JA, Al KF, Chernyshova AM, Faragalla KM, Burton JP, Thompson GJ, Reid G. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. THE ISME JOURNAL 2020; 14:476-491. [PMID: 31664160 PMCID: PMC6976702 DOI: 10.1038/s41396-019-0541-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 11/12/2022]
Abstract
American foulbrood (AFB) is a highly virulent disease afflicting honey bees (Apis mellifera). The causative organism, Paenibacillus larvae, attacks honey bee brood and renders entire hives dysfunctional during active disease states, but more commonly resides in hives asymptomatically as inactive spores that elude even vigilant beekeepers. The mechanism of this pathogenic transition is not fully understood, and no cure exists for AFB. Here, we evaluated how hive supplementation with probiotic lactobacilli (delivered through a nutrient patty; BioPatty) affected colony resistance towards a naturally occurring AFB outbreak. Results demonstrated a significantly lower pathogen load and proteolytic activity of honey bee larvae from BioPatty-treated hives. Interestingly, a distinctive shift in the microbiota composition of adult nurse bees occurred irrespective of treatment group during the monitoring period, but only vehicle-supplemented nurse bees exhibited higher P. larvae loads. In vitro experiments utilizing laboratory-reared honey bee larvae showed Lactobacillus plantarum Lp39, Lactobacillus rhamnosus GR-1, and Lactobacillus kunkeei BR-1 (contained in the BioPatty) could reduce pathogen load, upregulate expression of key immune genes, and improve survival during P. larvae infection. These findings suggest the usage of a lactobacilli-containing hive supplement, which is practical and affordable for beekeepers, may be effective for reducing enzootic pathogen-related hive losses.
Collapse
Affiliation(s)
- Brendan A Daisley
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andrew P Pitek
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - John A Chmiel
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Kait F Al
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Anna M Chernyshova
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | | | - Jeremy P Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Graham J Thompson
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada.
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada.
- Department of Surgery, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
67
|
Onaru K, Ohno S, Kubo S, Nakanishi S, Hirano T, Mantani Y, Yokoyama T, Hoshi N. Immunotoxicity evaluation by subchronic oral administration of clothianidin in Sprague-Dawley rats. J Vet Med Sci 2020; 82:360-372. [PMID: 31983703 PMCID: PMC7118483 DOI: 10.1292/jvms.19-0689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neonicotinoid pesticides (NNs) act as agonists on nicotinic acetylcholine receptors (nAChRs) of insects, and there have been concerns about the effects of NNs on the health of mammals.
Since nAChRs are expressed in immune cells, it is possible that NNs disturb the immune system. However, few reports have examined the immunotoxicity of clothianidin (CLO), a
widely-used NN. Here, we report the effects of CLO on immune organs and type IV allergic reactions in ear auricles. We orally administered CLO at 0, 30 and 300 mg/kg/day
(CLO-0, 30 and 300) to Sprague-Dawley rats for 28 days. The effects were evaluated by organ and body weights, histopathology, and immunohistochemistry (TCRαβ, CD4, CD8,
CD11b, CD68, CD103). In addition, some cecal contents were subjected to preliminary gut microbiota analysis, because microbiota contribute to host homeostasis, including the immunity. Our
results showed loose stool, suppression of body weight gain, significant changes in organ weights (thymus: decreased; liver: increased) and changes of the gut microbiota in the
CLO-300 group. There were no obvious histopathological changes in immune organs. Granulomas of the ear auricles were found in one rat of each of the
CLO-30 and 300 groups, but CLO had no apparent effect on the thickness or immunohistochemistry in the ear auricles. We present new evidence that CLO affects the thymus and
intestine, and might enhance the local inflammatory response. These findings should contribute to the appropriate evaluation of the safety of NNs in the future.
Collapse
Affiliation(s)
- Kanoko Onaru
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Shuji Ohno
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Shizuka Kubo
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
68
|
Goelen T, Sobhy IS, Vanderaa C, Boer JG, Delvigne F, Francis F, Wäckers F, Rediers H, Verstrepen KJ, Wenseleers T, Jacquemyn H, Lievens B. Volatiles of bacteria associated with parasitoid habitats elicit distinct olfactory responses in an aphid parasitoid and its hyperparasitoid. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tim Goelen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM) Department of Microbial and Molecular Systems KU Leuven Leuven Belgium
| | - Islam S. Sobhy
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM) Department of Microbial and Molecular Systems KU Leuven Leuven Belgium
- Department of Plant Protection Faculty of Agriculture Suez Canal University Ismailia Egypt
| | - Christophe Vanderaa
- Laboratory of Socio‐Ecology & Social Evolution Biology Department KU Leuven Leuven Belgium
| | - Jetske G. Boer
- Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI) TERRA Université de Liège‐Gembloux Agro‐Bio Tech Gembloux Belgium
| | - Frédéric Francis
- Functional & Evolutionary Entomology TERRA Université de Liège‐Gembloux Agro‐Bio Tech Gembloux Belgium
| | - Felix Wäckers
- Biobest Westerlo Belgium
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM) Department of Microbial and Molecular Systems KU Leuven Leuven Belgium
| | - Kevin J. Verstrepen
- Lab for Systems Biology VIB Center for Microbiology & Centre of Microbial and Plant Genetics (CMPG) Lab for Genetics and Genomics Department of Microbial and Molecular Systems KU Leuven Leuven Belgium
| | - Tom Wenseleers
- Laboratory of Socio‐Ecology & Social Evolution Biology Department KU Leuven Leuven Belgium
| | - Hans Jacquemyn
- Laboratory of Plant Conservation and Population Biology Biology Department KU Leuven Leuven Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM) Department of Microbial and Molecular Systems KU Leuven Leuven Belgium
| |
Collapse
|
69
|
Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, Pietrykowska-Tudruj E, Staniec B. The microbiota of the Lasius fuliginosus – Pella laticollis myrmecophilous interaction. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1844322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- A. Kaczmarczyk-Ziemba
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - M. Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - G. K. Wagner
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - E. Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - B. Staniec
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
70
|
Barbosa MDM, Carneiro LT, Pereira MFDCDS, Rodriguez CZ, Chagas TRF, Moya W, Bergamini LL, Mancini MCS, Paes ND, Giraldo LCP. Future scenarios of land-use-cover effects on pollination supply and demand in São Paulo State, Brazil. BIOTA NEOTROPICA 2020. [DOI: 10.1590/1676-0611-bn-2019-0906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: Rapid land-use/land cover changes (LULCC) have led to habitat loss and fragmentation in the natural forest areas, which are mainly due to the intense and rapid expansion of urban areas and intense agricultural management. These processes are strongly threatening biodiversity maintenance and the ecosystem services provided by them. Among the ecosystem services under threat, pollination has been widely studied since this service is essential to promote food production and, therefore, human well-being. In a scenario of increasing LULCC it is crucial to understand the interplay between these changes, pollination demand by insect-dependent crops and pollinator availability to ensure these ecosystem services meet the increased demand for food production. In this study, we developed a conceptual model to disentangle the relationships between human-nature, especially LULCC, and its consequences, to the delivery of pollination service. We also presented a case study in the Brazilian São Paulo state, where we modeled the effects of predicted LULCC associated to agriculture expansion between the years 2012 and 2030 on pollinator demand by crops and pollinator supply, for fourteen economically important crops. Additionally, we systematized an expert-based Ecosystem Service matrix to estimate the influences of LULCC on the provision of pollination. Our results showed that by 2030, the demand for pollination will increase by 40% on average, while pollinator supply, estimated using suitability values for the different land-use/cover classes, will show, on average, a 3% decrease. Our results highlight the importance of considering the dialogue among stakeholders, governments, institutions, and scientists to find alternatives and strategies to promote pollinator-friendly practices and safeguard the provision of pollination services in a future under LULCC.
Collapse
|
71
|
Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. Gut microbiota structure differs between honeybees in winter and summer. ISME JOURNAL 2019; 14:801-814. [PMID: 31836840 PMCID: PMC7031341 DOI: 10.1038/s41396-019-0568-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/18/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022]
Abstract
Adult honeybees harbor a specialized gut microbiota of relatively low complexity. While seasonal differences in community composition have been reported, previous studies have focused on compositional changes rather than differences in absolute bacterial loads. Moreover, little is known about the gut microbiota of winter bees, which live much longer than bees during the foraging season, and which are critical for colony survival. We quantified seven core members of the bee gut microbiota in a single colony over 2 years and characterized the community composition in 14 colonies during summer and winter. Our data show that total bacterial loads substantially differ between foragers, nurses, and winter bees. Long-lived winter bees had the highest bacterial loads and the lowest community α-diversity, with a characteristic shift toward high levels of Bartonella and Commensalibacter, and a reduction of opportunistic colonizers. Using gnotobiotic bee experiments, we show that diet is a major contributor to the observed differences in bacterial loads. Overall, our study reveals that the gut microbiota of winter bees is remarkably different from foragers and nurses. Considering the importance of winter bees for colony survival, future work should focus on the role of the gut microbiota in winter bee health and disease.
Collapse
Affiliation(s)
- Lucie Kešnerová
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Olivier Emery
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Michaël Troilo
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Joanito Liberti
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Berra Erkosar
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
72
|
Calcagnile M, Tredici SM, Talà A, Alifano P. Bacterial Semiochemicals and Transkingdom Interactions with Insects and Plants. INSECTS 2019; 10:E441. [PMID: 31817999 PMCID: PMC6955855 DOI: 10.3390/insects10120441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
A peculiar feature of all living beings is their capability to communicate. With the discovery of the quorum sensing phenomenon in bioluminescent bacteria in the late 1960s, it became clear that intraspecies and interspecies communications and social behaviors also occur in simple microorganisms such as bacteria. However, at that time, it was difficult to imagine how such small organisms-invisible to the naked eye-could influence the behavior and wellbeing of the larger, more complex and visible organisms they colonize. Now that we know this information, the challenge is to identify the myriad of bacterial chemical signals and communication networks that regulate the life of what can be defined, in a whole, as a meta-organism. In this review, we described the transkingdom crosstalk between bacteria, insects, and plants from an ecological perspective, providing some paradigmatic examples. Second, we reviewed what is known about the genetic and biochemical bases of the bacterial chemical communication with other organisms and how explore the semiochemical potential of a bacterium can be explored. Finally, we illustrated how bacterial semiochemicals managing the transkingdom communication may be exploited from a biotechnological point of view.
Collapse
Affiliation(s)
| | | | | | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (M.C.); (S.M.T.); (A.T.)
| |
Collapse
|
73
|
The effect of carbohydrate sources: Sucrose, invert sugar and components of mānuka honey, on core bacteria in the digestive tract of adult honey bees (Apis mellifera). PLoS One 2019; 14:e0225845. [PMID: 31800608 PMCID: PMC6892475 DOI: 10.1371/journal.pone.0225845] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Bacteria within the digestive tract of adult honey bees are likely to play a key role in the digestion of sugar-rich foods. However, the influence of diet on honey bee gut bacteria is not well understood. During periods of low floral abundance, beekeepers often supplement the natural sources of carbohydrate that honey bees collect, such as nectar, with various forms of carbohydrates such as sucrose (a disaccharide) and invert sugar (a mixture of the monosaccharides glucose and fructose). We compared the effect of these sugar supplements on the relative abundance of bacteria in the gut of bees by feeding bees from a single colony, two natural diets: mānuka honey, a monofloral honey with known antibacterial properties, and a hive diet; and artificial diets of invert sugar, sucrose solution, and sucrose solutions containing synthesised compounds associated with the antibacterial properties of mānuka honey. 16S ribosomal RNA (rRNA)-based sequencing showed that dietary regimes containing mānuka honey, sucrose and invert sugar did not alter the relative abundance of dominant core bacteria after 6 days of being fed these diets. However, sucrose-rich diets increased the relative abundances of three sub-dominant core bacteria, Rhizobiaceae, Acetobacteraceae, and Lactobacillus kunkeei, and decreased the relative abundance of Frischella perrara, all which significantly altered the bacterial composition. Acetogenic bacteria from the Rhizobiaceae and Acetobacteraceae families increased two- to five-fold when bees were fed sucrose. These results suggest that sucrose fuels the proliferation of specific low abundance primary sucrose-feeders, which metabolise sugars into monosaccharides, and then to acetate.
Collapse
|
74
|
Characteristics of Microbial Communities of Pachygrontha antennata (Hemiptera: Pachygronthidae) in Relation to Habitat Variables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234668. [PMID: 31771134 PMCID: PMC6926961 DOI: 10.3390/ijerph16234668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022]
Abstract
The microbial community interacts with the environment and the health and immune function of its host both directly and indirectly. However, very few studies about microbial communities have considered habitat and external environmental variables. This study examined environmental influences on the microbial community of Pachygrontha antennata, which is found in various habitats (e.g., urban, forested, and agricultural areas). The results demonstrated that the composition of the microbial community differed according to land use, while the bacterial diversity did not. In urban areas with high environmental heterogeneity, microbial community diversity tended to be high. Furthermore, bacteria in forests and agricultural areas (e.g., Paraburkholderia, Burkholderia) have been found to be highly correlated with habitat variables. Therefore, we suggest that habitat variables should be considered in future symbiotic studies.
Collapse
|
75
|
Urbieta-Magro A, Higes M, Meana A, Barrios L, Martín-Hernández R. Age and Method of Inoculation Influence the Infection of Worker Honey Bees ( Apis mellifera) by Nosema ceranae. INSECTS 2019; 10:E417. [PMID: 31766667 PMCID: PMC6956240 DOI: 10.3390/insects10120417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023]
Abstract
The microsporidian parasite Nosema ceranae is a highly prevalent, global honey bee pathogen. Apis mellifera is considered to be a relatively recent host for this microsporidia, which raises questions as to how it affects its host's physiology, behavior and longevity, both at the individual and colony level. As such, honey bees were inoculated with fresh purified spores of this pathogen, both individually (Group A) or collectively (Group B) and they were studied from 0 to 15 days post-emergence (p.e.) to evaluate the effect of bee age and the method of inoculation at 7 days post-infection. The level of infection was analyzed individually by qPCR by measuring the relative amount of the N. ceranae polar tubule protein 3 (PTP3) gene. The results show that the bee's age and the method of infection directly influence parasite load, and thus, early disease development. Significant differences were found regarding bee age at the time of infection, whereby the youngest bees (new-born and 1 day p.e.) developed the highest parasite load, with this load decreasing dramatically in bees infected at 2 days p.e. before increasing again in bees infected at 3-4 days p.e. The parasite load in bees infected when older than 4 days p.e. diminished as they aged. When the age cohort data was pooled and grouped according to the method of infection, a significantly higher mean concentration and lower variation in N. ceranae infection was evident in Group A, indicating greater variation in experimental infection when spores were administered collectively to bees through their food. In summary, these data indicate that both biological and experimental factors should be taken into consideration when comparing data published in the literature.
Collapse
Affiliation(s)
- Almudena Urbieta-Magro
- IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.-M.); (M.H.)
| | - Mariano Higes
- IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.-M.); (M.H.)
| | - Aránzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Laura Barrios
- Statistics Department, Computing Center SGAI-CSIC, 28006 Madrid, Spain
| | - Raquel Martín-Hernández
- IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Camino de San Martín s/n, 19180 Marchamalo, Spain; (A.U.-M.); (M.H.)
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, 02006 Albacete, Spain
| |
Collapse
|
76
|
Subotic S, Boddicker AM, Nguyen VM, Rivers J, Briles CE, Mosier AC. Honey bee microbiome associated with different hive and sample types over a honey production season. PLoS One 2019; 14:e0223834. [PMID: 31703071 PMCID: PMC6839897 DOI: 10.1371/journal.pone.0223834] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/29/2019] [Indexed: 12/20/2022] Open
Abstract
Western honey bees (Apis mellifera) are important pollinators in natural and agricultural ecosystems, and yet are in significant decline due to several factors including parasites, pathogens, pesticides, and habitat loss. A new beehive construction called the FlowTM hive was developed in 2015 to allow honey to be harvested directly from the hive without opening it, resulting in an apparent decrease in stress to the bees. Here, we compared the Flow and traditional Langstroth hive constructions to determine if there were any significant differences in the bee microbiome. The bee-associated bacterial communities did not differ between hive constructions and varied only slightly over the course of a honey production season. Samples were dominated by taxa belonging to the Lactobacillus, Bifidobacterium, Bartonella, Snodgrassella, Gilliamella, and Frischella genera, as observed in previous studies. The top ten most abundant taxa made up the majority of the sequence data; however, many low abundance organisms were persistent across the majority of samples regardless of sampling time or hive type. We additionally compared different preparations of whole bee and dissected bee samples to elaborate on previous bee microbiome research. We found that bacterial sequences were overwhelming derived from the bee guts, and microbes on the bee surfaces (including pollen) contributed little to the overall microbiome of whole bees. Overall, the results indicate that different hive constructions and associated disturbance levels do not influence the bee gut microbiome, which has broader implications for supporting hive health.
Collapse
Affiliation(s)
- Sladjana Subotic
- Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America
| | - Andrew M. Boddicker
- Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America
| | - Vy M. Nguyen
- Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America
| | - James Rivers
- Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America
| | - Christy E. Briles
- Department of Geography and Environmental Sciences, University of Colorado, Denver, Colorado, United States of America
| | - Annika C. Mosier
- Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
77
|
Dong ZX, Li HY, Chen YF, Wang F, Deng XY, Lin LB, Zhang QL, Li JL, Guo J. Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different developmental stages. Microbiol Res 2019; 231:126370. [PMID: 31739261 DOI: 10.1016/j.micres.2019.126370] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023]
Abstract
The role of the gut microbiome in animal health has become increasingly evident. Although the structure of the gut microbiome of A. mellifera is well known, little is known about the dynamic change across different developmental stages. In this study, we explored the dynamic changes of the gut microbiota of A. mellifera at different developmental stages covering the whole life cycle using high-throughput 16S rRNA gene sequencing. The results indicated that the core (shared) gut microbiota changes significantly among different developmental stages. The diversity of the bacterial community in workers among different ages was significantly different. In addition, by comparing the core gut microbiota among different-aged workers, we found that newly emerged workers had fewer core microbiota. Three genera, Gilliamella, Frischella, and Snodgrassella, were significantly colonized at 1 day poste mergence (dpe); Lactobacillus, Bifidobacterium, Commensalibacter were significantly colonized at 3 dpe and significantly reduced with Gilliamella. Lactobacillus kunkeei and Bartonella were significantly colonized at 12 dpe and were significantly decreased with Lactobacillus helsingborgensis. Commensalibacter and Bifidobacterium were significantly decreased at 25 dpe, and Bacteroides, Escherichia-Shigella, and Porphyromonadaceae were significantly decreased between 19 and 25 dpe. Our results reveal the succession of the gut microbiota of workers from birth to senescence, which provides a theoretical basis for further exploring the roles of gut microbiota during different developmental stages.
Collapse
Affiliation(s)
- Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Engineering Research Center for Application Technology of Green Agricultural Microbes of Yunnan College, Kunming, Yunnan 650500, China
| | - Huan-Yuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Engineering Research Center for Application Technology of Green Agricultural Microbes of Yunnan College, Kunming, Yunnan 650500, China
| | - Yi-Fei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Engineering Research Center for Application Technology of Green Agricultural Microbes of Yunnan College, Kunming, Yunnan 650500, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Engineering Research Center for Application Technology of Green Agricultural Microbes of Yunnan College, Kunming, Yunnan 650500, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Engineering Research Center for Application Technology of Green Agricultural Microbes of Yunnan College, Kunming, Yunnan 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Engineering Research Center for Application Technology of Green Agricultural Microbes of Yunnan College, Kunming, Yunnan 650500, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Engineering Research Center for Application Technology of Green Agricultural Microbes of Yunnan College, Kunming, Yunnan 650500, China.
| | - Ji-Lian Li
- Ministry Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Engineering Research Center for Application Technology of Green Agricultural Microbes of Yunnan College, Kunming, Yunnan 650500, China.
| |
Collapse
|
78
|
López-Uribe MM, Ricigliano VA, Simone-Finstrom M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu Rev Anim Biosci 2019; 8:269-294. [PMID: 31618045 DOI: 10.1146/annurev-animal-020518-115045] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| |
Collapse
|
79
|
Voulgari-Kokota A, McFrederick QS, Steffan-Dewenter I, Keller A. Drivers, Diversity, and Functions of the Solitary-Bee Microbiota. Trends Microbiol 2019; 27:1034-1044. [PMID: 31451346 DOI: 10.1016/j.tim.2019.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Abstract
Accumulating reports of global bee declines have drawn much attention to the bee microbiota and its importance. Most research has focused on social bees, while solitary species have received scant attention despite their enormous biodiversity, ecological importance, and agroeconomic value. We review insights from several recent studies on diversity, function, and drivers of the solitary-bee microbiota, and compare these factors with those relevant to the social-bee microbiota. Despite basic similarities, the social-bee model, with host-specific core microbiota and social transmission, is not representative of the vast majority of bee species. The solitary-bee microbiota exhibits greater variability and biodiversity, with a strong impact of environmental acquisition routes. Our synthesis identifies outstanding questions that will build understanding of these interactions, responses to environmental threats, and consequences for health.
Collapse
Affiliation(s)
- Anna Voulgari-Kokota
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord, Emil-Fischer Straße, 97074 Würzburg, Germany
| | - Quinn S McFrederick
- Department of Entomology, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Keller
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord, Emil-Fischer Straße, 97074 Würzburg, Germany.
| |
Collapse
|
80
|
Rouzé R, Moné A, Delbac F, Belzunces L, Blot N. The Honeybee Gut Microbiota Is Altered after Chronic Exposure to Different Families of Insecticides and Infection by Nosema ceranae. Microbes Environ 2019; 34:226-233. [PMID: 31378758 PMCID: PMC6759349 DOI: 10.1264/jsme2.me18169] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The gut of the European honeybee Apis mellifera is the site of exposure to multiple stressors, such as pathogens and ingested chemicals. Therefore, the gut microbiota, which contributes to host homeostasis, may be altered by these stressors. The abundance of major bacterial taxa in the gut was evaluated in response to infection with the intestinal parasite Nosema ceranae or chronic exposure to low doses of the neurotoxic insecticides coumaphos, fipronil, thiamethoxam, and imidacloprid. Experiments were performed under laboratory conditions on adult workers collected from hives in February (winter bees) and July (summer bees) and revealed season-dependent changes in the bacterial community composition. N. ceranae and a lethal fipronil treatment increased the relative abundance of both Gilliamella apicola and Snodgrassella alvi in surviving winter honeybees. The parasite and a sublethal exposure to all insecticides decreased the abundance of Bifidobacterium spp. and Lactobacillus spp. regardless of the season. The similar effects induced by insecticides belonging to distinct molecular families suggested a shared and indirect mode of action on the gut microbiota, possibly through aspecific alterations in gut homeostasis. These results demonstrate that infection and chronic exposure to low concentrations of insecticides may affect the honeybee holobiont.
Collapse
Affiliation(s)
- Régis Rouzé
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | - Anne Moné
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | - Frédéric Delbac
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| | | | - Nicolas Blot
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement"
| |
Collapse
|
81
|
Romero S, Nastasa A, Chapman A, Kwong WK, Foster LJ. The honey bee gut microbiota: strategies for study and characterization. INSECT MOLECULAR BIOLOGY 2019; 28:455-472. [PMID: 30652367 DOI: 10.1111/imb.12567] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gut microbiota research is an emerging field that improves our understanding of the ecological and functional dynamics of gut environments. The honey bee gut microbiota is a highly rewarding community to study, as honey bees are critical pollinators of many crops for human consumption and produce valuable commodities such as honey and wax. Most significantly, unique characteristics of the Apis mellifera gut habitat make it a valuable model system. This review discusses methods and pipelines used in the study of the gut microbiota of Ap. mellifera and closely related species for four main purposes: identifying microbiota taxonomy, characterizing microbiota genomes (microbiome), characterizing microbiota-microbiota interactions and identifying functions of the microbial community in the gut. The purpose of this contribution is to increase understanding of honey bee gut microbiota, to facilitate bee microbiota and microbiome research in general and to aid design of future experiments in this growing field.
Collapse
Affiliation(s)
- S Romero
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Nastasa
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - A Chapman
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - W K Kwong
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - L J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
82
|
Rothman JA, Andrikopoulos C, Cox-Foster D, McFrederick QS. Floral and Foliar Source Affect the Bee Nest Microbial Community. MICROBIAL ECOLOGY 2019; 78:506-516. [PMID: 30552443 DOI: 10.1007/s00248-018-1300-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Managed pollinators such as the alfalfa leafcutting bee, Megachile rotundata, are essential to the production of a wide variety of agricultural crops. These pollinators encounter a diverse array of microbes when foraging for food and nest-building materials on various plants. To test the hypothesis that food and nest-building source affects the composition of the bee-nest microbiome, we exposed M. rotundata adults to treatments that varied both floral and foliar source in a 2 × 2 factorial design. We used 16S rRNA gene and internal transcribed spacer (ITS) sequencing to capture the bacterial and fungal diversity of the bee nests. We found that nest microbial communities were significantly different between treatments, indicating that bee nests become inoculated with environmentally derived microbes. We did not find evidence of interactions between the fungi and bacteria within our samples. Furthermore, both the bacterial and fungal communities were quite diverse and contained numerous exact sequence variants (ESVs) of known plant and bee pathogens that differed based on treatment. Our research indicates that bees deposit plant-associated microbes into their nests, including multiple plant pathogens such as smut fungi and bacteria that cause blight and wilt. The presence of plant pathogens in larval pollen provisions highlights the potential for bee nests to act as disease reservoirs across seasons. We therefore suggest that future research should investigate the ability of bees to transmit pathogens from nest to host plant.
Collapse
Affiliation(s)
- Jason A Rothman
- Graduate Program in Microbiology, University of California, 900 University Ave., Riverside, CA, 92521, USA
- Department of Entomology, University of California, 900 University Ave., Riverside, CA, 92521, USA
| | - Corey Andrikopoulos
- Department of Biology, Utah State University, UMC5310, Logan, UT, 84322, USA
- USDA-ARS Pollinating Insect-Biology, Management, and Systematics Research, Logan, UT, 84322, USA
| | - Diana Cox-Foster
- Department of Biology, Utah State University, UMC5310, Logan, UT, 84322, USA.
- USDA-ARS Pollinating Insect-Biology, Management, and Systematics Research, Logan, UT, 84322, USA.
| | - Quinn S McFrederick
- Graduate Program in Microbiology, University of California, 900 University Ave., Riverside, CA, 92521, USA.
- Department of Entomology, University of California, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
83
|
Blot N, Veillat L, Rouzé R, Delatte H. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota. PLoS One 2019; 14:e0215466. [PMID: 30990837 PMCID: PMC6467416 DOI: 10.1371/journal.pone.0215466] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
The honeybee (Apis mellifera) has to cope with multiple environmental stressors, especially pesticides. Among those, the herbicide glyphosate and its main metabolite, the aminomethylphosphonic acid (AMPA), are among the most abundant and ubiquitous contaminant in the environment. Through the foraging and storing of contaminated resources, honeybees are exposed to these xenobiotics. As ingested glyphosate and AMPA are directly in contact with the honeybee gut microbiota, we used quantitative PCR to test whether they could induce significant changes in the relative abundance of the major gut bacterial taxa. Glyphosate induced a strong decrease in Snodgrassella alvi, a partial decrease of a Gilliamella apicola and an increase in Lactobacillus spp. abundances. In vitro, glyphosate reduced the growth of S. alvi and G. apicola but not Lactobacillus kunkeei. Although being no bee killer, we confirmed that glyphosate can have sublethal effects on the honeybee microbiota. To test whether such imbalanced microbiota could favor pathogen development, honeybees were exposed to glyphosate and to spores of the intestinal parasite Nosema ceranae. Glyphosate did not significantly enhance the effect of the parasite infection. Concerning AMPA, while it could reduce the growth of G. apicola in vitro, it did not induce any significant change in the honeybee microbiota, suggesting that glyphosate is the active component modifying the gut communities.
Collapse
Affiliation(s)
- Nicolas Blot
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement", Clermont–Ferrand, France
| | - Loïs Veillat
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement", Clermont–Ferrand, France
| | - Régis Rouzé
- Université Clermont Auvergne, CNRS, Laboratoire "Microorganismes: Génome et Environnement", Clermont–Ferrand, France
| | - Hélène Delatte
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, Pôle de Protection des Plantes, Saint-Pierre, France
| |
Collapse
|
84
|
Fromont C, Adair KL, Douglas AE. Correlation and causation between the microbiome, Wolbachia and host functional traits in natural populations of drosophilid flies. Mol Ecol 2019; 28:1826-1841. [PMID: 30714238 DOI: 10.1111/mec.15041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Resident microorganisms are known to influence the fitness and traits of animals under controlled laboratory conditions, but the relevance of these findings to wild animals is uncertain. This study investigated the host functional correlates of microbiota composition in a wild community of three sympatric species of mycophagous drosophilid flies, Drosophila falleni, Drosophila neotestacea and Drosophila putrida. Specifically, we quantified bacterial communities and host transcriptomes by parallel 16S rRNA gene amplicon sequencing and RNA-Seq of individual flies. Among-fly variation in microbiota composition did not partition strongly by sex or species, and included multiple modules, that is, sets of bacterial taxa whose abundance varied in concert across different flies. The abundance of bacteria in several modules varied significantly with multiple host transcripts, especially in females, but the identity of the correlated host transcriptional functions differed with host species, including epithelial barrier function in D. falleni, muscle function in D. putrida, and insect growth and development in D. neotestacea. In D. neotestacea, which harbours the endosymbionts Wolbachia and Spiroplasma, Wolbachia promotes the abundance of Spiroplasma, and is positively correlated with abundance of Lactobacillales and Bacteroidales. Furthermore, most correlations between host gene expression and relative abundance of bacterial modules were co-correlated with abundance of Wolbachia (but not Spiroplasma), indicative of an interdependence between host functional traits, microbiota composition and Wolbachia abundance in this species. These data suggest that, in these natural populations of drosophilid flies, different host species interact with microbial communities in functionally different ways that can vary with the abundance of endosymbionts.
Collapse
Affiliation(s)
| | - Karen L Adair
- Department of Entomology, Cornell University, Ithaca, New York
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
85
|
Osterman J, Wintermantel D, Locke B, Jonsson O, Semberg E, Onorati P, Forsgren E, Rosenkranz P, Rahbek-Pedersen T, Bommarco R, Smith HG, Rundlöf M, de Miranda JR. Clothianidin seed-treatment has no detectable negative impact on honeybee colonies and their pathogens. Nat Commun 2019; 10:692. [PMID: 30741934 PMCID: PMC6370849 DOI: 10.1038/s41467-019-08523-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Interactions between multiple stressors have been implicated in elevated honeybee colony losses. Here, we extend our landscape-scale study on the effects of placement at clothianidin seed-treated oilseed rape fields on honeybees with an additional year and new data on honeybee colony development, swarming, mortality, pathogens and immune gene expression. Clothianidin residues in pollen, nectar and honeybees were consistently higher at clothianidin-treated fields, with large differences between fields and years. We found large variations in colony development and microbial composition and no observable negative impact of placement at clothianidin-treated fields. Clothianidin treatment was associated with an increase in brood, adult bees and Gilliamella apicola (beneficial gut symbiont) and a decrease in Aphid lethal paralysis virus and Black queen cell virus - particularly in the second year. The results suggest that at colony level, honeybees are relatively robust to the effects of clothianidin in real-world agricultural landscapes, with moderate, natural disease pressure.
Collapse
Affiliation(s)
- Julia Osterman
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
- General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany.
- Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research-UFZ Leipzig, ESCALATE, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Dimitry Wintermantel
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
- INRA, UE 1255 APIS, Le Magneraud, 17700, Surgères, France
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & Université de La Rochelle, 79360, Villiers-en-Bois, France
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Ove Jonsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
- Centre for Chemical Pesticides, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Emilia Semberg
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Eva Forsgren
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Peter Rosenkranz
- Apicultural State Institute, University of Hohenheim, August-von-Hartmannstrasse 13, 70599, Stuttgart, Germany
| | | | - Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Henrik G Smith
- Department of Biology, Lund University, 223 62, Lund, Sweden
- Centre for Environmental and Climate Research, Lund University, 223 62, Lund, Sweden
| | - Maj Rundlöf
- Department of Biology, Lund University, 223 62, Lund, Sweden
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| |
Collapse
|
86
|
Regan T, Barnett MW, Laetsch DR, Bush SJ, Wragg D, Budge GE, Highet F, Dainat B, de Miranda JR, Watson M, Blaxter M, Freeman TC. Characterisation of the British honey bee metagenome. Nat Commun 2018; 9:4995. [PMID: 30478343 PMCID: PMC6255801 DOI: 10.1038/s41467-018-07426-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022] Open
Abstract
The European honey bee (Apis mellifera) plays a major role in pollination and food production. Honey bee health is a complex product of the environment, host genetics and associated microbes (commensal, opportunistic and pathogenic). Improved understanding of these factors will help manage modern challenges to bee health. Here we used DNA sequencing to characterise the genomes and metagenomes of 19 honey bee colonies from across Britain. Low heterozygosity was observed in many Scottish colonies which had high similarity to the native dark bee. Colonies exhibited high diversity in composition and relative abundance of individual microbiome taxa. Most non-bee sequences were derived from known honey bee commensal bacteria or pathogens. However, DNA was also detected from additional fungal, protozoan and metazoan species. To classify cobionts lacking genomic information, we developed a novel network analysis approach for clustering orphan DNA contigs. Our analyses shed light on microbial communities associated with honey bees and demonstrate the power of high-throughput, directed metagenomics for identifying novel biological threats in agroecosystems.
Collapse
Affiliation(s)
- Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK.
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK
| | - Dominik R Laetsch
- The Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3JG, UK
| | - Stephen J Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK
| | - David Wragg
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK
| | - Giles E Budge
- Fera, The National Agrifood Innovation Campus, Sand Hutton, YO41 1LZ, York, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Fiona Highet
- Science and Advice for Scottish Agriculture, 1 Roddinglaw Road, Edinburgh, EH12 9FJ, UK
| | - Benjamin Dainat
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, CH-3003, Bern, Switzerland
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK
| | - Mark Blaxter
- The Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3JG, UK.
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, Edinburgh, UK.
| |
Collapse
|
87
|
Pasquaretta C, Gómez-Moracho T, Heeb P, Lihoreau M. Exploring Interactions between the Gut Microbiota and Social Behavior through Nutrition. Genes (Basel) 2018; 9:E534. [PMID: 30404178 PMCID: PMC6266758 DOI: 10.3390/genes9110534] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Microbes influence a wide range of host social behaviors and vice versa. So far, however, the mechanisms underpinning these complex interactions remain poorly understood. In social animals, where individuals share microbes and interact around foods, the gut microbiota may have considerable consequences on host social interactions by acting upon the nutritional behavior of individual animals. Here we illustrate how conceptual advances in nutritional ecology can help the study of these processes and allow the formulation of new empirically testable predictions. First, we review key evidence showing that gut microbes influence the nutrition of individual animals, through modifications of their nutritional state and feeding decisions. Next, we describe how these microbial influences and their social consequences can be studied by modelling populations of hosts and their gut microbiota into a single conceptual framework derived from nutritional geometry. Our approach raises new perspectives for the study of holobiont nutrition and will facilitate theoretical and experimental research on the role of the gut microbiota in the mechanisms and evolution of social behavior.
Collapse
Affiliation(s)
- Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France.
| | - Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France.
| | - Philipp Heeb
- Laboratoire Evolution et Diversité Biologique, UMR 5174 Centre National de la Recherche Scientifique, Université Paul Sabatier, ENSFEA, 31062 Toulouse, France.
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
88
|
Anderson KE, Ricigliano VA, Mott BM, Copeland DC, Floyd AS, Maes P. The queen's gut refines with age: longevity phenotypes in a social insect model. MICROBIOME 2018; 6:108. [PMID: 29914555 PMCID: PMC6006926 DOI: 10.1186/s40168-018-0489-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/29/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND In social insects, identical genotypes can show extreme lifespan variation providing a unique perspective on age-associated microbial succession. In honey bees, short- and long-lived host phenotypes are polarized by a suite of age-associated factors including hormones, nutrition, immune senescence, and oxidative stress. Similar to other model organisms, the aging gut microbiota of short-lived (worker) honey bees accrue Proteobacteria and are depleted of Lactobacillus and Bifidobacterium, consistent with a suite of host senescence markers. In contrast, long-lived (queen) honey bees maintain youthful cellular function with much lower expression of oxidative stress genes, suggesting a very different host environment for age-associated microbial succession. RESULTS We sequenced the microbiota of 63 honey bee queens exploring two chronological ages and four alimentary tract niches. To control for genetic and environmental variation, we quantified carbonyl accumulation in queen fat body tissue as a proxy for biological aging. We compared our results to the age-specific microbial succession of worker guts. Accounting for queen source variation, two or more bacterial species per niche differed significantly by queen age. Biological aging in queens was correlated with microbiota composition highlighting the relationship of microbiota with oxidative stress. Queens and workers shared many major gut bacterial species, but differ markedly in community structure and age succession. In stark contrast to aging workers, carbonyl accumulation in queens was significantly associated with increased Lactobacillus and Bifidobacterium and depletion of various Proteobacteria. CONCLUSIONS We present a model system linking changes in gut microbiota to diet and longevity, two of the most confounding variables in human microbiota research. The pattern of age-associated succession in the queen microbiota is largely the reverse of that demonstrated for workers. The guts of short-lived worker phenotypes are progressively dominated by three major Proteobacteria, but these same species were sparse or significantly depleted in long-lived queen phenotypes. More broadly, age-related changes in the honey bee microbiota reflect the regulatory anatomy of reproductive host metabolism. Our synthesis suggests that the evolution of colony-level reproductive physiology formed the context for host-microbial interactions and age-related succession of honey bee microbiota.
Collapse
Affiliation(s)
- Kirk E. Anderson
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ 85719 USA
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721 USA
| | | | - Brendon M. Mott
- USDA-ARS Carl Hayden Bee Research Center, 2000 E. Allen Rd, Tucson, AZ 85719 USA
| | - Duan C. Copeland
- Department of Microbiology, School of Animal & Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721 USA
| | - Amy S. Floyd
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721 USA
| | - Patrick Maes
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
89
|
Imidacloprid Decreases Honey Bee Survival Rates but Does Not Affect the Gut Microbiome. Appl Environ Microbiol 2018; 84:AEM.00545-18. [PMID: 29678920 DOI: 10.1128/aem.00545-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence suggests that pesticides have played a role in the increased rate of honey bee colony loss. One of the most commonly used pesticides in the United States is the neonicotinoid imidacloprid. Although the primary mode of action of imidacloprid is on the insect nervous system, it has also been shown to cause changes in insects' digestive physiology and alter the microbiota of Drosophila melanogaster larvae. The honey bee gut microbiome plays a major role in bee health. Although many studies have shown that imidacloprid affects honey bee behavior, its impact on the microbiome has not been fully elucidated. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. Consistent with other studies, we show that imidacloprid exposure results in an elevated mortality of honey bees in the hive and increases the susceptibility to infection by pathogens. However, we did not find evidence that imidacloprid affects the gut bacterial community of honey bees. Our in vitro experiments demonstrated that honey bee gut bacteria can grow in the presence of imidacloprid, and we found some evidence that imidacloprid can be metabolized in the bee gut environment. However, none of the individual bee gut bacterial species tested could metabolize imidacloprid, suggesting that the observed metabolism of imidacloprid within in vitro bee gut cultures is not caused by the gut bacteria. Overall, our results indicate that imidacloprid causes increased mortality in honey bees, but this mortality does not appear to be linked to the microbiome.IMPORTANCE Growing evidence suggests that the extensive use of pesticides has played a large role in the increased rate of honey bee colony loss. Despite extensive research on the effects of imidacloprid on honey bees, it is still unknown whether it impacts the community structure of the gut microbiome. Here, we investigated the impact of imidacloprid on the gut microbiome composition, survivorship, and susceptibility to pathogens of honey bees. We found that the exposure to imidacloprid resulted in an elevated mortality of honey bees and increased the susceptibility to infection by opportunistic pathogens. However, we did not find evidence that imidacloprid affects the gut microbiome of honey bees. We found some evidence that imidacloprid can be metabolized in the bee gut environment in vitro, but because it is quickly eliminated from the bee, it is unlikely that this metabolism occurs in nature. Thus, imidacloprid causes increased mortality in honey bees, but this does not appear to be linked to the microbiome.
Collapse
|
90
|
Jones JC, Fruciano C, Marchant J, Hildebrand F, Forslund S, Bork P, Engel P, Hughes WOH. The gut microbiome is associated with behavioural task in honey bees. INSECTES SOCIAUX 2018; 65:419-429. [PMID: 30100619 PMCID: PMC6061168 DOI: 10.1007/s00040-018-0624-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 05/25/2023]
Abstract
The gut microbiome is recognised as playing an integral role in the health and ecology of a wide variety of animal taxa. However, the relationship between social behavioural traits and the microbial community has received little attention. Honey bees are highly social and the workers perform different behavioural tasks in the colony that cause them to be exposed to different local environments. Here we examined whether the gut microbial community composition of worker honey bees is associated with the behavioural tasks they perform, and therefore also the local environment they are exposed to. We set up five observation hives, in which all workers were matched in age and observed the behaviour of marked bees in each colony over 4 days. The gut bacterial communities of bees seen performing predominantly foraging or predominantly in nest tasks were then characterised and compared based on amplicon sequencing of the 16S rRNA gene. Our results show that some core members of the unique honey bee gut bacterial community are represented in different relative abundances in bees performing different behavioural tasks. The differentially represented bacterial taxa include some thought to be important in carbohydrate metabolism and transport, and also linked to bee health. The results suggest an influence of task-related local environment exposure and diet on the honey bee gut microbial community and identify focal core taxa for further functional analyses.
Collapse
Affiliation(s)
- J. C. Jones
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
- Present Address: Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - C. Fruciano
- School of Earth, Environment and Biological Sciences, Queensland University of Technology, Gardens Point, Brisbane, 4000 Australia
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - J. Marchant
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - F. Hildebrand
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - S. Forslund
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - P. Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany
- Department of Bioinformatics, University of Würzburg, 97074 Würzburg, Germany
| | - P. Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - W. O. H. Hughes
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| |
Collapse
|
91
|
Jones JC, Fruciano C, Hildebrand F, Al Toufalilia H, Balfour NJ, Bork P, Engel P, Ratnieks FL, Hughes WO. Gut microbiota composition is associated with environmental landscape in honey bees. Ecol Evol 2017; 8:441-451. [PMID: 29321884 PMCID: PMC5756847 DOI: 10.1002/ece3.3597] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/27/2017] [Accepted: 10/08/2017] [Indexed: 01/07/2023] Open
Abstract
There is growing recognition that the gut microbial community regulates a wide variety of important functions in its animal hosts, including host health. However, the complex interactions between gut microbes and environment are still unclear. Honey bees are ecologically and economically important pollinators that host a core gut microbial community that is thought to be constant across populations. Here, we examined whether the composition of the gut microbial community of honey bees is affected by the environmental landscape the bees are exposed to. We placed honey bee colonies reared under identical conditions in two main landscape types for 6 weeks: either oilseed rape farmland or agricultural farmland distant to fields of flowering oilseed rape. The gut bacterial communities of adult bees from the colonies were then characterized and compared based on amplicon sequencing of the 16S rRNA gene. While previous studies have delineated a characteristic core set of bacteria inhabiting the honey bee gut, our results suggest that the broad environment that bees are exposed to has some influence on the relative abundance of some members of that microbial community. This includes known dominant taxa thought to have functions in nutrition and health. Our results provide evidence for an influence of landscape exposure on honey bee microbial community and highlight the potential effect of exposure to different environmental parameters, such as forage type and neonicotinoid pesticides, on key honey bee gut bacteria. This work emphasizes the complexity of the relationship between the host, its gut bacteria, and the environment and identifies target microbial taxa for functional analyses.
Collapse
Affiliation(s)
- Julia C Jones
- School of Life Sciences University of Sussex Brighton UK
| | - Carmelo Fruciano
- School of Earth Environment and Biological Sciences Queensland University of Technology Brisbane QLD Australia
| | - Falk Hildebrand
- European Molecular Biology Laboratory, Structural and Computational Biology Unit Heidelberg Germany
| | | | | | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit Heidelberg Germany.,Max Delbrück Centre for Molecular Medicine Berlin Germany.,Department of Bioinformatics University of Würzburg Würzburg Germany
| | - Philipp Engel
- Department of Fundamental Microbiology University of Lausanne Lausanne Switzerland
| | | | | |
Collapse
|