51
|
Orr MT, Windish HP, Beebe EA, Argilla D, Huang PWD, Reese VA, Reed SG, Coler RN. Interferon γ and Tumor Necrosis Factor Are Not Essential Parameters of CD4+ T-Cell Responses for Vaccine Control of Tuberculosis. J Infect Dis 2015; 212:495-504. [PMID: 25637347 DOI: 10.1093/infdis/jiv055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/16/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis infects one third of the world's population and causes >8 million cases of tuberculosis annually. New vaccines are necessary to control the spread of tuberculosis. T cells, interferon γ (IFN-γ), and tumor necrosis factor (TNF) are necessary to control M. tuberculosis infection in both humans and unvaccinated experimental animal models. However, the immune responses necessary for vaccine efficacy against M. tuberculosis have not been defined. The multifunctional activity of T-helper type 1 (TH1) cells that simultaneously produce IFN-γ and TNF has been proposed as a candidate mechanism of vaccine efficacy. METHODS We used a mouse model of T-cell transfer and aerosolized M. tuberculosis infection to assess the contributions of TNF, IFN-γ, and inducible nitric oxide synthase (iNOS) to vaccine efficacy. RESULTS CD4(+) T cells were necessary and sufficient to transfer protection against aerosolized M. tuberculosis, but neither CD4(+) T cell-produced TNF nor host cell responsiveness to IFN-γ were necessary. Transfer of Tnf(-/-) CD4(+) T cells from vaccinated donors to Ifngr(-/-) recipients was also sufficient to confer protection. Activation of iNOS to produce reactive nitrogen species was not necessary for vaccine efficacy. CONCLUSIONS Induction of TH1 cells that coexpress IFN-γ and TNF is not a requirement for vaccine efficacy against M. tuberculosis, despite these cytokines being essential for control of M. tuberculosis in nonvaccinated animals.
Collapse
Affiliation(s)
- Mark T Orr
- Infectious Disease Research Institute Department of Global Health, University of Washington, Seattle
| | | | | | | | | | | | - Steven G Reed
- Infectious Disease Research Institute Department of Global Health, University of Washington, Seattle
| | - Rhea N Coler
- Infectious Disease Research Institute Department of Global Health, University of Washington, Seattle
| |
Collapse
|
52
|
Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, Maiello P, Rutledge T, Marino S, Fortune SM, Kirschner DE, Lin PL, Flynn JL. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 2015; 11:e1004603. [PMID: 25611466 PMCID: PMC4303275 DOI: 10.1371/journal.ppat.1004603] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/04/2014] [Indexed: 12/14/2022] Open
Abstract
Lung granulomas are the pathologic hallmark of tuberculosis (TB). T cells are a major cellular component of TB lung granulomas and are known to play an important role in containment of Mycobacterium tuberculosis (Mtb) infection. We used cynomolgus macaques, a non-human primate model that recapitulates human TB with clinically active disease, latent infection or early infection, to understand functional characteristics and dynamics of T cells in individual granulomas. We sought to correlate T cell cytokine response and bacterial burden of each granuloma, as well as granuloma and systemic responses in individual animals. Our results support that each granuloma within an individual host is independent with respect to total cell numbers, proportion of T cells, pattern of cytokine response, and bacterial burden. The spectrum of these components overlaps greatly amongst animals with different clinical status, indicating that a diversity of granulomas exists within an individual host. On average only about 8% of T cells from granulomas respond with cytokine production after stimulation with Mtb specific antigens, and few “multi-functional” T cells were observed. However, granulomas were found to be “multi-functional” with respect to the combinations of functional T cells that were identified among lesions from individual animals. Although the responses generally overlapped, sterile granulomas had modestly higher frequencies of T cells making IL-17, TNF and any of T-1 (IFN-γ, IL-2, or TNF) and/or T-17 (IL-17) cytokines than non-sterile granulomas. An inverse correlation was observed between bacterial burden with TNF and T-1/T-17 responses in individual granulomas, and a combinatorial analysis of pair-wise cytokine responses indicated that granulomas with T cells producing both pro- and anti-inflammatory cytokines (e.g. IL-10 and IL-17) were associated with clearance of Mtb. Preliminary evaluation suggests that systemic responses in the blood do not accurately reflect local T cell responses within granulomas. The characteristic feature of Mycobacterium tuberculosis (Mtb) infection is the formation of lesions, which are organized structures of immune cells in the lungs called granulomas, which contain the bacteria. When the granuloma functions effectively, it can kill the bacteria. T cells (a type of immune cell, also present in granulomas) are known to play an important role in control of tuberculosis. However, functions of T cells at individual granuloma levels are unknown. Here, we studied the functional characteristics of T cells, which are defined by the production of chemical messengers (cytokines) at the granuloma level in a non-human primate model. We compared the relationship between cytokine response and the number of bacteria (Mtb) in each granuloma. Each granuloma was found to be unique, suggesting different types exist within an animal. Only a small proportion of T cells produced any cytokine, but different types of cytokines were observed within each granuloma. A balance between different types of cytokine was associated with more killing of bacteria in granulomas. Understanding how to improve the T cell responses to obtain killing of bacteria in the granuloma will be important for vaccine development.
Collapse
Affiliation(s)
- Hannah Priyadarshini Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - JiaYao Phuah
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Amy J Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bryan D Bryson
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - M Teresa Coleman
- Department of Radiology, PET Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Pauline Maiello
- Department of Radiology, PET Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Tara Rutledge
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sarah M Fortune
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
53
|
Kang H, Yuan Q, Ma H, Hu ZD, Han DP, Wu K, Lowrie DB, Fan XY. Enhanced protective efficacy against Mycobacterium tuberculosis afforded by BCG prime-DNA boost regimen in an early challenge mouse model is associated with increased splenic interleukin-2-producing CD4 T-cell frequency post-vaccination. Immunology 2015; 143:661-9. [PMID: 24965530 DOI: 10.1111/imm.12348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 12/22/2022] Open
Abstract
The development of improved vaccines and vaccination strategies against Mycobacterium tuberculosis has been hindered by a limited understanding of the immune correlates of anti-tuberculosis protective immunity. Simple measurement of interferon-γ frequency or production per se does not provide adequate prediction of immune protection. In this study, we examined the relationship between T-cell immune responses and protective efficacy conferred by the heterologous vaccination strategy, bacillus Calmette-Guérin (BCG) prime-Ag85A DNA boost (B/D), in an early challenge mouse model of pulmonary tuberculosis. The results demonstrated that mice vaccinated with the B/D regimen had a significantly reduced bacillary load compared with BCG-vaccinated mice, and the reduction in colony-forming units was associated with decreased pathology and lower levels of inflammatory cytokines in the infected lungs. Further analysis of immunogenicity showed that the superior protection afforded by the B/D regimen was associated with significantly increased frequency of splenic interleukin-2 (IL-2) -producing CD4 T cells and increased IL-2 production when measured as integrated mean fluorescence intensity post-vaccination as well. These data suggest that measurement of elevated frequency of IL-2-producing CD4 T cells or IL-2 production in the spleens of vaccinated mice can predict vaccine efficacy, at least in the B/D strategy, and add to the accumulating body of evidence suggesting that BCG prime-boost strategies may be a useful approach to the control of M. tuberculosis infection.
Collapse
Affiliation(s)
- Han Kang
- Shanghai Public Health Clinical Centre, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Tanner R, Kakalacheva K, Miller E, Pathan AA, Chalk R, Sander CR, Scriba T, Tameris M, Hawkridge T, Mahomed H, Hussey G, Hanekom W, Checkley A, McShane H, Fletcher HA. Serum indoleamine 2,3-dioxygenase activity is associated with reduced immunogenicity following vaccination with MVA85A. BMC Infect Dis 2014; 14:660. [PMID: 25466778 PMCID: PMC4265419 DOI: 10.1186/s12879-014-0660-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND There is an urgent need for improved vaccines to protect against tuberculosis. The currently available vaccine Bacille Calmette-Guerin (BCG) has varying immunogenicity and efficacy across different populations for reasons not clearly understood. MVA85A is a modified vaccinia virus expressing antigen 85A from Mycobacterium tuberculosis which has been in clinical development since 2002 as a candidate vaccine to boost BCG-induced protection. A recent efficacy trial in South African infants failed to demonstrate enhancement of protection over BCG alone. The immunogenicity was lower than that seen in UK trials. The enzyme Indoleamine 2,3-dioxygenase (IDO) catalyses the first and rate-limiting step in the breakdown of the essential amino acid tryptophan. T cells are dependent on tryptophan and IDO activity suppresses T-cell proliferation and function. METHODS Using samples collected during phase I trials with MVA85A across the UK and South Africa we have investigated the relationship between vaccine immunogenicity and IDO using IFN-γ ELISPOT, qPCR and liquid chromatography mass spectrometry. RESULTS We demonstrate an IFN-γ dependent increase in IDO mRNA expression in peripheral blood mononuclear cells (PBMC) following MVA85A vaccination in UK subjects. IDO mRNA correlates positively with the IFN-γ ELISPOT response indicating that vaccine specific induction of IDO in PBMC is unlikely to limit the development of vaccine specific immunity. IDO activity in the serum of volunteers from the UK and South Africa was also assessed. There was no change in serum IDO activity following MVA85A vaccination. However, we observed higher baseline IDO activity in South African volunteers when compared to UK volunteers. In both UK and South African serum samples, baseline IDO activity negatively correlated with vaccine-specific IFN-γ responses, suggesting that IDO activity may impair the generation of a CD4+ T cell memory response. CONCLUSIONS Baseline IDO activity was higher in South African volunteers when compared to UK volunteers, which may represent a potential mechanism for the observed variation in vaccine immunogenicity in South African and UK populations and may have important implications for future vaccination strategies. TRIAL REGISTRATION Trials are registered at ClinicalTrials.gov; UK cohort NCT00427830, UK LTBI cohort NCT00456183, South African cohort NCT00460590, South African LTBI cohort NCT00480558.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK.
| | - Kristina Kakalacheva
- The Jenner Institute, University of Oxford, Oxford, UK. .,Present address: Department of Neuroinflammation, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Ellen Miller
- The Jenner Institute, University of Oxford, Oxford, UK. .,Present address: Royal Sussex County Hospital, Eastern road, Brighton, UK.
| | - Ansar A Pathan
- The Jenner Institute, University of Oxford, Oxford, UK. .,Present address: Centre for Infection, Immunity and Disease Mechanisms, Biosciences, School of Health Sciences and Social Care, Brunel University, Middlesex, UK.
| | - Rod Chalk
- Structural Genomics Consortium, University of Oxford, Oxford, UK.
| | - Clare R Sander
- The Jenner Institute, University of Oxford, Oxford, UK. .,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Tom Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa.
| | - Michelle Tameris
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa.
| | - Tony Hawkridge
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa. .,Vaccines for Africa Initiative, Cape Town, South Africa.
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa. .,Division of Community Health, Stellenbosch University, Stellenbosch, South Africa. .,Metropolitan District Health Services, Western Cape, Government: Health, Cape Town, South Africa.
| | - Greg Hussey
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa. .,Vaccines for Africa Initiative, Cape Town, South Africa.
| | - Willem Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa.
| | - Anna Checkley
- The Jenner Institute, University of Oxford, Oxford, UK. .,Present address: London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK.
| | - Helen A Fletcher
- The Jenner Institute, University of Oxford, Oxford, UK. .,Present address: London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| |
Collapse
|
55
|
Cruz A, Torrado E, Carmona J, Fraga AG, Costa P, Rodrigues F, Appelberg R, Correia-Neves M, Cooper AM, Saraiva M, Pedrosa J, Castro AG. BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4⁺IL-17⁺TNF⁺IL-2⁺ T cells. Vaccine 2014; 33:85-91. [PMID: 25448107 DOI: 10.1016/j.vaccine.2014.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 11/30/2022]
Abstract
Mycobacterium bovis Bacille Calmette-Guerin (BCG) is the only vaccine in use to prevent Mycobacterium tuberculosis (Mtb) infection. Here we analyzed the protective efficacy of BCG against Mtb challenges 21 or 120 days after vaccination. Only after 120 days post-vaccination were mice able to efficiently induce early Mtb growth arrest and maintain long-lasting control of Mtb. This protection correlated with the accumulation of CD4(+) T cells expressing IL-17(+)TNF(+)IL-2(+). In contrast, mice challenged with Mtb 21 days after BCG vaccination exhibited only a mild and transient protection, associated with the accumulation of CD4(+) T cells that were mostly IFN-γ(+)TNF(+) and to a lesser extent IFN-γ(+)TNF(+)IL-2(+). These data suggest that the memory response generated by BCG vaccination is functionally distinct depending upon the temporal proximity to BCG vaccination. Understanding how these responses are generated and maintained is critical for the development of novel vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Andrea Cruz
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jenny Carmona
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Appelberg
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
56
|
van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, O'Dee DM, Graves A, Thierry-Carstensen B, Andreasen LV, Ruhwald M, de Visser AW, Agger EM, Ottenhoff THM, Kromann I, Andersen P. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine 2014; 32:7098-107. [PMID: 25454872 DOI: 10.1016/j.vaccine.2014.10.036] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
Here, we report on a first-in-man trial where the tuberculosis (TB) vaccine Ag85B-ESAT-6 (H1) was adjuvanted with escalating doses of a novel liposome adjuvant CAF01. On their own, protein antigens cannot sufficiently induce immune responses in humans, and require the addition of an adjuvant system to ensure appropriate delivery and concomitant immune activation. To date no approved adjuvants are available for induction of cellular immunity, which seems essential for a number of vaccines, including vaccines against TB. We vaccinated four groups of human volunteers: a non-adjuvanted H1 group, followed by three groups with escalating doses of CAF01-adjuvanted H1 vaccine. All subjects were vaccinated at 0 and 8 weeks and followed up for 150 weeks. Vaccination did not cause local or systemic adverse effects besides transient soreness at the injection site. Two vaccinations elicited strong antigen-specific T-cell responses which persisted after 150 weeks follow-up, indicating the induction of a long-lasting memory response in the vaccine recipients. These results show that CAF01 is a safe and tolerable, Th1-inducing adjuvant for human TB vaccination trials and for vaccination studies in general where cellular immunity is required.
Collapse
Affiliation(s)
- Jaap T van Dissel
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands.
| | - Simone A Joosten
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands
| | - Søren T Hoff
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Darius Soonawala
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands
| | - Corine Prins
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands
| | | | | | | | - Birgit Thierry-Carstensen
- Statens Serum Institut, Department of Vaccine Development, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Lars V Andreasen
- Statens Serum Institut, Department of Vaccine Development, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Morten Ruhwald
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Adriëtte W de Visser
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands
| | - Else Marie Agger
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Tom H M Ottenhoff
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands
| | - Ingrid Kromann
- Statens Serum Institut, Department of Vaccine Development, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, Copenhagen 2300s, Denmark.
| |
Collapse
|
57
|
Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2014; 14:939-46. [PMID: 25151225 PMCID: PMC4178237 DOI: 10.1016/s1473-3099(14)70845-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Intradermal MVA85A, a candidate vaccine against tuberculosis, induces high amounts of Ag85A-specific CD4 T cells in adults who have already received the BCG vaccine, but aerosol delivery of this vaccine might offer immunological and logistical advantages. We did a phase 1 double-blind trial to compare the safety and immunogenicity of aerosol-administered and intradermally administered MVA85A Methods In this phase 1, double-blind, proof-of-concept trial, 24 eligible BCG-vaccinated healthy UK adults were randomly allocated (1:1) by sequentially numbered, sealed, opaque envelopes into two groups: aerosol MVA85A and intradermal saline placebo or intradermal MVA85A and aerosol saline placebo. Participants, the bronchoscopist, and immunologists were masked to treatment assignment. The primary outcome was safety, assessed by the frequency and severity of vaccine-related local and systemic adverse events. The secondary outcome was immunogenicity assessed with laboratory markers of cell-mediated immunity in blood and bronchoalveolar lavage samples. Safety and immunogenicity were assessed for 24 weeks after vaccination. Immunogenicity to both insert Ag85A and vector modified vaccinia virus Ankara (MVA) was assessed by ex-vivo interferon-γ ELISpot and serum ELISAs. Since all participants were randomised and vaccinated according to protocol, our analyses were per protocol. This trial is registered with ClinicalTrials.gov, number NCT01497769. Findings Both administration routes were well tolerated and immunogenic. Respiratory adverse events were rare and mild. Intradermal MVA85A was associated with expected mild local injection-site reactions. Systemic adverse events did not differ significantly between the two groups. Three participants in each group had no vaccine-related systemic adverse events; fatigue (11/24 [46%]) and headache (10/24 [42%]) were the most frequently reported symptoms. Ag85A-specific systemic responses were similar across groups. Ag85A-specific CD4 T cells were detected in bronchoalveolar lavage cells from both groups and responses were higher in the aerosol group than in the intradermal group. MVA-specific cellular responses were detected in both groups, whereas serum antibodies to MVA were only detectable after intradermal administration of the vaccine. Interpretation Further clinical trials assessing the aerosol route of vaccine delivery are merited for tuberculosis and other respiratory pathogens. Funding The Wellcome Trust and Oxford Radcliffe Hospitals Biomedical Research Centre.
Collapse
|
58
|
Sibley L, Reljic R, Radford DS, Huang JM, Hong HA, Cranenburgh RM, Cutting SM. RecombinantBacillus subtilisspores expressing MPT64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol Lett 2014; 358:170-9. [DOI: 10.1111/1574-6968.12525] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Laura Sibley
- School of Biological Sciences; Royal Holloway, University of London; Egham UK
| | - Rajko Reljic
- Infection and Immunity Research Centre; St George's University of London; London UK
| | - David S. Radford
- Cobra Biologics Ltd; Keele Science Park; Keele UK
- Prokarium Ltd; Keele Science Park; Keele UK
| | - Jen-Min Huang
- School of Biological Sciences; Royal Holloway, University of London; Egham UK
| | - Huynh A. Hong
- School of Biological Sciences; Royal Holloway, University of London; Egham UK
| | | | - Simon M. Cutting
- School of Biological Sciences; Royal Holloway, University of London; Egham UK
| |
Collapse
|
59
|
Riou C, Gray CM, Lugongolo M, Gwala T, Kiravu A, Deniso P, Stewart-Isherwood L, Omar SV, Grobusch MP, Coetzee G, Conradie F, Ismail N, Kaplan G, Fallows D. A subset of circulating blood mycobacteria-specific CD4 T cells can predict the time to Mycobacterium tuberculosis sputum culture conversion. PLoS One 2014; 9:e102178. [PMID: 25048802 PMCID: PMC4105550 DOI: 10.1371/journal.pone.0102178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
We investigated 18 HIV-negative patients with MDR-TB for M. tuberculosis (Mtb)- and PPD-specific CD4 T cell responses and followed them over 6 months of drug therapy. Twelve of these patients were sputum culture (SC) positive and six patients were SC negative upon enrollment. Our aim was to identify a subset of mycobacteria-specific CD4 T cells that would predict time to culture conversion. The total frequency of mycobacteria-specific CD4 T cells at baseline could not distinguish patients showing positive or negative SC. However, a greater proportion of late-differentiated (LD) Mtb- and PPD-specific memory CD4 T cells was found in SC positive patients than in those who were SC negative (p = 0.004 and p = 0.0012, respectively). Similarly, a higher co-expression of HLA-DR+ Ki67+ on Mtb- and PPD-specific CD4 T cells could also discriminate between sputum SC positive versus SC negative (p = 0.004 and p = 0.001, respectively). Receiver operating characteristic (ROC) analysis revealed that baseline levels of Ki67+ HLA-DR+ Mtb- and PPD-specific CD4 T cells were predictive of the time to sputum culture conversion, with area-under-the-curve of 0.8 (p = 0.027). Upon treatment, there was a significant decline of these Ki67+ HLA-DR+ T cell populations in the first 2 months, with a progressive increase in mycobacteria-specific polyfunctional IFNγ+ IL2+ TNFα+ CD4 T cells over 6 months. Thus, a subset of activated and proliferating mycobacterial-specific CD4 T cells (Ki67+ HLA-DR+) may provide a valuable marker in peripheral blood that predicts time to sputum culture conversion in TB patients at the start of treatment.
Collapse
Affiliation(s)
- Catherine Riou
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine and National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Clive M. Gray
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine and National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Masixole Lugongolo
- National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Thabisile Gwala
- National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Agano Kiravu
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine and National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Pamela Deniso
- Right to Care and the Clinical HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Lynsey Stewart-Isherwood
- Right to Care and the Clinical HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Shaheed Vally Omar
- National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Martin P. Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerrit Coetzee
- National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Francesca Conradie
- Right to Care and the Clinical HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Nazir Ismail
- National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Gilla Kaplan
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute at the International Center for Public Health, Newark, New Jersey, United States of America
| | - Dorothy Fallows
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute at the International Center for Public Health, Newark, New Jersey, United States of America
| |
Collapse
|
60
|
Sepako E, Glennie SJ, Jambo KC, Mzinza D, Iwajomo OH, Banda D, van Oosterhout JJ, A. Williams N, Gordon SB, Heyderman RS. Incomplete recovery of pneumococcal CD4 T cell immunity after initiation of antiretroviral therapy in HIV-infected malawian adults. PLoS One 2014; 9:e100640. [PMID: 24959834 PMCID: PMC4069109 DOI: 10.1371/journal.pone.0100640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/29/2014] [Indexed: 11/19/2022] Open
Abstract
HIV-infected African adults are at a considerably increased risk of life-threatening invasive pneumococcal disease (IPD) which persists despite antiretroviral therapy (ART). Defects in naturally acquired pneumococcal-specific T-cell immunity have been identified in HIV-infected adults. We have therefore determined the extent and nature of pneumococcal antigen-specific immune recovery following ART. HIV-infected adults were followed up at 3, 6 and 12 months after initiating ART. Nasopharyngeal swabs were cultured to determine carriage rates. Pneumococcal-specific CD4 T-cell immunity was assessed by IFN-γ ELISpot, proliferation assay, CD154 expression and intracellular cytokine assay. S. pneumoniae colonization was detected in 27% (13/48) of HIV-infected patients prior to ART. The rates remained elevated after 12 months ART, 41% (16/39) (p = 0.17) and significantly higher than in HIV-uninfected individuals (HIVneg 14%(4/29); p = 0.0147). CD4+ T-cell proliferative responses to pneumococcal antigens increased significantly to levels comparable with HIV-negative individuals at 12 months ART (p = 0.0799). However, recovery of the pneumococcal-specific CD154 expression was incomplete (p = 0.0015) as were IFN-γ ELISpot responses (p = 0.0040) and polyfunctional CD4+ T-cell responses (TNF-α, IL-2 and IFN-γ expression) (p = 0.0040) to a pneumolysin-deficient mutant strain. Impaired control of pneumococcal colonisation and incomplete restoration of pneumococcal-specific immunity may explain the persistently higher risk of IPD amongst HIV-infected adults on ART. Whether vaccination and prolonged ART can overcome this immunological defect and reduce the high levels of pneumococcal colonisation requires further evaluation.
Collapse
Affiliation(s)
- Enoch Sepako
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Sarah J. Glennie
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kondwani C. Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - David Mzinza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Oluwadamilola H. Iwajomo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Division of Clinical Sciences, University of Toronto, Ontario, Canada
- Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Dominic Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | | | - Neil A. Williams
- Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Stephen B. Gordon
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Robert S. Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| |
Collapse
|
61
|
Kidzeru EB, Hesseling AC, Passmore JAS, Myer L, Gamieldien H, Tchakoute CT, Gray CM, Sodora DL, Jaspan HB. In-utero exposure to maternal HIV infection alters T-cell immune responses to vaccination in HIV-uninfected infants. AIDS 2014; 28:1421-30. [PMID: 24785950 PMCID: PMC4333196 DOI: 10.1097/qad.0000000000000292] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In sub-Saharan Africa, HIV-exposed uninfected (HEU) infants have higher morbidity and mortality than HIV-unexposed infants. To evaluate whether immune dysfunction contributes to this vulnerability of HEU infants, we conducted a longitudinal, observational cohort study to assess T-cell immune responses to infant vaccines (Mycobacterium bovis BCG and acellular pertussis) and staphylococcal enterotoxin B (SEB). In total, 46 HEU and 46 HIV-unexposed infants were recruited from Khayelitsha, Cape Town. METHODS Vaccine-specific T-cell proliferation (Ki67 expression) and intracellular expression of four cytokines [interferon-γ, interleukin (IL)-2, IL-13 and IL-17] were measured after whole blood stimulation with antigens at 6 and 14 weeks of age. RESULTS HEU infants demonstrated elevated BCG-specific CD4 and CD8 T-cell proliferative responses at 14 weeks (P = 0.041 and 0.002, respectively). These responses were significantly increased even after adjusting for birth weight, feeding mode and gestational age. Similar to BCG, increased CD4 and CD8 T-cell proliferation was evident in response to SEB stimulation (P = 0.004 and 0.002, respectively), although pertussis-specific T cells proliferated comparably between the two groups. Within HEU infants, maternal CD4 cell count and length of antenatal antiretroviral exposure had no effect on T-cell proliferation to BCG or SEB. HIV exposure significantly diminished measurable cytokine polyfunctionality in response to BCG, Bordetella pertussis and SEB stimulation. CONCLUSION These data show for the first time, when adjusting for confounders, that exposure to HIV in utero is associated with significant alterations to CD4 and CD8T-cell immune responses in infants to vaccines and nonspecific antigens.
Collapse
Affiliation(s)
- Elvis B. Kidzeru
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town
| | - Anneke C. Hesseling
- Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow
| | - Jo-Ann S. Passmore
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town
- National Health Laboratory Services, South Africa
| | - Landon Myer
- Division of Epidemiology & Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Hoyam Gamieldien
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town
| | | | - Clive M. Gray
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town
- National Health Laboratory Services, South Africa
| | | | - Heather B. Jaspan
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| |
Collapse
|
62
|
Abstract
The tuberculosis (TB) pandemic continues to rampage despite widespread use of the BCG (Bacillus Calmette-Guérin) vaccine. Novel vaccination strategies are urgently needed to arrest global transmission and prevent the uncontrolled development of multidrug-resistant forms of Mycobacterium tuberculosis. Over the last two decades, considerable progress has been made in the field of vaccine development with numerous innovative preclinical candidates and more than a dozen vaccines in clinical trials. These vaccines are developed either as boosters of the current BCG vaccine or as novel prime vaccines to replace BCG. Given the enormous prevalence of latent TB infection, vaccines that are protective on top of an already established infection remain a high priority and a significant scientific challenge. Here we discuss the current state of TB vaccine research and development, our understanding of the underlying immunology, and the requirements for an efficient TB vaccine.
Collapse
|
63
|
Khan MK, Zaman S, Chakraborty S, Chakravorty R, Alam MM, Bhuiyan TR, Rahman MJ, Fernández C, Qadri F, Seraj ZI. In silico predicted mycobacterial epitope elicits in vitro T-cell responses. Mol Immunol 2014; 61:16-22. [PMID: 24853589 DOI: 10.1016/j.molimm.2014.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 11/17/2022]
Abstract
Epitope-based vaccines permit the selection of only a specific subset of epitopes to induce the necessary immune response, thus providing a rational alternative to conventional design approaches. Using a range of immunoinformatics tools, we identified a novel, contiguous 28 amino acid multi-epitope cluster within the highly conserved secretory protein Ag85B of Mycobacterium tuberculosis, the causative agent of TB. This cluster, named Ep85B, is composed of epitopes which bind to three HLA Class I and 15 Class II molecules, and harbors the potential to generate 99% population coverage in TB-endemic regions. We experimentally evaluated the capacity of Ep85B to elicit T-cell immune responses using whole blood cells and, as predicted, observed significant increases in populations of both CD4+ and memory CD4+ CD45RO+ T-cells. Our results demonstrate the practical utility of an epitope-based design methodology - a strategy that, following further evaluation, may serve as an additional tool for the development of novel vaccine candidates against TB and other diseases.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Shabnam Zaman
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Sajib Chakraborty
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | | | - Mohammad Murshid Alam
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Muhammad Jubayer Rahman
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), The Arrhenius Laboratories, Stockholm University, Sweden
| | - Carmen Fernández
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), The Arrhenius Laboratories, Stockholm University, Sweden
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zeba I Seraj
- Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh.
| |
Collapse
|
64
|
Mycobacterium tuberculosis-specific polyfunctional cytotoxic CD8+ T cells express CD69. Tuberculosis (Edinb) 2014; 94:219-25. [DOI: 10.1016/j.tube.2013.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 12/24/2013] [Accepted: 12/27/2013] [Indexed: 11/17/2022]
|
65
|
Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis. Front Immunol 2014; 5:180. [PMID: 24795723 PMCID: PMC4001014 DOI: 10.3389/fimmu.2014.00180] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/07/2014] [Indexed: 12/17/2022] Open
Abstract
With 1.4 million deaths and 8.7 million new cases in 2011, tuberculosis (TB) remains a global health care problem and together with HIV and Malaria represents one of the three infectious diseases world-wide. Control of the global TB epidemic has been impaired by the lack of an effective vaccine, by the emergence of drug-resistant forms of Mycobacterium tuberculosis (Mtb) and by the lack of sensitive and rapid diagnostics. It is estimated, by epidemiological reports, that one third of the world’s population is latently infected with Mtb, but the majority of infected individuals develop long-lived protective immunity, which controls and contains Mtb in a T cell-dependent manner. Development of TB disease results from interactions among the environment, the host, and the pathogen, and known risk factors include HIV co-infection, immunodeficiency, diabetes mellitus, overcrowding, malnutrition, and general poverty; therefore, an effective T cell response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions. On the other hand, many aspects remain unsolved in understanding why some individuals are protected from Mtb infection while others go on to develop disease. Several studies have demonstrated that CD4+ T cells are involved in protection against Mtb, as supported by the evidence that CD4+ T cell depletion is responsible for Mtb reactivation in HIV-infected individuals. There are many subsets of CD4+ T cells, such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and all these subsets co-operate or interfere with each other to control infection; the dominant subset may differ between active and latent Mtb infection cases. Mtb-specific-CD4+ Th1 cell response is considered to have a protective role for the ability to produce cytokines such as IFN-γ or TNF-α that contribute to the recruitment and activation of innate immune cells, like monocytes and granulocytes. Thus, while other antigen (Ag)-specific T cells such as CD8+ T cells, natural killer (NK) cells, γδ T cells, and CD1-restricted T cells can also produce IFN-γ during Mtb infection, they cannot compensate for the lack of CD4+ T cells. The detection of Ag-specific cytokine production by intracellular cytokine staining (ICS) and the use of flow cytometry techniques are a common routine that supports the studies aimed at focusing the role of the immune system in infectious diseases. Flow cytometry permits to evaluate simultaneously the presence of different cytokines that can delineate different subsets of cells as having “multifunctional/polyfunctional” profile. It has been proposed that polyfunctional T cells, are associated with protective immunity toward Mtb, in particular it has been highlighted that the number of Mtb-specific T cells producing a combination of IFN-γ, IL-2, and/or TNF-α may be correlated with the mycobacterial load, while other studies have associated the presence of this particular functional profile as marker of TB disease activity. Although the role of CD8 T cells in TB is less clear than CD4 T cells, they are generally considered to contribute to optimal immunity and protection. CD8 T cells possess a number of anti-microbial effector mechanisms that are less prominent or absent in CD4 Th1 and Th17 T cells. The interest in studying CD8 T cells that are either MHC-class Ia or MHC-class Ib-restricted, has gained more attention. These studies include the role of HLA-E-restricted cells, lung mucosal-associated invariant T-cells (MAIT), and CD1-restricted cells. Nevertheless, the knowledge about the role of CD8+ T cells in Mtb infection is relatively new and recent studies have delineated that CD8 T cells, which display a functional profile termed “multifunctional,” can be a better marker of protection in TB than CD4+ T cells. Their effector mechanisms could contribute to control Mtb infection, as upon activation, CD8 T cells release cytokines or cytotoxic molecules, which cause apoptosis of target cells. Taken together, the balance of the immune response in the control of infection and possibly bacterial eradication is important in understanding whether the host immune response will be appropriate in contrasting the infection or not, and, consequently, the inability of the immune response, will determine the dissemination and the transmission of bacilli to new subjects. In conclusion, the recent highlights on the role of different functional signatures of T cell subsets in the immune response toward Mtb infection will be discerned in this review, in order to summarize what is known about the immune response in human TB. In particular, we will discuss the role of CD4 and CD8 T cells in contrasting the advance of the intracellular pathogen in already infected people or the progression to active disease in subjects with latent infection. All the information will be aimed at increasing the knowledge of this complex disease in order to improve diagnosis, prognosis, drug treatment, and vaccination.
Collapse
Affiliation(s)
- Teresa Prezzemolo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Giuliana Guggino
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Marco Pio La Manna
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Diana Di Liberto
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| |
Collapse
|
66
|
Kennedy RB, Ovsyannikova IG, Lambert ND, Haralambieva IH, Poland GA. The personal touch: strategies toward personalized vaccines and predicting immune responses to them. Expert Rev Vaccines 2014; 13:657-69. [PMID: 24702429 DOI: 10.1586/14760584.2014.905744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The impact of vaccines on public health and wellbeing has been profound. Smallpox has been eradicated, polio is nearing eradication, and multiple diseases have been eliminated from certain areas of the world. Unfortunately, we now face diseases such as hepatitis C, malaria or tuberculosis, as well as new and re-emerging pathogens for which we lack effective vaccines. Empirical approaches to vaccine development have been successful in the past, but may not be up to the current infectious disease challenges facing us. New, directed approaches to vaccine design, development, and testing need to be developed. Ideally these approaches will capitalize on cutting-edge technologies, advanced analytical and modeling strategies, and up-to-date knowledge of both pathogen and host. These approaches will pay particular attention to the causes of inter-individual variation in vaccine response in order to develop new vaccines tailored to the unique needs of individuals and communities within the population.
Collapse
|
67
|
Lindestam Arlehamn CS, Sette A. Definition of CD4 Immunosignatures Associated with MTB. Front Immunol 2014; 5:124. [PMID: 24715893 PMCID: PMC3970006 DOI: 10.3389/fimmu.2014.00124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/11/2014] [Indexed: 01/05/2023] Open
Abstract
We have recently described the first true genome-wide screen for CD4(+) T-cell reactivity directed against Mycobacterium tuberculosis (MTB) in latent TB-infected individuals. The approach relied on predictions of HLA-binding capacity for a panel of DR, DP, and DQ alleles representative of those most commonly expressed in the general population, coupled with high throughput ELISPOT assays. The results identified hundreds of novel epitopes and antigens, and documented the novel observation that T cells in latent MTB infection are confined to the CXCR3(+)CCR6(+) phenotype and largely directed against three antigenic "islands" within the MTB genome. In parallel, we have made generally available to the scientific community the technical approaches and reagents developed in the process, such as motifs, algorithms, and binding assays for several common HLA class II alleles, and a panel of single allele HLA class II transfected cell lines representative of the most frequent specificities in the general population. Recent efforts have been focused on characterization of epitopes and antigens recognized by patients with active TB and individuals vaccinated with BCG, with the aim of providing the first systematic evaluation of the overlap between latent, active, and BCG cohorts. The definition of a broad range of epitopes restricted by common HLA molecules, will facilitate development of diagnostic reagents, allow a rigorous evaluation of T-cell responses associated with TB infection in humans, and enable the evaluation of the immunogenicity of different vaccine candidates. Furthermore, it might suggest new candidates for vaccine and diagnostic development.
Collapse
Affiliation(s)
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
68
|
Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J, Liu R, Johnson LA, Weinhold K, Archer GE, Sampson JH, Mitchell DA. Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin Cancer Res 2014; 20:2684-94. [PMID: 24658154 DOI: 10.1158/1078-0432.ccr-13-3268] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Despite aggressive conventional therapy, glioblastoma (GBM) remains uniformly lethal. Immunotherapy, in which the immune system is harnessed to specifically attack malignant cells, offers a treatment option with less toxicity. The expression of cytomegalovirus (CMV) antigens in GBM presents a unique opportunity to target these viral proteins for tumor immunotherapy. Although the presence of CMV within malignant gliomas has been confirmed by several laboratories, its relevance as an immunologic target in GBM has yet to be established. The objective of this study was to explore whether T cells stimulated by CMV pp65 RNA-transfected dendritic cells (DC) target and eliminate autologous GBM tumor cells in an antigen-specific manner. EXPERIMENTAL DESIGN T cells from patients with GBM were stimulated with autologous DCs pulsed with CMV pp65 RNA, and the function of the effector CMV pp65-specific T cells was measured. RESULTS In this study, we demonstrate the ability to elicit CMV pp65-specific immune responses in vitro using RNA-pulsed autologous DCs generated from patients with newly diagnosed GBM. Importantly, CMV pp65-specific T cells lyse autologous, primary GBM tumor cells in an antigen-specific manner. Moreover, T cells expanded in vitro using DCs pulsed with total tumor RNA demonstrated a 10- to 20-fold expansion of CMV pp65-specific T cells as assessed by tetramer analysis and recognition and killing of CMV pp65-expressing target cells. CONCLUSION These data collectively demonstrate that CMV-specific T cells can effectively target glioblastoma tumor cells for immunologic killing and support the rationale for the development of CMV-directed immunotherapy in patients with GBM.
Collapse
Affiliation(s)
- Smita K Nair
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Gabriel De Leon
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - David Boczkowski
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Robert Schmittling
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Weihua Xie
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Janet Staats
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Rebecca Liu
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Laura A Johnson
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Kent Weinhold
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Gary E Archer
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - John H Sampson
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Duane A Mitchell
- Authors' Affiliation: Department of Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
69
|
Ditkowsky JB, Schwartzman K. Potential cost-effectiveness of a new infant tuberculosis vaccine in South Africa--implications for clinical trials: a decision analysis. PLoS One 2014; 9:e83526. [PMID: 24454706 PMCID: PMC3893082 DOI: 10.1371/journal.pone.0083526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 11/05/2013] [Indexed: 11/20/2022] Open
Abstract
Novel tuberculosis vaccines are in varying stages of pre-clinical and clinical development. This study seeks to estimate the potential cost-effectiveness of a BCG booster vaccine, while accounting for costs of large-scale clinical trials, using the MVA85A vaccine as a case study for estimating potential costs. We conducted a decision analysis from the societal perspective, using a 10-year time frame and a 3% discount rate. We predicted active tuberculosis cases and tuberculosis-related costs for a hypothetical cohort of 960,763 South African newborns (total born in 2009). We compared neonatal vaccination with bacille Calmette-Guérin alone to vaccination with bacille Calmette-Guérin plus a booster vaccine at 4 months. We considered booster efficacy estimates ranging from 40% to 70%, relative to bacille Calmette-Guérin alone. We accounted for the costs of Phase III clinical trials. The booster vaccine was assumed to prevent progression to active tuberculosis after childhood infection, with protection decreasing linearly over 10 years. Trial costs were prorated to South Africa's global share of bacille Calmette-Guérin vaccination. Vaccination with bacille Calmette-Guérin alone resulted in estimated tuberculosis-related costs of $89.91 million 2012 USD, and 13,610 tuberculosis cases in the birth cohort, over the 10 years. Addition of the booster resulted in estimated cost savings of $7.69–$16.68 million USD, and 2,800–4,160 cases averted, for assumed efficacy values ranging from 40%–70%. A booster tuberculosis vaccine in infancy may result in net societal cost savings as well as fewer active tuberculosis cases, even if efficacy is relatively modest and large scale Phase III studies are required.
Collapse
Affiliation(s)
- Jared B. Ditkowsky
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, Montreal, Quebec, Canada
| | - Kevin Schwartzman
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, Montreal, Quebec, Canada
- Respiratory Division, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
70
|
Tuberculosis vaccine with high predicted population coverage and compatibility with modern diagnostics. Proc Natl Acad Sci U S A 2014; 111:1096-101. [PMID: 24395772 DOI: 10.1073/pnas.1314973111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A central goal in vaccine research is the identification of relevant antigens. The Mycobacterium tuberculosis chromosome encodes 23 early secretory antigenic target (ESAT-6) family members that mostly are localized as gene pairs. In proximity to five of the gene pairs are ESX secretion systems involved in the secretion of the ESAT-6 family proteins. Here, we performed a detailed and systematic investigation of the vaccine potential of five possible Esx dimer substrates, one for each of the five ESX systems. On the basis of gene transcription during infection, immunogenicity, and protective capacity in a mouse aerosol challenge model, we identified the ESX dimer substrates EsxD-EsxC, ExsG-EsxH, and ExsW-EsxV as the most promising vaccine candidates and combined them in a fusion protein, H65. Vaccination with H65 gave protection at the level of bacillus Calmette-Guérin, and the fusion protein exhibited high predicted population coverage in high endemic regions. H65 thus constitutes a promising vaccine candidate devoid of antigen 85 and fully compatible with current ESAT-6 and culture filtrate protein 10-based diagnostics.
Collapse
|
71
|
Montoya J, Solon JA, Cunanan SRC, Acosta L, Bollaerts A, Moris P, Janssens M, Jongert E, Demoitié MA, Mettens P, Gatchalian S, Vinals C, Cohen J, Ofori-Anyinam O. A randomized, controlled dose-finding Phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults. J Clin Immunol 2013; 33:1360-75. [PMID: 24142232 PMCID: PMC3825318 DOI: 10.1007/s10875-013-9949-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
Purpose In this dose-finding Phase II study (NCT00621322), we evaluated the safety and immunogenicity of different formulations of the candidate tuberculosis vaccine containing the M72 antigen (10/20/40 μg doses) and the liposome-based AS01 Adjuvant System. We aimed to select the lowest-dose combination of M72 and AS01 that was clinically well tolerated with immunogenicity comparable to that of the previously tested M72/AS01B (40 μg) candidate vaccine. Methods Healthy PPD-positive (induration 3–10 mm) adults (18–45 years) in The Philippines were randomized (4:4:4:4:1:1) to receive 2 injections, 1 month apart, of M72/AS01B (40 μg), M72/AS01E (10 μg), M72/AS01E (20 μg), M72/AS02D (10 μg), M72/Saline (40 μg) or AS01B alone, and were followed up for 6 months. AS01E and AS02D contain half the quantities of the immunostimulants present in AS01B. AS02D is an oil-in-water emulsion. Vaccine selection was based on the CD4+ T-cell responses at 1 month post vaccination. Results All formulations had a clinically acceptable safety profile with no vaccine-related serious adverse events reported. Two vaccinations of each adjuvanted M72 vaccine induced M72-specific CD4+ T-cell and humoral responses persisting at 6 months post vaccination. No responses were observed with AS01B alone. One month post second vaccination, CD4+ T-cell responses induced by each of the three M72/AS01 vaccine formulations were of comparable magnitudes, and all were significantly higher than those induced by M72/AS02D (10 μg) and M72/Saline. Conclusions The formulation with the lowest antigen and adjuvant dose, M72/AS01E (10 μg), fulfilled our pre-defined selection criteria and has been selected for further clinical development.
Collapse
Affiliation(s)
- Jaime Montoya
- Section of Infectious Diseases, Department of Medicine, University of the Philippines College of Medicine, 547 Pedro Gil Street, Ermita, Manila, 1000, Philippines
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Meyer J, McShane H. The next 10 years for tuberculosis vaccines: do we have the right plans in place? Expert Rev Vaccines 2013; 12:443-51. [PMID: 23560924 PMCID: PMC5425624 DOI: 10.1586/erv.13.19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The control of TB is a global health priority. Over the last decade, considerable progress has been made in the field of TB vaccines with numerous vaccine candidates entering the clinic and two candidates now in Phase IIb efficacy trials. Nevertheless, the lack of predictive animal models and biomarkers of TB vaccine efficacy prevents rational vaccine down-selection and necessitates prolonged and expensive clinical efficacy trials in target populations. Advances in molecular technology and progress in the development of human as well as animal mycobacterial challenge models make the identification of one or more immune correlates of protection a genuine prospect over the next decade. Moreover, the increasing pace, extent and coordination of global research efforts in TB promises to broaden understanding and inform the next generation of vaccine candidates against TB as well as related globally important pathogens.
Collapse
Affiliation(s)
- Joel Meyer
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
73
|
Lauterbach H, Pätzold J, Kassub R, Bathke B, Brinkmann K, Chaplin P, Suter M, Hochrein H. Genetic Adjuvantation of Recombinant MVA with CD40L Potentiates CD8 T Cell Mediated Immunity. Front Immunol 2013; 4:251. [PMID: 23986761 PMCID: PMC3753717 DOI: 10.3389/fimmu.2013.00251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/10/2013] [Indexed: 12/15/2022] Open
Abstract
Modified vaccinia Ankara (MVA) is a safe and promising viral vaccine vector that is currently investigated in several clinical and pre-clinical trials. In contrast to inactivated or sub-unit vaccines, MVA is able to induce strong humoral as well as cellular immune responses. In order to further improve its CD8 T cell inducing capacity, we genetically adjuvanted MVA with the coding sequence of murine CD40L, a member of the tumor necrosis factor superfamily. Immunization of mice with this new vector led to strongly enhanced primary and memory CD8 T cell responses. Concordant with the enhanced CD8 T cell response, we could detect stronger activation of dendritic cells and higher systemic levels of innate cytokines (including IL-12p70) early after immunization. Interestingly, acquisition of memory characteristics (i.e., IL-7R expression) was accelerated after immunization with MVA-CD40L in comparison to non-adjuvanted MVA. Furthermore, the generated cytotoxic T-lymphocytes (CTLs) also showed improved functionality as demonstrated by intracellular cytokine staining and in vivo killing activity. Importantly, the superior CTL response after a single MVA-CD40L immunization was able to protect B cell deficient mice against a fatal infection with ectromelia virus. Taken together, we show that genetic adjuvantation of MVA can change strength, quality, and functionality of innate and adaptive immune responses. These data should facilitate a rational vaccine design with a focus on rapid induction of large numbers of CD8 T cells able to protect against specific diseases.
Collapse
Affiliation(s)
- Henning Lauterbach
- Department of Research Immunology, Bavarian Nordic GmbH , Martinsried , Germany
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Impairment of IFN-gamma response to synthetic peptides of Mycobacterium tuberculosis in a 7-day whole blood assay. PLoS One 2013; 8:e71351. [PMID: 23951140 PMCID: PMC3738639 DOI: 10.1371/journal.pone.0071351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/28/2013] [Indexed: 12/31/2022] Open
Abstract
Studies on Mycobacterium tuberculosis (MTB) antigens are of interest in order to improve vaccine efficacy and to define biomarkers for diagnosis and treatment monitoring. The methodologies used for these investigations differ greatly between laboratories and discordant results are common. The IFN-gamma response to two well characterized MTB antigens ESAT-6 and CFP-10, in the form of recombinant proteins and synthetic peptides, was evaluated in HIV-1 uninfected persons in both long-term (7 day) and 24 hour, commercially available QuantiFERON TB Gold in Tube (QFT-GIT), whole blood assays. Our findings showed differences in the IFN-gamma response between 24 hour and 7 day cultures, with recombinant proteins inducing a significantly higher response than the peptide pools in 7 day whole blood assays. The activity of peptides and recombinant proteins did not differ in 24 hour whole blood or peripheral blood mononuclear cell (PBMC) based assays, nor in the ELISpot assay. Further analysis by SELDI-TOF mass spectrometry showed that the peptides are degraded over the course of 7 days of incubation in whole blood whilst the recombinant proteins remain intact. This study therefore demonstrates that screening antigenic candidates as synthetic peptides in long-term whole blood assays may underestimate immunogenicity.
Collapse
|
75
|
Two doses of candidate TB vaccine MVA85A in antiretroviral therapy (ART) naïve subjects gives comparable immunogenicity to one dose in ART+ subjects. PLoS One 2013; 8:e67177. [PMID: 23840618 PMCID: PMC3696007 DOI: 10.1371/journal.pone.0067177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) is a global public health problem exacerbated by the HIV epidemic. Here we evaluate a candidate TB vaccine, MVA85A, in a Phase I study in HIV-infected adults in Senegal. 24 patients were enrolled: Group 1∶12, antiretroviral therapy (ART) naïve, adults, with CD4 counts >300 and HIV RNA load <100 000 copies/ml. Group 2∶12 adults, stable on ART, with CD4 counts >300, and an undetectable HIV RNA load. Safety was evaluated by occurrence of local and systemic adverse events (AEs) and by monitoring of CD4 count, HIV RNA load, haematology and biochemistry. Immunogenicity was evaluated by ex-vivo interferon-gamma ELISpot assay. 87.7% of AEs were mild; 11.6% were moderate; and 0.7% were severe. 29.2% of AEs were systemic; 70.8% were expected local AEs. There were no vaccine-related Serious Adverse Events (SAEs) or clinically significant effects on HIV RNA load or CD4 count. In ART naive subjects, the first MVA85A immunisation induced a significant immune response at 1 and 4 weeks post-immunisation, which contracted to baseline by 12 weeks. Durability of immunogenicity in subjects on ART persisted out to 24 weeks post-vaccination. A second dose of MVA85A at 12 months enhanced immunogenicity in ART naïve subjects. Subjects on ART had higher responses after the first vaccination compared with ART naïve subjects; responses were comparable after 2 immunisations. In conclusion, MVA85A is well-tolerated and immunogenic in HIV-infected subjects in Senegal. A two dose regimen in ART naïve subjects is comparable in immunogenicity to a single dose in subjects on ART. Clinicaltrials.gov trial identifier NCT00731471.
Collapse
|
76
|
Lindenstrøm T, Knudsen NPH, Agger EM, Andersen P. Control of chronic mycobacterium tuberculosis infection by CD4 KLRG1- IL-2-secreting central memory cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:6311-9. [PMID: 23677471 DOI: 10.4049/jimmunol.1300248] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bacille Calmette-Guérin vaccine provides very efficient protection in standard animal models of Mycobacterium tuberculosis challenge. We show in this article that although bacille Calmette-Guérin controlled M. tuberculosis growth for 7 wk of infection, the protection was gradually lost as the infection entered the chronic phase. The regrowth of M. tuberculosis coincided with an almost complete disappearance of IL-2-producing CD4 T cells. Booster vaccination with a subunit vaccine (Ag85B-ESAT-6+CAF01) expanded IL-2(+) CD4(+) T cell coexpressing either TNF-α or TNF-α/IFN-γ, and the maintenance of this population in the late stage of infection was associated with enhanced control of bacterial growth. The IL-2(+) CD4(+) T cell subsets were KLRG1(-) (nonterminally differentiated), were found to be CD62L(high), and further maintained a pronounced proliferative and cytokine-producing potential in the draining lymph nodes, when the animals were challenged 2 y postvaccination. These results suggest that the CD4(+) KLRG1(-) IL-2-secreting subsets are central memory T cells with the potential to continuously replenish the T cells at the site of infection and prevent attrition and functional exhaustion.
Collapse
Affiliation(s)
- Thomas Lindenstrøm
- Tuberculosis Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | | | | | | |
Collapse
|
77
|
Wilson H, de Jong BC, Peterson K, Jaye A, Kampmann B, Ota MOC, Sutherland JS. Skewing of the CD4(+) T-cell pool toward monofunctional antigen-specific responses in patients with immune reconstitution inflammatory syndrome in The Gambia. Clin Infect Dis 2013; 57:594-603. [PMID: 23645847 DOI: 10.1093/cid/cit285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A common complication of starting antiretroviral therapy (ART) for human immunodeficiency virus (HIV) is the development of immune reconstitution inflammatory syndrome (IRIS) in approximately 25% of patients. Despite similarities with paradoxical reactions to tuberculosis and reversal reactions in leprosy, the exact mechanisms, and therefore potential determinants, of IRIS are still unknown. METHODS In this longitudinal cohort study, we analyzed 20 patients who developed IRIS following initiation of ART and 16 patients who did not, matched for ART time point. Peripheral blood mononuclear cells were stimulated overnight with a positive control antigen and 2 tuberculosis-specific antigens (purified protein derivative [PPD] and ESAT-6/CFP10), followed by polychromatic flow cytometry for analysis of cytokine production from CD4(+) and CD8(+) T cells. RESULTS Responses to PPD were significantly higher in IRIS patients compared to controls during the IRIS time point, but CD4(+) and CD8(+) T-cell responses to the positive control stimulation were significantly lower in IRIS patients at all time points. Furthermore, whereas control patients had rejuvenated polyfunctional T-cell responses by 3 months after ART, IRIS patients were strikingly monofunctional (generally interferon γ alone), even up to 6 months of ART in response to all stimulations. CONCLUSIONS Our findings suggest that the peripheral T-cell responses to the underlying pathogen are exaggerated in IRIS patients but that the overall quality of the peripheral T-cell pool is significantly reduced compared to non-IRIS patients. Furthermore, these effects are apparent at least up to 3 months after cessation of IRIS.
Collapse
Affiliation(s)
- Harry Wilson
- Vaccinology Theme, Medical Research Council Unit, Fajara, The Gambia
| | | | | | | | | | | | | |
Collapse
|
78
|
Dalmia N, Ramsay AJ. Prime-boost approaches to tuberculosis vaccine development. Expert Rev Vaccines 2013; 11:1221-33. [PMID: 23176655 DOI: 10.1586/erv.12.94] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Four individuals die from active TB disease each minute, while at least 2 billion are latently infected and at risk for disease reactivation. BCG, the only licensed TB vaccine, is effective in preventing childhood forms of TB; however its poor efficacy in adults, emerging drug-resistant TB strains and tedious chemotherapy regimes, warrant the development of novel prophylactic measures. Designing safe and effective vaccines against TB will require novel approaches on several levels, including the administration of rationally selected mycobacterial antigens in efficient delivery vehicles via optimal immunization routes. Given the primary site of disease manifestation in the lungs, development of mucosal immunization strategies to generate protective immune responses both locally, and in the circulation, may be important for effective TB prophylaxis. This review focuses on prime-boost immunization strategies currently under investigation and highlights the potential of mucosal delivery and rational vaccine design based on systems biology.
Collapse
Affiliation(s)
- Neha Dalmia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
79
|
Tameris M, McShane H, McClain JB, Landry B, Lockhart S, Luabeya AK, Geldenhuys H, Shea J, Hussey G, van der Merwe L, de Kock M, Scriba T, Walker R, Hanekom W, Hatherill M, Mahomed H. Lessons learnt from the first efficacy trial of a new infant tuberculosis vaccine since BCG. Tuberculosis (Edinb) 2013; 93:143-9. [PMID: 23410889 PMCID: PMC3608032 DOI: 10.1016/j.tube.2013.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 01/09/2013] [Accepted: 01/21/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND New tuberculosis (TB) vaccines are being developed to combat the global epidemic. A phase IIb trial of a candidate vaccine, MVA85A, was conducted in a high burden setting in South Africa to evaluate proof-of-concept efficacy for prevention of TB in infants. OBJECTIVE To describe the study design and implementation lessons from an infant TB vaccine efficacy trial. METHODS This was a randomised, controlled, double-blind clinical trial comparing the safety and efficacy of MVA85A to Candin control administered to 4-6-month-old, BCG-vaccinated, HIV-negative infants at a rural site in South Africa. Infants were followed up for 15-39 months for incident TB disease based on pre-specified endpoints. RESULTS 2797 infants were enrolled over 22 months. Factors adversely affecting recruitment and the solutions that were implemented are discussed. Slow case accrual led to six months extension of trial follow up. CONCLUSION The clinical, regulatory and research environment for modern efficacy trials of new TB vaccines are substantially different to that when BCG vaccine was first evaluated in infants. Future infant TB vaccine trials will need to allocate sufficient resources and optimise operational efficiency. A stringent TB case definition is necessary to maximize specificity, and TB case accrual must be monitored closely.
Collapse
Affiliation(s)
- Michele Tameris
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine (IIDMM) and School of Child and Adolescent Health, University of Cape Town, Brewelskloof Hospital, Haarlem Street, Worcester, Western Cape 6850, South Africa
| | - Helen McShane
- Jenner Institute, University of Oxford, United Kingdom
| | | | | | | | - Angelique K.K. Luabeya
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine (IIDMM) and School of Child and Adolescent Health, University of Cape Town, Brewelskloof Hospital, Haarlem Street, Worcester, Western Cape 6850, South Africa
| | - Hennie Geldenhuys
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine (IIDMM) and School of Child and Adolescent Health, University of Cape Town, Brewelskloof Hospital, Haarlem Street, Worcester, Western Cape 6850, South Africa
| | - Jacqui Shea
- Oxford Emergent Tuberculosis Consortium, United Kingdom
| | - Gregory Hussey
- Vaccines for Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medical Microbiology, University of Cape Town, South Africa
| | - Linda van der Merwe
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine (IIDMM) and School of Child and Adolescent Health, University of Cape Town, Brewelskloof Hospital, Haarlem Street, Worcester, Western Cape 6850, South Africa
| | - Marwou de Kock
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine (IIDMM) and School of Child and Adolescent Health, University of Cape Town, Brewelskloof Hospital, Haarlem Street, Worcester, Western Cape 6850, South Africa
| | - Thomas Scriba
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine (IIDMM) and School of Child and Adolescent Health, University of Cape Town, Brewelskloof Hospital, Haarlem Street, Worcester, Western Cape 6850, South Africa
| | | | - Willem Hanekom
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine (IIDMM) and School of Child and Adolescent Health, University of Cape Town, Brewelskloof Hospital, Haarlem Street, Worcester, Western Cape 6850, South Africa
| | - Mark Hatherill
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine (IIDMM) and School of Child and Adolescent Health, University of Cape Town, Brewelskloof Hospital, Haarlem Street, Worcester, Western Cape 6850, South Africa
| | - Hassan Mahomed
- South African TB Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine (IIDMM) and School of Child and Adolescent Health, University of Cape Town, Brewelskloof Hospital, Haarlem Street, Worcester, Western Cape 6850, South Africa
| |
Collapse
|
80
|
Marín ND, París SC, Rojas M, García LF. Functional profile of CD4+ and CD8+ T cells in latently infected individuals and patients with active TB. Tuberculosis (Edinb) 2013; 93:155-66. [DOI: 10.1016/j.tube.2012.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/17/2012] [Accepted: 12/22/2012] [Indexed: 11/17/2022]
|
81
|
Evaluation of the safety and immunogenicity of a candidate tuberculosis vaccine, MVA85A, delivered by aerosol to the lungs of macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:663-72. [PMID: 23446219 DOI: 10.1128/cvi.00690-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tuberculosis (TB) is a reemerging disease. The only available vaccine, Mycobacterium bovis BCG, is delivered intradermally and confers highly variable efficacy against pulmonary disease. There is an urgent need for improved vaccination strategies. Murine studies suggest that immunizations delivered directly to the respiratory mucosa might be a more effective route of vaccination. This study compared the immunogenicity of a leading candidate tuberculosis (TB) vaccine, modified vaccinia virus Ankara expressing antigen 85A (MVA85A), in rhesus macaques, delivered either as an aerosol or as an intradermal boost immunization 12 weeks after an intradermal BCG prime vaccine. Aerosol vaccination was well tolerated. MVA85A delivered by aerosol or by intradermal injection induced antigen-specific immune responses in the periphery and the lung, with a trend toward the highest response when the compartment and route of delivery were matched. The ability of poxvirus-vectored vaccines delivered by the systemic route to induce responses in the mucosal immune compartment in macaques is in contrast to the independent compartmentalization of mucosal and systemic immune systems described in mice. Unlike intradermal vaccination, aerosol vaccination did not induce a detectable serum anti-vector antibody response. The delivery of vaccines to the lungs might provide an immunization strategy that limits the induction of systemic anti-vector immunity, which would be extremely useful in the development of improved vaccine strategies. This is the first study to show a recombinant MVA-vectored vaccine to be highly immunogenic when delivered by the aerosol route to nonhuman primates. These results provide important safety and proof-of-concept data for further evaluation of this route of immunization for use in human clinical trials.
Collapse
|
82
|
Guha R, Das S, Ghosh J, Naskar K, Mandala A, Sundar S, Dujardin JC, Roy S. Heterologous priming-boosting with DNA and vaccinia virus expressing kinetoplastid membrane protein-11 induces potent cellular immune response and confers protection against infection with antimony resistant and sensitive strains of Leishmania (Leishmania) donovani. Vaccine 2013; 31:1905-15. [PMID: 23499564 DOI: 10.1016/j.vaccine.2013.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Emergence of resistance against commonly available drugs poses a major threat in the treatment of visceral leishmaniasis (VL), particularly in the Indian subcontinent. Absence of any licensed vaccine against VL emphasizes the urgent need to develop an effective alternative vaccination strategy. METHODOLOGY We developed a novel heterologous prime boost immunization strategy using kinetoplastid membrane protein-11 (KMP-11) DNA priming followed by boosting with recombinant vaccinia virus (rVV) expressing the same antigen. The efficacy of this vaccination regimen in a murine and hamster model of visceral leishmaniasis caused by both antimony resistant (Sb-R) and sensitive (Sb-S) Leishmania (L.) donovani is examined. RESULT Heterologous prime-boost (KMP-11 DNA/rVV) vaccination was able to protect mice and hamsters from experimental VL induced by both Sb-S and Sb-R-L. (L.) donovani isolates. Parasite burden is kept significantly low in the vaccinated groups even after 60 days post-infection in hamsters, which are extremely susceptible to VL. Protection in mice is correlated with strong cellular and humoral immune responses. Generation of polyfunctional CD8(+) T cell was observed in vaccinated groups, which is one of the most important prerequisite for successful vaccination against VL. Protection was accompanied with generation of antigen specific CD4(+) and CD8(+) cells that produced effector cytokines such as IFN-γ, IL-2 and TNF-α. KMP-11-DNA/rVV vaccination also developed strong cytotoxic response and reversed T-cell impairment to induce antigen specific T cell proliferation. CONCLUSION KMP-11 is a unique antigen with high epitope density. Heterologous prime boost vaccination activates CD4(+) and CD8(+) T-cell mediated immunity to confer resistance to VL. This immunization method also produces high quality T-cells secreting multiple effector cytokines thus enhancing durability of the immune response. Thus the vaccination regime as described in the present study could provide a potent strategy for future anti-leishmanial vaccine development.
Collapse
Affiliation(s)
- Rajan Guha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, Kim Y, Sidney J, James EA, Taplitz R, McKinney DM, Kwok WW, Grey H, Sallusto F, Peters B, Sette A. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog 2013; 9:e1003130. [PMID: 23358848 PMCID: PMC3554618 DOI: 10.1371/journal.ppat.1003130] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/29/2012] [Indexed: 12/31/2022] Open
Abstract
An understanding of the immunological footprint of Mycobacterium tuberculosis (MTB) CD4 T cell recognition is still incomplete. Here we report that human Th1 cells specific for MTB are largely contained in a CXCR3+CCR6+ memory subset and highly focused on three broadly immunodominant antigenic islands, all related to bacterial secretion systems. Our results refute the notion that secreted antigens act as a decoy, since both secreted proteins and proteins comprising the secretion system itself are targeted by a fully functional T cell response. In addition, several novel T cell antigens were identified which can be of potential diagnostic use, or as vaccine antigens. These results underline the power of a truly unbiased, genome-wide, analysis of CD4 MTB recognition based on the combined use of epitope predictions, high throughput ELISPOT, and T cell libraries using PBMCs from individuals latently infected with MTB. Mycobacterium tuberculosis is one of the most life-threatening pathogens of all time, having infected one-third of the present human population. There is an urgent need for both novel vaccines and diagnostic strategies. Here, we were able to identify the targets most dominantly recognized by latently infected individual that successfully contain infection. These targets are contained in three broadly genomic antigenic islands, all related to bacterial secretion systems and composed by several distinct ORFs. Thus, our results suggest that vaccination with one or few defined antigens will fail to replicate the response associated with natural immunity. Our analysis also pinpoints that the Th1 cells dominating the response are associated with novel and well-defined phenotypic markers, suggesting that the response is molded by unique MTB associated factors. This study demonstrates further that the approach combining peptide binding predictions with modern high throughput techniques is generally applicable to the study of immunity to other complex pathogens. Together, our data provide a new angle in the worldwide fight against M. tuberculosis and could be used for diagnostic or vaccine developments.
Collapse
Affiliation(s)
| | - Anna Gerasimova
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Federico Mele
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ryan Henderson
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Justine Swann
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jason A. Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Yohan Kim
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Eddie A. James
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Randy Taplitz
- Antiviral Research Centre, University of California, San Diego, San Diego, California, United States of America
| | - Denise M. McKinney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - William W. Kwok
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Howard Grey
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | | | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
84
|
Meyer J, Harris SA, Satti I, Poulton ID, Poyntz HC, Tanner R, Rowland R, Griffiths KL, Fletcher HA, McShane H. Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery. Vaccine 2012; 31:1026-33. [PMID: 23266342 PMCID: PMC5405058 DOI: 10.1016/j.vaccine.2012.12.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 01/03/2023]
Abstract
Background New vaccines to prevent tuberculosis are urgently needed. MVA85A is a novel viral vector TB vaccine candidate designed to boost BCG-induced immunity when delivered intradermally. To date, intramuscular delivery has not been evaluated. Skin and muscle have distinct anatomical and immunological properties which could impact upon vaccine-mediated cellular immunity. Methods We conducted a randomised phase I trial comparing the safety and immunogenicity of 1 × 108 pfu MVA85A delivered intramuscularly or intradermally to 24 healthy BCG-vaccinated adults. Results Intramuscular and intradermal MVA85A were well tolerated. Intradermally-vaccinated subjects experienced significantly more local adverse events than intramuscularly-vaccinated subjects, with no difference in systemic adverse events. Both routes generated strong and sustained Ag85A-specific IFNγ T cell responses and induced multifunctional CD4+ T cells. The frequencies of CD4+ T cells expressing chemokine receptors CCR4, CCR6, CCR7 and CXCR3 induced by vaccination was similar between routes. Conclusions In this phase I trial the intramuscular delivery of MVA85A was well tolerated and induced strong, durable cellular immune responses in healthy BCG vaccinated adults, comparable to intradermal delivery. These findings are important for TB vaccine development and are of relevance to HIV, malaria, influenza and other intracellular pathogens for which T cell-inducing MVA-based vaccine platforms are being evaluated.
Collapse
Affiliation(s)
- Joel Meyer
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Betts G, Poyntz H, Stylianou E, Reyes-Sandoval A, Cottingham M, Hill A, McShane H. Optimising immunogenicity with viral vectors: mixing MVA and HAdV-5 expressing the mycobacterial antigen Ag85A in a single injection. PLoS One 2012; 7:e50447. [PMID: 23284637 PMCID: PMC3528774 DOI: 10.1371/journal.pone.0050447] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/22/2012] [Indexed: 01/12/2023] Open
Abstract
The Bacillus Calmette - Guerin (BCG) vaccine provides a critical but limited defense against Mycobacterium tuberculosis (M.tb). More than 60 years after the widespread introduction of BCG, there is an urgent need for a better vaccine. A large body of pre-clinical research continues to support ongoing clinical trials to assess whether viral vectors expressing M.tb antigens that are shared by BCG and M.tb, can be used alongside BCG to enhance protection. A major focus involves using multiple unique viral vectors to limit anti-vector immunity and thereby enhance responses to the insert antigen delivered. The successful introduction of viral vector vaccines to target M.tb and other pathogens will be reliant on reducing the costs when using multiple vectors and inhibiting the development of unwanted anti-vector responses that interfere with the response to insert antigen. This study examines methods to reduce the logistical costs of vaccination by mixing different viral vectors that share the same insert antigen in one vaccine; and whether combining different viral vectors reduces anti-vector immunity to improve immunogenicity to the insert antigen. Here we show that a homologous prime-boost regimen with a mixture of MVA (Modified Vaccinia virus Ankara) and Ad5 (human adenovirus type 5) vectors both expressing Ag85A in a single vaccine preparation is able to reduce anti-vector immunity, compared with a homologous prime-boost regimen with either vector alone. However, the level of immunogenicity induced by the homologous mixture remained comparable to that induced with single viral vectors and was less immunogenic than a heterologous Ad5 prime-MVA-boost regimen. These findings advance the understanding of how anti-vector immunity maybe reduced in viral vector vaccination regimens. Furthermore, an insight is provided to the impact on vaccine immunogenicity from altering vaccination methods to reduce the logistical demands of using separate vaccine preparations in the field.
Collapse
Affiliation(s)
- Gareth Betts
- Nuffield Department of Surgery, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
86
|
Pitt JM, Blankley S, McShane H, O'Garra A. Vaccination against tuberculosis: how can we better BCG? Microb Pathog 2012; 58:2-16. [PMID: 23257069 DOI: 10.1016/j.micpath.2012.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 01/01/2023]
Abstract
Tuberculosis remains one of the most significant human diseases of the developing world, accounting for 3800 worldwide deaths per day. Although we currently have a vaccine for tuberculosis, BCG, this is insufficient at protecting from adult pulmonary tuberculosis in the parts of the world where a good vaccine is most needed. This has prompted the search for new vaccination strategies that can protect better than BCG, or can boost BCG-induced immunity. We discuss these subjects in line with what is known of the immune responses to BCG and Mycobacterium tuberculosis - the etiological agent of the disease, as well as the particular difficulties facing development of new vaccines against tuberculosis. A greater understanding of the factors constituting optimal protection against Mycobacterium tuberculosis infection, as well as which pathogenic factors facilitate active disease, will accelerate the delivery of safe vaccines able to restrict active tuberculosis and thus impede contagion.
Collapse
Affiliation(s)
- Jonathan M Pitt
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
87
|
Vasconcelos JR, Dominguez MR, Araújo AF, Ersching J, Tararam CA, Bruna-Romero O, Rodrigues MM. Relevance of long-lived CD8(+) T effector memory cells for protective immunity elicited by heterologous prime-boost vaccination. Front Immunol 2012; 3:358. [PMID: 23264773 PMCID: PMC3525016 DOI: 10.3389/fimmu.2012.00358] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/10/2012] [Indexed: 11/13/2022] Open
Abstract
Owing to the importance of major histocompatibility complex class Ia-restricted CD8(+) T cells for host survival following viral, bacterial, fungal, or parasitic infection, it has become largely accepted that these cells should be considered in the design of a new generation of vaccines. For the past 20 years, solid evidence has been provided that the heterologous prime-boost regimen achieves the best results in terms of induction of long-lived protective CD8(+) T cells against a variety of experimental infections. Although this regimen has often been used experimentally, as is the case for many vaccines, the mechanism behind the efficacy of this vaccination regimen is still largely unknown. The main purpose of this review is to examine the characteristics of the protective CD8(+) T cells generated by this vaccination regimen. Part of its efficacy certainly relies on the generation and maintenance of large numbers of specific lymphocytes. Other specific characteristics may also be important, and studies on this direction have only recently been initiated. So far, the characterization of these protective, long-lived T cell populations suggests that there is a high frequency of polyfunctional T cells; these cells cover a large breadth and display a T effector memory (TEM) phenotype. These TEM cells are capable of proliferating after an infectious challenge and are highly refractory to apoptosis due to a control of the expression of pro-apoptotic receptors such as CD95. Also, they do not undergo significant long-term immunological erosion. Understanding the mechanisms that control the generation and maintenance of the protective activity of these long-lived TEM cells will certainly provide important insights into the physiology of CD8(+) T cells and pave the way for the design of new or improved vaccines.
Collapse
Affiliation(s)
- José R Vasconcelos
- Centro de Terapia Celular e Molecular, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, São Paulo, Brazil ; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo - Escola Paulista de Medicina São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
88
|
Rowland R, Pathan AA, Satti I, Poulton ID, Matsumiya MML, Whittaker M, Minassian AM, O'Hara GA, Hamill M, Scott JT, Harris SA, Poyntz HC, Bateman C, Meyer J, Williams N, Gilbert SC, Lawrie AM, Hill AVS, McShane H. Safety and immunogenicity of an FP9-vectored candidate tuberculosis vaccine (FP85A), alone and with candidate vaccine MVA85A in BCG-vaccinated healthy adults: a phase I clinical trial. Hum Vaccin Immunother 2012; 9:50-62. [PMID: 23143773 PMCID: PMC3667946 DOI: 10.4161/hv.22464] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The safety and immunogenicity of a new candidate tuberculosis (TB) vaccine, FP85A was evaluated alone and in heterologous prime-boost regimes with another candidate TB vaccine, MVA85A. This was an open label, non-controlled, non-randomized Phase I clinical trial. Healthy previously BCG-vaccinated adult subjects were enrolled sequentially into three groups and vaccinated with FP85A alone, or both FP85A and MVA85A, with a four week interval between vaccinations. Passive and active data on adverse events were collected. Immunogenicity was evaluated by Enzyme Linked Immunospot (ELISpot), flow cytometry and Enzyme Linked Immunosorbent assay (ELISA). Most adverse events were mild and there were no vaccine-related serious adverse events. FP85A vaccination did not enhance antigen 85A-specific cellular immunity. When MVA85A vaccination was preceded by FP85A vaccination, cellular immune responses were lower compared with when MVA85A vaccination was the first immunisation. MVA85A vaccination, but not FP85A vaccination, induced anti-MVA IgG antibodies. Both MVA85A and FP85A vaccinations induced anti-FP9 IgG antibodies. In conclusion, FP85A vaccination was well tolerated but did not induce antigen-specific cellular immune responses. We hypothesize that FP85A induced anti-FP9 IgG antibodies with cross-reactivity for MVA85A, which may have mediated inhibition of the immune response to subsequent MVA85A. ClinicalTrials.gov identification number: NCT00653770
Collapse
|
89
|
Deletion of specific immune-modulatory genes from modified vaccinia virus Ankara-based HIV vaccines engenders improved immunogenicity in rhesus macaques. J Virol 2012; 86:12605-15. [PMID: 22973033 DOI: 10.1128/jvi.00246-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a safe, attenuated orthopoxvirus that is being developed as a vaccine vector but has demonstrated limited immunogenicity in several early-phase clinical trials. Our objective was to rationally improve the immunogenicity of MVA-based HIV/AIDS vaccines via the targeted deletion of specific poxvirus immune-modulatory genes. Vaccines expressing codon-optimized HIV subtype C consensus Env and Gag antigens were generated from MVA vector backbones that (i) harbor simultaneous deletions of four viral immune-modulatory genes, encoding an interleukin-18 (IL-18) binding protein, an IL-1β receptor, a dominant negative Toll/IL-1 signaling adapter, and CC-chemokine binding protein (MVAΔ4-HIV); (ii) harbor a deletion of an additional (fifth) viral gene, encoding uracil-DNA glycosylase (MVAΔ5-HIV); or (iii) represent the parental MVA backbone as a control (MVA-HIV). We performed head-to-head comparisons of the cellular and humoral immune responses that were elicited by these vectors during homologous prime-boost immunization regimens utilizing either high-dose (2 × 10(8) PFU) or low-dose (1 × 10(7) PFU) intramuscular immunization of rhesus macaques. At all time points, a majority of the HIV-specific T cell responses, elicited by all vectors, were directed against Env, rather than Gag, determinants, as previously observed with other vector systems. Both modified vectors elicited up to 6-fold-higher frequencies of HIV-specific CD8 and CD4 T cell responses and up to 25-fold-higher titers of Env (gp120)-specific binding (nonneutralizing) antibody responses that were relatively transient in nature. While the correlates of protection against HIV infection remain incompletely defined, our results indicate that the rational deletion of specific genes from MVA vectors can positively alter their cellular and humoral immunogenicity profiles in nonhuman primates.
Collapse
|
90
|
You Q, Wu Y, Wu Y, Wei W, Wang C, Jiang D, Yu X, Zhang X, Wang Y, Tang Z, Jiang C, Kong W. Immunogenicity and protective efficacy of heterologous prime-boost regimens with mycobacterial vaccines and recombinant adenovirus- and poxvirus-vectored vaccines against murine tuberculosis. Int J Infect Dis 2012; 16:e816-25. [PMID: 22921259 DOI: 10.1016/j.ijid.2012.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/03/2012] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To evaluate regimens using bacillus Calmette-Guérin (BCG) or recombinant BCG (rBCG) overexpressing Ag85B for priming, followed by boosting with a modified vaccinia virus Ankara strain (MVA) and/or adenovirus vector (AD) expressing an Ag85B-ESAT6 fusion protein. METHODS Cellular and humoral immune responses were determined after subcutaneous vaccination, which was employed to trigger systemic immunity against intravenous infection in a mouse model of tuberculosis (TB). Bacterial loads and lung histology were evaluated. RESULTS The relative IgG2a and IgG1 antibody levels indicated that the viral-vectored vaccines generated a T-helper type 1 (Th1)-biased response after two doses of viral boost vaccinations. Boosting BCG-primed mice with viral vaccines induced a Th1 immune response that included both CD4 and CD8 T-cells generating antigen-specific interferon-gamma (IFN-γ) and CD8 T cytotoxic activity. Only mice vaccinated with two different viral boosters after BCG priming exhibited a significant reduction in bacterial burden in the lung after challenge. Histology examinations confirmed the attenuation of lung damage and more compact granulomas. After mycobacteria priming, boosting with AD85B-E6 followed by MVA85B-E6 afforded better protection than the reverse order of administration of the viral vectors. CONCLUSIONS This study demonstrates the potential of multiple heterologous viral booster vaccines, although the exact correlates of protection and optimal regimens should be further investigated for the rational design of future vaccine strategies.
Collapse
Affiliation(s)
- Qingrui You
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Gaoxin District Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Pathan AA, Minassian AM, Sander CR, Rowland R, Porter DW, Poulton ID, Hill AV, Fletcher HA, McShane H. Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults. Vaccine 2012; 30:5616-24. [PMID: 22789508 PMCID: PMC3424417 DOI: 10.1016/j.vaccine.2012.06.084] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/26/2012] [Accepted: 06/29/2012] [Indexed: 11/06/2022]
Abstract
PURPOSE A non-randomised, open-label, Phase I safety and immunogenicity dose-finding study to assess the safety and immunogenicity of the candidate TB vaccine Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) from Mycobacterium tuberculosis (MTB) in healthy adult volunteers previously vaccinated with BCG. METHODS Healthy BCG-vaccinated volunteers were vaccinated with either 1×10(7) or 1×10(8)PFU of MVA85A. All adverse events were documented and antigen specific T cell responses were measured using an ex vivo IFN-γ ELISPOT assay. Safety and immunogenicity were compared between the 2 dose groups and with a previous trial in which a dose of 5×10(7)PFU MVA85A had been administered. RESULTS There were no serious adverse events recorded following administration of either 1×10(7) or 1×10(8)PFU of MVA85A. Systemic adverse events were more frequently reported following administration of 1×10(8)PFU of MVA85A when compared to either 5×10(7) or 1×10(7)PFU of MVA85A but were mild or moderate in severity and resolved completely within 7 days of immunisation. Antigen specific T cell responses as measured by the IFN-γ ELISPOT were significantly higher following immunisation in adults receiving 1×10(8)PFU compared to the 5×10(7) and 1×10(7) doses. Additionally, a broader range of Ag85A epitopes are detected following 1×10(8)PFU of MVA85A. CONCLUSION A higher dose of 1×10(8)PFU of MVA85A is well-tolerated, increases the frequency of IFN-γ secreting T cells detected following immunisation and broadens the range of Ag85A epitopes detected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
92
|
Smith SG, Lecher S, Blitz R, Locht C, Dockrell HM. Broad heparin-binding haemagglutinin-specific cytokine and chemokine response in infants following Mycobacterium bovis BCG vaccination. Eur J Immunol 2012; 42:2511-22. [PMID: 22653733 DOI: 10.1002/eji.201142297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/13/2012] [Accepted: 05/04/2012] [Indexed: 12/21/2022]
Abstract
Heparin-binding haemagglutinin (HBHA)-specific immune responses have been linked to protection against tuberculosis (TB). We investigated the hypothesis that BCG vaccination of human infants primes an HBHA-specific response, using multiplex to measure secreted cytokines and chemokines following HBHA and Mycobacterium tuberculosis purified protein derivative (PPD) stimulation of diluted whole blood samples from BCG-vaccinated or -unvaccinated infants. Of 42 analytes measured, 24 and 32 significant, BCG-associated increases were detected in response to HBHA and PPD, respectively. Both response profiles included Th-1, Th-2, Th-17 and inflammatory cytokines and chemokines (e.g. IFN-γ, TNF-α, IL-5, IL-10, IL-13, IL-17, MIP-1α and MIP-1β). We also found that six of the seven responses most closely correlated with IFN-γ were common to both HBHA and PPD. Notably, all HBHA-specific secretion of cytokines and chemokines from infant samples was dependent on previous BCG vaccination. Also, long-term persistence of HBHA-specific responses was found in adolescents with evidence of infant BCG vaccination. This study demonstrates for the first time BCG priming of an HBHA-specific immune response in infants that is characterised by a broad cytokine and chemokine signature. It also suggests a number of BCG vaccination associated, HBHA-induced responses that should be useful for future studies of biomarkers of protection against TB.
Collapse
Affiliation(s)
- Steven G Smith
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | | | | |
Collapse
|
93
|
Marras F, Bozzano F, Bentivoglio G, Ugolotti E, Biassoni R, Moretta L, De Maria A. Receptor modulation and functional activation of human CD34+ Lin- -derived immature NK cells in vitro by Mycobacterium bovis Bacillus Calmette-Guerin (BCG). Eur J Immunol 2012; 42:2459-70. [PMID: 22736333 DOI: 10.1002/eji.201242375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 04/26/2012] [Accepted: 05/25/2012] [Indexed: 12/15/2022]
Abstract
It is not yet clear whether immature NK (iNK) cells are bystanders to or rather participate in immune responses to pathogens that may colocalize in areas of NK-cell maturation such as bone marrow or lymph nodes. Mycobacteria, including Bacillus Calmette-Guerin (BCG), have been shown to interact with peripheral NK cells and in vivo may colocalize in areas of iNK-cell development. We studied infection with BCG of human cord blood CD34(+) Lin(-)-derived cultures containing myelomonocytes and iNK cells in vitro. Increased iNK-cell DNAM-1 expression, transient natural cytotoxicity receptor modulation, and production of IFN-γ were observed. Transcriptional receptor modulation was associated to BCG challenge, which determined increased iNK-cell cytotoxic activity against tumor cell lines and also increased killing of immature dendritic cells (iDCs). No requirement for cell contact was recorded for BCG-induced iNK-cell activation, while cytokine production including IL-18, IL-10, GM-CSF, and TGF-β contributed to the observed effects. Thus, iNK cells are affected by mycobacteria in vitro and may contribute to shaping of adaptive mature innate responses through iDC-iNK cross-talk. In addition, iNK-cell activation by BCG may represent a novel additional mechanism contributing to the effects observed upon BCG administration in vivo.
Collapse
MESH Headings
- Antigens, CD34/genetics
- Antigens, CD34/immunology
- Antigens, CD34/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- BCG Vaccine/immunology
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
- Humans
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Interleukin-18/genetics
- Interleukin-18/immunology
- Interleukin-18/metabolism
- K562 Cells
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation
- Monocytes/immunology
- Monocytes/metabolism
- Mycobacterium bovis/genetics
- Mycobacterium bovis/immunology
- Mycobacterium bovis/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta/metabolism
Collapse
|
94
|
Taylor JL, Wieczorek A, Keyser AR, Grover A, Flinkstrom R, Karls RK, Bielefeldt-Ohmann H, Dobos KM, Izzo AA. HspX-mediated protection against tuberculosis depends on its chaperoning of a mycobacterial molecule. Immunol Cell Biol 2012; 90:945-54. [PMID: 22801575 PMCID: PMC3511932 DOI: 10.1038/icb.2012.34] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New approaches consisting of ‘multistage' vaccines against (TB) are emerging that combine early antigenic proteins with latency-associated antigens. In this study, HspX was tested for its potential to elicit both short- and long-term protective immune responses. HspX is a logical component in vaccine strategies targeting protective immune responses against primary infection, as well as against reactivation of latent infection, because as previously shown, it is produced during latency, and as our studies show, it elicits protection within 30 days of infection. Recent studies have shown that the current TB vaccine, bacilli Calmette-Guerin (BCG), does not induce strong interferon-γ T-cell responses to latency-associated antigens like HspX, which may be in part why BCG fails to protect against reactivation disease. We therefore tested HspX protein alone as a prophylactic vaccine and as a boost to BCG vaccination, and found that HspX purified from M. tuberculosis cell lysates protected mice against aerosol challenge and improved the protective efficacy of BCG when used as a booster vaccine. Native HspX was highly immunogenic and protective, in a dose-dependent manner, in both short- and long-term infection models. Based on these promising findings, HspX was produced as a recombinant protein in E. coli, as this would enable facile purification; however, recombinant HspX (rHspX) alone consistently failed to protect against aerosol challenge. Incubation of rHspX with mycobacterial cell lysate and re-purification following incubation restored the capacity of the protein to confer protection. These data suggest the possibility that the native form may chaperone an immunogenic and protective antigen that is mycobacteria-specific.
Collapse
Affiliation(s)
- Jennifer L Taylor
- Department of Microbiology, Mycobacteria Research Laboratories, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Lindow JC, Borochoff-Porte N, Durbin AP, Whitehead SS, Fimlaid KA, Bunn JY, Kirkpatrick BD. Primary vaccination with low dose live dengue 1 virus generates a proinflammatory, multifunctional T cell response in humans. PLoS Negl Trop Dis 2012; 6:e1742. [PMID: 22816004 PMCID: PMC3398956 DOI: 10.1371/journal.pntd.0001742] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/08/2012] [Indexed: 01/07/2023] Open
Abstract
The four dengue virus serotypes (DENV-1-DENV-4) have a large impact on global health, causing 50-100 million cases of dengue fever annually. Herein, we describe the first kinetic T cell response to a low-dose DENV-1 vaccination study (10 PFU) in humans. Using flow cytometry, we found that proinflammatory cytokines, IFNγ, TNFα, and IL-2, were generated by DENV-1-specific CD4(+) cells 21 days post-DENV-1 exposure, and their production continued through the latest time-point, day 42 (p<0.0001 for all cytokines). No statistically significant changes were observed at any time-points for IL-10 (p = 0.19), a regulatory cytokine, indicating that the response to DENV-1 was primarily proinflammatory in nature. We also observed little T cell cross-reactivity to the other 3 DENV serotypes. The percentage of multifunctional T cells (T cells making ≥ 2 cytokines simultaneously) increased with time post-DENV-1 exposure (p<0.0001). The presence of multifunctional T cells together with neutralizing antibody data suggest that the immune response generated to the vaccine may be protective. This work provides an initial framework for defining primary T cell responses to each DENV serotype and will enhance the evaluation of a tetravalent DENV vaccine.
Collapse
Affiliation(s)
- Janet C Lindow
- Vaccine Testing Center and Unit of Infectious Diseases, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America.
| | | | | | | | | | | | | |
Collapse
|
96
|
Duration of immunity against Mycobacterium bovis following neonatal vaccination with bacillus Calmette-Guérin Danish: significant protection against infection at 12, but not 24, months. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1254-60. [PMID: 22718125 DOI: 10.1128/cvi.00301-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination of neonatal calves with Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces a significant degree of protection against bovine tuberculosis, caused by infection with virulent M. bovis. In two independent experiments, we assessed the duration of the protective immunity induced in calves by neonatal vaccination with BCG Danish. Protection from disease was assessed at 12 and 24 months postvaccination in cattle challenged via the endotracheal route with M. bovis. We also assessed antigen-specific immune responses to assess their utility as correlates of protection. At 12 months postvaccination, significant reductions in lung and lymph node pathologies were observed compared to nonvaccinated M. bovis-challenged control cattle. At 24 months post-BCG vaccination, there was a reduction in lung and lymph node pathology scores and in bacterial burden. However, when comparing vaccinated and control groups, this did not reach statistical significance. Vaccination induced long-lived antigen (purified protein derivative [PPD])-specific gamma interferon (IFN-γ) release in whole-blood cultures, which remained above baseline levels for more than 20 months (approximately 90 weeks). The number of antigen-specific IFN-γ-secreting central memory T cells present at the time of M. bovis challenge was significantly higher in vaccinated than in control animals at 12 months postvaccination, but not at 24 months. Vaccination of neonatal calves with BCG Danish induced protective immune responses against bovine TB which were maintained for at least 12 months postvaccination. These studies provide data on the immunity induced by BCG vaccination in calves; the results could inform vaccination strategies for the control of bovine TB in United Kingdom cattle herds.
Collapse
|
97
|
The duration of antigen-stimulation significantly alters the diversity of multifunctional CD4 T cells measured by intracellular cytokine staining. PLoS One 2012; 7:e38926. [PMID: 22719990 PMCID: PMC3373578 DOI: 10.1371/journal.pone.0038926] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/15/2012] [Indexed: 12/25/2022] Open
Abstract
The assessment of antigen-specific T cell responses by intracellular cytokine staining (ICS) has become a routine technique in studies of vaccination and immunity. Here, we highlight how the duration of in vitro antigen pre-stimulation, combined with the cytokine accumulation period, are critical parameters of these methods. The effect of varying these parameters upon the diversity and frequency of multifunctional CD4 T cell subsets has been investigated using a murine model of TB vaccination and in cattle naturally infected with Mycobacterium bovis. We demonstrate a substantial influence of the duration of the antigen pre-stimulation period on the repertoire of the antigen-specific CD4 T cell responses. Increasing pre-stimulation from 2 to 6 hours amplified the diversity of the seven potential multifunctional CD4 T cell subsets that secreted any combination of IFN-γ, IL-2 and TNF-α. However, increasing pre-stimulation from 6 to 16 hours markedly altered the multifunctional CD4 T cell repertoire to a dominant IFN-γ(+) only response. This was observed in both murine and cattle models.Whilst these data are of particular relevance to the measurement of vaccine and infection induced immunity in TB, more generally, they demonstrate the importance of the empirical determination of the optimum duration of the individual culture steps of ICS assays for any model. We highlight the potential significance of variations in these parameters, particularly when comparing data between studies and/or models including clinical trials.
Collapse
|
98
|
Immune markers and correlates of protection for vaccine induced immune responses. Vaccine 2012; 30:4907-20. [PMID: 22658928 DOI: 10.1016/j.vaccine.2012.05.049] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/15/2012] [Accepted: 05/19/2012] [Indexed: 12/15/2022]
Abstract
Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against chronic infections in neither human nor veterinary medicine. Technological and conceptual advancements within cell-mediated immunology have led to a number of new immunological read-outs with the potential to emerge as correlates of vaccine induced protection. For T(H)1 type responses, antigen-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination, through recombinant major histocompatibility complex (MHC) class I tetramers loaded with relevant peptides, has opened a new vista to include CTL responses in the evaluation of protective immune responses. Here, we review different immune markers and new candidates for correlates of a protective vaccine induced immune response against chronic infections and how successful they have been in defining the protective immunity in human and veterinary medicine.
Collapse
|
99
|
Adekambi T, Ibegbu CC, Kalokhe AS, Yu T, Ray SM, Rengarajan J. Distinct effector memory CD4+ T cell signatures in latent Mycobacterium tuberculosis infection, BCG vaccination and clinically resolved tuberculosis. PLoS One 2012; 7:e36046. [PMID: 22545156 PMCID: PMC3335801 DOI: 10.1371/journal.pone.0036046] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/26/2012] [Indexed: 12/03/2022] Open
Abstract
Two billion people worldwide are estimated to be latently infected with Mycobacterium tuberculosis (Mtb) and are at risk for developing active tuberculosis since Mtb can reactivate to cause TB disease in immune-compromised hosts. Individuals with latent Mtb infection (LTBI) and BCG-vaccinated individuals who are uninfected with Mtb, harbor antigen-specific memory CD4+ T cells. However, the differences between long-lived memory CD4+ T cells induced by latent Mtb infection (LTBI) versus BCG vaccination are unclear. In this study, we characterized the immune phenotype and functionality of antigen-specific memory CD4+ T cells in healthy BCG-vaccinated individuals who were either infected (LTBI) or uninfected (BCG) with Mtb. Individuals were classified into LTBI and BCG groups based on IFN-γ ELISPOT using cell wall antigens and ESAT-6/CFP-10 peptides. We show that LTBI individuals harbored high frequencies of late-stage differentiated (CD45RA−CD27−) antigen-specific effector memory CD4+ T cells that expressed PD-1. In contrast, BCG individuals had primarily early-stage (CD45RA−CD27+) cells with low PD-1 expression. CD27+ and CD27− as well as PD-1+ and PD-1− antigen-specific subsets were polyfunctional, suggesting that loss of CD27 expression and up-regulation of PD-1 did not compromise their capacity to produce IFN-γ, TNF-α and IL-2. PD-1 was preferentially expressed on CD27− antigen-specific CD4+ T cells, indicating that PD-1 is associated with the stage of differentiation. Using statistical models, we determined that CD27 and PD-1 predicted LTBI versus BCG status in healthy individuals and distinguished LTBI individuals from those who had clinically resolved Mtb infection after anti-tuberculosis treatment. This study shows that CD4+ memory responses induced by latent Mtb infection, BCG vaccination and clinically resolved Mtb infection are immunologically distinct. Our data suggest that differentiation into CD27−PD-1+ subsets in LTBI is driven by Mtb antigenic stimulation in vivo and that CD27 and PD-1 have the potential to improve our ability to evaluate true LTBI status.
Collapse
Affiliation(s)
- Toidi Adekambi
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Chris C. Ibegbu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ameeta S. Kalokhe
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Infectious Disease, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Atlanta, Georgia, United States of America
| | - Susan M. Ray
- Division of Infectious Disease, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Infectious Disease, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
100
|
Eneslätt K, Normark M, Björk R, Rietz C, Zingmark C, Wolfraim LA, Stöven S, Sjöstedt A. Signatures of T cells as correlates of immunity to Francisella tularensis. PLoS One 2012; 7:e32367. [PMID: 22412866 PMCID: PMC3295757 DOI: 10.1371/journal.pone.0032367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/26/2012] [Indexed: 11/18/2022] Open
Abstract
Tularemia or vaccination with the live vaccine strain (LVS) of Francisella tularensis confers long-lived cell-mediated immunity. We hypothesized that this immunity depends on polyfunctional memory T cells, i.e., CD4(+) and/or CD8(+) T cells with the capability to simultaneously express several functional markers. Multiparametric flow cytometry, measurement of secreted cytokines, and analysis of lymphocyte proliferation were used to characterize in vitro recall responses of peripheral blood mononuclear cells (PBMC) to killed F. tularensis antigens from the LVS or Schu S4 strains. PBMC responses were compared between individuals who had contracted tularemia, had been vaccinated, or had not been exposed to F. tularensis (naïve). Significant differences were detected between either of the immune donor groups and naïve individuals for secreted levels of IL-5, IL-6, IL-10, IL-12, IL-13, IFN-γ, MCP-1, and MIP-1β. Expression of IFN-γ, MIP-1β, and CD107a by CD4(+)CD45RO(+) or CD8(+)CD45RO(+) T cells correlated to antigen concentrations. In particular, IFN-γ and MIP-1β strongly discriminated between immune and naïve individuals. Only one cytokine, IL-6, discriminated between the two groups of immune individuals. Notably, IL-2- or TNF-α-secretion was low. Our results identify functional signatures of T cells that may serve as correlates of immunity and protection against F. tularensis.
Collapse
Affiliation(s)
- Kjell Eneslätt
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Monica Normark
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Rafael Björk
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Cecilia Rietz
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Carl Zingmark
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Lawrence A. Wolfraim
- DynPort Vaccine Company, A CSC Company, Frederick, Maryland, United States of America
| | - Svenja Stöven
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Clinical Microbiology, Clinical Bacteriology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|