51
|
Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M, Makino M, Yamamoto M, Takeda K. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int Immunol 2012; 24:637-44. [DOI: 10.1093/intimm/dxs062] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
52
|
Chen CC, Tsai SH, Lu CC, Hu ST, Wu TS, Huang TT, Saïd-Sadier N, Ojcius DM, Lai HC. Activation of an NLRP3 inflammasome restricts Mycobacterium kansasii infection. PLoS One 2012; 7:e36292. [PMID: 22558425 PMCID: PMC3340363 DOI: 10.1371/journal.pone.0036292] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 03/29/2012] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M. tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1β secretion in macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR (Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M. kansasii-induced inflammasome activation. Finally, the secreted IL-1β derived from caspase-1 activation was shown to restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense against M. kansasii.
Collapse
Affiliation(s)
- Chang-Chieh Chen
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan, Republic of China
| | - Sheng-Hui Tsai
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Shiau-Ting Hu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Department of Microbiology and Immunology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ting-Shu Wu
- Department of Internal Medicine, Chang Gung Memorial Hospital and Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
| | - Tsung-Teng Huang
- Center for Molecular and Clinical Immunology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Laboratory of Nanomaterials, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
| | - Najwane Saïd-Sadier
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Hsin-Chih Lai
- Center for Molecular and Clinical Immunology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
53
|
Integrated clinical, pathologic, virologic, and transcriptomic analysis of H5N1 influenza virus-induced viral pneumonia in the rhesus macaque. J Virol 2012; 86:6055-66. [PMID: 22491448 DOI: 10.1128/jvi.00365-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral pneumonia has been frequently reported during early stages of influenza virus pandemics and in many human cases of highly pathogenic avian influenza (HPAI) H5N1 virus infection. To better understand the pathogenesis of this disease, we produced nonlethal viral pneumonia in rhesus macaques by using an HPAI H5N1 virus (A/Anhui/2/2005; referred to as Anhui/2). Infected macaques were monitored for 14 days, and tissue samples were collected at 6 time points for virologic, histopathologic, and transcriptomic analyses. Anhui/2 efficiently replicated in the lung from 12 h to 3 days postinfection (p.i.) and caused temporal but severe pneumonia that began to resolve by day 14. Lung transcriptional changes were first observed at 6 h, and increased expression of vascular permeability regulators and neutrophil chemoattractants correlated with increased serum leakage and neutrophil infiltration in situ. Additional inflammatory, antiviral, and apoptotic genes were upregulated from 12 h, concurrent with viral antigen detection and increasing immune cell populations. A shift toward upregulation of acquired immunity was apparent after day 6. Expression levels of established immune cell molecular markers revealed remarkable similarity with pathological findings, indicating early and robust neutrophil infiltration, a slight delay in macrophage accumulation, and abundant late populations of T lymphocytes. We also characterized the putative mechanisms regulating a unique, pneumonia-associated biphasic fever pattern. Thus, this study is the first to use a comprehensive and integrative approach to delineate specific molecular mechanisms regulating influenza virus-induced pneumonia in nonhuman primates, an important first step toward better management of human influenza virus disease.
Collapse
|
54
|
Mortaz E, Netea MG, Masjedi MR, Adcock IM. WITHDRAWN: The role of the inflammasome and toll-like receptor signaling the pathogenesis of infection with Mycobacterium tuberculosis. Int J Mycobacteriol 2012. [DOI: 10.1016/j.ijmyco.2012.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
55
|
Kleinnijenhuis J, Oosting M, Plantinga TS, van der Meer JWM, Joosten LAB, Crevel RV, Netea MG. Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response. Immunology 2011; 134:341-8. [PMID: 21978003 PMCID: PMC3209573 DOI: 10.1111/j.1365-2567.2011.03494.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 11/26/2022] Open
Abstract
Both autophagy and pro-inflammatory cytokines are involved in the host defence against mycobacteria, but little is known regarding the effect of autophagy on Mycobacterium tuberculosis (MTB)-induced cytokine production. In the present study, we assessed the effect of autophagy on production of monocyte-derived and T-cell-derived cytokines, and examined whether two functional polymorphisms in autophagy genes led to altered cytokine production. Blocking autophagy inhibited tumour necrosis factor-α (TNF-α) production, while enhancing interleukin-1β (IL-1β) production in peripheral blood mononuclear cells stimulated with MTB. Induction of autophagy by starvation or interferon-γ (IFN-γ) had the opposite effect. The modulation of both TNF-α and IL-1β production by autophagy was induced at the level of gene transcription. Functional polymorphisms in the autophagy genes ATG16L1 and IRGM did not have a major impact on MTB-induced cytokine production in healthy volunteers, although a moderate effect was observed on IFN-γ production by the ATG16L1 T300A polymorphism. These data demonstrate the interplay between autophagy and inflammation during host defence against mycobacteria, and future studies to investigate the clinical implications of these effects for the susceptibility to tuberculosis are warranted.
Collapse
|
56
|
Wenink MH, Santegoets KCM, Butcher J, van Bon L, Lamers-Karnebeek FGM, van den Berg WB, van Riel PLCM, McInnes IB, Radstake TRDJ. Impaired dendritic cell proinflammatory cytokine production in psoriatic arthritis. ACTA ACUST UNITED AC 2011; 63:3313-22. [DOI: 10.1002/art.30577] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
57
|
Abdallah AM, Bestebroer J, Savage NDL, de Punder K, van Zon M, Wilson L, Korbee CJ, van der Sar AM, Ottenhoff THM, van der Wel NN, Bitter W, Peters PJ. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:4744-53. [PMID: 21957139 DOI: 10.4049/jimmunol.1101457] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1β activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread.
Collapse
Affiliation(s)
- Abdallah M Abdallah
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Mycobacterium tuberculosis Hip1 dampens macrophage proinflammatory responses by limiting toll-like receptor 2 activation. Infect Immun 2011; 79:4828-38. [PMID: 21947769 DOI: 10.1128/iai.05574-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis is a highly successful human pathogen that evades host innate immunity by interfering with macrophage functions. In addition to avoiding macrophage microbicidal activities, M. tuberculosis triggers secretion of proinflammatory cytokines and chemokines in macrophages. The levels of proinflammatory cytokines induced by clinical M. tuberculosis isolates are thought to play an important role in determining tuberculosis disease progression and severity, but the mechanisms by which M. tuberculosis modulates the magnitude of inflammatory responses remain unclear. Here we show that M. tuberculosis restricts robust macrophage activation and dampens proinflammatory responses through the cell envelope-associated serine hydrolase Hip1 (hydrolase important for pathogenesis 1). By transcriptionally profiling macrophages infected with either wild-type or hip1 mutant bacteria, we found that the hip1 mutant induced earlier and significantly higher levels of several proinflammatory cytokines and chemokines. We show that increased activation of Toll-like receptor 2 (TLR2)- and MyD88-dependent signaling pathways mediates the enhanced cytokine secretion induced by the hip1 mutant. Thus, Hip1 restricts the onset and magnitude of proinflammatory cytokines by limiting TLR2-dependent activation. We also show that Hip1 dampens TLR2-independent activation of the inflammasome and limits secretion of interleukin-18 (IL-18). Dampening of TLR2 signaling does not require viable M. tuberculosis or phagocytosis but does require Hip1 catalytic activity. We propose that M. tuberculosis restricts proinflammatory responses by masking cell surface interactions between TLR2 agonists on M. tuberculosis and TLR2 on macrophages. This strategy may allow M. tuberculosis to evade early detection by host immunity, delay the onset of adaptive immune responses, and accelerate disease progression.
Collapse
|
59
|
Krishnan N, Malaga W, Constant P, Caws M, Thi Hoang Chau T, Salmons J, Thi Ngoc Lan N, Bang ND, Daffé M, Young DB, Robertson BD, Guilhot C, Thwaites GE. Mycobacterium tuberculosis lineage influences innate immune response and virulence and is associated with distinct cell envelope lipid profiles. PLoS One 2011; 6:e23870. [PMID: 21931620 PMCID: PMC3169546 DOI: 10.1371/journal.pone.0023870] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/27/2011] [Indexed: 01/07/2023] Open
Abstract
The six major genetic lineages of Mycobacterium tuberculosis are strongly associated with specific geographical regions, but their relevance to bacterial virulence and the clinical consequences of infection are unclear. Previously, we found that in Vietnam, East Asian/Beijing and Indo-Oceanic strains were significantly more likely to cause disseminated tuberculosis with meningitis than those from the Euro-American lineage. To investigate this observation we characterised 7 East Asian/Beijing, 5 Indo-Oceanic and 6 Euro-American Vietnamese strains in bone-marrow-derived macrophages, dendritic cells and mice. East Asian/Beijing and Indo-Oceanic strains induced significantly more TNF-α and IL-1β from macrophages than the Euro-American strains, and East Asian/Beijing strains were detectable earlier in the blood of infected mice and grew faster in the lungs. We hypothesised that these differences were induced by lineage-specific variation in cell envelope lipids. Whole lipid extracts from East Asian/Beijing and Indo-Oceanic strains induced higher concentrations of TNF-α from macrophages than Euro-American lipids. The lipid extracts were fractionated and compared by thin layer chromatography to reveal a distinct pattern of lineage-associated profiles. A phthiotriol dimycocerosate was exclusively produced by East Asian/Beijing strains, but not the phenolic glycolipid previously associated with the hyper-virulent phenotype of some isolates of this lineage. All Indo-Oceanic strains produced a unique unidentified lipid, shown to be a phenolphthiocerol dimycocerosate dependent upon an intact pks15/1 for its production. This was described by Goren as the ‘attenuation indictor lipid’ more than 40 years ago, due to its association with less virulent strains from southern India. Mutation of pks15/1 in a representative Indo-Oceanic strain prevented phenolphthiocerol dimycocerosate synthesis, but did not alter macrophage cytokine induction. Our findings suggest that the early interactions between M. tuberculosis and host are determined by the lineage of the infecting strain; but we were unable to show these differences are driven by lineage-specific cell-surface expressed lipids.
Collapse
Affiliation(s)
- Nitya Krishnan
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Wladimir Malaga
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Patricia Constant
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Maxine Caws
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Jenifer Salmons
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Nguyen Thi Ngoc Lan
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Nguyen Duc Bang
- Pham Ngoc Thach Hospital for Tuberculosis and Lung Disease, Ho Chi Minh City, Vietnam
| | - Mamadou Daffé
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Douglas B. Young
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
- National Institute for Medical Research, London, United Kingdom
| | - Brian D. Robertson
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Christophe Guilhot
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Guy E. Thwaites
- Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
60
|
Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011; 2011:405310. [PMID: 21603213 PMCID: PMC3095423 DOI: 10.1155/2011/405310] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 01/29/2011] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a major health problem, with 10 million new cases diagnosed each year. Innate immunity plays an important role in the host defense against M. tuberculosis, and the first step in this process is recognition of MTB by cells of the innate immune system. Several classes of pattern recognition receptors (PPRs) are involved in the recognition of M. tuberculosis, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and Nod-like receptors (NLRs). Among the TLR family, TLR2, TLR4, and TLR9 and their adaptor molecule MyD88 play the most prominent roles in the initiation of the immune response against tuberculosis. In addition to TLRs, other PRRs such as NOD2, Dectin-1, Mannose receptor, and DC-SIGN are also involved in the recognition of M. tuberculosis. Human epidemiological studies revealed that genetic variation in genes encoding for PRRs and downstream signaling products influence disease susceptibility, severity, and outcome. More insight into PRRs and the recognition of mycobacteria, combined with immunogenetic studies in TB patients, does not only lead to a better understanding of the pathogenesis of tuberculosis but also may contribute to the design of novel immunotherapeutic strategies.
Collapse
|
61
|
Brooks MN, Rajaram MVS, Azad AK, Amer AO, Valdivia-Arenas MA, Park JH, Núñez G, Schlesinger LS. NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages. Cell Microbiol 2011; 13:402-18. [PMID: 21040358 PMCID: PMC3259431 DOI: 10.1111/j.1462-5822.2010.01544.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (M.tb), which causes tuberculosis, is a host-adapted intracellular pathogen of macrophages. Intracellular pattern recognition receptors in macrophages such as nucleotide-binding oligomerization domain (NOD) proteins regulate pro-inflammatory cytokine production. NOD2-mediated signalling pathways in response to M.tb have been studied primarily in mouse models and cell lines but not in primary human macrophages. Thus we sought to determine the role of NOD2 in regulating cytokine production and growth of virulent M.tb and attenuated Mycobacterium bovis BCG (BCG) in human macrophages. We examined NOD2 expression during monocyte differentiation and observed a marked increase in NOD2 transcript and protein following 2-3 days in culture. Pre-treatment of human monocyte-derived and alveolar macrophages with the NOD2 ligand muramyl dipeptide enhanced production of TNF-α and IL-1β in response to M.tb and BCG in a RIP2-dependent fashion. The NOD2-mediated cytokine response was significantly reduced following knock-down of NOD2 expression by using small interfering RNA (siRNA) in human macrophages. Finally, NOD2 controlled the growth of both M.tb and BCG in human macrophages, whereas controlling only BCG growth in murine macrophages. Together, our results provide evidence that NOD2 is an important intracellular receptor in regulating the host response to M.tb and BCG infection in human macrophages.
Collapse
Affiliation(s)
- Michelle N. Brooks
- Center for Microbial Interface Biology, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
| | - Murugesan V. S. Rajaram
- Center for Microbial Interface Biology, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
| | - Abul K. Azad
- Center for Microbial Interface Biology, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
- Department of Internal Medicine, Division of Infectious Diseases, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
| | - Amal O. Amer
- Center for Microbial Interface Biology, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
- The Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
| | - Martin A. Valdivia-Arenas
- Center for Microbial Interface Biology, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
- The Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
| | - Jong-Hwan Park
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, 4219 CCGC 0938, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, 4219 CCGC 0938, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Larry S. Schlesinger
- Center for Microbial Interface Biology, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
- Department of Internal Medicine, Division of Infectious Diseases, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, 460 West 12th Avenue, Biomedical Research Tower, Room 1004, Columbus, OH 43210, USA
| |
Collapse
|
62
|
Yakimchuk K, Roura-Mir C, Magalhaes KG, de Jong A, Kasmar AG, Granter SR, Budd R, Steere A, Pena-Cruz V, Kirschning C, Cheng TY, Moody DB. Borrelia burgdorferi infection regulates CD1 expression in human cells and tissues via IL1-β. Eur J Immunol 2011; 41:694-705. [PMID: 21246541 DOI: 10.1002/eji.201040808] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/22/2010] [Accepted: 12/02/2010] [Indexed: 12/12/2022]
Abstract
The appearance of group 1 CD1 proteins (CD1a, CD1b and CD1c) on maturing myeloid DC is a key event that converts myeloid DC to effective lipid APC. Here, we show that Borrelia burgdorferi, the causative agent of Lyme disease, triggers appearance of group 1 CD1 proteins at high density on the surface of human myeloid DC during infection. Within human skin, CD1b and CD1c expression was low or absent prior to infection, but increased significantly after experimental infections and in erythema migrans lesions from Lyme disease patients. The induction of CD1 was initiated by borrelial lipids acting through TLR-2 within minutes, but required 3 days for maximum effect. The delay in CD1 protein appearance involved a multi-step process whereby TLR-2 stimulated cells release soluble factors, which are sufficient to transfer the CD1-inducing effect in trans to other cells. Analysis of these soluble factors identified IL-1β as a previously unknown pathway leading to group 1 CD1 protein function. This study establishes that upregulation of group 1 CD1 proteins is an early event in B. burgdorferi infection and suggests a stepwise mechanism whereby bacterial cell walls, TLR activation and cytokine release cause DC precursors to express group 1 CD1 proteins.
Collapse
Affiliation(s)
- Konstantin Yakimchuk
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Lin PL, Flynn JL. Understanding latent tuberculosis: a moving target. THE JOURNAL OF IMMUNOLOGY 2010; 185:15-22. [PMID: 20562268 DOI: 10.4049/jimmunol.0903856] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tuberculosis (TB) remains a threat to the health of people worldwide. Infection with Mycobacterium tuberculosis can result in active TB or, more commonly, latent infection. Latently infected persons, of which there are estimated to be approximately 2 billion in the world, represent an enormous reservoir of potential reactivation TB, which can spread to other people. The immunology of TB is complex and multifaceted. Identifying the immune mechanisms that lead to control of initial infection and prevent reactivation of latent infection is crucial to combating this disease.
Collapse
Affiliation(s)
- Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | | |
Collapse
|
64
|
Ward JR, West PW, Ariaans MP, Parker LC, Francis SE, Crossman DC, Sabroe I, Wilson HL. Temporal interleukin-1beta secretion from primary human peripheral blood monocytes by P2X7-independent and P2X7-dependent mechanisms. J Biol Chem 2010; 285:23147-58. [PMID: 20495003 PMCID: PMC2906308 DOI: 10.1074/jbc.m109.072793] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The processing and regulated secretion of IL-1β are critical points of control of the biological activity of this important pro-inflammatory cytokine. IL-1β is produced by both monocytes and macrophages, but the rate and mechanism of release differ according to the differentiation status and the origin of these cells. We aimed to study the control of processing and release in human blood monocytes and human monocyte-derived macrophages. Toll-like receptor (TLR)-induced IL-1β production and release were investigated for dependence upon caspase-1, P2X7 receptor activation, and loss of membrane asymmetry associated with microvesicle shedding. TLR agonists induced P2X7 receptor-dependent IL-1β release in both monocytes and macrophages; however, only monocytes also showed P2X7 receptor-independent release of mature IL-1β. Furthermore, in monocytes ATP-mediated PS exposure could be activated independently of IL-1β production. Release of IL-1β from monocytes showed selectivity for specific TLR agonists and was accelerated by P2X7 receptor activation. Human monocytes released more IL-1β/cell than macrophages. These data have important implications for inflammatory diseases that involve monocyte activation and IL-1 release.
Collapse
Affiliation(s)
- Jon R Ward
- Department of Cardiovascular Science, Royal Hallamshire Hospital, Beech Hill Rd., Sheffield S10 2RX, UK
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Carlsson F, Kim J, Dumitru C, Barck KH, Carano RAD, Sun M, Diehl L, Brown EJ. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog 2010; 6:e1000895. [PMID: 20463815 PMCID: PMC2865529 DOI: 10.1371/journal.ppat.1000895] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 04/05/2010] [Indexed: 11/19/2022] Open
Abstract
The Esx-1 (type VII) secretion system is a major virulence determinant of pathogenic mycobacteria, including Mycobacterium marinum. However, the molecular events and host-pathogen interactions underlying Esx-1-mediated virulence in vivo remain unclear. Here we address this problem in a non-lethal mouse model of M. marinum infection that allows detailed quantitative analysis of disease progression. M. marinum established local infection in mouse tails, with Esx-1-dependent formation of caseating granulomas similar to those formed in human tuberculosis, and bone deterioration reminiscent of skeletal tuberculosis. Analysis of tails infected with wild type or Esx-1-deficient bacteria showed that Esx-1 enhanced generation of proinflammatory cytokines, including the secreted form of IL-1β, suggesting that Esx-1 promotes inflammasome activation in vivo. In vitro experiments indicated that Esx-1-dependent inflammasome activation required the host NLRP3 and ASC proteins. Infection of wild type and ASC-deficient mice demonstrated that Esx-1-dependent inflammasome activation exacerbated disease without restricting bacterial growth, indicating a host-detrimental role of this inflammatory pathway in mycobacterial infection. These findings define an immunoregulatory role for Esx-1 in a specific host-pathogen interaction in vivo, and indicate that the Esx-1 secretion system promotes disease and inflammation through its ability to activate the inflammasome. With ∼2 million people dying from tuberculosis every year, Mycobacterium tuberculosis represents the single most important bacterial pathogen globally. We use the closely related Mycobacterium marinum to study fundamental aspects of mycobacterial pathogenesis, likely to extend to human tuberculosis. The Esx-1 (type VII) secretion system is a major virulence determinant of pathogenic mycobacteria, including M. tuberculosis and M. marinum. However, a molecular explanation for Esx-1-mediated virulence in vivo has been lacking. Here we address this problem in a non-lethal mouse model of M. marinum infection that allows quantitative analysis of disease progression. M. marinum established local infection with important features of human tuberculosis, including formation of granulomas with caseating centers. Using a combination of bacterial and host mutants, we show that Esx-1-mediated activation of the host inflammasome increases inflammation without restricting bacterial growth, suggesting that activation of the inflammasome during mycobacterial infection is a manifestation of bacterial virulence rather than a manifestation of host response. These findings define a biological role for Esx-1 in a specific host-pathogen interaction in vivo, and imply that the Esx-1 secretion system has evolved specifically to promote host pathology.
Collapse
Affiliation(s)
- Fredric Carlsson
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
- * E-mail: (FC); (EJB)
| | - Janice Kim
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Calin Dumitru
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, United States of America
| | - Kai H. Barck
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California, United States of America
| | - Richard A. D. Carano
- Department of Biomedical Imaging, Genentech Inc., South San Francisco, California, United States of America
| | - Mei Sun
- Department of Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - Lauri Diehl
- Department of Pathology, Genentech Inc., South San Francisco, California, United States of America
| | - Eric J. Brown
- Department of Microbial Pathogenesis, Genentech Inc., South San Francisco, California, United States of America
- * E-mail: (FC); (EJB)
| |
Collapse
|
66
|
Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, Cheever A, Kugler D, Hieny S, Caspar P, Núñez G, Schlueter D, Flavell RA, Sutterwala FS, Sher A. Caspase-1 independent IL-1beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. THE JOURNAL OF IMMUNOLOGY 2010; 184:3326-30. [PMID: 20200276 DOI: 10.4049/jimmunol.0904189] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To investigate the respective contributions of TLR versus IL-1R mediated signals in MyD88 dependent control of Mycobacterium tuberculosis, we compared the outcome of M. tuberculosis infection in MyD88, TRIF/MyD88, IL-1R1, and IL-1beta-deficient mice. All four strains displayed acute mortality with highly increased pulmonary bacterial burden suggesting a major role for IL-1beta signaling in determining the MyD88 dependent phenotype. Unexpectedly, the infected MyD88 and TRIF/MyD88-deficient mice, rather than being defective in IL-1beta expression, displayed increased cytokine levels relative to wild-type animals. Similarly, infected mice deficient in caspase-1 and ASC, which have critical functions in inflammasome-mediated IL-1beta maturation, showed unimpaired IL-1beta production and importantly, were considerably less susceptible to infection than IL-1beta deficient mice. Together our findings reveal a major role for IL-1beta in host resistance to M. tuberculosis and indicate that during this infection the cytokine can be generated by a mechanism that does not require TLR signaling or caspase-1.
Collapse
Affiliation(s)
- Katrin D Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G, Moita LF, Anes E. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 2010; 12:1046-63. [PMID: 20148899 DOI: 10.1111/j.1462-5822.2010.01450.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin-1beta (IL-1beta) represents one of the most important mediators of inflammation and host responses to infection. Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, induces IL-1beta secretion at the site of infection, but the underlying mechanism(s) are poorly understood. In this work we show that Mtb infection of macrophages stimulates caspase-1 activity and promotes the secretion of IL-1beta. This stimulation requires live intracellular bacteria expressing a functional ESX-1 secretion system. ESAT-6, an ESX-1 substrate implicated in membrane damage, is both necessary and sufficient for caspase-1 activation and IL-1beta secretion. ESAT-6 promotes the access of other immunostimulatory agents such as AG85 into the macrophage cytosol, indicating that this protein may contribute to caspase-1 activation largely by perturbing host cell membranes. Using a high-throughput shRNA-based screen we found that numerous NOD-like receptors (NLRs) and CARD domain-containing proteins (CARDs) were important for IL-1beta secretion upon Mtb infection. Most importantly, NLRP3, ASC and caspase-1 form an infection-inducible inflammasome complex that is essential for IL-1beta secretion. In summary, we show that recognition of Mtb infection by the NLRP3 inflammasome requires the activity of the bacterial virulence factor ESAT-6, and the subsequent IL-1beta response is regulated by a number of NLR/CARD proteins.
Collapse
Affiliation(s)
- Bibhuti B Mishra
- Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Macrophages are innate immune cells that play an important role in activation of the immune response and wound healing. Pathogens that require T helper-type 2 (Th2) responses for effective clearance, such as parasitic worms, are strong inducers of alternatively activated or M2 macrophages. However, infections such as bacteria and viruses that require Th1-type responses may induce M2 as a strategy to evade the immune system. M2 are particularly efficient at scavenging self tissues following injury through receptors like the mannose receptor and scavenger receptor-A. Thus, M2 may increase autoimmune disease by presenting self tissue to T cells. M2 may also exacerbate immune complex (IC)-mediated pathology and fibrosis, a hallmark of autoimmune disease in women, due to the release of profibrotic factors such as interleukin-1beta, transforming growth factor-beta, fibronectin and matrix metalloproteinases. We have found that M2 comprise anywhere from 30% to 70% of the infiltrate during acute viral or experimental autoimmune myocarditis, and shifts in M2 populations correlate with increased IC deposition, fibrosis and chronic autoimmune pathology. Thus, women may be at an increased risk of M2-mediated autoimmunity due to estrogen's ability to increase Th2 responses.
Collapse
Affiliation(s)
- Delisa Fairweather
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | |
Collapse
|