51
|
Hernández-Ruiz E, Toll A, García-Diez I, Andrades E, Ferrandiz-Pulido C, Masferrer E, Yébenes M, Jaka A, Gimeno J, Gimeno R, García-Patos V, Pujol RM, Hernández-Muñoz I. The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma. Carcinogenesis 2018; 39:503-513. [PMID: 29394319 DOI: 10.1093/carcin/bgy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epigenetic regulation of gene expression may allow tumoral cells to acquire new functions in order to escape from the primary tumor. The aim of this study was to investigate the expression and function of proteins of the Polycomb family of epigenetic regulators in the metastatic process of cSCC. A higher expression of RING1B and EZH2 was detected by immunohistochemistry in a series of primary cSCC tumors that metastasized (MSCCs) when compared with non-metastasizing cSCCs (non-MSCCs). Stable downregulation of RING1B and EZH2 in cSCC cells results in enhanced expression of inflammatory cytokines and activation of the NF-κB signaling pathway. Accordingly, non-MSCCs display higher levels of membranous pS176-inhibitor of NF-kB kinase, and their stroma is enriched in neutrophils and eosinophils when compared with MSCCs. In vitro, hematopoietic cells exhibit a substantial migratory response to supernatants from Polycomb-depleted cSCC cells. Altogether, these data indicate that RING1B and EZH2 repress the innate inflammatory cSCC function and impair tumor immunosurveillance and suggest that patients with high-risk cSCCs could benefit from clinical therapies addressed to harness the immune response.
Collapse
Affiliation(s)
- Eugenia Hernández-Ruiz
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Agustí Toll
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Evelyn Andrades
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carla Ferrandiz-Pulido
- Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emili Masferrer
- Department of Dermatology, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Mireia Yébenes
- Department of Dermatology, Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain
| | - Ane Jaka
- Department of Dermatology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Javier Gimeno
- Department of Pathology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain
| | - Ramón Gimeno
- Department of Immunology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain
| | - Vicenç García-Patos
- Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramón M Pujol
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Inmaculada Hernández-Muñoz
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
52
|
Friedlander P, Wood K, Wassmann K, Christenfeld AM, Bhardwaj N, Oh WK. A whole-blood RNA transcript-based gene signature is associated with the development of CTLA-4 blockade-related diarrhea in patients with advanced melanoma treated with the checkpoint inhibitor tremelimumab. J Immunother Cancer 2018; 6:90. [PMID: 30227886 PMCID: PMC6145108 DOI: 10.1186/s40425-018-0408-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Anti-CTLA-4 immune checkpoint blockade is associated with immune-related adverse events (irAEs). Grade 3-4 diarrhea/colitis is the most frequent irAE requiring treatment discontinuation. Predicting high-risk diarrhea/colitis patients may facilitate early intervention, limit irAE severity, and extend treatment duration. No biomarkers currently predict for anti-CTLA-4 immunotherapy related severe diarrhea. METHODS Whole-blood was collected pre-treatment and 30 days post-treatment initiation from patients with stage III or IV unresectable melanoma who received 15 mg/kg tremelimumab at 90 day intervals in two clinical trials. The discovery dataset was a phase II study that enrolled 150 patients between December 2005 and November 2006. The validation dataset was a phase III study that enrolled 210 patients between March 2006 and July 2007. RT-PCR was performed for 169 genes associated with inflammation, immunity, CTLA-4 pathway and melanoma. Gene expression was correlated with grade 0-1 versus grade 2-4 diarrhea/colitis development. RESULTS Pre-treatment blood obtained from the discovery dataset (N = 150) revealed no gene predictive of diarrhea/colitis development (p < 0.05). A 16-gene signature (CARD12, CCL3, CCR3, CXCL1, F5, FAM210B, GADD45A, IL18bp, IL2RA, IL5, IL8, MMP9, PTGS2, SOCS3, TLR9 and UBE2C) was identified from 30 days post-tremelimumab initiation blood that discriminated patients developing grade 0-1 from grade 2-4 diarrhea/colitis. The 16-gene signature demonstrated an AUC of 0.814 (95% CI 0.743 to 0.873, p < 0.0001), sensitivity 42.9%, specificity 99.2%, positive predictive value (PPV) 90.0%, and negative predictive value (NPV) 91.4%. In the validation dataset (N = 210), the 16-gene signature discriminated patients developing grade 0-1 from grade 2-4 diarrhea/colitis with an AUC 0.785 (95% CI 0.723 to 0.838, p < 0.0001), sensitivity 57.1%, specificity 84.4%, PPV 57.1% and NPV 84.4%. CONCLUSION This study identifies a whole-blood mRNA signature predictive of a clinically relevant irAE in patients treated with immune checkpoint blockade. We hypothesize that immune system modulation induced by immune checkpoint blockade results in peripheral blood gene expression changes that are detectable prior to clinical onset of severe diarrhea. Assessment of peripheral blood gene expression changes in patients receiving anti-PD-1/PD-L1 immunotherapy, or combination anti-CTLA4 and anti-PD-1/PD-L1 immunotherapy, is warranted to provide early on-treatment mechanistic insights and identify clinically relevant predictive biomarkers. TRIAL REGISTRATION Clinicaltrials.gov , NCT00257205 , registered 22 November 2005.
Collapse
Affiliation(s)
- Philip Friedlander
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA.
| | - Kevin Wood
- Division of Hematology and Medical Oncology, Valley Hospital, Ridgewood, NJ, USA
| | | | | | - Nina Bhardwaj
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA.,Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - William K Oh
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
53
|
Ergen EN, Yusuf N. Inhibition of interleukin-12 and/or interleukin-23 for the treatment of psoriasis: What is the evidence for an effect on malignancy? Exp Dermatol 2018; 27:737-747. [PMID: 29704872 PMCID: PMC6023723 DOI: 10.1111/exd.13676] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/25/2022]
Abstract
Immune cells and cytokines play an important role in the pathogenesis of psoriasis. Interleukin-12 (IL-12) and IL-23 promote cellular responses mediated by T cells, which contribute to an inflammatory loop responsible for the induction and maintenance of psoriatic plaques. Antibodies that inhibit IL-12/23 or IL-23 are key treatment options for patients with psoriasis. IL-12 and IL-23 also play a key role in immune responses to infections and tumors. A growing body of information from clinical trials, cohort studies, postmarketing reports, genetic studies and animal models provides insights into the potential biological relationships between IL-12/23 inhibition and malignancies. We summarize this information in tables and provide some context for the interpretation of these data with the goal of informing dermatologists who are using IL-12/23 or IL-23 inhibitors to treat patients with psoriasis.
Collapse
Affiliation(s)
- Elizabeth N. Ergen
- Department of DermatologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Nabiha Yusuf
- Department of DermatologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
54
|
Pellegrini C, Maturo MG, Di Nardo L, Ciciarelli V, Gutiérrez García-Rodrigo C, Fargnoli MC. Understanding the Molecular Genetics of Basal Cell Carcinoma. Int J Mol Sci 2017; 18:ijms18112485. [PMID: 29165358 PMCID: PMC5713451 DOI: 10.3390/ijms18112485] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/12/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common human cancer and represents a growing public health care problem. Several tumor suppressor genes and proto-oncogenes have been implicated in BCC pathogenesis, including the key components of the Hedgehog pathway, PTCH1 and SMO, the TP53 tumor suppressor, and members of the RAS proto-oncogene family. Aberrant activation of the Hedgehog pathway represents the molecular driver in basal cell carcinoma pathogenesis, with the majority of BCCs carrying somatic point mutations, mainly ultraviolet (UV)-induced, and/or copy-loss of heterozygosis in the PTCH1 gene. Recent advances in sequencing technology allowed genome-scale approaches to mutation discovery, identifying new genes and pathways potentially involved in BCC carcinogenesis. Mutational and functional analysis suggested PTPN14 and LATS1, both effectors of the Hippo–YAP pathway, and MYCN as new BCC-associated genes. In addition, emerging reports identified frequent non-coding mutations within the regulatory promoter sequences of the TERT and DPH3-OXNAD1 genes. Thus, it is clear that a more complex genetic network of cancer-associated genes than previously hypothesized is involved in BCC carcinogenesis, with a potential impact on the development of new molecular targeted therapies. This article reviews established knowledge and new hypotheses regarding the molecular genetics of BCC pathogenesis.
Collapse
Affiliation(s)
- Cristina Pellegrini
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Maria Giovanna Maturo
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Lucia Di Nardo
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Valeria Ciciarelli
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Carlota Gutiérrez García-Rodrigo
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Maria Concetta Fargnoli
- Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
55
|
Rui J, Chunming Z, Binbin G, Na S, Shengxi W, Wei S. IL-22 promotes the progression of breast cancer through regulating HOXB-AS5. Oncotarget 2017; 8:103601-103612. [PMID: 29262587 PMCID: PMC5732753 DOI: 10.18632/oncotarget.22063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/23/2017] [Indexed: 01/05/2023] Open
Abstract
Interleukin-22 (IL-22) is a well-known tumor related inflammatory factor that is associated with variety of cancers. HOXB-AS5, a long non-coding RNA located in HOX gene clusters, has been elevated in breast cancer (BC) tissues. Herein, IL-22 and HOXB-AS5 were upregulated in the serum and tissues of BC patients and were associated with clinical stages. Furthermore, we also investigated the effects of IL-22-HOXB-AS5 pathway on progression of BC, and the results suggested that IL-22 and HOXB-AS5 synergistically promoted MDA-MB-231 cell growth, migration and invasion and activated the PI3K-AKT-mTOR pathway. These findings demonstrated that the IL-22-HOXB-AS5-PI3K/AKT functional axes may serve as potential molecule biomarkers for diagnosis and therapy evaluation or targeted therapeutic strategy in BC.
Collapse
Affiliation(s)
- Jiang Rui
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Zhao Chunming
- Department of Opthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Gao Binbin
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Shao Na
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Wang Shengxi
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Song Wei
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| |
Collapse
|
56
|
Cordycepin and a preparation from Cordyceps militaris inhibit malignant transformation and proliferation by decreasing EGFR and IL-17RA signaling in a murine oral cancer model. Oncotarget 2017; 8:93712-93728. [PMID: 29212184 PMCID: PMC5706830 DOI: 10.18632/oncotarget.21477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022] Open
Abstract
Cordyceps militaris (CM) and its active ingredient cordycepin have been reported to inhibit tumor growth, but the mechanisms are not fully understood. This study used a mouse model for oral cancer and a cell line, 4NAOC-1 derived from the model to study the mechanisms. Our results show that a CM preparation (CMP) can significantly inhibit tumor development and malignant transformation in the model. In vitro data indicate that CMP and cordycepin can inhibit 4NAOC-1 cell proliferation, either anchorage-dependent or -independent. Cordycepin can also increase cell apoptosis, and decrease cell mitosis and EGFR signaling. In accordance, CMP treatment can significantly decrease the levels of ki-67 and EGFR signaling molecules in cancer tissues. We also found that the levels of IL-17A in cancer tissues of control mice were significantly increased, and CMP inhibited these levels. IL-17A can stimulate cancer cell proliferation, which can be suppressed by cordycepin. Furthermore, cordycepin can reduce the expression of IL-17RA and its downstream signaling molecules. Moreover, CMP and cordycepin can significantly decrease IL-17A production in vitro and in vivo. Finally, CMP and its ingredients can enhance tumoricidal activities with increase in IFN-γ and TNFα, and decrease PD-L1 expression. In conclusion, CMP and its ingredient cordycepin can inhibit tumor growth and malignant transformation in a mouse model for oral cancer via inhibition of EGFR- and IL-17RA-signaling and enhancement of anti-tumor immunity.
Collapse
|
57
|
Pellegrini C, Orlandi A, Costanza G, Di Stefani A, Piccioni A, Di Cesare A, Chiricozzi A, Ferlosio A, Peris K, Fargnoli MC. Expression of IL-23/Th17-related cytokines in basal cell carcinoma and in the response to medical treatments. PLoS One 2017; 12:e0183415. [PMID: 28829805 PMCID: PMC5567915 DOI: 10.1371/journal.pone.0183415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
Several immune-related markers have been implicated in basal cell carcinoma (BCC) pathogenesis. The BCC inflammatory infiltrate is dominated by Th2 cytokines, suggesting a specific state of immunosuppression. In contrast, regressing BCC are characterized by a Th1 immune response with IFN-γ promoting a tumor suppressive activity. IL-23/Th17-related cytokines, as interleukin (IL)-17, IL-23 and IL-22, play a significant role in cutaneous inflammatory diseases, but their involvement in skin carcinogenesis is controversial and is poorly investigated in BCC. In this study we investigated the expression of IFN-γ, IL-17, IL-23 and IL-22 cytokines in BCC at the protein and mRNA level and their modulation during imiquimod (IMQ) treatment or photodynamic therapy (PDT). IFN-γ, IL-17, IL-23 and IL-22 levels were evaluated by immunohistochemistry and quantitative Real Time PCR in 41 histopathologically-proven BCCs (28 superficial and 13 nodular) from 39 patients. All BCC samples were analyzed at baseline and 19 of 41 also during medical treatment (9 with IMQ 5% cream and 10 with MAL-PDT). Association between cytokines expression and clinico-pathological variables was evaluated. Higher levels of IFN-γ, IL-17, IL-23 and IL-22 were found in BCCs, mainly in the peritumoral infiltrate, compared to normal skin, with the expression being correlated to the severity of the inflammatory infiltrate. IFN-γ production was higher in superficial BCCs compared to nodular BCCs, while IL-17 was increased in nodular BCCs. A significant correlation was found between IFN-γ and IL-17 expression with both cytokines expressed by CD4+ and CD8+ T-cells. An increase of all cytokines occurred during the inflammatory phase induced by IMQ and at the early time point of PDT treatment, with significant evidence for IFN-γ, IL-23, and IL-22. Our results confirm the role of IFN-γ and support the involvement of IL-23/Th17-related cytokines in BCC pathogenesis and in the inflammatory response during IMQ and MAL-PDT treatments.
Collapse
Affiliation(s)
- Cristina Pellegrini
- Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology, University of Rome Tor Vergata, Rome, Italy
| | - Gaetana Costanza
- Department of Biomedicine and Prevention, Anatomic Pathology, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonella Piccioni
- Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Antonella Di Cesare
- Division of Clinical, Preventive and Oncologic Dermatology, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | | | - Amedeo Ferlosio
- Department of Biomedicine and Prevention, Anatomic Pathology, University of Rome Tor Vergata, Rome, Italy
| | - Ketty Peris
- Institute of Dermatology, Catholic University, Rome, Italy
| | - Maria Concetta Fargnoli
- Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- * E-mail:
| |
Collapse
|
58
|
Lin L, Xu W, Zhang G, Ren P, Zhao J, Yan Q. Association of interleukin-22 polymorphisms with the colon cancer: A case-control study. Immunol Lett 2017; 188:59-63. [PMID: 28624523 DOI: 10.1016/j.imlet.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Interleukin-22 (IL-22), an IL-10 family cytokine produced by T cells and innate lymphoid cells, is implicated in inflammation and tumorigenesis. In this study, we aimed to investigate the association of IL-22 polymorphisms with the colon cancer in a Chinese population. MATERIALS AND METHODS Five hundred forty colon cancer cases and 540 healthy controls were recruited in the case-control study. The fluorogenic 5' exonuclease assays were used for genotype analysis of three common polymorphisms (-429C/T, +1046T/A and +1995A/C) of the IL-22 gene. RESULTS Colon cancer cases had a significantly higher frequency of IL-22-429 TT genotype [odds ratio (OR)=1.69, 95% confidence interval (CI)=1.24, 2.30; P=0.001] and -429T allele (OR=1.35, 95% CI=1.14, 1.60; P=0.001) than healthy controls. The findings are still emphatic by the Bonferroni correction (P<0.017). When stratifying by the differentiation of colon cancer, we found that colon cancer cases with poor differentiation had a significantly higher frequency of IL-22-429 TT genotype (OR=1.45, 95% CI=1.02, 2.07; P=0.04). When stratifying by the tumor location, tumor size, growth pattern and TNM stage of colon cancer, we found no statistical association. The IL-22 +1046T/A and IL-22 +1995A/C gene polymorphisms were not associated with colon cancer. CONCLUSION Our findings suggested that the IL-22 -429C/T gene polymorphisms might be associated with colon cancer.
Collapse
Affiliation(s)
- Lin Lin
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Weili Xu
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guojian Zhang
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Pengtao Ren
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jing Zhao
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Qinghui Yan
- Department of Colorectal Anal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
59
|
Madonna S, Scarponi C, Morelli M, Sestito R, Scognamiglio PL, Marasco D, Albanesi C. SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes. Oncotarget 2017; 8:24652-24667. [PMID: 28445952 PMCID: PMC5421877 DOI: 10.18632/oncotarget.15629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Basal cell carcinomas (BCC) and squamous-cell carcinomas (SCC) are common malignancies in humans, caused by neoplastic transformation of keratinocytes of the basal or suprabasal layers of epidermis, respectively. Tumor-infiltrating lymphocytes (TILs) are frequently found in BCC and SCC, and functionally promote epithelial carcinogenesis. TILs secreting IL-22, in particular, participate to BCC and SCC growth by inducing keratinocyte proliferation and migration, as well as the expression of inflammatory, anti-apoptotic and pro-angiogenic genes.In this study, we identified SOCS3 as a valid candidate to be manipulated for suppressing tumorigenic functions in BCC and SCC. We found that SOCS3 and SOCS1 expression was reduced in vivo, in tumor lesions of BCC and SCC, as compared to other skin inflammatory conditions such as psoriasis, despite the high number of IL-22-secreting TILs. Moreover, IL-22 was not able to induce in vitro the transcriptional expression of SOCS3 in BCC-or SCC-derived keratinocytes, contrarily to healthy cells. Aimed at rescuing SOCS3 activity in these tumor contexts, a SOCS3-derived peptide, named KIR-ESS, was synthesized, and its ability in suppressing IL-22-induced responses was evaluated in healthy and transformed keratinocytes. We found that KIR-ESS peptide efficiently suppressed the IL-22 molecular signaling in keratinocytes, by acting on STAT3 and Erk1/2 cascade, as well as on the expression of STAT3-dependent downstream genes. Interestingly, after treatment with peptide, both healthy and transformed keratinocytes could no longer aberrantly proliferate and migrate in response to IL-22. Finally, treatment of athymic nude mice bearing SCC xenografts with KIR-ESS peptide concomitantly reduced tumor growth and activated STAT3 levels. As a whole, these data provides the rationale for the use in BCC and SCC skin tumors of SOCS3 mimetics, being able to inhibit the deleterious effects of IL-22 in these contexts.
Collapse
Affiliation(s)
- Stefania Madonna
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| | - Martina Morelli
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| | - Rosanna Sestito
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
- Current address: Preclinical Models and New Therapeutic Agents Unit, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Daniela Marasco
- Department of Pharmacy, CIRPEB, University of Naples “Federico II”, Naples, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, IDI-IRCCS, Fondazione “Luigi M. Monti” (FLMM), Rome, Italy
| |
Collapse
|
60
|
Eyerich K, Dimartino V, Cavani A. IL-17 and IL-22 in immunity: Driving protection and pathology. Eur J Immunol 2017; 47:607-614. [PMID: 28295238 DOI: 10.1002/eji.201646723] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
IL-17 and IL-22 are tissue-signaling cytokines that favor protection and regeneration of barrier organs such as the skin, lung, and gastrointestinal system. Both cytokines share cellular sources, signaling pathways, and functional aspects; however, taking a closer look they differ, e.g. in their pro-inflammatory or regenerative potential. An imbalance of the carefully orchestrated tissue-signaling system might result in autoimmune diseases, promote cancer growth, or predispose to infectious diseases. This review highlights recent understandings in cellular sources, signaling mechanisms, physiologic as well as pathogenic role of the double-faceted cytokines IL-17 and IL-22.
Collapse
Affiliation(s)
- Kilian Eyerich
- Department of Dermatology and Allergy, Technische Universität Munich, Munich, Germany
| | - Valentina Dimartino
- UOC Coordinamento Scientifico, Istituto Nazionale per la Promozione della Salute delle Popolazioni Migranti e il contrasto delle Malattie della Povertà, INMP, Rome, Italy
| | - Andrea Cavani
- UOC Coordinamento Scientifico, Istituto Nazionale per la Promozione della Salute delle Popolazioni Migranti e il contrasto delle Malattie della Povertà, INMP, Rome, Italy
| |
Collapse
|
61
|
Dietary intake alters gene expression in colon tissue: possible underlying mechanism for the influence of diet on disease. Pharmacogenet Genomics 2017; 26:294-306. [PMID: 26959716 PMCID: PMC4853256 DOI: 10.1097/fpc.0000000000000217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Background Although the association between diet and disease is well documented, the biologic mechanisms involved have not been entirely elucidated. In this study, we evaluate how dietary intake influences gene expression to better understand the underlying mechanisms through which diet operates. Methods We used data from 144 individuals who had comprehensive dietary intake and gene expression data from RNAseq using normal colonic mucosa. Using the DESeq2 statistical package, we identified genes that showed statistically significant differences in expression between individuals in high-intake and low-intake categories for several dietary variables of interest adjusting for age and sex. We examined total calories, total fats, vegetable protein, animal protein, carbohydrates, trans-fatty acids, mutagen index, red meat, processed meat, whole grains, vegetables, fruits, fiber, folate, dairy products, calcium, and prudent and western dietary patterns. Results Using a false discovery rate of less than 0.1, meat-related foods were statistically associated with 68 dysregulated genes, calcium with three dysregulated genes, folate with four dysregulated genes, and nonmeat-related foods with 65 dysregulated genes. With a more stringent false discovery rate of less than 0.05, there were nine meat-related dysregulated genes and 23 nonmeat-related genes. Ingenuity pathway analysis identified three major networks among genes identified as dysregulated with respect to meat-related dietary variables and three networks among genes identified as dysregulated with respect to nonmeat-related variables. The top networks (Ingenuity Pathway Analysis network score >30) associated with meat-related genes were (i) cancer, organismal injury, and abnormalities, tumor morphology, and (ii) cellular function and maintenance, cellular movement, cell death, and survival. Among genes related to nonmeat consumption variables, the top networks were (i) hematological system development and function, nervous system development and function, tissue morphology and (ii) connective tissue disorders, organismal injury, and abnormalities. Conclusion Several dietary factors were associated with gene expression in our data. These findings provide insight into the possible mechanisms by which diet may influence disease processes.
Collapse
|
62
|
Vähätupa M, Aittomäki S, Martinez Cordova Z, May U, Prince S, Uusitalo-Järvinen H, Järvinen TA, Pesu M. T-cell-expressed proprotein convertase FURIN inhibits DMBA/TPA-induced skin cancer development. Oncoimmunology 2016; 5:e1245266. [PMID: 28123881 PMCID: PMC5214164 DOI: 10.1080/2162402x.2016.1245266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 01/08/2023] Open
Abstract
Proprotein convertases (PCSK) have a critical role in the body homeostasis as enzymes responsible for processing precursor proteins into their mature forms. FURIN, the first characterized member of the mammalian PCSK family, is overexpressed in multiple malignancies and the inhibition of its activity has been considered potential cancer treatment. FURIN has also an important function in the adaptive immunity, since its deficiency in T cells causes an impaired peripheral immune tolerance and accelerates immune responses. We addressed whether deleting FURIN from the immune cells would strengthen anticancer responses by subjecting mouse strains lacking FURIN from either T cells or macrophages and granulocytes to the DMBA/TPA two-stage skin carcinogenesis protocol. Unexpectedly, deficiency of FURIN in T cells resulted in enhanced and accelerated development of tumors, whereas FURIN deletion in macrophages and granulocytes had no effect. The epidermises of T-cell-specific FURIN deficient mice were significantly thicker with more proliferating Ki67+ cells. In contrast, there were no differences in the numbers of the T cells. The flow cytometric analyses of T-cell populations in skin draining lymph nodes showed that FURIN T-cell KO mice have an inherent upregulation of early activation marker CD69 as well as more CD4+CD25+Foxp3+ positive T regulatory cells. In the early phase of tumor promotion, T cells from the T-cell-specific FURIN knockout animals produced more interferon gamma, whereas at later stage the production of Th2- and Th17-type cytokines was more prominent than in wild-type controls. In conclusion, while PCSK inhibitors are promising therapeutics in cancer treatment, our results show that inhibiting FURIN specifically in T cells may promote squamous skin cancer development.
Collapse
Affiliation(s)
- Maria Vähätupa
- School of Medicine, Department of Anatomy and Cell Biology, University of Tampere , Tampere, Finland
| | - Saara Aittomäki
- Immunoregulation, BioMediTech, University of Tampere , Tampere, Finland
| | | | - Ulrike May
- School of Medicine, Department of Anatomy and Cell Biology, University of Tampere , Tampere, Finland
| | - Stuart Prince
- School of Medicine, Department of Anatomy and Cell Biology, University of Tampere , Tampere, Finland
| | | | - Tero A Järvinen
- School of Medicine, Department of Anatomy and Cell Biology, University of Tampere, Tampere, Finland; Department of Orthopedics & Traumatology, Tampere University Hospital, Tampere, Finland
| | - Marko Pesu
- Immunoregulation, BioMediTech, University of Tampere, Tampere, Finland; Department of Dermatology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
63
|
Abstract
Chronic inflammation is linked to the development and progression of multiple cancers, including those of the lung, stomach, liver, colon, breast and skin. Inflammation not only drives the oncogenic transformation of epithelial cells under the stress of chronic infection and autoimmune diseases, but also promotes the growth, progression and metastatic spread of cancers. Tumor-infiltrating inflammatory cells are comprised of a diverse population of myeloid and immune cell types, including monocytes, macrophages, dendritic cells, T and B cells, and others. Different myeloid and lymphoid cells within tumor microenvironment exert diverse, often contradicting, effects during skin cancer development and progression. The nature of tumor-immune interaction determines the rate of cancer progression and the outcome of cancer treatment. Inflammatory environment within skin tumor also inhibits naturally occurring anti-tumor immunity and limits the efficacy of cancer immunotherapy. In this article we aim to give an overview on the mechanism by which inflammation interferes with the development and therapeutic intervention of cancers, especially those of the skin.
Collapse
|
64
|
Perusina Lanfranca M, Lin Y, Fang J, Zou W, Frankel T. Biological and pathological activities of interleukin-22. J Mol Med (Berl) 2016; 94:523-34. [PMID: 26923718 PMCID: PMC4860114 DOI: 10.1007/s00109-016-1391-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22, a member of the IL-10 family, is a cytokine secreted by several types of immune cells including IL-22(+)CD4(+) T cells (Th22) and IL-22 expressing innate leukocytes (ILC22). Recent studies have demonstrated that IL-22 is a key component in mucosal barrier defense, tissue repair, epithelial cell survival, and proliferation. Furthermore, accumulating evidence has defined both protective and pathogenic properties of IL-22 in a number of conditions including autoimmune disease, infection, and malignancy. In this review, we summarize the expression and signaling pathway and functional characteristics of the IL-22 and IL-22 receptor axis in physiological and pathological scenarios and discuss the potential to target IL-22 signaling to treat human diseases.
Collapse
Affiliation(s)
- Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yanwei Lin
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
65
|
Canavan TN, Elmets CA, Cantrell WL, Evans JM, Elewski BE. Anti-IL-17 Medications Used in the Treatment of Plaque Psoriasis and Psoriatic Arthritis: A Comprehensive Review. Am J Clin Dermatol 2016; 17:33-47. [PMID: 26649440 DOI: 10.1007/s40257-015-0162-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our ability to successfully treat patients with moderate to severe psoriasis has improved significantly over the last several years with the development of more targeted therapies. IL-17A, a member of the IL-17 family of interleukins, is involved in regulating the innate and adaptive immune systems and has been identified as a key cytokine involved in the pathogenesis of psoriasis and psoriatic arthritis. In this review, we summarize our understanding of IL-17 and its role in psoriasis and psoriatic arthritis, as well as key findings from clinical trials using anti-IL-17 medications for the treatment of the aforementioned diseases. Secukinumab, ixekizumab, and brodalumab are three anti-IL-17 medications used for treating psoriasis, of which only secukinumab is FDA approved; ixekizumab and brodalumab remain under clinical development. Results from clinical trials show that these three medications are highly effective in treating psoriasis and appear to be as safe as other biologic treatments that are FDA approved.
Collapse
MESH Headings
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Arthritis, Psoriatic/drug therapy
- Biological Products/adverse effects
- Biological Products/therapeutic use
- Clinical Trials, Phase II as Topic
- Clinical Trials, Phase III as Topic
- Humans
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/metabolism
- Molecular Targeted Therapy
- Psoriasis/drug therapy
- Signal Transduction
Collapse
Affiliation(s)
- Theresa N Canavan
- Department of Dermatology, The Kirklin Clinic, University of Alabama at Birmingham, 2000 6th Ave South 3rd floor Dermatology, Birmingham, AL, USA
| | - Craig A Elmets
- Department of Dermatology, The Kirklin Clinic, University of Alabama at Birmingham, 2000 6th Ave South 3rd floor Dermatology, Birmingham, AL, USA
| | - Wendy L Cantrell
- Department of Dermatology, The Kirklin Clinic, University of Alabama at Birmingham, 2000 6th Ave South 3rd floor Dermatology, Birmingham, AL, USA
| | - John M Evans
- Department of Dermatology, The Kirklin Clinic, University of Alabama at Birmingham, 2000 6th Ave South 3rd floor Dermatology, Birmingham, AL, USA
| | - Boni E Elewski
- Department of Dermatology, The Kirklin Clinic, University of Alabama at Birmingham, 2000 6th Ave South 3rd floor Dermatology, Birmingham, AL, USA.
| |
Collapse
|
66
|
Härdle L, Bachmann M, Bollmann F, Pautz A, Schmid T, Eberhardt W, Kleinert H, Pfeilschifter J, Mühl H. Tristetraprolin regulation of interleukin-22 production. Sci Rep 2015; 5:15112. [PMID: 26486958 PMCID: PMC4613560 DOI: 10.1038/srep15112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-22 is a STAT3-activating cytokine displaying characteristic AU-rich elements (ARE) in the 3'-untranslated region (3'-UTR) of its mRNA. This architecture suggests gene regulation by modulation of mRNA stability. Since related cytokines undergo post-transcriptional regulation by ARE-binding tristetraprolin (TTP), the role of this destabilizing protein in IL-22 production was investigated. Herein, we demonstrate that TTP-deficient mice display augmented serum IL-22. Likewise, IL-22 mRNA was enhanced in TTP-deficient splenocytes and isolated primary T cells. A pivotal role for TTP is underscored by an extended IL-22 mRNA half-life detectable in TTP-deficient T cells. Luciferase-reporter assays performed in human Jurkat T cells proved the destabilizing potential of the human IL-22-3'-UTR. Furthermore, overexpression of TTP in HEK293 cells substantially decreased luciferase activity directed by the IL-22-3'-UTR. Transcript destabilization by TTP was nullified upon cellular activation by TPA/A23187, an effect dependent on MEK1/2 activity. Accordingly, IL-22 mRNA half-life as determined in TPA/A23187-stimulated Jurkat T cells decreased under the influence of the MEK1/2 inhibitor U0126. Altogether, data indicate that TTP directly controls IL-22 production, a process counteracted by MEK1/2. The TTP-dependent regulatory pathway described herein likely contributes to the role of IL-22 in inflammation and cancer and may evolve as novel target for pharmacological IL-22 modulation.
Collapse
Affiliation(s)
- Lorena Härdle
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Franziska Bollmann
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Tobias Schmid
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Wolfgang Eberhardt
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| |
Collapse
|
67
|
Zhao T, Wu X, Liu J. Association between interleukin-22 genetic polymorphisms and bladder cancer risk. Clinics (Sao Paulo) 2015; 70:686-90. [PMID: 26598081 PMCID: PMC4602377 DOI: 10.6061/clinics/2015(10)05] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/08/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The cytokine interleukin-22 (IL-22), which is produced by T cells and natural killer cells, is associated with tumorigenesis and tumor progression in cancers. However, the role of IL-22 in bladder cancer has not been investigated. MATERIALS AND METHODS A prospective hospital-based case-control study comprising 210 patients with pathologically proven bladder cancer and 210 age- and gender-matched healthy controls was conducted. The genotypes of 3 common polymorphisms (-429 C/T, +1046 T/A and +1995 A/C) of the IL-22 gene were determined with fluorogenic 5' exonuclease assays. RESULTS Patients with bladder cancer had a significantly higher frequency of the IL-22 -429 TT genotype [odds ratio (OR)=2.04, 95% confidence interval (CI)=1.19, 3.49; p=0.009] and -429 T allele (OR=1.42, 95% CI=1.08, 1.87; p=0.01) than the healthy controls. These findings were still significant after a Bonferroni correction. When stratifying according to the stage of bladder cancer, we found that patients with superficial bladder cancer had a significantly lower frequency of the IL-22 -429 TT genotype (OR=0.48, 95% CI=0.23, 0.98; p=0.04). When stratifying according to the grade and histological type of bladder cancer, we found no statistical association. The IL-22 +1046 T/A and IL-22 +1995 A/C gene polymorphisms were not associated with the risk of bladder cancer. CONCLUSION To the authors' knowledge, this is the first report documenting that the IL-22 -429 C/T gene polymorphism is associated with bladder cancer risk. Additional studies are required to confirm this finding.
Collapse
Affiliation(s)
- Tao Zhao
- Chongqing Medical University, YongChuan Hospital, Department of Urology, YongChuan, Chongqing, China
| | - XiaoHou Wu
- The First Affiliated Hospital of Chongqing, Medical University, Department of Urology, Chongqing, China
| | - JiaJi Liu
- Chongqing Medical University, YongChuan Hospital, Department of Urology, YongChuan, Chongqing, China
| |
Collapse
|
68
|
Khan D, Ansar Ahmed S. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs. Front Genet 2015; 6:236. [PMID: 26236331 PMCID: PMC4500956 DOI: 10.3389/fgene.2015.00236] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022] Open
Abstract
In recent years, IL-17A (IL-17), a pro-inflammatory cytokine, has received intense attention of researchers and clinicians alike with documented effects in inflammation and autoimmune diseases. IL-17 mobilizes, recruits and activates different cells to increase inflammation. Although protective in infections, overproduction of IL-17 promotes inflammation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, among others. Regulating IL-17 levels or action by using IL-17-blocking antibodies or IL-17R antagonist has shown to attenuate experimental autoimmune diseases. It is now known that in addition to IL-17-specific transcription factor, RORγt, several other transcription factors and select microRNAs (miRNA) regulate IL-17. Given that miRNAs are dysregulated in autoimmune diseases, a better understanding of transcriptional factors and miRNA regulation of IL-17 expression and function will be essential for devising potential new therapies. In this review, we will overview IL-17 induction and function in relation to autoimmune diseases. In addition, current findings on transcriptional regulation of IL-17 induction and plausible interplay between IL-17 and miRNA in autoimmune diseases are highlighted.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| |
Collapse
|
69
|
McAllister F, Kolls JK. Th17 cytokines in non-melanoma skin cancer. Eur J Immunol 2015; 45:692-4. [PMID: 25655439 PMCID: PMC4461870 DOI: 10.1002/eji.201545456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 01/28/2015] [Accepted: 02/04/2015] [Indexed: 11/10/2022]
Abstract
T-helper-type 17 cytokines have been implicated in epithelial cancer progression at mucosal sites. In this issue of the European Journal of Immunology, Nardinocchi et al. [Eur. J. Immunol. 2015. 45: 922-931] show that the Th17 cytokines IL-17 and IL-22 can both signal to nonmelanoma skin cancer cells, inducing both cellular proliferation and enhanced migration of human basal cell carcinoma and squamous cell carcinoma cell lines in vitro. These cytokines were also shown to exacerbate tumor growth in mice injected with the squamous cell carcinoma line, CAL27. Thus, IL-17 and IL-22 may be key factors in skin cancer progression and may provide novel prognostic markers in nonmelanoma skin cancer.
Collapse
Affiliation(s)
- Florencia McAllister
- Department of Clinical Cancer Prevention. The University of Texas MD Anderson Cancer Center. Houston, TX
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|