51
|
Obermann J, Wagner F, Kociaj A, Zambusi A, Ninkovic J, Hauck SM, Chapouton P. The Surface Proteome of Adult Neural Stem Cells in Zebrafish Unveils Long-Range Cell-Cell Connections and Age-Related Changes in Responsiveness to IGF. Stem Cell Reports 2019; 12:258-273. [PMID: 30639211 PMCID: PMC6373494 DOI: 10.1016/j.stemcr.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
In adult stem cell populations, recruitment into division is parsimonious and most cells maintain a quiescent state. How individual cells decide to enter the cell cycle and how they coordinate their activity remains an essential problem to be resolved. It is thus important to develop methods to elucidate the mechanisms of cell communication and recruitment into the cell cycle. We made use of the advantageous architecture of the adult zebrafish telencephalon to isolate the surface proteins of an intact neural stem cell (NSC) population. We identified the proteome of NSCs in young and old brains. The data revealed a group of proteins involved in filopodia, which we validated by a morphological analysis of single cells, showing apically located cellular extensions. We further identified an age-related decrease in insulin-like growth factor (IGF) receptors. Expressing IGF2b induced divisions in young brains but resulted in incomplete divisions in old brains, stressing the role of cell-intrinsic processes in stem cell behavior. The cell-surface proteome of an intact adult neural stem cell population was identified Zebrafish adult neural stem cells harbor filopodia on their apical surface Aging neural stem cells display an altered mitotic response to IGF ligands
Collapse
Affiliation(s)
- Jara Obermann
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Heidemannstrasse 1, 80939 Munich, Germany
| | - Felicia Wagner
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Heidemannstrasse 1, 80939 Munich, Germany
| | - Anita Kociaj
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig Maximilian University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Alessandro Zambusi
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany; Department of Cell Biology and Anatomy, BMC, Ludwig Maximilian University, Munich, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig Maximilian University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried, Germany; Department of Cell Biology and Anatomy, BMC, Ludwig Maximilian University, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Heidemannstrasse 1, 80939 Munich, Germany
| | - Prisca Chapouton
- Research Unit Sensory Biology and Organogenesis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
52
|
Audesse AJ, Webb AE. Enhancing Lysosomal Activation Restores Neural Stem Cell Function During Aging. J Exp Neurosci 2018; 12:1179069518795874. [PMID: 30158826 PMCID: PMC6109844 DOI: 10.1177/1179069518795874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022] Open
Abstract
Adult neurogenesis supports cognitive and sensory functions in mammals and is significantly reduced with age. Quiescent neural stem cells are the source of new neurons in the adult brain and emerging evidence suggests that the failure of these cells to activate and re-enter the cell cycle is largely responsible for reduced neurogenesis in old animals. However, the molecular mechanisms supporting quiescence and activation in the adult and aged brain remain undefined. Recent work published by Leeman et al. in Science uncovers a novel role for lysosomes in supporting neural stem cell activation, and reveals that loss of lysosome function during aging contributes to reduced neural stem cell activity. Using a combination of transcriptomics and functional analysis, the authors show that quiescent and activated neural stem cells employ different branches of proteostasis networks, with quiescent stem cells particularly dependent on the lysosome-autophagy system. Excitingly, stimulation of lysosomal activity in the aged quiescent population significantly enhanced their ability to activate and increased the frequency of activated neural stem and progenitor cells within the neural stem cell niche. This work for the first time identifies lysosomal dysfunction as a cause of reduced neurogenesis during aging, and shows that enhancing lysosomal function is sufficient to restore healthy stem cell activity in the aged brain.
Collapse
Affiliation(s)
- Amanda J Audesse
- Neuroscience Graduate Program, Brown University, Providence, RI, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA.,Carney Institute for Brain Science, Brown University, Providence, RI, USA.,The Center on the Biology of Aging, Brown University, Providence, RI, USA
| |
Collapse
|
53
|
Ependymal cilia beating induces an actin network to protect centrioles against shear stress. Nat Commun 2018; 9:2279. [PMID: 29891944 PMCID: PMC5996024 DOI: 10.1038/s41467-018-04676-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/04/2018] [Indexed: 02/02/2023] Open
Abstract
Multiciliated ependymal cells line all brain cavities. The beating of their motile cilia contributes to the flow of cerebrospinal fluid, which is required for brain homoeostasis and functions. Motile cilia, nucleated from centrioles, persist once formed and withstand the forces produced by the external fluid flow and by their own cilia beating. Here, we show that a dense actin network around the centrioles is induced by cilia beating, as shown by the disorganisation of the actin network upon impairment of cilia motility. Moreover, disruption of the actin network, or specifically of the apical actin network, causes motile cilia and their centrioles to detach from the apical surface of ependymal cell. In conclusion, cilia beating controls the apical actin network around centrioles; the mechanical resistance of this actin network contributes, in turn, to centriole stability. Ependymal ciliary beating contributes to the flow of cerebrospinal fluid in the brain ventricles and these cilia resist the flow forces. Here the authors show that the assembly of a dense actin network around the centrioles is induced by cilia beating to protect centrioles against the shear stress generated by ciliary motility.
Collapse
|
54
|
Draijer S, Chaves I, Hoekman MFM. The circadian clock in adult neural stem cell maintenance. Prog Neurobiol 2018; 173:41-53. [PMID: 29886147 DOI: 10.1016/j.pneurobio.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
Abstract
Neural stem cells persist in the adult central nervous system as a continuing source of astrocytes, oligodendrocytes and neurons. Various signalling pathways and transcription factors actively maintain this population by regulating cell cycle entry and exit. Similarly, the circadian clock is interconnected with the cell cycle and actively maintains stem cell populations in various tissues. Here, we discuss emerging evidence for an important role of the circadian clock in neural stem cell maintenance. We propose that the NAD+-dependent deacetylase SIRT1 exerts control over the circadian clock in adult neural stem cell function to limit exhaustion of their population. Conversely, disruption of the circadian clock may compromise neural stem cell quiescence resulting in a premature decline of the neural stem cell population. As such, energy metabolism and the circadian clock converge in adult neural stem cell maintenance.
Collapse
Affiliation(s)
- Swip Draijer
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Inês Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Marco F M Hoekman
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
55
|
Long Non-Coding RNAs in Neuronal Aging. Noncoding RNA 2018; 4:ncrna4020012. [PMID: 29670042 PMCID: PMC6027360 DOI: 10.3390/ncrna4020012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
The expansion of long non-coding RNAs (lncRNAs) in organismal genomes has been associated with the emergence of sophisticated regulatory networks that may have contributed to more complex neuronal processes, such as higher-order cognition. In line with the important roles of lncRNAs in the normal functioning of the human brain, dysregulation of lncRNA expression has been implicated in aging and age-related neurodegenerative disorders. In this paper, we discuss the function and expression of known neuronal-associated lncRNAs, their impact on epigenetic changes, the contribution of transposable elements to lncRNA expression, and the implication of lncRNAs in maintaining the 3D nuclear architecture in neurons. Moreover, we discuss how the complex molecular processes that are orchestrated by lncRNAs in the aged brain may contribute to neuronal pathogenesis by promoting protein aggregation and neurodegeneration. Finally, this review explores the possibility that age-related disturbances of lncRNA expression change the genomic and epigenetic regulatory landscape of neurons, which may affect neuronal processes such as neurogenesis and synaptic plasticity.
Collapse
|
56
|
Leeman DS, Hebestreit K, Ruetz T, Webb AE, McKay A, Pollina EA, Dulken BW, Zhao X, Yeo RW, Ho TT, Mahmoudi S, Devarajan K, Passegué E, Rando TA, Frydman J, Brunet A. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 2018; 359:1277-1283. [PMID: 29590078 PMCID: PMC5915358 DOI: 10.1126/science.aag3048] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/31/2017] [Accepted: 01/21/2018] [Indexed: 12/20/2022]
Abstract
In the adult brain, the neural stem cell (NSC) pool comprises quiescent and activated populations with distinct roles. Transcriptomic analysis revealed that quiescent and activated NSCs exhibited differences in their protein homeostasis network. Whereas activated NSCs had active proteasomes, quiescent NSCs contained large lysosomes. Quiescent NSCs from young mice accumulated protein aggregates, and many of these aggregates were stored in large lysosomes. Perturbation of lysosomal activity in quiescent NSCs affected protein-aggregate accumulation and the ability of quiescent NSCs to activate. During aging, quiescent NSCs displayed defects in their lysosomes, increased accumulation of protein aggregates, and reduced ability to activate. Enhancement of the lysosome pathway in old quiescent NSCs cleared protein aggregates and ameliorated the ability of quiescent NSCs to activate, allowing them to regain a more youthful state.
Collapse
Affiliation(s)
- Dena S Leeman
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
| | - Katja Hebestreit
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Tyson Ruetz
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ashley E Webb
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Andrew McKay
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth A Pollina
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
| | - Ben W Dulken
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA 94305, USA
| | - Xiaoai Zhao
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Theodore T Ho
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Salah Mahmoudi
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Emmanuelle Passegué
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Glenn Center for the Biology of Aging at Stanford University, Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
- Cancer Biology Program, Stanford University, Stanford, CA 94305, USA
- Glenn Center for the Biology of Aging at Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
57
|
Fernández-Flores F, García-Verdugo JM, Martín-Ibáñez R, Herranz C, Fondevila D, Canals JM, Arús C, Pumarola M. Characterization of the canine rostral ventricular-subventricular zone: Morphological, immunohistochemical, ultrastructural, and neurosphere assay studies. J Comp Neurol 2017; 526:721-741. [DOI: 10.1002/cne.24365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 10/09/2017] [Accepted: 11/16/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Francisco Fernández-Flores
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiologia comparada, Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, CIBERNED; Valencia Spain
| | - Raquel Martín-Ibáñez
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Cristina Herranz
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Dolors Fondevila
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - Josep María Canals
- Stem Cells and Regenerative Medicine Laboratory; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Department of Biomedicine; University of Barcelona; Barcelona Spain
- Neuroscience Institute, University of Barcelona; Barcelona Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS); Barcelona Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED); Valencia Spain
| | - Carles Arús
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| | - Martí Pumarola
- Veterinary Faculty, Department of Animal Medicine and Surgery; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN); Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès) Barcelona Spain
| |
Collapse
|
58
|
Beccari S, Valero J, Maletic-Savatic M, Sierra A. A simulation model of neuroprogenitor proliferation dynamics predicts age-related loss of hippocampal neurogenesis but not astrogenesis. Sci Rep 2017; 7:16528. [PMID: 29184142 PMCID: PMC5705784 DOI: 10.1038/s41598-017-16466-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Adult hippocampal neuroprogenitors give rise to both neurons and astrocytes. As neuroprogenitors are lost with increased age, neurogenesis concomitantly decreases. However, the dynamics of neuron and astrocyte generation throughout adulthood has not been systematically examined. Here, we analyzed the hippocampal niche both longitudinally (from 2 h to 30d of cell life) and transversally (from 1 m to 12 m of age) and generated a Marsaglia polar random simulation model to predict newborn cell dynamics. The sharp decrease in newborn neuron production throughout adulthood was largely predicted by the number of proliferating neuroprogenitors at each age. In contrast, newborn astrocyte decay was slower and associated with their increased yield in mature mice. As a result, the niche shifted from neurogenic to neuro/astrogenic with increased age. Our data provide a simple “end-point” model to understand the hippocampal niche changes across adulthood and suggest yet unexplored functions of newborn astrocytes for the aging hippocampal circuitry.
Collapse
Affiliation(s)
- Sol Beccari
- Achucarro Basque Center for Neuroscience, Leioa, Bizkaia, Spain.,University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
| | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Leioa, Bizkaia, Spain.,Ikerbasque Foundation, Bilbao, Bizkaia, Spain
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Leioa, Bizkaia, Spain. .,University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain. .,Ikerbasque Foundation, Bilbao, Bizkaia, Spain.
| |
Collapse
|
59
|
Home sweet home: the neural stem cell niche throughout development and after injury. Cell Tissue Res 2017; 371:125-141. [PMID: 28776186 DOI: 10.1007/s00441-017-2658-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/29/2017] [Indexed: 12/26/2022]
Abstract
Neural stem cells and their progeny reside in two distinct neurogenic niches within the mammalian brain: the subventricular zone and the dentate gyrus. The interplay between the neural stem cells and the niche in which they reside can have significant effects on cell kinetics and neurogenesis. A comprehensive understanding of the changes to the niche that occur through postnatal development and aging, as well as following injury, is relevant for developing therapeutics and interventions to promote neural repair. We discuss changes that occur within the neural stem and progenitor cell populations, the vasculature, extracellular matrix, microglia, and secreted proteins through aging which impact cell behavior within the neurogenic niches. We examine neural precursor cell and niche responses to injury in neonatal hypoxia-ischemia, juvenile cranial irradiation, and adult stroke. This review examines the interplay between the niche and stem cell behavior through aging and following injury as a means to understand intrinsic and extrinsic factors that regulate neurogenesis in vivo.
Collapse
|
60
|
Cebrián-Silla A, Alfaro-Cervelló C, Herranz-Pérez V, Kaneko N, Park DH, Sawamoto K, Alvarez-Buylla A, Lim DA, García-Verdugo JM. Unique Organization of the Nuclear Envelope in the Post-natal Quiescent Neural Stem Cells. Stem Cell Reports 2017. [PMID: 28648897 PMCID: PMC5511107 DOI: 10.1016/j.stemcr.2017.05.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neural stem cells (B1 astrocytes; NSCs) in the adult ventricular-subventricular-zone (V-SVZ) originate in the embryo. Surprisingly, recent work has shown that B1 cells remain largely quiescent. They are reactivated postnatally to function as primary progenitors for neurons destined for the olfactory bulb and some corpus callosum oligodendrocytes. The cellular and molecular properties of quiescent B1 cells remain unknown. Here we found that a subpopulation of B1 cells has a unique nuclear envelope invagination specialization similar to envelope-limited chromatin sheets (ELCS), reported in certain lymphocytes and some cancer cells. Using molecular markers, [3H]thymidine birth-dating, and Ara-C, we found that B1 cells with ELCS correspond to quiescent NSCs. ELCS begin forming in embryonic radial glia cells and represent a specific nuclear compartment containing particular epigenetic modifications and telomeres. These results reveal a unique nuclear compartment in quiescent NSCs, which is useful for identifying these primary progenitors and study their gene regulation. A subpopulation of V-SVZ B cells presents nuclear ELCS ELCS appear in RGCs at E14.5 and remain in a subpopulation of B cells postnatally Type B cells with ELCS exhibit characteristics of quiescent NSCs ELCS present characteristic chromatin modifications
Collapse
Affiliation(s)
- Arantxa Cebrián-Silla
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980 Valencia, Spain
| | - Clara Alfaro-Cervelló
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980 Valencia, Spain; Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Dae Hwi Park
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel A Lim
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine, Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980 Valencia, Spain; Multiple Sclerosis and Neuroregeneration Mixed Unit, IIS Hospital La Fe, 46026 Valencia, Spain.
| |
Collapse
|
61
|
Xiao J, Yang R, Biswas S, Zhu Y, Qin X, Zhang M, Zhai L, Luo Y, He X, Mao C, Deng W. Neural Stem Cell-Based Regenerative Approaches for the Treatment of Multiple Sclerosis. Mol Neurobiol 2017; 55:3152-3171. [PMID: 28466274 DOI: 10.1007/s12035-017-0566-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory, and demyelinating disorder of the central nervous system (CNS), which ultimately leads to axonal loss and permanent neurological disability. Current treatments for MS are largely comprised of medications that are either immunomodulatory or immunosuppressive and are aimed at reducing the frequency and intensity of relapses. Neural stem cells (NSCs) in the adult brain can differentiate into oligodendrocytes in a context-specific manner and are shown to be involved in the remyelination in these patients. NSCs may exert their beneficial effects not only through oligodendrocyte replacement but also by providing trophic support and immunomodulation, a phenomenon now known as "therapeutic plasticity." In this review, we first provided an update on the current knowledge regarding MS pathogenesis and the role of immune cells, microglia, and oligodendrocytes in MS disease progression. Next, we reviewed the current progress on research aimed toward stimulating endogenous NSC proliferation and differentiation to oligodendrocytes in vivo and in animal models of demyelination. In addition, we explored the neuroprotective and immunomodulatory effects of transplanted exogenous NSCs on T cell activation, microglial activation, and endogenous remyelination and their effects on the pathological process and prognosis in animal models of MS. Finally, we examined various protocols to generate genetically engineered NSCs as a potential therapy for MS. Overall, this review highlights the studies involving the immunomodulatory, neurotrophic, and regenerative effects of NSCs and novel methods aiming at stimulating the potential of NSCs for the treatment of MS.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China.,Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Rongbing Yang
- Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Sangita Biswas
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| | - Yunhua Zhu
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xin Qin
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Min Zhang
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Lihong Zhai
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yi Luo
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaoming He
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Chun Mao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
62
|
Fessel WJ. Concordance of Several Subcellular Interactions Initiates Alzheimer's Dementia: Their Reversal Requires Combination Treatment. Am J Alzheimers Dis Other Demen 2017; 32:166-181. [PMID: 28423937 PMCID: PMC10852791 DOI: 10.1177/1533317517698790] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathogenesis of Alzheimer's disease involves multiple pathways that, at the macrolevel, include decreased proliferation plus increased loss affecting neurons, astrocytes, and capillaries and, at the subcellular level, involve several elements: amyloid/amyloid precursor protein, presenilins, the unfolded protein response, the ubiquitin/proteasome system, the Wnt/catenin system, the Notch signaling system, mitochondria, mitophagy, calcium, and tau. Data presented show the intimate, anatomical interactions between neurons, astrocytes, and capillaries; the interactions between the several subcellular factors affecting those cells; and the treatments that are currently available and that might correct dysfunctions in the subcellular factors. Available treatments include lithium, valproate, pioglitazone, erythropoietin, and prazosin. Since the subcellular pathogenesis involves multiple interacting elements, combination treatment would be more effective than administration of a single drug directed at only 1 element. The overall purpose of this presentation is to describe the pathogenesis in detail and to explain the proposed treatments.
Collapse
Affiliation(s)
- W. J. Fessel
- University of California, San Francisco, CA, USA
- Kaiser Permanente Medical Care Program, San Francisco, CA, USA
| |
Collapse
|
63
|
Kaneko N, Sawada M, Sawamoto K. Mechanisms of neuronal migration in the adult brain. J Neurochem 2017; 141:835-847. [DOI: 10.1111/jnc.14002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
- Division of Neural Development and Regeneration; National Institute for Physiological Sciences; Okazaki Aichi Japan
| |
Collapse
|
64
|
Okoreeh AK, Bake S, Sohrabji F. Astrocyte-specific insulin-like growth factor-1 gene transfer in aging female rats improves stroke outcomes. Glia 2017; 65:1043-1058. [PMID: 28317235 DOI: 10.1002/glia.23142] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022]
Abstract
Middle aged female rats sustain larger stroke infarction and disability than younger female rats. This older group also shows age-related reduction of insulin like growth factor (IGF)-1 in serum and in astrocytes, a cell type necessary for poststroke recovery. To determine the impact of astrocytic IGF-1 for ischemic stroke, these studies tested the hypothesis that gene transfer of IGF-1 to astrocytes will improve stroke outcomes in middle aged female rats. Middle aged (10-12 month old), acyclic female rats were injected with recombinant adeno-associated virus serotype 5 (AAV5) packaged with the coding sequence of the human (h)IGF-1 gene downstream of an astrocyte-specific promoter glial fibrillary acidic protein (GFAP) (AAV5-GFP-hIGF-1) into the striatum and cortex. The AAV5-control consisted of an identical shuttle vector construct without the hIGF-1 gene (AAV5-GFAP-control). Six to eight weeks later, animals underwent transient (90 min) middle cerebral artery occlusion via intraluminal suture. While infarct volume was not altered, AAV5-GFAP-hIGF-1 treatment significantly improved blood pressure and neurological score in the early acute phase of stroke (2 days) and sensory-motor performance at both the early and late (5 days) acute phase of stroke. AAV5-GFAP-hIGF-1 treatment also reduced circulating serum levels of GFAP, a biomarker for blood brain barrier permeability. Flow cytometry analysis of immune cells in the brain at 24 hr poststroke showed that AAV5-GFAP-hIGF-1 altered the type of immune cells trafficked to the ischemic hemisphere, promoting an anti-inflammatory profile. Collectively, these studies show that targeted enhancement of IGF-1 in astrocytes of middle-aged females improves stroke-induced behavioral impairment and neuroinflammation.
Collapse
Affiliation(s)
- Andre K Okoreeh
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| | - Shameena Bake
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, 77807
| |
Collapse
|
65
|
Pourabdolhossein F, Gil-Perotín S, Garcia-Belda P, Dauphin A, Mozafari S, Tepavcevic V, Manuel Garcia Verdugo J, Baron-Van Evercooren A. Inflammatory demyelination induces ependymal modifications concomitant to activation of adult (SVZ) stem cell proliferation. Glia 2017; 65:756-772. [PMID: 28191668 DOI: 10.1002/glia.23124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022]
Abstract
Ependymal cells (E1/E2) and ciliated B1cells confer a unique pinwheel architecture to the ventricular surface of the subventricular zone (SVZ), and their cilia act as sensors to ventricular changes during development and aging. While several studies showed that forebrain demyelination reactivates the SVZ triggering proliferation, ectopic migration, and oligodendrogenesis for myelin repair, the potential role of ciliated cells in this process was not investigated. Using conventional and lateral wall whole mount preparation immunohistochemistry in addition to electron microscopy in a forebrain-targeted model of experimental autoimmune encephalomyelitis (tEAE), we show an early decrease in numbers of pinwheels, B1 cells, and E2 cells. These changes were transient and simultaneous to tEAE-induced SVZ stem cell proliferation. The early drop in B1/E2 cell numbers was followed by B1/E2 cell recovery. While E1 cell division and ependymal ribbon disruption were never observed, E1 cells showed important morphological modifications reflected by their enlargement, extended cytoskeleton, and reinforced cell-cell junction complexes overtime, possibly reflecting protective mechanisms against ventricular insults. Finally, tEAE disrupted motile cilia planar cell polarity and cilia orientation in ependymal cells. Therefore, significant ventricular modifications in ciliated cells occur early in response to tEAE suggesting a role for these cells in SVZ stem cell signalling not only during development/aging but also during inflammatory demyelination. These observations may have major implications for understanding pathophysiology of and designing therapeutic approaches for inflammatory demyelinating diseases such as MS.
Collapse
Affiliation(s)
- Fereshteh Pourabdolhossein
- Sorbonne Universités UPMC Univ Paris 06, UM-75, ICM-GH Pitié-Salpêtrière, Paris, F-75013, France.,INSERM, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Cellular and Molecular Biology Research Center, Physiology Department, Babol University of Medical Sciences, Babol, Iran
| | - Sara Gil-Perotín
- Multiple Sclerosis and Neural Regeneration Research Unit Instituto de Investigación and H.U.P. La Fe Avda. Fernando Abril Martorell, Valencia, 106 46026, Spain
| | - Paula Garcia-Belda
- Laboratory of Comparative Neurobiology, Department of Cell Biology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, CIBERNED, Paterna, Valencia, 46980, Spain
| | - Aurelien Dauphin
- Sorbonne Universités UPMC Univ Paris 06, UM-75, ICM-GH Pitié-Salpêtrière, Paris, F-75013, France.,INSERM, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France
| | - Sabah Mozafari
- Sorbonne Universités UPMC Univ Paris 06, UM-75, ICM-GH Pitié-Salpêtrière, Paris, F-75013, France.,INSERM, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France
| | - Vanja Tepavcevic
- Sorbonne Universités UPMC Univ Paris 06, UM-75, ICM-GH Pitié-Salpêtrière, Paris, F-75013, France.,INSERM, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France.,Achucarro Basque Center for Neuroscience and Departamento de Neurociencias, Facultad de Medicina, Universidad del Pais Vasco Barrio la Sarriena s/n 48940 Leioa, Spain
| | - Jose Manuel Garcia Verdugo
- Laboratory of Comparative Neurobiology, Department of Cell Biology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, CIBERNED, Paterna, Valencia, 46980, Spain
| | - Anne Baron-Van Evercooren
- Sorbonne Universités UPMC Univ Paris 06, UM-75, ICM-GH Pitié-Salpêtrière, Paris, F-75013, France.,INSERM, U1127, Paris, F-75013, France.,CNRS, UMR 7225, Paris, F-75013, France
| |
Collapse
|
66
|
Regulation of Asymmetric Cell Division in Mammalian Neural Stem and Cancer Precursor Cells. Results Probl Cell Differ 2017; 61:375-399. [PMID: 28409314 DOI: 10.1007/978-3-319-53150-2_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem and progenitor cells are characterized by their abilities to self-renew and produce differentiated progeny. The balance between self-renewal and differentiation is achieved through control of cell division mode, which can be either asymmetric or symmetric. Failure to properly control cell division mode may result in premature depletion of the stem/progenitor cell pool or abnormal growth and impaired differentiation. In many tissues, including the brain, stem cells and progenitor cells undergo asymmetric cell division through the establishment of cell polarity. Cell polarity proteins are therefore potentially critical regulators of asymmetric cell division. Decrease or loss of asymmetric cell division can be associated with reduced differentiation common during aging or impaired remyelination as seen in demyelinating diseases. Progenitor-like glioma precursor cells show decreased asymmetric cell division rates and increased symmetric divisions, which suggests that asymmetric cell division suppresses brain tumor formation. Cancer stem cells, on the other hand, still undergo low rates of asymmetric cell division, which may provide them with a survival advantage during therapy. These findings led to the hypotheses that asymmetric cell divisions are not always tumor suppressive but can also be utilized to maintain a cancer stem cell population. Proper control of cell division mode is therefore not only deemed necessary to generate cellular diversity during development and to maintain adult tissue homeostasis but may also prevent disease and determine disease progression. Since brain cancer is most common in the adult and aging population, we review here the current knowledge on molecular mechanisms that regulate asymmetric cell divisions in the neural and oligodendroglial lineage during development and in the adult brain.
Collapse
|
67
|
Weissleder C, Fung SJ, Wong MW, Barry G, Double KL, Halliday GM, Webster MJ, Weickert CS. Decline in Proliferation and Immature Neuron Markers in the Human Subependymal Zone during Aging: Relationship to EGF- and FGF-Related Transcripts. Front Aging Neurosci 2016; 8:274. [PMID: 27932973 PMCID: PMC5123444 DOI: 10.3389/fnagi.2016.00274] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
Neuroblasts exist within the human subependymal zone (SEZ); however, it is debated to what extent neurogenesis changes during normal aging. It is also unknown how precursor proliferation may correlate with the generation of neuronal and glial cells or how expression of growth factors and receptors may change throughout the adult lifespan. We found evidence of dividing cells in the human SEZ (n D 50) in conjunction with a dramatic age-related decline (21-103 years) of mRNAs indicative of proliferating cells (Ki67) and immature neurons (doublecortin). Microglia mRNA (ionized calcium-binding adapter molecule 1) increased during aging, whereas transcript levels of stem/precursor cells (glial fibrillary acidic protein delta and achaete-scute homolog 1), astrocytes (vimentin and pan-glial fibrillary acidic protein), and oligodendrocytes (oligodendrocyte lineage transcription factor 2) remained stable. Epidermal growth factor receptor (EGFR) and fibroblast growth factor 2 (FGF2) mRNAs increased throughout adulthood, while transforming growth factor alpha (TGFα), EGF, Erb-B2 receptor tyrosine kinase 4 (ErbB4) and FGF receptor 1 (FGFR1) mRNAs were unchanged across adulthood. Cell proliferation mRNA positively correlated with FGFR1 transcripts. Immature neuron and oligodendrocyte marker expression positively correlated with TGFα and ErbB4 mRNAs, whilst astrocyte transcripts positively correlated with EGF, FGF2, and FGFR1 mRNAs. Microglia mRNA positively correlated with EGF and FGF2 expression. Our findings indicate that neurogenesis in the human SEZ continues well into adulthood, although proliferation and neuronal differentiation may decline across adulthood. We suggest that mRNA expression of EGF- and FGF-related family members do not become limited during aging and may modulate neuronal and glial fate determination in the SEZ throughout human life.
Collapse
Affiliation(s)
- Christin Weissleder
- Schizophrenia Research Laboratory, Neuroscience Research AustraliaSydney, NSW, Australia; Schizophrenia Research InstituteSydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Samantha J Fung
- Schizophrenia Research Laboratory, Neuroscience Research AustraliaSydney, NSW, Australia; Schizophrenia Research InstituteSydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Matthew W Wong
- Schizophrenia Research Laboratory, Neuroscience Research AustraliaSydney, NSW, Australia; Schizophrenia Research InstituteSydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| | - Guy Barry
- Garvan Institute of Medical Research, St. Vincent's Clinical School and School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Kay L Double
- Brain and Mind Research Institute, School of Medical Sciences, Sydney Medical School, University of Sydney Sydney, NSW, Australia
| | - Glenda M Halliday
- School of Medical Sciences, Faculty of Medicine, University of New South WalesSydney, NSW, Australia; Neuroscience Research AustraliaSydney, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, The Stanley Medical Research Institute Kensington, MD, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research AustraliaSydney, NSW, Australia; Schizophrenia Research InstituteSydney, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
68
|
Gonzalez-Fernandez C, Arevalo-Martin A, Paniagua-Torija B, Ferrer I, Rodriguez FJ, Garcia-Ovejero D. Wnts Are Expressed in the Ependymal Region of the Adult Spinal Cord. Mol Neurobiol 2016; 54:6342-6355. [PMID: 27722925 DOI: 10.1007/s12035-016-0132-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
Abstract
The Wnt family of proteins plays key roles during central nervous system development and in several physiological processes during adulthood. Recently, experimental evidence has linked Wnt-related genes to regulation and maintenance of stem cells in the adult neurogenic niches. In the spinal cord, the ependymal cells surrounding the central canal form one of those niches, but little is known about their Wnt expression patterns. Using microdissection followed by TaqMan® low-density arrays, we show here that the ependymal regions of young, mature rats and adult humans express several Wnt-related genes, including ligands, conventional and non-conventional receptors, co-receptors, and soluble inhibitors. We found 13 genes shared between rats and humans, 4 exclusively expressed in rats and 9 expressed only in humans. Also, we observed a reduction with age on spontaneous proliferation of ependymal cells in rats paralleled by a decrease in the expression of Fzd1, Fzd8, and Fzd9. Our results suggest a role for Wnts in the regulation of the adult spinal cord neurogenic niche and provide new data on the specific differences in this region between humans and rodents.
Collapse
Affiliation(s)
- Carlos Gonzalez-Fernandez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Beatriz Paniagua-Torija
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Serveid'AnatomiaPatològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Francisco J Rodriguez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
69
|
NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo. J Control Release 2016; 238:253-262. [DOI: 10.1016/j.jconrel.2016.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022]
|
70
|
Ogino T, Sawada M, Takase H, Nakai C, Herranz-Pérez V, Cebrián-Silla A, Kaneko N, García-Verdugo JM, Sawamoto K. Characterization of multiciliated ependymal cells that emerge in the neurogenic niche of the aged zebrafish brain. J Comp Neurol 2016; 524:2982-92. [DOI: 10.1002/cne.24001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/24/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Takashi Ogino
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; Nagoya 467-8601 Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; Nagoya 467-8601 Japan
| | - Hiroshi Takase
- Core Laboratory; Nagoya City University Graduate School of Medical Sciences; Nagoya 467-8601 Japan
| | - Chiemi Nakai
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; Nagoya 467-8601 Japan
| | - Vicente Herranz-Pérez
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles; Universidad de Valencia; CIBERNED 46980 Valencia Spain
- Unidad Mixta de Esclerosis Múltiple y Neurorregeneración; IIS Hospital La Fe; 46026 Valencia Spain
| | - Arantxa Cebrián-Silla
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles; Universidad de Valencia; CIBERNED 46980 Valencia Spain
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; Nagoya 467-8601 Japan
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles; Universidad de Valencia; CIBERNED 46980 Valencia Spain
- Unidad Mixta de Esclerosis Múltiple y Neurorregeneración; IIS Hospital La Fe; 46026 Valencia Spain
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medical Sciences; Nagoya 467-8601 Japan
| |
Collapse
|
71
|
Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes. Sci Rep 2016; 6:23795. [PMID: 27029648 PMCID: PMC4814830 DOI: 10.1038/srep23795] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/14/2016] [Indexed: 12/21/2022] Open
Abstract
We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN+ LLC. Some cortical NeuN+ neurons, GFAP+ glia limitans astrocytes, Iba-1+ microglia and S100β+ ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes.
Collapse
|
72
|
Daynac M, Morizur L, Chicheportiche A, Mouthon MA, Boussin FD. Age-related neurogenesis decline in the subventricular zone is associated with specific cell cycle regulation changes in activated neural stem cells. Sci Rep 2016; 6:21505. [PMID: 26893147 PMCID: PMC4759590 DOI: 10.1038/srep21505] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/21/2016] [Indexed: 01/08/2023] Open
Abstract
Although neural stem cells (NSCs) sustain continuous neurogenesis throughout the adult lifespan of mammals, they progressively exhibit proliferation defects that contribute to a sharp reduction in subventricular neurogenesis during aging. However, little is known regarding the early age-related events in neurogenic niches. Using a fluorescence-activated cell sorting technique that allows for the prospective purification of the main neurogenic populations from the subventricular zone (SVZ), we demonstrated an early decline in adult neurogenesis with a dramatic loss of progenitor cells in 4 month-old young adult mice. Whereas the activated and quiescent NSC pools remained stable up to 12 months, the proliferative status of activated NSCs was already altered by 6 months, with an overall extension of the cell cycle resulting from a specific lengthening of G1. Whole genome analysis of activated NSCs from 2- and 6-month-old mice further revealed distinct transcriptomic and molecular signatures, as well as a modulation of the TGFβ signalling pathway. Our microarray study constitutes a cogent identification of new molecular players and signalling pathways regulating adult neurogenesis and its early modifications.
Collapse
Affiliation(s)
- Mathieu Daynac
- CEA DSV iRCM SCSR, Laboratoire de Radiopathologie, UMR 967, F-92265 Fontenay-aux-Roses, France.,INSERM, UMR967, F-92265 Fontenay-aux-Roses, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR 967, F-92265 Fontenay-aux-Roses, France.,Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Lise Morizur
- CEA DSV iRCM SCSR, Laboratoire de Radiopathologie, UMR 967, F-92265 Fontenay-aux-Roses, France.,INSERM, UMR967, F-92265 Fontenay-aux-Roses, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR 967, F-92265 Fontenay-aux-Roses, France.,Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Alexandra Chicheportiche
- CEA DSV iRCM SCSR, Laboratoire de Radiopathologie, UMR 967, F-92265 Fontenay-aux-Roses, France.,INSERM, UMR967, F-92265 Fontenay-aux-Roses, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR 967, F-92265 Fontenay-aux-Roses, France.,Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - Marc-André Mouthon
- CEA DSV iRCM SCSR, Laboratoire de Radiopathologie, UMR 967, F-92265 Fontenay-aux-Roses, France.,INSERM, UMR967, F-92265 Fontenay-aux-Roses, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR 967, F-92265 Fontenay-aux-Roses, France.,Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| | - François D Boussin
- CEA DSV iRCM SCSR, Laboratoire de Radiopathologie, UMR 967, F-92265 Fontenay-aux-Roses, France.,INSERM, UMR967, F-92265 Fontenay-aux-Roses, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR 967, F-92265 Fontenay-aux-Roses, France.,Université Paris Sud, UMR 967, F-92265 Fontenay-aux-Roses, France
| |
Collapse
|
73
|
Mohn TC, Koob AO. Adult Astrogenesis and the Etiology of Cortical Neurodegeneration. J Exp Neurosci 2015; 9:25-34. [PMID: 26568684 PMCID: PMC4634839 DOI: 10.4137/jen.s25520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023] Open
Abstract
As more evidence points to a clear role for astrocytes in synaptic processing, synaptogenesis and cognition, continuing research on astrocytic function could lead to strategies for neurodegenerative disease prevention. Reactive astrogliosis results in astrocyte proliferation early in injury and disease states and is considered neuroprotective, indicating a role for astrocytes in disease etiology. This review describes the different types of human cortical astrocytes and the current evidence regarding adult cortical astrogenesis in injury and degenerative disease. A role for disrupted astrogenesis as a cause of cortical degeneration, with a focus on the tauopathies and synucleinopathies, will also be considered.
Collapse
Affiliation(s)
- Tal C. Mohn
- Biology Department, University of Wisconsin—River Falls, River Falls, Wisconsin, USA
| | - Andrew O. Koob
- Biology Department, University of Wisconsin—River Falls, River Falls, Wisconsin, USA
| |
Collapse
|
74
|
Muthusamy N, Sommerville LJ, Moeser AJ, Stumpo DJ, Sannes P, Adler K, Blackshear PJ, Weimer JM, Ghashghaei HT. MARCKS-dependent mucin clearance and lipid metabolism in ependymal cells are required for maintenance of forebrain homeostasis during aging. Aging Cell 2015; 14:764-73. [PMID: 26010231 PMCID: PMC4568964 DOI: 10.1111/acel.12354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2015] [Indexed: 12/28/2022] Open
Abstract
Ependymal cells (ECs) form a barrier responsible for selective movement of fluids and molecules between the cerebrospinal fluid and the central nervous system. Here, we demonstrate that metabolic and barrier functions in ECs decline significantly during aging in mice. The longevity of these functions in part requires the expression of the myristoylated alanine-rich protein kinase C substrate (MARCKS). Both the expression levels and subcellular localization of MARCKS in ECs are markedly transformed during aging. Conditional deletion of MARCKS in ECs induces intracellular accumulation of mucins, elevated oxidative stress, and lipid droplet buildup. These alterations are concomitant with precocious disruption of ependymal barrier function, which results in the elevation of reactive astrocytes, microglia, and macrophages in the interstitial brain tissue of young mutant mice. Interestingly, similar alterations are observed during normal aging in ECs and the forebrain interstitium. Our findings constitute a conceptually new paradigm in the potential role of ECs in the initiation of various conditions and diseases in the aging brain.
Collapse
Affiliation(s)
- Nagendran Muthusamy
- Department of Molecular Biomedical Sciences College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
| | - Laura J. Sommerville
- Department of Molecular Biomedical Sciences College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
| | - Adam J. Moeser
- Department of Population Health and Pathobiology College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
- Center for Comparative Medicine and Translational Research College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
| | - Deborah J. Stumpo
- Laboratory of Signal Transduction National Institute of Environmental Health Sciences Durham NC 27709 USA
| | - Philip Sannes
- Department of Molecular Biomedical Sciences College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
- Center for Comparative Medicine and Translational Research College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
| | - Kenneth Adler
- Department of Molecular Biomedical Sciences College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
| | - Perry J. Blackshear
- Laboratory of Signal Transduction National Institute of Environmental Health Sciences Durham NC 27709 USA
| | - Jill M. Weimer
- Sanford Research Children's Health Research and Department of Pediatric University of South Dakota Sanford School of Medicine Sioux Falls SD 57104 USA
| | - H. Troy Ghashghaei
- Department of Molecular Biomedical Sciences College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
- Center for Comparative Medicine and Translational Research College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
- Program in Genetics North Carolina State University Raleigh NC 27607 USA
| |
Collapse
|
75
|
Capilla-Gonzalez V, Herranz-Pérez V, García-Verdugo JM. The aged brain: genesis and fate of residual progenitor cells in the subventricular zone. Front Cell Neurosci 2015; 9:365. [PMID: 26441536 PMCID: PMC4585225 DOI: 10.3389/fncel.2015.00365] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) persist in the adult mammalian brain through life. The subventricular zone (SVZ) is the largest source of stem cells in the nervous system, and continuously generates new neuronal and glial cells involved in brain regeneration. During aging, the germinal potential of the SVZ suffers a widespread decline, but the causes of this turn down are not fully understood. This review provides a compilation of the current knowledge about the age-related changes in the NSC population, as well as the fate of the newly generated cells in the aged brain. It is known that the neurogenic capacity is clearly disrupted during aging, while the production of oligodendroglial cells is not compromised. Interestingly, the human brain seems to primarily preserve the ability to produce new oligodendrocytes instead of neurons, which could be related to the development of neurological disorders. Further studies in this matter are required to improve our understanding and the current strategies for fighting neurological diseases associated with senescence.
Collapse
Affiliation(s)
- Vivian Capilla-Gonzalez
- Laboratory of Comparative Neurobiology, Department of Cell Biology, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of Valencia, CIBERNED Valencia, Spain ; Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Department of Cell Biology, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of Valencia, CIBERNED Valencia, Spain ; Multiple Sclerosis and Neuroregeneration Mixed Unit, IIS Hospital La Fe Valencia, Spain
| | - Jose Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Department of Cell Biology, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, University of Valencia, CIBERNED Valencia, Spain ; Multiple Sclerosis and Neuroregeneration Mixed Unit, IIS Hospital La Fe Valencia, Spain
| |
Collapse
|
76
|
Fiorelli R, Azim K, Fischer B, Raineteau O. Adding a spatial dimension to postnatal ventricular-subventricular zone neurogenesis. Development 2015; 142:2109-20. [PMID: 26081572 DOI: 10.1242/dev.119966] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurogenesis does not stop abruptly at birth, but persists in specific brain regions throughout life. The neural stem cells (NSCs) located in the largest germinal region of the forebrain, the ventricular-subventricular zone (V-SVZ), replenish olfactory neurons throughout life. However, V-SVZ NSCs are heterogeneous: they have different embryonic origins and give rise to distinct neuronal subtypes depending on their location. In this Review, we discuss how this spatial heterogeneity arises, how it affects NSC biology, and why its consideration in future studies is crucial for understanding general principles guiding NSC self-renewal, differentiation and specification.
Collapse
Affiliation(s)
- Roberto Fiorelli
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix AZ 85013, USA
| | - Kasum Azim
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Bruno Fischer
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Olivier Raineteau
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland Inserm U846, Stem Cell and Brain Research Institute, 18 Avenue Doyen Lépine, Bron 69500, France Université de Lyon, Université Lyon 1, Bron 69500, France
| |
Collapse
|
77
|
Soriano‐Cantón R, Perez‐Villalba A, Morante‐Redolat JM, Marqués‐Torrejón MÁ, Pallás M, Pérez‐Sánchez F, Fariñas I. Regulation of the p19(Arf)/p53 pathway by histone acetylation underlies neural stem cell behavior in senescence-prone SAMP8 mice. Aging Cell 2015; 14:453-62. [PMID: 25728253 PMCID: PMC4406674 DOI: 10.1111/acel.12328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 01/24/2023] Open
Abstract
Brain aging is associated with increased neurodegeneration and reduced neurogenesis. B1/neural stem cells (B1-NSCs) of the mouse subependymal zone (SEZ) support the ongoing production of olfactory bulb interneurons, but their neurogenic potential is progressively reduced as mice age. Although age-related changes in B1-NSCs may result from increased expression of tumor suppressor proteins, accumulation of DNA damage, metabolic alterations, and microenvironmental or systemic changes, the ultimate causes remain unclear. Senescence-accelerated-prone mice (SAMP8) relative to senescence-accelerated-resistant mice (SAMR1) exhibit signs of hastened senescence and can be used as a model for the study of aging. We have found that the B1-NSC compartment is transiently expanded in young SAMP8 relative to SAMR1 mice, resulting in disturbed cytoarchitecture of the SEZ, B1-NSC hyperproliferation, and higher yields of primary neurospheres. These unusual features are, however, accompanied by premature loss of B1-NSCs. Moreover, SAMP8 neurospheres lack self-renewal and enter p53-dependent senescence after only two passages. Interestingly, in vitro senescence of SAMP8 cells could be prevented by inhibition of histone acetyltransferases and mimicked in SAMR1 cells by inhibition of histone deacetylases (HDAC). Our data indicate that expression of the tumor suppressor p19, but not of p16, is increased in SAMP8 neurospheres, as well as in SAMR1 neurospheres upon HDAC inhibition, and suggest that the SAMP8 phenotype may, at least in part, be due to changes in chromatin status. Interestingly, acute HDAC inhibition in vivo resulted in changes in the SEZ of SAMR1 mice that resembled those found in young SAMP8 mice.
Collapse
Affiliation(s)
- Raúl Soriano‐Cantón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Ana Perez‐Villalba
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - José Manuel Morante‐Redolat
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - María Ángeles Marqués‐Torrejón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Mercé Pallás
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Farmacología y Química Terapéutica Instituto de Biomedicina de la Universidad de Barcelona Barcelona 08028Spain
| | - Francisco Pérez‐Sánchez
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| |
Collapse
|
78
|
de la Fuente Revenga M, Pérez C, Morales-García JA, Alonso-Gil S, Pérez-Castillo A, Caignard DH, Yáñez M, Gamo AM, Rodríguez-Franco MI. Neurogenic Potential Assessment and Pharmacological Characterization of 6-Methoxy-1,2,3,4-tetrahydro-β-carboline (Pinoline) and Melatonin-Pinoline Hybrids. ACS Chem Neurosci 2015; 6:800-10. [PMID: 25815906 DOI: 10.1021/acschemneuro.5b00041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
6-Methoxy-1,2,3,4-tetrahydro-β-carboline (pinoline) and N-acetyl-5-methoxytryptamine (melatonin) are both structurally related to 5-hydroxytryptamine (serotonin). Here we describe the design, synthesis, and characterization of a series of melatonin rigid analogues resulting from the hybridization of both pinoline and melatonin structures. The pharmacological evaluation of melatonin-pinoline hybrids comprises serotonergic and melatonergic receptors, metabolic enzymes (monoamine oxidases), antioxidant potential, the in vitro blood-brain barrier permeability, and neurogenic studies. Pinoline at trace concentrations and 2-acetyl-6-methoxy-1,2,3,4-tetrahydro-β-carboline (2) were able to stimulate early neurogenesis and neuronal maturation in an in vitro model of neural stem cells isolated from the adult rat subventricular zone. Such effects are presumably mediated via serotonergic and melatonergic stimulation, respectively.
Collapse
Affiliation(s)
- Mario de la Fuente Revenga
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas
(IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Concepción Pérez
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas
(IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - José A. Morales-García
- Instituto de Investigaciones
Biomédicas “Alberto Sols”, Consejo Superior de
Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación
Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones
Biomédicas “Alberto Sols”, Consejo Superior de
Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación
Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones
Biomédicas “Alberto Sols”, Consejo Superior de
Investigaciones Científicas (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación
Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | - Daniel-Henri Caignard
- Institut
de Recherches
Servier, 125 Chemin de Ronde, 78290-Croissy sur Seine, France
| | - Matilde Yáñez
- Facultad
de Farmacia, Departamento de Farmacología, Universidad de Santiago de Compostela, Campus Vida, La Coruña, 15782-Santiago de Compostela, Spain
| | - Ana M. Gamo
- Facultad
de Ciencias Químicas, Departamento de Química Orgánica
I, Universidad Complutense de Madrid, 28040-Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química
Médica, Consejo Superior de Investigaciones Científicas
(IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| |
Collapse
|
79
|
Szabolcsi V, Celio MR. De novo expression of parvalbumin in ependymal cells in response to brain injury promotes ependymal remodeling and wound repair. Glia 2014; 63:567-94. [PMID: 25421913 DOI: 10.1002/glia.22768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/06/2014] [Indexed: 12/21/2022]
Abstract
The calcium-binding protein parvalbumin (PV) hallmarks subpopulations of interneurons in the murine brain. We serendipitously observed the de novo expression of PV in ependymal cells of the lateral ventricle wall following in vivo lesioning and brain slicing for the preparation of organotypic hippocampal slice cultures (OHSCs). In OHSCs, de novo PV-expression begins shortly after the onset of culturing, and the number of ependymal cells implicated in this process increases with time. PV-immunopositive ependymal cells aggregate and form compact cell clusters, which are characterized by lumen-formation and beating cilia. Scratches inflicted on such clusters with a sharp knife are rapidly closed. Exposure of OHSCs to NF-КB-inhibitors and to antioxidants reduces PV-expression in ependymal cells, thereby implicating injury-induced inflammation in this process. Indeed, in vivo stab injury enhances PV-expression in ependymal cells adjacent to the lesion, whereas neuraminidase denudation is without effect. PV-knock-out mice manifest an impaired wound-healing response to in vivo injury, and a reduced scratch-wound reparation capacity in OHSCs. Whole-transcriptome analysis of ependymal-cell clusters in OHSCs revealed down-regulation of genes involved in cytoskeletal rearrangement, cell motility and cell adhesion in PV-knock out mice as compared with wild-type mice. Our data indicate that the injury-triggered up-regulation of PV-expression is mediated by inflammatory cytokines, and promotes the motility and adhesion of ependymal cells, thereby contributing to leakage closure by the re-establishment of a continuous ependymal layer.
Collapse
Affiliation(s)
- Viktória Szabolcsi
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg, Rte Albert Gockel 1, CH-1700, Fribourg, Switzerland
| | | |
Collapse
|
80
|
Li Y, Wu D, Wu C, Qu Z, Zhao Y, Li W, Wang J, Li Z. Changes in neural stem cells in the subventricular zone in a rat model of communicating hydrocephalus. Neurosci Lett 2014; 578:153-8. [PMID: 24996196 DOI: 10.1016/j.neulet.2014.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/11/2014] [Accepted: 06/24/2014] [Indexed: 12/17/2022]
Abstract
Communicating hydrocephalus is a common type of hydrocephalus. At present, the prevalent treatment is to perform a ventriculo-peritoneal shunt, which, for reasons that are not clear, is sometimes ineffective. The subventricular zone (SVZ) of the lateral ventricles has been established as the primary site of adult neurogenesis. Following cerebral ischemia or brain injury, neural stem cells (NSCs) increase in the SVZ and can both differentiate into neurons and glial cells and respond to the injury. Neural stem cells, enabled by a complex repertoire of factors that precisely regulate the activation, proliferation, differentiation and integration of newborn cells, continuously generate new neurons. However, only a few systematic studies of the role of NSCs in hydrocephalus have been reported. In a rat model of communicating hydrocephalus, we recently showed that hydrocephalus caused the ventricular system to expand over time. We found that the number of NSCs in the SVZ peaked rapidly after hydrocephalus was established and decreased gradually over time until the cells disappeared. NSCs may be involved in the pathophysiology changes and repair process of hydrocephalus.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dongxue Wu
- Department of Radiologists, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chunming Wu
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Zhenyun Qu
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning, China
| | - Yongshun Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Weihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jian Wang
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhongmin Li
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|