51
|
Laakso I, Hirata A, Ugawa Y. Effects of coil orientation on the electric field induced by TMS over the hand motor area. Phys Med Biol 2013; 59:203-18. [DOI: 10.1088/0031-9155/59/1/203] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
52
|
Boscolo Galazzo I, Storti SF, Formaggio E, Pizzini FB, Fiaschi A, Beltramello A, Bertoldo A, Manganotti P. Investigation of brain hemodynamic changes induced by active and passive movements: A combined arterial spin labeling-BOLD fMRI study. J Magn Reson Imaging 2013; 40:937-48. [DOI: 10.1002/jmri.24432] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ilaria Boscolo Galazzo
- Department of Neurological and Movement Sciences, Section of Neurology; University of Verona; Italy
| | - Silvia F. Storti
- Department of Neurological and Movement Sciences, Section of Neurology; University of Verona; Italy
| | - Emanuela Formaggio
- Department of Neurophysiology Foundation IRCCS; San Camillo Hospital; Venice Italy
| | | | - Antonio Fiaschi
- Department of Neurological and Movement Sciences, Section of Neurology; University of Verona; Italy
- Department of Neurophysiology Foundation IRCCS; San Camillo Hospital; Venice Italy
- Clinical Neurophysiology and Functional Neuroimaging Unit; AOUI of Verona; Italy
| | | | | | - Paolo Manganotti
- Department of Neurological and Movement Sciences, Section of Neurology; University of Verona; Italy
- Department of Neurophysiology Foundation IRCCS; San Camillo Hospital; Venice Italy
- Clinical Neurophysiology and Functional Neuroimaging Unit; AOUI of Verona; Italy
| |
Collapse
|
53
|
Krieg TD, Salinas FS, Narayana S, Fox PT, Mogul DJ. PET-based confirmation of orientation sensitivity of TMS-induced cortical activation in humans. Brain Stimul 2013; 6:898-904. [PMID: 23827648 PMCID: PMC5293002 DOI: 10.1016/j.brs.2013.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 05/16/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Currently, it is difficult to predict precise regions of cortical activation in response to transcranial magnetic stimulation (TMS). Most analytical approaches focus on applied magnetic field strength in the target region as the primary factor, placing activation on the gyral crowns. However, imaging studies support M1 targets being typically located in the sulcal banks. OBJECTIVE/HYPOTHESIS To more thoroughly investigate this inconsistency, we sought to determine whether neocortical surface orientation was a critical determinant of regional activation. METHODS MR images were used to construct cortical and scalp surfaces for 18 subjects. The angle (θ) between the cortical surface normal and its nearest scalp normal for ~50,000 cortical points per subject was used to quantify cortical location (i.e., gyral vs. sulcal). TMS-induced activations of primary motor cortex (M1) were compared to brain activations recorded during a finger-tapping task using concurrent positron emission tomographic (PET) imaging. RESULTS Brain activations were primarily sulcal for both the TMS and task activations (P < 0.001 for both) compared to the overall cortical surface orientation. Also, the location of maximal blood flow in response to either TMS or finger-tapping correlated well using the cortical surface orientation angle or distance to scalp (P < 0.001 for both) as criteria for comparison between different neocortical activation modalities. CONCLUSION This study provides further evidence that a major factor in cortical activation using TMS is the orientation of the cortical surface with respect to the induced electric field. The results show that, despite the gyral crown of the cortex being subjected to a larger magnetic field magnitude, the sulcal bank of M1 had larger cerebral blood flow (CBF) responses during TMS.
Collapse
Affiliation(s)
- Todd D. Krieg
- Department of Biomedical Engineering, Illinois Institute of Technology, Wishnick Hall 314, 3255 S. Dearborn St., Chicago, IL 60616, USA
| | - Felipe S. Salinas
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Shalini Narayana
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - David J. Mogul
- Department of Biomedical Engineering, Illinois Institute of Technology, Wishnick Hall 314, 3255 S. Dearborn St., Chicago, IL 60616, USA
| |
Collapse
|
54
|
Ahdab R, Ayache SS, Farhat WH, Mylius V, Schmidt S, Brugières P, Lefaucheur JP. Reappraisal of the anatomical landmarks of motor and premotor cortical regions for image-guided brain navigation in TMS practice. Hum Brain Mapp 2013; 35:2435-47. [PMID: 24038518 DOI: 10.1002/hbm.22339] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/14/2013] [Accepted: 05/20/2013] [Indexed: 11/11/2022] Open
Abstract
Image-guided navigation systems dedicated to transcranial magnetic stimulation (TMS) have been recently developed and offer the possibility to visualize directly the anatomical structure to be stimulated. Performing navigated TMS requires a perfect knowledge of cortical anatomy, which is very variable between subjects. This study aimed at providing a detailed description of sulcal and gyral anatomy of motor cortical regions with special interest to the inter-individual variability of sulci. We attempted to identify the most stable structures, which can serve as anatomical landmarks for motor cortex mapping in navigated TMS practice. We analyzed the 3D reconstruction of 50 consecutive healthy adult brains (100 hemispheres). Different variants were identified regarding sulcal morphology, but several anatomical structures were found to be remarkably stable (four on dorsoventral axis and five on rostrocaudal axis). These landmarks were used to define a grid of 12 squares, which covered motor cortical regions. This grid was used to perform motor cortical mapping with navigated TMS in 12 healthy subjects from our cohort. The stereotactic coordinates (x-y-z) of the center of each of the 12 squares of the mapping grid were expressed into the standard Talairach space to determine the corresponding functional areas. We found that the regions whose stimulation produced almost constantly motor evoked potentials mainly correspond to the primary motor cortex, with rostral extension to premotor cortex and caudal extension to posterior parietal cortex. Our anatomy-based approach should facilitate the expression and the comparison of the results obtained in motor mapping studies using navigated TMS.
Collapse
Affiliation(s)
- Rechdi Ahdab
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France; Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France; Neuroscience Department, University Medical Center Rizk Hospital, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|
55
|
Opitz A, Legon W, Rowlands A, Bickel WK, Paulus W, Tyler WJ. Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex. Neuroimage 2013; 81:253-264. [PMID: 23644000 DOI: 10.1016/j.neuroimage.2013.04.067] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/02/2013] [Accepted: 04/18/2013] [Indexed: 01/30/2023] Open
Abstract
Recent evidence indicates subject-specific gyral folding patterns and white matter anisotropy uniquely shape electric fields generated by TMS. Current methods for predicting the brain regions influenced by TMS involve projecting the TMS coil position or center of gravity onto realistic head models derived from structural and functional imaging data. Similarly, spherical models have been used to estimate electric field distributions generated by TMS pulses delivered from a particular coil location and position. In the present paper we inspect differences between electric field computations estimated using the finite element method (FEM) and projection-based approaches described above. We then more specifically examined an approach for estimating cortical excitation volumes based on individualistic FEM simulations of electric fields. We evaluated this approach by performing neurophysiological recordings during MR-navigated motormapping experiments. We recorded motor evoked potentials (MEPs) in response to single pulse TMS using two different coil orientations (45° and 90° to midline) at 25 different locations (5×5 grid, 1cm spacing) centered on the hotspot of the right first dorsal interosseous (FDI) muscle in left motor cortex. We observed that motor excitability maps varied within and between subjects as a function of TMS coil position and orientation. For each coil position and orientation tested, simulations of the TMS-induced electric field were computed using individualistic FEM models and compared to MEP amplitudes obtained during our motormapping experiments. We found FEM simulations of electric field strength, which take into account subject-specific gyral geometry and tissue conductivity anisotropy, significantly correlated with physiologically observed MEP amplitudes (rmax=0.91, p=1.8×10(-5) rmean=0.81, p=0.01). These observations validate the implementation of individualistic FEM models to account for variations in gyral folding patterns and tissue conductivity anisotropy, which should help improve the targeting accuracy of TMS in the mapping or modulation of human brain circuits.
Collapse
Affiliation(s)
- Alexander Opitz
- Virginia Tech Carilion Research Institute, Roanoke, VA 24015, USA; Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
| | - Wynn Legon
- Virginia Tech Carilion Research Institute, Roanoke, VA 24015, USA
| | - Abby Rowlands
- Virginia Tech Carilion Research Institute, Roanoke, VA 24015, USA
| | - Warren K Bickel
- Virginia Tech Carilion Research Institute, Roanoke, VA 24015, USA; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, USA
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Germany
| | - William J Tyler
- Virginia Tech Carilion Research Institute, Roanoke, VA 24015, USA; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, USA; School of Biomedical Engineering and Sciences, Virginia Tech, USA.
| |
Collapse
|
56
|
Weiss C, Nettekoven C, Rehme AK, Neuschmelting V, Eisenbeis A, Goldbrunner R, Grefkes C. Mapping the hand, foot and face representations in the primary motor cortex — Retest reliability of neuronavigated TMS versus functional MRI. Neuroimage 2013; 66:531-42. [DOI: 10.1016/j.neuroimage.2012.10.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022] Open
|
57
|
Disruption of motor network connectivity post-stroke and its noninvasive neuromodulation. Curr Opin Neurol 2012; 25:670-5. [DOI: 10.1097/wco.0b013e3283598473] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
58
|
Raoult H, Ferré JC, Petr J, Bannier E, Stamm A, Barillot C, Gauvrit JY. Functional arterial spin labeling: Optimal sequence duration for motor activation mapping in clinical practice. J Magn Reson Imaging 2012; 36:1435-44. [PMID: 22926803 DOI: 10.1002/jmri.23782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/20/2012] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To determine the minimal optimal functional arterial spin labeling (fASL) sequence duration allowing steady and reproducible motor activation mapping. MATERIALS AND METHODS Three magnetic resonance imaging (MRI) sessions including fASL and blood oxygenation level-dependent (BOLD) functional MRI (fMRI) sequences were performed on 12 healthy subjects at 3T with a 32-channel coil. The raw 7-minute fASL sequence was truncated to obtain six fASL sequences with durations ranging from 1-6 minutes. All the resulting fASL activations were compared between themselves and with both the 7-minute fASL and BOLD activations. Quantitative parameters assessed activation location (activated volume, barycenter, and distance between barycenters), activation quantification (activation-related cerebral blood flow), and intraindividual reproducibility across fMRI sessions. The statistical analysis was based on analysis of variance (ANOVA) and Tukey's multiple comparisons. RESULTS Four-minute fASL achieved steady location and quantification of activation with the activated volume corresponding to 81% of the 7-minute fASL volume and a barycenter located 1.2 mm from the 7-minute fASL barycenter and 3.0 mm from the BOLD fMRI barycenter. Four-minute fASL reproducibility was high and statistically equivalent to 7-minute values. CONCLUSION A 4-minute fASL sequence is thus a reliable tool for motor activation mapping and suitable for use in clinical practice.
Collapse
Affiliation(s)
- Hélène Raoult
- CHU Rennes, Department of Neuroradiology, Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
59
|
Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases. Neuropharmacology 2012; 64:579-87. [PMID: 22687520 DOI: 10.1016/j.neuropharm.2012.05.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 11/30/2022]
Abstract
Non-invasive brain stimulation has shown its potential to modulate brain plasticity in humans. Endeavour has been made to utilize brain stimulation in neurological diseases to enhance adaptive processes and prevent potential maladaptive ones. In stroke for instance both sensorimotor and higher cognitive impairment, such as aphasia and neglect, has been addressed to facilitate functional recovery. In Parkinson's disease, brain stimulation has been evaluated to improve motor and non-motor symptoms. In the present review we provide an update of the field of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) as non-invasive brain stimulation techniques to improve motor and higher cognitive functions in patients suffering from stroke and Parkinson's disease. Rather than attempting to be comprehensive in regard of the reviewed scientific field, this article may be considered as a present day's framework of the application of non-invasive brain stimulation on selected examples of common neurological diseases. At the end we will briefly discuss open controversies and future directions of the field which has to be addressed in upcoming studies. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Robert Schulz
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | |
Collapse
|
60
|
Motor map reliability and aging: a TMS/fMRI study. Exp Brain Res 2012; 219:97-106. [PMID: 22466408 DOI: 10.1007/s00221-012-3070-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/06/2012] [Indexed: 01/13/2023]
Abstract
This study compared the reliability of motor maps over 3 sessions from both neuronavigated transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) data between younger and older adults. Seven younger (ages 19-31) and seven older (ages 64-76) adults participated in three joint TMS/fMRI assessment sessions separated by 7 or 14 days. Sessions involved mapping of the right first dorsal interosseous muscle using single-pulse TMS immediately followed by block-design fMRI scanning involving volitional right-hand index finger to thumb oppositional squeeze. Intersession reliability of map volume, evaluated by intraclass correlation and Jaccard Coefficient between testing sessions, was more consistent for younger adults in both fMRI and TMS. A positive correlation was evidenced between fMRI and TMS map volumes and Jaccard Coefficients indicating spatial consistency across sessions between the two measures. Comparisons of map reliability between age groups showed that younger adults have more stable motor maps in both fMRI and TMS. fMRI and TMS maps show consistency across modalities. Future interpretation of motor maps should attempt to account for potential increased variability of such mapping in older age groups. Despite these age group differences in reliability, fMRI and TMS appear to offer consistent and complementary information about cortical representation of the first dorsal interosseous muscle.
Collapse
|
61
|
Pimentel MAF, Vilela P, Sousa I, Figueiredo P. Localization of the hand motor area by arterial spin labeling and blood oxygen level-dependent functional magnetic resonance imaging. Hum Brain Mapp 2011; 34:96-108. [PMID: 22121040 DOI: 10.1002/hbm.21418] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 06/26/2011] [Accepted: 07/01/2011] [Indexed: 12/21/2022] Open
Abstract
The new clinically available arterial spin labeling (ASL) perfusion imaging sequences present some advantages relatively to the commonly used blood oxygen level-dependent (BOLD) method for functional brain studies using magnetic resonance imaging (MRI). In particular, regional cerebral blood flow (CBF) changes are thought to be more directly related with neuronal activation. In this study, we aimed to investigate the accuracy of the functional localization of the hand motor area obtained by simultaneous CBF and BOLD contrasts provided by ASL functional MRI (fMRI) and compare it with a standard BOLD fMRI protocol. For this purpose, we measured the distance between the center of gravity of the activation clusters obtained with each contrast (CBF, BOLD(ASL), and Standard BOLD) and 11 positions defined on a well-established anatomical landmark of the hand motor area (the omega in the axial plane of the precentral gyrus). We found that CBF measurements were significantly closer to the anatomical landmark than the ones obtained using either simultaneous BOLD(ASL) or standard BOLD contrasts. Moreover, we also observed reduced intersubject variability of the functional localization, as well as percent signal change, for CBF relative to both BOLD contrast measurements. In conclusion, our results add further evidence in support to the notion that CBF provides a more accurate localization of motor activation than BOLD contrast, indicating that ASL may be an appropriate technique for clinical fMRI studies.
Collapse
Affiliation(s)
- Marco A F Pimentel
- Institute for Systems and Robotics/Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
| | | | | | | |
Collapse
|
62
|
Raoult H, Petr J, Bannier E, Stamm A, Gauvrit JY, Barillot C, Ferré JC. Arterial spin labeling for motor activation mapping at 3T with a 32-channel coil: Reproducibility and spatial accuracy in comparison with BOLD fMRI. Neuroimage 2011; 58:157-67. [DOI: 10.1016/j.neuroimage.2011.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/19/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022] Open
|
63
|
Threshold curves for transcranial magnetic stimulation to improve reliability of motor pathway status assessment. Clin Neurophysiol 2011; 122:975-83. [DOI: 10.1016/j.clinph.2010.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 11/21/2022]
|
64
|
Sarfeld AS, Diekhoff S, Wang LE, Liuzzi G, Uludağ K, Eickhoff SB, Fink GR, Grefkes C. Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area. Hum Brain Mapp 2011; 33:1107-23. [PMID: 21520346 DOI: 10.1002/hbm.21272] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 11/09/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system.
Collapse
Affiliation(s)
- Anna-Sophia Sarfeld
- Neuromodulation and Neurorehabilitation, Max Planck Institute for Neurological Research, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Najib U, Bashir S, Edwards D, Rotenberg A, Pascual-Leone A. Transcranial brain stimulation: clinical applications and future directions. Neurosurg Clin N Am 2011; 22:233-51, ix. [PMID: 21435574 PMCID: PMC3547606 DOI: 10.1016/j.nec.2011.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Noninvasive brain stimulation is a valuable investigative tool and has potential therapeutic applications in cognitive neuroscience, neurophysiology, psychiatry, and neurology. Transcranial magnetic stimulation (TMS) is particularly useful to establish and map causal brain-behavior relations in motor and nonmotor cortical areas. Neuronavigated TMS is able to provide precise information related to the individual's functional anatomy that can be visualized and used during surgical interventions and critically aid in presurgical planning, reducing the need for riskier and more cumbersome intraoperative or invasive mapping procedures. This article reviews methodological aspects, clinical applications, and future directions of TMS-based mapping.
Collapse
Affiliation(s)
- Umer Najib
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Shahid Bashir
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Dylan Edwards
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Non-Invasive Brain Stimulation and the Human Motor Control Laboratory, Burke Medical Research Institute, Inc, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | - Alexander Rotenberg
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Institut Guttman de Neurorehabilitació, Institut Universitari, Universitat Autonoma de Barcelona, Camí de Can Ruti s/n, 08916 Badalona, Spain
| |
Collapse
|