51
|
Kisilevsky E, Kohly RP, Margolin EA. Dilated and tortuous retinal vessels as a sign of Cantu syndrome. Ophthalmic Genet 2019; 40:453-454. [PMID: 31584310 DOI: 10.1080/13816810.2019.1666415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
When encountering patients with markedly dilated and tortuous retinal vessels, Wyburn-Mason syndrome (WMS) or racemous angiomatosis (phacomatosis) is commonly thought of as the archetypal entity that can produce these findings. We describe a patient with Cantu syndrome with phenotypical findings identical to those seen in patients with WMS and want to highlight this as another entity that can present with tortuous and dilated retinal vessels.
Collapse
Affiliation(s)
- Eli Kisilevsky
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Radha P Kohly
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.,Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Edward A Margolin
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.,Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| |
Collapse
|
52
|
Smeland MF, McClenaghan C, Roessler HI, Savelberg S, Hansen GÅM, Hjellnes H, Arntzen KA, Müller KI, Dybesland AR, Harter T, Sala-Rabanal M, Emfinger CH, Huang Y, Singareddy SS, Gunn J, Wozniak DF, Kovacs A, Massink M, Tessadori F, Kamel SM, Bakkers J, Remedi MS, Van Ghelue M, Nichols CG, van Haaften G. ABCC9-related Intellectual disability Myopathy Syndrome is a K ATP channelopathy with loss-of-function mutations in ABCC9. Nat Commun 2019; 10:4457. [PMID: 31575858 PMCID: PMC6773855 DOI: 10.1038/s41467-019-12428-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022] Open
Abstract
Mutations in genes encoding KATP channel subunits have been reported for pancreatic disorders and Cantú syndrome. Here, we report a syndrome in six patients from two families with a consistent phenotype of mild intellectual disability, similar facies, myopathy, and cerebral white matter hyperintensities, with cardiac systolic dysfunction present in the two oldest patients. Patients are homozygous for a splice-site mutation in ABCC9 (c.1320 + 1 G > A), which encodes the sulfonylurea receptor 2 (SUR2) subunit of KATP channels. This mutation results in an in-frame deletion of exon 8, which results in non-functional KATP channels in recombinant assays. SUR2 loss-of-function causes fatigability and cardiac dysfunction in mice, and reduced activity, cardiac dysfunction and ventricular enlargement in zebrafish. We term this channelopathy resulting from loss-of-function of SUR2-containing KATP channels ABCC9-related Intellectual disability Myopathy Syndrome (AIMS). The phenotype differs from Cantú syndrome, which is caused by gain-of-function ABCC9 mutations, reflecting the opposing consequences of KATP loss- versus gain-of-function.
Collapse
Affiliation(s)
- Marie F Smeland
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway.
| | - Conor McClenaghan
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Sanne Savelberg
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | | | - Helene Hjellnes
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Kjell Arne Arntzen
- Department of Neurology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019, Tromsø, Norway
- The National Neuromuscular Centre of Norway, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Kai Ivar Müller
- Department of Neurology, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019, Tromsø, Norway
| | - Andreas Rosenberger Dybesland
- The National Neuromuscular Centre of Norway, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Physiotherapy, University Hospital of North Norway, 9019, Tromsø, Norway
| | - Theresa Harter
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University, St Louis, MO, 63110, USA
| | - Chris H Emfinger
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Yan Huang
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Soma S Singareddy
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Jamie Gunn
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maarten Massink
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Federico Tessadori
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT, Utrecht, the Netherlands
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Maria S Remedi
- Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, MO, 63110, USA
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital of North Norway, 9019, Tromsø, Norway
- Department of Medical Genetics, the Arctic University of Norway, 9019, Tromsø, Norway
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO, 63110, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
53
|
Ma A, Gurnasinghani S, Kirk EP, McClenaghan C, Singh GK, Grange DK, Pandit C, Zhu Y, Roscioli T, Elakis G, Buckley M, Mehta B, Roberts P, Mervis J, Biggin A, Nichols CG. Glibenclamide treatment in a Cantú syndrome patient with a pathogenic ABCC9 gain-of-function variant: Initial experience. Am J Med Genet A 2019; 179:1585-1590. [PMID: 31175705 PMCID: PMC6899598 DOI: 10.1002/ajmg.a.61200] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022]
Abstract
Cantú syndrome (CS), characterized by hypertrichosis, distinctive facial features, and complex cardiovascular abnormalities, is caused by pathogenic variants in ABCC9 and KCNJ8 genes. These genes encode gain-of-function mutations in the regulatory (SUR2) and pore-forming (Kir6.1) subunits of KATP channels, respectively, suggesting that channel-blocking sulfonylureas could be a viable therapy. Here we report a neonate with CS, carrying a heterozygous ABCC9 variant (c.3347G>A, p.Arg1116His), born prematurely at 32 weeks gestation. Initial echocardiogram revealed a large patent ductus arteriosus (PDA), and high pulmonary pressures with enlarged right ventricle. He initially received surfactant and continuous positive airway pressure ventilation and was invasively ventilated for 4 weeks, until PDA ligation. After surgery, he still had ongoing bilevel positive airway pressure (BiPAP) requirement, but was subsequently weaned to nocturnal BiPAP. He was treated for pulmonary hypertension with Sildenafil, but failed to make further clinical improvement. A therapeutic glibenclamide trial was commenced in week 11 (initial dose of 0.05 mg-1 kg-1 day-1 in two divided doses). After 1 week of treatment, he began to tolerate time off BiPAP when awake, and edema improved. Glibenclamide was well tolerated, and the dose was slowly increased to 0.15 mg-1 kg-1 day-1 over the next 12 weeks. Mild transient hypoglycemia was observed, but there was no cardiovascular dysfunction. Confirmation of therapeutic benefit will require studies of more CS patients but, based on this limited experience, consideration should be given to glibenclamide as CS therapy, although problems associated with prematurity, and complications of hypoglycemia, might limit outcome in critically ill neonates with CS.
Collapse
Affiliation(s)
- Alan Ma
- Department of Clinical GeneticsChildren's Hospital at Westmead, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- Discipline of Genomic MedicineSydney Medical School, University of SydneySydneyNew South WalesAustralia
| | - Sunita Gurnasinghani
- Department of Clinical GeneticsChildren's Hospital at Westmead, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
| | - Edwin P. Kirk
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
- School of Women's and Children's Health, University of NSWSydneyNew South WalesAustralia
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of MedicineSt. LouisMissouri
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMissouri
| | - Gautam K. Singh
- Department of PediatricsWashington University School of MedicineSt. LouisMissouri
| | - Dorothy K. Grange
- Department of PediatricsWashington University School of MedicineSt. LouisMissouri
| | - Chetan Pandit
- Department of Respiratory and Sleep MedicineThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Yung Zhu
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Tony Roscioli
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospital NetworkSydneyNew South WalesAustralia
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - George Elakis
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Michael Buckley
- NSW Health Pathology East Genomics LaboratorySydneyNew South WalesAustralia
| | - Bhavesh Mehta
- Grace Centre for Newborn Intensive CareThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Philip Roberts
- Department of CardiologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Jonathan Mervis
- Department of CardiologyThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Andrew Biggin
- Children's Hospital Westmead Clinical School, University of SydneyNew South WalesAustralia
- Institute of Endocrinology and Diabetes, The Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of MedicineSt. LouisMissouri
- Department of Cell Biology and PhysiologyWashington University School of MedicineSt. LouisMissouri
| |
Collapse
|
54
|
McClenaghan C, Woo KV, Nichols CG. Pulmonary Hypertension and ATP-Sensitive Potassium Channels. Hypertension 2019; 74:14-22. [PMID: 31132951 DOI: 10.1161/hypertensionaha.119.12992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Conor McClenaghan
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| | - Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Washington University School of Medicine, St Louis, MO (K.V.W.)
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St Louis, MO (C.M., C.G.N.)
| |
Collapse
|
55
|
Chen X, Garon A, Wieder M, Houtman MJC, Zangerl-Plessl EM, Langer T, van der Heyden MAG, Stary-Weinzinger A. Computational Identification of Novel Kir6 Channel Inhibitors. Front Pharmacol 2019; 10:549. [PMID: 31178728 PMCID: PMC6543810 DOI: 10.3389/fphar.2019.00549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022] Open
Abstract
KATP channels consist of four Kir6.x pore-forming subunits and four regulatory sulfonylurea receptor (SUR) subunits. These channels couple the metabolic state of the cell to membrane excitability and play a key role in physiological processes such as insulin secretion in the pancreas, protection of cardiac muscle during ischemia and hypoxic vasodilation of arterial smooth muscle cells. Abnormal channel function resulting from inherited gain or loss-of-function mutations in either the Kir6.x and/or SUR subunits are associated with severe diseases such as neonatal diabetes, congenital hyperinsulinism, or Cantú syndrome (CS). CS is an ultra-rare genetic autosomal dominant disorder, caused by dominant gain-of-function mutations in SUR2A or Kir6.1 subunits. No specific pharmacotherapeutic treatment options are currently available for CS. Kir6 specific inhibitors could be beneficial for the development of novel drug therapies for CS, particular for mutations, which lack high affinity for sulfonylurea inhibitor glibenclamide. By applying a combination of computational methods including atomistic MD simulations, free energy calculations and pharmacophore modeling, we identified several novel Kir6.1 inhibitors, which might be possible candidates for drug repurposing. The in silico predictions were confirmed using inside/out patch-clamp analysis. Importantly, Cantú mutation C166S in Kir6.2 (equivalent to C176S in Kir6.1) and S1020P in SUR2A, retained high affinity toward the novel inhibitors. Summarizing, the inhibitors identified in this study might provide a starting point toward developing novel therapies for Cantú disease.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Arthur Garon
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marien J. C. Houtman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Thierry Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Marcel A. G. van der Heyden
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | | |
Collapse
|
56
|
Houtman MJC, Chen X, Qile M, Duran K, van Haaften G, Stary-Weinzinger A, van der Heyden MAG. Glibenclamide and HMR1098 normalize Cantú syndrome-associated gain-of-function currents. J Cell Mol Med 2019; 23:4962-4969. [PMID: 31119887 PMCID: PMC7346732 DOI: 10.1111/jcmm.14329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Cantú syndrome (CS) is caused by dominant gain-of-function mutation in ATP-dependent potassium channels. Cellular ATP concentrations regulate potassium current thereby coupling energy status with membrane excitability. No specific pharmacotherapeutic options are available to treat CS but IKATP channels are pharmaceutical targets in type II diabetes or cardiac arrhythmia treatment. We have been suggested that IKATP inhibitors, glibenclamide and HMR1098, normalize CS channels. IKATP in response to Mg-ATP, glibenclamide and HMR1098 were measured by inside-out patch-clamp electrophysiology. Results were interpreted in view of cryo-EM IKATP channel structures. Mg-ATP IC50 values of outward current were increased for D207E (0.71 ± 0.14 mmol/L), S1020P (1.83 ± 0.10), S1054Y (0.95 ± 0.06) and R1154Q (0.75 ± 0.13) channels compared to H60Y (0.14 ± 0.01) and wild-type (0.15 ± 0.01). HMR1098 dose-dependently inhibited S1020P and S1054Y channels in the presence of 0.15 mmol/L Mg-ATP, reaching, at 30 μmol/L, current levels displayed by wild-type and H60Y channels in the presence of 0.15 mmol/L Mg-ATP. Glibenclamide (10 μmol/L) induced similar normalization. S1054Y sensitivity to glibenclamide increases strongly at 0.5 mmol/L Mg-ATP compared to 0.15 mmol/L, in contrast to D207E and S1020P channels. Experimental findings agree with structural considerations. We conclude that CS channel activity can be normalized by existing drugs; however, complete normalization can be achieved at supraclinical concentrations only.
Collapse
Affiliation(s)
- Marien J C Houtman
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Muge Qile
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karen Duran
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs van Haaften
- Center for Molecular Medicine, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marcel A G van der Heyden
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
57
|
Levin M, Pietak AM, Bischof J. Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Semin Cell Dev Biol 2019; 87:125-144. [PMID: 29635019 PMCID: PMC6234102 DOI: 10.1016/j.semcdb.2018.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Planarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field. We then review recent progress in understanding of the physiological control of an endogenous, bioelectric pattern memory that guides regeneration, and how modulating this memory can permanently alter the flatworm's target morphology. Finally, we focus on computational approaches that complement reductive pathway analysis with synthetic, systems-level understanding of morphological decision-making. We analyze existing models of planarian pattern control and highlight recent successes and remaining knowledge gaps in this interdisciplinary frontier field.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States.
| | - Alexis M Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
58
|
Marques P, Korbonits M. Pseudoacromegaly. Front Neuroendocrinol 2019; 52:113-143. [PMID: 30448536 DOI: 10.1016/j.yfrne.2018.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 01/19/2023]
Abstract
Individuals with acromegaloid physical appearance or tall stature may be referred to endocrinologists to exclude growth hormone (GH) excess. While some of these subjects could be healthy individuals with normal variants of growth or physical traits, others will have acromegaly or pituitary gigantism, which are, in general, straightforward diagnoses upon assessment of the GH/IGF-1 axis. However, some patients with physical features resembling acromegaly - usually affecting the face and extremities -, or gigantism - accelerated growth/tall stature - will have no abnormalities in the GH axis. This scenario is termed pseudoacromegaly, and its correct diagnosis can be challenging due to the rarity and variability of these conditions, as well as due to significant overlap in their characteristics. In this review we aim to provide a comprehensive overview of pseudoacromegaly conditions, highlighting their similarities and differences with acromegaly and pituitary gigantism, to aid physicians with the diagnosis of patients with pseudoacromegaly.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
59
|
Nussinovitch I. Ca2+ Channels in Anterior Pituitary Somatotrophs: A Therapeutic Perspective. Endocrinology 2018; 159:4043-4055. [PMID: 30395240 DOI: 10.1210/en.2018-00743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/26/2018] [Indexed: 01/18/2023]
Abstract
Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) plays a key role in GH secretion. In this review, we summarize the current state of knowledge regarding the physiology and molecular machinery of VGCCs in pituitary somatotrophs. We next discuss the possible involvement of Ca2+ channelopathies in pituitary disease and the potential use of Ca2+ channel blockers to treat pituitary disease. Various types of VGCCs exist in pituitary cells. However, because L-type Ca2+ channels (LTCCs) contribute the major component to Ca2+ influx in somatotrophs, lactotrophs, and corticotrophs, we focused on these channels. An increasing number of studies in recent years have linked genetic missense mutations in LTCCs to diseases of the human cardiovascular, nervous, and endocrine systems. These disease-associated genetic mutations occur at homologous functional positions (activation gates) in LTCCs. Thus, it is plausible that similar homologous missense mutations in pituitary LTCCs can cause abnormal hormone secretion and underlying pituitary disorders. The existence of LTCCs in pituitary cells opens questions about their sensitivity to dihydropyridines, a group of selective LTCC blockers. The dihydropyridine sensitivity of pituitary cells, as with any other excitable cell, depends primarily on two parameters: the pattern of their electrical activity and the dihydropyridine sensitivity of their LTCC isoforms. These two parameters are discussed in detail in relation to somatotrophs. These discussions are also relevant to lactotrophs and corticotrophs. High dihydropyridine sensitivity may facilitate their use as drugs to treat pituitary oversecretion disorders such as acromegaly, hyperprolactinemia, and Cushing disease.
Collapse
Affiliation(s)
- Itzhak Nussinovitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
60
|
Tessadori F, Roessler HI, Savelberg SMC, Chocron S, Kamel SM, Duran KJ, van Haelst MM, van Haaften G, Bakkers J. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders. Dis Model Mech 2018; 11:11/10/dmm035469. [PMID: 30355756 PMCID: PMC6215435 DOI: 10.1242/dmm.035469] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
The zebrafish (Danio rerio) has become a popular vertebrate model organism to study organ formation and function due to its optical clarity and rapid embryonic development. The use of genetically modified zebrafish has also allowed identification of new putative therapeutic drugs. So far, most studies have relied on broad overexpression of transgenes harboring patient-derived mutations or loss-of-function mutants, which incompletely model the human disease allele in terms of expression levels or cell-type specificity of the endogenous gene of interest. Most human genetically inherited conditions are caused by alleles carrying single nucleotide changes resulting in altered gene function. Introduction of such point mutations in the zebrafish genome would be a prerequisite to recapitulate human disease but remains challenging to this day. We present an effective approach to introduce small nucleotide changes in the zebrafish genome. We generated four different knock-in lines carrying distinct human cardiovascular-disorder-causing missense mutations in their zebrafish orthologous genes by combining CRISPR/Cas9 with a short template oligonucleotide. Three of these lines carry gain-of-function mutations in genes encoding the pore-forming (Kir6.1, KCNJ8) and regulatory (SUR2, ABCC9) subunits of an ATP-sensitive potassium channel (KATP) linked to Cantú syndrome (CS). Our heterozygous zebrafish knock-in lines display significantly enlarged ventricles with enhanced cardiac output and contractile function, and distinct cerebral vasodilation, demonstrating the causality of the introduced mutations for CS. These results demonstrate that introducing patient alleles in their zebrafish orthologs promises a broad application for modeling human genetic diseases, paving the way for new therapeutic strategies using this model organism.
Collapse
Affiliation(s)
- Federico Tessadori
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Helen I Roessler
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Sanne M C Savelberg
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Sonja Chocron
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Sarah M Kamel
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Karen J Duran
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Mieke M van Haelst
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.,Department of Clinical Genetics, Amsterdam Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Clinical Genetics, Free University Medical Center, 1018 HV Amsterdam, the Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and UMC Utrecht, 3584 CT Utrecht, the Netherlands .,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
61
|
Mutations in KCNK4 that Affect Gating Cause a Recognizable Neurodevelopmental Syndrome. Am J Hum Genet 2018; 103:621-630. [PMID: 30290154 DOI: 10.1016/j.ajhg.2018.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant activation or inhibition of potassium (K+) currents across the plasma membrane of cells has been causally linked to altered neurotransmission, cardiac arrhythmias, endocrine dysfunction, and (more rarely) perturbed developmental processes. The K+ channel subfamily K member 4 (KCNK4), also known as TRAAK (TWIK-related arachidonic acid-stimulated K+ channel), belongs to the mechano-gated ion channels of the TRAAK/TREK subfamily of two-pore-domain (K2P) K+ channels. While K2P channels are well known to contribute to the resting membrane potential and cellular excitability, their involvement in pathophysiological processes remains largely uncharacterized. We report that de novo missense mutations in KCNK4 cause a recognizable syndrome with a distinctive facial gestalt, for which we propose the acronym FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth). Patch-clamp analyses documented a significant gain of function of the identified KCNK4 channel mutants basally and impaired sensitivity to mechanical stimulation and arachidonic acid. Co-expression experiments indicated a dominant behavior of the disease-causing mutations. Molecular dynamics simulations consistently indicated that mutations favor sealing of the lateral intramembrane fenestration that has been proposed to negatively control K+ flow by allowing lipid access to the central cavity of the channel. Overall, our findings illustrate the pleiotropic effect of dysregulated KCNK4 function and provide support to the hypothesis of a gating mechanism based on the lateral fenestrations of K2P channels.
Collapse
|
62
|
Cantu syndrome in an Egyptian child. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2018.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
63
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
64
|
Huang Y, McClenaghan C, Harter TM, Hinman K, Halabi CM, Matkovich SJ, Zhang H, Brown GS, Mecham RP, England SK, Kovacs A, Remedi MS, Nichols CG. Cardiovascular consequences of KATP overactivity in Cantu syndrome. JCI Insight 2018; 3:121153. [PMID: 30089727 DOI: 10.1172/jci.insight.121153] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022] Open
Abstract
Cantu syndrome (CS) is characterized by multiple vascular and cardiac abnormalities including vascular dilation and tortuosity, systemic hypotension, and cardiomegaly. The disorder is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits. However, there is little understanding of the link between molecular dysfunction and the complex pathophysiology observed, and there is no known treatment, in large part due to the lack of appropriate preclinical disease models in which to test therapies. Notably, expression of Kir6.1 and SUR2 does not fully overlap, and the relative contribution of KATP GOF in various cardiovascular tissues remains to be elucidated. To investigate pathophysiologic mechanisms in CS we have used CRISPR/Cas9 engineering to introduce CS-associated SUR2[A478V] and Kir6.1[V65M] mutations to the equivalent endogenous loci in mice. Mirroring human CS, both of these animals exhibit low systemic blood pressure and dilated, compliant blood vessels, as well dramatic cardiac enlargement, the effects being more severe in V65M animals than in A478V animals. In both animals, whole-cell patch-clamp recordings reveal enhanced basal KATP conductance in vascular smooth muscle, explaining vasodilation and lower blood pressure, and demonstrating a cardinal role for smooth muscle KATP dysfunction in CS etiology. Echocardiography confirms in situ cardiac enlargement and increased cardiac output in both animals. Patch-clamp recordings reveal reduced ATP sensitivity of ventricular myocyte KATP channels in A478V, but normal ATP sensitivity in V65M, suggesting that cardiac remodeling occurs secondary to KATP overactivity outside of the heart. These SUR2[A478V] and Kir6.1[V65M] animals thus reiterate the key cardiovascular features seen in human CS. They establish the molecular basis of the pathophysiological consequences of reduced smooth muscle excitability resulting from SUR2/Kir6.1-dependent KATP GOF, and provide a validated animal model in which to examine potential therapeutic approaches to treating CS.
Collapse
Affiliation(s)
- Yan Huang
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | - Theresa M Harter
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | | | | | | | - Haixia Zhang
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | - G Schuyler Brown
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| | | | - Sarah K England
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Obstetrics and Gynecology, and
| | - Attila Kovacs
- Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, and Departments of.,Cell Biology and Physiology
| |
Collapse
|
65
|
Cantú syndrome, the changing phenotype: a report of the two oldest Dutch patients. Clin Dysmorphol 2018; 27:78-83. [DOI: 10.1097/mcd.0000000000000219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
66
|
Patel M, Patel S, Mangukia N, Patel S, Mankad A, Pandya H, Rawal R. Ocimum basilicum miRNOME revisited: A cross kingdom approach. Genomics 2018; 111:772-785. [PMID: 29775783 DOI: 10.1016/j.ygeno.2018.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/29/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023]
Abstract
O. basilicum is medicinally important herb having inevitable role in human health. However, the mechanism of action is largely unknown. Present study aims to understand the mechanism of regulation of key human target genes that could plausibly modulated by O. basilicum miRNAs in cross kingdom manner using computational and system biology approach. O. basilicum miRNA sequences were retrieved and their corresponding human target genes were identified using psRNA target and interaction analysis of hub nodes. Six O. basilicum derived miRNAs were found to modulate 26 human target genes which were associated `with PI3K-AKTand MAPK signaling pathways with PTPN11, EIF2S2, NOS1, IRS1 and USO1 as top 5 Hub nodes. O. basilicum miRNAs not only regulate key human target genes having a significance in various diseases but also paves the path for future studies that might explore potential of miRNA mediated cross-kingdom regulation, prevention and treatment of various human diseases including cancer.
Collapse
Affiliation(s)
- Maulikkumar Patel
- Department of Botany, Bioinformatics and Climate change impacts management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Shanaya Patel
- Department of Botany, Bioinformatics and Climate change impacts management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Naman Mangukia
- Department of Botany, Bioinformatics and Climate change impacts management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate change impacts management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Archana Mankad
- Department of Botany, Bioinformatics and Climate change impacts management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Himanshu Pandya
- Department of Botany, Bioinformatics and Climate change impacts management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh Rawal
- Department of Life Sciences, Food Science and Nutrition, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.
| |
Collapse
|
67
|
Pachajoa H, López-Quintero W, Vanegas S, Montoya CL, Ramírez-Montaño D. Novel mutation in ABBC9 gene associated with congenital hypertrichosis and acromegaloid facial features, without cardiac or skeletal anomalies: a new phenotype. APPLICATION OF CLINICAL GENETICS 2018; 11:15-21. [PMID: 29615845 PMCID: PMC5870921 DOI: 10.2147/tacg.s155022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction Mutations in ABCC9 are associated with Cantú syndrome (CS), a very rare genetic disorder characterized by congenital hypertrichosis, acromegaloid facial appearance (AFA), cardiomegaly, and skeletal anomalies. Case report We report an 8-year-old female patient with congenital generalized hypertrichosis and coarse facial appearance but without cardiovascular or skeletal compromise. Whole exome sequencing revealed a novel de novo heterozygous mutation in ABCC9. In addition, the genotype and phenotype of the patient were compared with those of the patients reported in the literature and with other related conditions that include AFA, hypertrichosis and AFA, and CS. Conclusion This is the first report of a South-American patient with mutation in ABCC9. We propose that her phenotype is a part of a spectrum of features associated with congenital hypertrichosis and mutations in ABCC9, which differs from CS and related disorders. Whole exome sequencing enabled the identification of the causality of this disease characterized by high clinical and genetic heterogeneity.
Collapse
Affiliation(s)
- Harry Pachajoa
- Department of Basic Medical Sciences, Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Universidad Icesi, Cali, Valle del Cauca, Colombia.,Pediatric Medical Genetics, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
| | | | - Sara Vanegas
- Department of Basic Medical Sciences, Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Claudia L Montoya
- Dermatology Department, Fundación Valle del Lili, Cali, Valle del Cauca, Colombia
| | - Diana Ramírez-Montaño
- Department of Basic Medical Sciences, Center for Research on Congenital Anomalies and Rare Diseases (CIACER), Universidad Icesi, Cali, Valle del Cauca, Colombia
| |
Collapse
|
68
|
Marques P, Spencer R, Morrison PJ, Carr IM, Dang MN, Bonthron DT, Hunter S, Korbonits M. Cantú syndrome with coexisting familial pituitary adenoma. Endocrine 2018; 59:677-684. [PMID: 29327300 PMCID: PMC5847123 DOI: 10.1007/s12020-017-1497-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
CONTEXT Pseudoacromegaly describes conditions with an acromegaly related physical appearance without abnormalities in the growth hormone (GH) axis. Acromegaloid facies, together with hypertrichosis, are typical manifestations of Cantú syndrome. CASE DESCRIPTION We present a three-generation family with 5 affected members, with marked acromegaloid facies and prominent hypertrichosis, due to a novel missense variant in the ABCC9 gene. The proband, a 2-year-old girl, was referred due to marked hypertrichosis, noticed soon after birth, associated with coarsening of her facial appearance. Her endocrine assessment, including of the GH axis, was normal. The proband's father, paternal aunt, and half-sibling were referred to the Endocrine department for exclusion of acromegaly. Although the GH axis was normal in all, two subjects had clinically non-functioning pituitary macroadenomas, a feature which has not previously been associated with Cantú syndrome. CONCLUSIONS Activating mutations in the ABCC9 and, less commonly, KCNJ8 genes-representing the two subunits of the ATP-sensitive potassium channel-have been linked with Cantú syndrome. Interestingly, minoxidil, a well-known ATP-sensitive potassium channel agonist, can cause a similar phenotype. There is no clear explanation why activating this channel would lead to acromegaloid features or hypertrichosis. This report raises awareness for this complex condition, especially for adult or pediatric endocrinologists who might see these patients referred for evaluation of acromegaloid features or hirsutism. The link between Cantú syndrome and pituitary adenomas is currently unclear.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rupert Spencer
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Ian M Carr
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Mary N Dang
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David T Bonthron
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Steven Hunter
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
69
|
McClenaghan C, Hanson A, Sala-Rabanal M, Roessler HI, Josifova D, Grange DK, van Haaften G, Nichols CG. Cantu syndrome-associated SUR2 (ABCC9) mutations in distinct structural domains result in K ATP channel gain-of-function by differential mechanisms. J Biol Chem 2017; 293:2041-2052. [PMID: 29275331 DOI: 10.1074/jbc.ra117.000351] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
The complex disorder Cantu syndrome (CS) arises from gain-of-function mutations in either KCNJ8 or ABCC9, the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (KATP) channels, respectively. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms. In this study, we determined the mechanism by which KATP function is altered by several substitutions in distinct structural domains of SUR2: D207E in the intracellular L0-linker and Y985S, G989E, M1060I, and R1154Q/R1154W in TMD2. We engineered substitutions at their equivalent positions in rat SUR2A (D207E, Y981S, G985E, M1056I, and R1150Q/R1150W) and investigated functional consequences using macroscopic rubidium (86Rb+) efflux assays and patch-clamp electrophysiology. Our results indicate that D207E increases KATP channel activity by increasing intrinsic stability of the open state, whereas the cluster of Y981S/G985E/M1056I substitutions, as well as R1150Q/R1150W, augmented Mg-nucleotide activation. We also tested the responses of these channel variants to inhibition by the sulfonylurea drug glibenclamide, a potential pharmacotherapy for CS. None of the D207E, Y981S, G985E, or M1056I substitutions had a significant effect on glibenclamide sensitivity. However, Gln and Trp substitution at Arg-1150 significantly decreased glibenclamide potency. In summary, these results provide additional confirmation that mutations in CS-associated SUR2 mutations result in KATP gain-of-function. They help link CS genotypes to phenotypes and shed light on the underlying molecular mechanisms, including consequences for inhibitory drug sensitivity, insights that may inform the development of therapeutic approaches to manage CS.
Collapse
Affiliation(s)
| | - Alex Hanson
- From the Departments of Cell Biology and Physiology and
| | | | - Helen I Roessler
- the Department of Medical Genetics, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands, and
| | - Dragana Josifova
- the Guy's and St. Thomas NHS Trust, Clinical Genetics Department, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Dorothy K Grange
- Pediatrics, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Gijs van Haaften
- the Department of Medical Genetics, University Medical Center Utrecht, Postbus 85500, 3508 GA Utrecht, The Netherlands, and
| | | |
Collapse
|
70
|
Tommiska J, Känsäkoski J, Skibsbye L, Vaaralahti K, Liu X, Lodge EJ, Tang C, Yuan L, Fagerholm R, Kanters JK, Lahermo P, Kaunisto M, Keski-Filppula R, Vuoristo S, Pulli K, Ebeling T, Valanne L, Sankila EM, Kivirikko S, Lääperi M, Casoni F, Giacobini P, Phan-Hug F, Buki T, Tena-Sempere M, Pitteloud N, Veijola R, Lipsanen-Nyman M, Kaunisto K, Mollard P, Andoniadou CL, Hirsch JA, Varjosalo M, Jespersen T, Raivio T. Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis. Nat Commun 2017; 8:1289. [PMID: 29097701 PMCID: PMC5668380 DOI: 10.1038/s41467-017-01429-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/14/2017] [Indexed: 01/05/2023] Open
Abstract
Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 β-subunit shows that both KCNQ1 mutants increase current levels in patch clamp analyses and are associated with reduced pituitary hormone secretion from AtT-20 cells. In conclusion, our results reveal a role for the KCNQ1 potassium channel in the regulation of human growth, and show that growth hormone deficiency associated with maternally inherited gingival fibromatosis is an allelic disorder with cardiac arrhythmia syndromes caused by KCNQ1 mutations.
Collapse
Affiliation(s)
- Johanna Tommiska
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland.,Children's Hospital, Pediatric Research Center, Helsinki University Central Hospital (HUCH), 00029, Helsinki, Finland
| | - Johanna Känsäkoski
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Lasse Skibsbye
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kirsi Vaaralahti
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Xiaonan Liu
- Institute of Biotechnology, Biocenter 3, University of Helsinki, 00014, Helsinki, Finland
| | - Emily J Lodge
- Centre for Craniofacial and Regenerative Biology, King's College London, Floor 27 Tower Wing, Guy's Campus, London, SE1 9RT, UK
| | - Chuyi Tang
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Lei Yuan
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Rainer Fagerholm
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland.,Department of Obstetrics and Gynecology, HUCH, 00029, Helsinki, Finland
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, 22000, Copenhagen, Denmark.,Department of Cardiology, Herlev & Gentofte University Hospitals, University of Copenhagen, 22000, Copenhagen, Denmark
| | - Päivi Lahermo
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Mari Kaunisto
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | | | - Sanna Vuoristo
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Kristiina Pulli
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Tapani Ebeling
- Department of Medicine, Oulu University Hospital, Finland and Research Unit of Internal Medicine, University of Oulu, 90014, Oulu, Finland
| | - Leena Valanne
- Helsinki Medical Imaging Center, HUCH, 00029, Helsinki, Finland
| | | | - Sirpa Kivirikko
- Department of Clinical Genetics, HUCH, 00029, Helsinki, Finland
| | - Mitja Lääperi
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Filippo Casoni
- Inserm U1172, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, 59045, Lille, France.,University of Lille, School of Medicine, 59045, Lille, France
| | - Paolo Giacobini
- Inserm U1172, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, 59045, Lille, France.,University of Lille, School of Medicine, 59045, Lille, France
| | - Franziska Phan-Hug
- Pediatrics, Division of Pediatric Endocrinology, Diabetology and Obesity, University Hospital Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Tal Buki
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Institute of Structural Biology, 69978, Ramat Aviv, Israel
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14071, Cordoba, Spain.,Instituto Maimonides de Investigacion Biomedica (IMIBIC/HURS), 14004, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Nelly Pitteloud
- Pediatrics, Division of Pediatric Endocrinology, Diabetology and Obesity, University Hospital Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Riitta Veijola
- Department of Children and Adolescents, Oulu University Hospital, 90029, Oulu, Finland.,Department of Pediatrics, PEDEGO Research Center, Medical Research Center, University of Oulu, 90014, Oulu, Finland
| | - Marita Lipsanen-Nyman
- Children's Hospital, Pediatric Research Center, Helsinki University Central Hospital (HUCH), 00029, Helsinki, Finland
| | - Kari Kaunisto
- Department of Children and Adolescents, Oulu University Hospital, 90029, Oulu, Finland
| | - Patrice Mollard
- IGF, CNRS, INSERM, Univ. Montpellier, F-34094, Montpellier, France
| | - Cynthia L Andoniadou
- Centre for Craniofacial and Regenerative Biology, King's College London, Floor 27 Tower Wing, Guy's Campus, London, SE1 9RT, UK.,Department of Internal Medicine III, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Institute of Structural Biology, 69978, Ramat Aviv, Israel
| | - Markku Varjosalo
- Institute of Biotechnology, Biocenter 3, University of Helsinki, 00014, Helsinki, Finland
| | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Taneli Raivio
- Faculty of Medicine, Department of Physiology, University of Helsinki, 00014, Helsinki, Finland. .,Children's Hospital, Pediatric Research Center, Helsinki University Central Hospital (HUCH), 00029, Helsinki, Finland.
| |
Collapse
|
71
|
Watanabe Y, Matsumoto A, Miki T, Seino S, Anzai N, Nakaya H. Electrophysiological analyses of transgenic mice overexpressing KCNJ8 with S422L mutation in cardiomyocytes. J Pharmacol Sci 2017; 135:37-43. [PMID: 28928055 DOI: 10.1016/j.jphs.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022] Open
Abstract
Genetic analysis of KCNJ8 has pointed a mutation (S422L) as a susceptible link to J wave syndrome (JWS). In vitro expression study indicated that the ATP-sensitive K+ (KATP) channel with the S422L mutation has the gain-of-function with reduced sensitivity to ATP. However, the electrophysiological impact of KCNJ8 has not been elucidated in vivo. Transgenic mouse strains overexpressing KCNJ8 S422L variant (TGmt) or WT (TGWT) in cardiomyocytes have been created to investigate the influence of KCNJ8 in cardiomyocytes and the JWS-related feature of the S422L variant on the cardiac electrophysiology. These TG strains demonstrated distinct changes in the J-ST segment of ECG with marked QT prolongation, which might be ascribed to the action potential prolongation resulting from the reduction of voltage-dependent K+ currents in ventricular cells. The pinacidil-induced KATP current was decreased in these TG myocytes and no obvious difference between TG and non-TG (WT) myocytes in the ATP sensitivity of the KATP channel was observed although the open probability of the KATP channels was significantly lower in TG myocytes than WT. These transgenic mouse strains with distinct ECG changes suggested that the S422L mutation in KCNJ8 gene is not a direct cause of JWS.
Collapse
Affiliation(s)
- Yasuhiro Watanabe
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Akio Matsumoto
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Takashi Miki
- Department of Medical Physiology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Haruaki Nakaya
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
72
|
Cooper PE, McClenaghan C, Chen X, Stary-Weinzinger A, Nichols CG. Conserved functional consequences of disease-associated mutations in the slide helix of Kir6.1 and Kir6.2 subunits of the ATP-sensitive potassium channel. J Biol Chem 2017; 292:17387-17398. [PMID: 28842488 DOI: 10.1074/jbc.m117.804971] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/04/2017] [Indexed: 11/06/2022] Open
Abstract
Cantu syndrome (CS) is a condition characterized by a range of anatomical defects, including cardiomegaly, hyperflexibility of the joints, hypertrichosis, and craniofacial dysmorphology. CS is associated with multiple missense mutations in the genes encoding the regulatory sulfonylurea receptor 2 (SUR2) subunits of the ATP-sensitive K+ (KATP) channel as well as two mutations (V65M and C176S) in the Kir6.1 (KCNJ8) subunit. Previous analysis of leucine and alanine substitutions at the Val-65-equivalent site (Val-64) in Kir6.2 indicated no major effects on channel function. In this study, we characterized the effects of both valine-to-methionine and valine-to-leucine substitutions at this position in both Kir6.1 and Kir6.2 using ion flux and patch clamp techniques. We report that methionine substitution, but not leucine substitution, results in increased open state stability and hence significantly reduced ATP sensitivity and a marked increase of channel activity in the intact cell irrespective of the identity of the coassembled SUR subunit. Sulfonylurea inhibitors, such as glibenclamide, are potential therapies for CS. However, as a consequence of the increased open state stability, both Kir6.1(V65M) and Kir6.2(V64M) mutations essentially abolish high-affinity sensitivity to the KATP blocker glibenclamide in both intact cells and excised patches. This raises the possibility that, at least for some CS mutations, sulfonylurea therapy may not prove to be successful and highlights the need for detailed pharmacogenomic analyses of CS mutations.
Collapse
Affiliation(s)
- Paige E Cooper
- From the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Conor McClenaghan
- From the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
73
|
Cooper PE, Sala-Rabanal M, Lee SJ, Nichols CG. Differential mechanisms of Cantú syndrome-associated gain of function mutations in the ABCC9 (SUR2) subunit of the KATP channel. ACTA ACUST UNITED AC 2017; 146:527-40. [PMID: 26621776 PMCID: PMC4664827 DOI: 10.1085/jgp.201511495] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations that increase the activity of ATP-sensitive potassium channels through either enhanced activation by MgADP or decreased sensitivity to inhibition by ATP can lead to Cantú syndrome. Cantú syndrome (CS) is a rare disease characterized by congenital hypertrichosis, distinct facial features, osteochondrodysplasia, and cardiac defects. Recent genetic analysis has revealed that the majority of CS patients carry a missense mutation in ABCC9, which codes for the sulfonylurea receptor SUR2. SUR2 subunits couple with Kir6.x, inwardly rectifying potassium pore-forming subunits, to form adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, which link cell metabolism to membrane excitability in a variety of tissues including vascular smooth muscle, skeletal muscle, and the heart. The functional consequences of multiple uncharacterized CS mutations remain unclear. Here, we have focused on determining the functional consequences of three documented human CS-associated ABCC9 mutations: human P432L, A478V, and C1043Y. The mutations were engineered in the equivalent position in rat SUR2A (P429L, A475V, and C1039Y), and each was coexpressed with mouse Kir6.2. Using macroscopic rubidium (86Rb+) efflux assays, we show that KATP channels formed with P429L, A475V, or C1039Y mutants enhance KATP activity compared with wild-type (WT) channels. We used inside-out patch-clamp electrophysiology to measure channel sensitivity to ATP inhibition and to MgADP activation. For P429L and A475V mutants, sensitivity to ATP inhibition was comparable to WT channels, but activation by MgADP was significantly greater. C1039Y-dependent channels were significantly less sensitive to inhibition by ATP or by glibenclamide, but MgADP activation was comparable to WT. The results indicate that these three CS mutations all lead to overactive KATP channels, but at least two mechanisms underlie the observed gain of function: decreased ATP inhibition and enhanced MgADP activation.
Collapse
Affiliation(s)
- Paige E Cooper
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| | - Sun Joo Lee
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110 Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
74
|
Kirk EP, Scurr I, van Haaften G, van Haelst MM, Nichols CG, Williams M, Smithson SF, Grange DK. Clinical utility gene card for: Cantú syndrome. Eur J Hum Genet 2017; 25:ejhg2016185. [PMID: 28051078 DOI: 10.1038/ejhg.2016.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/25/2016] [Accepted: 11/22/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Edwin P Kirk
- Dept of Medical Genetics, Sydney Children's Hospital, Randwick NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Randwick NSW, Australia
| | - Ingrid Scurr
- Department of Clinical Genetics, St Michael's Hospital, Bristol, UK
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Genetics, VU Medical Center, VU University Amsterdam, Amsterdam, The Netherlands
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Maggie Williams
- Bristol Genetics Laboratory, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Sarah F Smithson
- Department of Clinical Genetics, St Michael's Hospital, Bristol, UK
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
75
|
|
76
|
He L, Vanlandewijck M, Raschperger E, Andaloussi Mäe M, Jung B, Lebouvier T, Ando K, Hofmann J, Keller A, Betsholtz C. Analysis of the brain mural cell transcriptome. Sci Rep 2016; 6:35108. [PMID: 27725773 PMCID: PMC5057134 DOI: 10.1038/srep35108] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/22/2016] [Indexed: 01/20/2023] Open
Abstract
Pericytes, the mural cells of blood microvessels, regulate microvascular development and function and have been implicated in many brain diseases. However, due to a paucity of defining markers, pericyte identification and functional characterization remain ambiguous and data interpretation problematic. In mice carrying two transgenic reporters, Pdgfrb-eGFP and NG2-DsRed, we found that double-positive cells were vascular mural cells, while the single reporters marked additional, but non-overlapping, neuroglial cells. Double-positive cells were isolated by fluorescence-activated cell sorting (FACS) and analyzed by RNA sequencing. To reveal defining patterns of mural cell transcripts, we compared the RNA sequencing data with data from four previously published studies. The meta-analysis provided a conservative catalogue of 260 brain mural cell-enriched gene transcripts. We validated pericyte-specific expression of two novel markers, vitronectin (Vtn) and interferon-induced transmembrane protein 1 (Ifitm1), using fluorescent in situ hybridization and immunohistochemistry. We further analyzed signaling pathways and interaction networks of the pericyte-enriched genes in silico. This work provides novel insight into the molecular composition of brain mural cells. The reported gene catalogue facilitates identification of brain pericytes by providing numerous new candidate marker genes and is a rich source for new hypotheses for future studies of brain mural cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Novum, SE-141 57 Huddinge, Stockholm, Sweden
| | - Elisabeth Raschperger
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Novum, SE-141 57 Huddinge, Stockholm, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bongnam Jung
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Thibaud Lebouvier
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Koji Ando
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jennifer Hofmann
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Annika Keller
- Division of Neurosurgery, Zürich University Hospital, Zürich University, Zürich, Switzerland
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Integrated Cardio Metabolic Centre (ICMC), Karolinska Institute, Novum, SE-141 57 Huddinge, Stockholm, Sweden
| |
Collapse
|
77
|
Henn MC, Janjua MB, Zhang H, Kanter EM, Makepeace CM, Schuessler RB, Nichols CG, Lawton JS. Increased tolerance to stress in cardiac expressed gain-of-function of adenosine triphosphate-sensitive potassium channel subunit Kir6.1. J Surg Res 2016; 206:460-465. [PMID: 27884343 DOI: 10.1016/j.jss.2016.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/22/2016] [Accepted: 08/05/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND The adenosine triphosphate-sensitive potassium (KATP) channel opener diazoxide (DZX) prevents myocyte volume derangement and reduced contractility secondary to stress. KATP channels are composed of pore-forming (Kir6.1 or Kir6.2) and regulatory (sulfonylurea receptor, SUR1 or SUR2) subunits. Gain of function (GOF) of Kir6.1 subunits has been implicated in cardiac pathology in Cantu syndrome in humans (cardiomegaly, lymphedema, and pericardial effusions). We hypothesized that GOF of Kir6.1 subunits would result in altered myocyte response to stress. MATERIALS AND METHODS Isolated cardiac myocytes from wild type (WT) and transgenic Kir6.1GOF mice were exposed to Tyrode's physiologic solution for 20 min, test solution (Tyrode's or stress [hyperkalemic cardioplegia {CPG, known myocyte stress}] +/- KATP channel opener DZX), followed by Tyrode's for 20 min. Myocyte volume and contractility were measured and compared. RESULTS WT myocytes demonstrated significant swelling in response to stress, but significantly less swelling was seen in Kir6.1GOF myocytes. DZX prevented swelling secondary to CPG in WT but resulted in a nonsignificant reduction in swelling in Kir6.1GOF myocytes. Both WT and Kir6.1GOF myocytes demonstrated a reduction in contractility during stress, although this was only significant in Kir6.1GOF myocytes. DZX was not associated with an improvement in contractility in Kir6.1GOF myocytes following stress. CONCLUSIONS Similar to previous results in Kir6.1(-/-) myocytes, Kir6.1GOF myocytes demonstrate resistance (less volume derangement) to stress of cardioplegia. Understanding the role of Kir6.1 in myocyte response to stress may aid in the treatment of patients with Cantu syndrome and warrants further investigation.
Collapse
Affiliation(s)
- Matthew C Henn
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - M Burhan Janjua
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Haixia Zhang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Evelyn M Kanter
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Carol M Makepeace
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Richard B Schuessler
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer S Lawton
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
78
|
Leon Guerrero CR, Pathak S, Grange DK, Singh GK, Nichols CG, Lee JM, Vo KD. Neurologic and neuroimaging manifestations of Cantú syndrome: A case series. Neurology 2016; 87:270-6. [PMID: 27316244 DOI: 10.1212/wnl.0000000000002861] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/11/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe the neurologic and neuroimaging manifestations associated with Cantú syndrome. METHODS We evaluated 10 patients with genetically confirmed Cantú syndrome. All adult patients, and pediatric patients who were able to cooperate and complete the studies, underwent neuroimaging, including vascular imaging. A salient neurologic history and examination was obtained for all patients. RESULTS We observed diffusely dilated and tortuous cerebral blood vessels in all patients who underwent vascular imaging. White matter changes were observed in all patients who completed an MRI brain study. Two patients had a persistent trigeminal artery. One patient had an occluded right middle cerebral artery. One patient had transient white matter changes suggestive of posterior reversible encephalopathic syndrome. Four patients had migraines with one patient having complicated migraines. Seizures were seen in early life but infrequent. The majority of patients had mild developmental delays and one patient had a diagnosis of autism. CONCLUSIONS Cantú syndrome is associated with various neurologic manifestations, particularly cerebrovascular findings including dilated and tortuous cerebral vessels, white matter changes, and persistent fetal circulation. Involvement of the KATP SUR2/Kir6.1 subtype potentially plays an important role in the neurologic manifestations of Cantú syndrome.
Collapse
Affiliation(s)
- Christopher R Leon Guerrero
- From George Washington University (C.R.L.G.), Washington, DC; and Washington University School of Medicine (S.P., D.K.G., G.K.S., C.G.N., J.-M.L., K.D.V.), St. Louis, MO
| | - Sheel Pathak
- From George Washington University (C.R.L.G.), Washington, DC; and Washington University School of Medicine (S.P., D.K.G., G.K.S., C.G.N., J.-M.L., K.D.V.), St. Louis, MO
| | - Dorothy K Grange
- From George Washington University (C.R.L.G.), Washington, DC; and Washington University School of Medicine (S.P., D.K.G., G.K.S., C.G.N., J.-M.L., K.D.V.), St. Louis, MO
| | - Gautam K Singh
- From George Washington University (C.R.L.G.), Washington, DC; and Washington University School of Medicine (S.P., D.K.G., G.K.S., C.G.N., J.-M.L., K.D.V.), St. Louis, MO
| | - Colin G Nichols
- From George Washington University (C.R.L.G.), Washington, DC; and Washington University School of Medicine (S.P., D.K.G., G.K.S., C.G.N., J.-M.L., K.D.V.), St. Louis, MO
| | - Jin-Moo Lee
- From George Washington University (C.R.L.G.), Washington, DC; and Washington University School of Medicine (S.P., D.K.G., G.K.S., C.G.N., J.-M.L., K.D.V.), St. Louis, MO.
| | - Katie D Vo
- From George Washington University (C.R.L.G.), Washington, DC; and Washington University School of Medicine (S.P., D.K.G., G.K.S., C.G.N., J.-M.L., K.D.V.), St. Louis, MO.
| |
Collapse
|
79
|
K(ATP) channel gain-of-function leads to increased myocardial L-type Ca(2+) current and contractility in Cantu syndrome. Proc Natl Acad Sci U S A 2016; 113:6773-8. [PMID: 27247394 DOI: 10.1073/pnas.1606465113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) KATP channel subunits. We show that patients with CS, as well as mice with constitutive (cGOF) or tamoxifen-induced (icGOF) cardiac-specific Kir6.1 GOF subunit expression, have enlarged hearts, with increased ejection fraction and increased contractility. Whole-cell voltage-clamp recordings from cGOF or icGOF ventricular myocytes (VM) show increased basal L-type Ca(2+) current (LTCC), comparable to that seen in WT VM treated with isoproterenol. Mice with vascular-specific expression (vGOF) show left ventricular dilation as well as less-markedly increased LTCC. Increased LTCC in KATP GOF models is paralleled by changes in phosphorylation of the pore-forming α1 subunit of the cardiac voltage-gated calcium channel Cav1.2 at Ser1928, suggesting enhanced protein kinase activity as a potential link between increased KATP current and CS cardiac pathophysiology.
Collapse
|
80
|
The shifting landscape of KATP channelopathies and the need for 'sharper' therapeutics. Future Med Chem 2016; 8:789-802. [PMID: 27161588 DOI: 10.4155/fmc-2016-0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels play fundamental roles in the regulation of endocrine, neural and cardiovascular function. Small-molecule inhibitors (e.g., sulfonylurea drugs) or activators (e.g., diazoxide) acting on SUR1 or SUR2 have been used clinically for decades to manage the inappropriate secretion of insulin in patients with Type 2 diabetes, hyperinsulinism and intractable hypertension. More recently, the discovery of rare disease-causing mutations in KATP channel-encoding genes has highlighted the need for new therapeutics for the treatment of certain forms of neonatal diabetes mellitus, congenital hyperinsulinism and Cantu syndrome. Here, we provide a high-level overview of the pathophysiology of these diseases and discuss the development of a flexible high-throughput screening platform to enable the development of new classes of KATP channel modulators.
Collapse
|
81
|
Yang HQ, Foster MN, Jana K, Ho J, Rindler MJ, Coetzee WA. Plasticity of sarcolemmal KATP channel surface expression: relevance during ischemia and ischemic preconditioning. Am J Physiol Heart Circ Physiol 2016; 310:H1558-66. [PMID: 27037371 DOI: 10.1152/ajpheart.00158.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/30/2016] [Indexed: 11/22/2022]
Abstract
Myocardial ischemia remains the primary cause of morbidity and mortality in the United States. Ischemic preconditioning (IPC) is a powerful form of endogenous protection against myocardial infarction. We studied alterations in KATP channels surface density as a potential mechanism of the protection of IPC. Using cardiac-specific knockout of Kir6.2 subunits, we demonstrated an essential role for sarcolemmal KATP channels in the infarct-limiting effect of IPC in the mouse heart. With biochemical membrane fractionation, we demonstrated that sarcolemmal KATP channel subunits are distributed both to the sarcolemma and intracellular endosomal compartments. Global ischemia causes a loss of sarcolemmal KATP channel subunit distribution and internalization to endosomal compartments. Ischemia-induced internalization of KATP channels was prevented by CaMKII inhibition. KATP channel subcellular redistribution was also observed with immunohistochemistry. Ischemic preconditioning before the index ischemia reduced not only the infarct size but also prevented KATP channel internalization. Furthermore, not only did adenosine mimic IPC by preventing infarct size, but it also prevented ischemia-induced KATP channel internalization via a PKC-mediated pathway. We show that preventing endocytosis with dynasore reduced both KATP channel internalization and strongly mitigated infarct development. Our data demonstrate that plasticity of KATP channel surface expression must be considered as a potentially important mechanism of the protective effects of IPC and adenosine.
Collapse
Affiliation(s)
| | | | | | | | | | - William A Coetzee
- Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| |
Collapse
|
82
|
Nichols CG. Adenosine Triphosphate-Sensitive Potassium Currents in Heart Disease and Cardioprotection. Card Electrophysiol Clin 2016; 8:323-35. [PMID: 27261824 DOI: 10.1016/j.ccep.2016.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The subunit makeup of the family of adenosine triphosphate-sensitive potassium channel (KATP) channels is more complex and labile than thought. The growing association of Kir6.1 and SUR2 variants with specific cardiovascular electrical and contractile derangements and the clear association with Cantu syndrome establish the importance of appropriate activity in normal function of the heart and vasculature. Further studies of such patients will reveal new mutations in KATP subunits and perhaps in proteins that regulate KATP synthesis, trafficking, or location, all of which may ultimately benefit therapeutically from the unique pharmacology of KATP channels.
Collapse
Affiliation(s)
- Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|
83
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
84
|
Levin MD, Zhang H, Uchida K, Grange DK, Singh GK, Nichols CG. Electrophysiologic consequences of KATP gain of function in the heart: Conduction abnormalities in Cantu syndrome. Heart Rhythm 2015; 12:2316-24. [PMID: 26142302 PMCID: PMC4624040 DOI: 10.1016/j.hrthm.2015.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Gain-of-function (GOF) mutations in the KATP channel subunits Kir6.1 and SUR2 cause Cantu syndrome (CS), a disease characterized by multiple cardiovascular abnormalities. OBJECTIVE The purpose of this study was to better determine the electrophysiologic consequences of such GOF mutations in the heart. METHODS We generated transgenic mice (Kir6.1-GOF) expressing ATP-insensitive Kir6.1[G343D] subunits under α-myosin heavy chain (α-MHC) promoter control, to target gene expression specifically in cardiomyocytes, and performed patch-clamp experiments on isolated ventricular myocytes and invasive electrophysiology on anesthetized mice. RESULTS In Kir6.1-GOF ventricular myocytes, KATP channels showed decreased ATP sensitivity but no significant change in current density. Ambulatory ECG recordings on Kir6.1-GOF mice revealed AV nodal conduction abnormalities and junctional rhythm. Invasive electrophysiologic analyses revealed slowing of conduction and conduction failure through the AV node but no increase in susceptibility to atrial or ventricular ectopic activity. Surface ECGs recorded from CS patients also demonstrated first-degree AV block and fascicular block. CONCLUSION The primary electrophysiologic consequence of cardiac KATP GOF is on the conduction system, particularly the AV node, resulting in conduction abnormalities in CS patients who carry KATP GOF mutations.
Collapse
Affiliation(s)
- Mark D Levin
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri; Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Haixia Zhang
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Keita Uchida
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dorothy K Grange
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri; Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Gautam K Singh
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri; Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
85
|
Effects of Advancing Gestation and Non-Caucasian Race on Ductus Arteriosus Gene Expression. J Pediatr 2015; 167:1033-41.e2. [PMID: 26265282 PMCID: PMC4661123 DOI: 10.1016/j.jpeds.2015.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To identify genes affected by advancing gestation and racial/ethnic origin in human ductus arteriosus (DA). STUDY DESIGN We collected 3 sets of DA tissue (n = 93, n = 89, n = 91; total = 273 fetuses) from second trimester pregnancies. We examined four genes, with DNA polymorphisms that distribute along racial lines, to identify "Caucasian" and "non-Caucasian" DA. We used real time polymerase chain reaction to measure RNA expression of 48 candidate genes involved in functional closure of the DA, and used multivariable regression analyses to examine the relationships between advancing gestation, "non-Caucasian" race, and gene expression. RESULTS Mature gestation and non-Caucasian race are significant predictors for identifying infants who will close their patent DA when treated with indomethacin. Advancing gestation consistently altered gene expression in pathways involved with oxygen-induced constriction (eg, calcium-channels, potassium-channels, and endothelin signaling), contractile protein maturation, tissue remodeling, and prostaglandin and nitric oxide signaling in all 3 tissue sets. None of the pathways involved with oxygen-induced constriction appeared to be altered in "non-Caucasian" DA. Two genes, SLCO2A1 and NOS3, (involved with prostaglandin reuptake/metabolism and nitric oxide production, respectively) were consistently decreased in "non-Caucasian" DA. CONCLUSIONS Prostaglandins and nitric oxide are the most important vasodilators opposing DA closure. Indomethacin inhibits prostaglandin production, but not nitric oxide production. Because decreased SLCO2A1 and NOS3 expression can lead to increased prostaglandin and decreased nitric oxide concentrations, we speculate that prostaglandin-mediated vasodilation may play a more dominant role in maintaining the "non-Caucasian" patent DA, making it more likely to close when inhibited by indomethacin.
Collapse
|
86
|
Nelson PT, Jicha GA, Wang WX, Ighodaro E, Artiushin S, Nichols CG, Fardo DW. ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev 2015; 24:111-25. [PMID: 26226329 PMCID: PMC4661124 DOI: 10.1016/j.arr.2015.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023]
Abstract
The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium ("KATP") channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The KATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a "druggable target", relevant perhaps to both HS-Aging and Alzheimer's disease. We conclude that more work is required to better understand the roles of ABCC9/SUR2 in the human brain during health and disease conditions.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Pathology, Lexington, KY 40536, USA.
| | - Gregory A Jicha
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Neurology, Lexington, KY, 40536, USA
| | - Wang-Xia Wang
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Eseosa Ighodaro
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Sergey Artiushin
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David W Fardo
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; Department of Biostatistics, Lexington, KY, 40536, USA
| |
Collapse
|
87
|
Pavone P, Praticò AD, Falsaperla R, Ruggieri M, Zollino M, Corsello G, Neri G. Congenital generalized hypertrichosis: the skin as a clue to complex malformation syndromes. Ital J Pediatr 2015; 41:55. [PMID: 26242548 PMCID: PMC4526284 DOI: 10.1186/s13052-015-0161-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/24/2015] [Indexed: 01/09/2023] Open
Abstract
Hypertrichosis is defined as an excessive growth in body hair beyond the normal variation compared with individuals of the same age, race and sex and affecting areas not predominantly androgen-dependent. The term hirsutism is usually referred to patients, mainly women, who show excessive hair growth with male pattern distribution.Hypertrichosis is classified according to age of onset (congenital or acquired), extent of distribution (generalized or circumscribed), site involved, and to whether the disorder is isolated or associated with other anomalies. Congenital hypertrichosis is rare and may be an isolated condition of the skin or a component feature of other disorders. Acquired hypertrichosis is more frequent and is secondary to a variety of causes including drug side effects, metabolic and endocrine disorders, cutaneous auto-inflammatory or infectious diseases, malnutrition and anorexia nervosa, and ovarian and adrenal neoplasms. In most cases, hypertrichosis is not an isolated symptom but is associated with other clinical signs including intellective delay, epilepsy or complex body malformations.A review of congenital generalized hypertrichosis is reported with particular attention given to the disorders where excessive diffuse body hair is a sign indicating the presence of complex malformation syndromes. The clinical course of a patient, previously described, with a 20-year follow-up is reported.
Collapse
Affiliation(s)
- Piero Pavone
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy.
| | - Andrea D Praticò
- Section of Pediatrics and Child Neuropsychiatry. Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Martino Ruggieri
- Section of Pediatrics and Child Neuropsychiatry. Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marcella Zollino
- Institute of Medical Genetics, Catholic University, University Hospital A. Gemelli, Rome, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care, Pediatric Unit, University of Palermo, Palermo, Italy
| | - Giovanni Neri
- Institute of Medical Genetics, Catholic University, University Hospital A. Gemelli, Rome, Italy
| |
Collapse
|
88
|
Kortüm F, Caputo V, Bauer CK, Stella L, Ciolfi A, Alawi M, Bocchinfuso G, Flex E, Paolacci S, Dentici ML, Grammatico P, Korenke GC, Leuzzi V, Mowat D, Nair LDV, Nguyen TTM, Thierry P, White SM, Dallapiccola B, Pizzuti A, Campeau PM, Tartaglia M, Kutsche K. Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome. Nat Genet 2015; 47:661-7. [DOI: 10.1038/ng.3282] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/23/2015] [Indexed: 12/16/2022]
|