51
|
Agoro R, Benmerzoug S, Rose S, Bouyer M, Gozzelino R, Garcia I, Ryffel B, Quesniaux VFJ, Mura C. An Iron-Rich Diet Decreases the Mycobacterial Burden and Correlates With Hepcidin Upregulation, Lower Levels of Proinflammatory Mediators, and Increased T-Cell Recruitment in a Model of Mycobacterium bovis Bacille Calmette-Guerin Infection. J Infect Dis 2017; 216:907-918. [DOI: 10.1093/infdis/jix366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 07/27/2017] [Indexed: 01/05/2023] Open
|
52
|
Vyas SP, Goswami R. Striking the right immunological balance prevents progression of tuberculosis. Inflamm Res 2017; 66:1031-1056. [PMID: 28711989 DOI: 10.1007/s00011-017-1081-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Tuberculosis (TB) caused by infection with Mycobacterium tuberculosis (Mtb) is a major burden for human health worldwide. Current standard treatments for TB require prolonged administration of antimycobacterial drugs leading to exaggerated inflammation and tissue damage. This can result in the reactivation of latent TB culminating in TB progression. Thus, there is an unmet need to develop therapies that would shorten the duration of anti-TB treatment and to induce optimal protective immune responses to control the spread of mycobacterial infection with minimal lung pathology. FINDINGS Granulomata is the hallmark structure formed by the organized accumulation of immune cells including macrophages, natural killer cells, dendritic cells, neutrophils, T cells, and B cells to the site of Mtb infection. It safeguards the host by containing Mtb in latent form. However, granulomata can undergo caseation and contribute to the reactivation of latent TB, if the immune responses developed to fight mycobacterial infection are not properly controlled. Thus, an optimal balance between innate and adaptive immune cells might play a vital role in containing mycobacteria in latent form for prolonged periods and prevent the spread of Mtb infection from one individual to another. CONCLUSION Optimal and well-regulated immune responses against Mycobacterium tuberculosis may help to prevent the reactivation of latent TB. Moreover, therapies targeting balanced immune responses could help to improve treatment outcomes among latently infected TB patients and thereby limit the dissemination of mycobacterial infection.
Collapse
Affiliation(s)
| | - Ritobrata Goswami
- School of Bio Science, IIT Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
53
|
Mishra A, Akhtar S, Jagannath C, Khan A. Pattern recognition receptors and coordinated cellular pathways involved in tuberculosis immunopathogenesis: Emerging concepts and perspectives. Mol Immunol 2017; 87:240-248. [PMID: 28514713 DOI: 10.1016/j.molimm.2017.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/04/2023]
Abstract
Pattern Recognition Receptors (PRRs) play a central role in the recognition of numerous pathogens, including Mycobacterium tuberculosis, resulting in activation of innate and adaptive immune responses. Besides Toll Like Receptors, C-type Lectin Receptors and Nod Like Receptors are now being recognized for their involvement in inducing immune response against M. tuberculosis infection. Although, a functional redundancy of the PRRs has also been reported in many studies, emerging evidences support the notion that a cooperative and coordinated response generated by these receptors is critical to sustain the full immune control of M. tuberculosis infection. Many of the PRRs are now found to be involved in various cellular host defenses, such as inflammasome activation, phagosome biogenesis, endosomal trafficking, and antigen processing pathways that are all very critical for an effective immune response against M. tuberculosis. In support, polymorphism in several of these receptors has also been found associated with increased susceptibility to tuberculosis in humans. Nonetheless, increasing evidences also show that in order to enhance its intracellular survival, M. tuberculosis has also evolved multiple strategies to subvert and reprogram PPR-mediated immune responses. In light of these findings, this review analyzes the interaction of bacterial and host factors at the intersections of PRR signaling pathways that could provide integrative insights for the development of better vaccines and therapeutics for tuberculosis.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Shamim Akhtar
- Department of Microbiology, Dr. D.Y. Patil College of Arts Commerce and Science, Saint Tukaram Nagar, Pimpri, Pune, 411018, India
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, 77030, USA
| | - Arshad Khan
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Sciences Center-Houston, Houston, TX, 77030, USA.
| |
Collapse
|
54
|
Stephen-Victor E, Sharma VK, Das M, Karnam A, Saha C, Lecerf M, Galeotti C, Kaveri SV, Bayry J. IL-1β, But Not Programed Death-1 and Programed Death Ligand Pathway, Is Critical for the Human Th17 Response to Mycobacterium tuberculosis. Front Immunol 2016; 7:465. [PMID: 27867382 PMCID: PMC5095489 DOI: 10.3389/fimmu.2016.00465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/17/2016] [Indexed: 01/29/2023] Open
Abstract
The programed death-1 (PD-1)–programed death ligand-1 (PD-L1) and PD-L2 co-inhibitory pathway has been implicated in the evasion strategies of Mycobacterium tuberculosis. Specifically, M. tuberculosis-induced PD-L1 orchestrates expansion of regulatory T cells and suppression of Th1 response. However, the role of PD pathway in regulating Th17 response to M. tuberculosis has not been investigated. In the present report, we demonstrate that M. tuberculosis and M. tuberculosis-derived antigen fractions have differential abilities to mediate human monocyte- and dendritic cell (DC)-mediated Th17 response and were independent of expression of PD-L1 or PD-L2 on aforementioned antigen-presenting cells. Importantly, we observed that blockade of PD-L1 or PD-1 did not significantly modify either the frequencies of Th17 cells or the production of IL-17 from CD4+ T cells though IFN-γ response was significantly enhanced. On the contrary, IL-1β from monocytes and DCs were critical for the Th17 response to M. tuberculosis. Together, our results indicate that IL-1β, but not members of the programed death pathway, is critical for human Th17 response to M. tuberculosis.
Collapse
Affiliation(s)
- Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Varun Kumar Sharma
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Chaitrali Saha
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Maxime Lecerf
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France; UMR S 1138, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France; UMR S 1138, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité 1138, Paris, France; UMR S 1138, Sorbonne Universités, UPMC Univ Paris, Paris, France; Centre de Recherche des Cordeliers, Equipe - Immunopathology and Therapeutic Immunointervention, Paris, France; UMR S 1138, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
55
|
Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr 2016; 4:10.1128/microbiolspec.TBTB2-0018-2016. [PMID: 27763255 PMCID: PMC5205539 DOI: 10.1128/microbiolspec.tbtb2-0018-2016] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 02/06/2023] Open
Abstract
Chemokines and cytokines are critical for initiating and coordinating the organized and sequential recruitment and activation of cells into Mycobacterium tuberculosis-infected lungs. Correct mononuclear cellular recruitment and localization are essential to ensure control of bacterial growth without the development of diffuse and damaging granulocytic inflammation. An important block to our understanding of TB pathogenesis lies in dissecting the critical aspects of the cytokine/chemokine interplay in light of the conditional role these molecules play throughout infection and disease development. Much of the data highlighted in this review appears at first glance to be contradictory, but it is the balance between the cytokines and chemokines that is critical, and the "goldilocks" (not too much and not too little) phenomenon is paramount in any discussion of the role of these molecules in TB. Determination of how the key chemokines/cytokines and their receptors are balanced and how the loss of that balance can promote disease is vital to understanding TB pathogenesis and to identifying novel therapies for effective eradication of this disease.
Collapse
Affiliation(s)
| | - Oliver Prince
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| | - Andrea Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
56
|
Marinho FV, Fahel JS, Scanga CA, Gomes MTR, Guimarães G, Carvalho GRM, Morales SV, Báfica A, Oliveira SC. Lack of IL-1 Receptor–Associated Kinase-4 Leads to Defective Th1 Cell Responses and Renders Mice Susceptible to Mycobacterial Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:1852-63. [DOI: 10.4049/jimmunol.1502157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/19/2016] [Indexed: 01/03/2023]
|
57
|
Yamashiro LH, Eto C, Soncini M, Horewicz V, Garcia M, Schlindwein AD, Grisard EC, Rovaris DB, Báfica A. Isoniazid-induced control of Mycobacterium tuberculosis by primary human cells requires interleukin-1 receptor and tumor necrosis factor. Eur J Immunol 2016; 46:1936-47. [PMID: 27230303 DOI: 10.1002/eji.201646349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/20/2016] [Accepted: 05/24/2016] [Indexed: 11/08/2022]
Abstract
Proinflammatory cytokines are critical mediators that control Mycobacterium tuberculosis (Mtb) growth during active tuberculosis (ATB). To further inhibit bacterial proliferation in diseased individuals, drug inhibitors of cell wall synthesis such as isoniazid (INH) are employed. However, whether INH presents an indirect effect on bacterial growth by regulating host cytokines during ATB is not well known. To examine this hypothesis, we used an in vitro human granuloma system generated with primary leukocytes from healthy donors adapted to model ATB. Intense Mtb proliferation in cell cultures was associated with monocyte/macrophage activation and secretion of IL-1β and TNF. Treatment with INH significantly reduced Mtb survival, but altered neither T-cell-mediated Mtb killing, nor production of IL-1β and TNF. However, blockade of both IL-1R1 and TNF signaling rescued INH-induced killing, suggesting synergistic roles of these cytokines in mediating control of Mtb proliferation. Additionally, mycobacterial killing by INH was highly dependent upon drug activation by the pathogen catalase-peroxidase KatG and involved a host PI3K-dependent pathway. Finally, experiments using coinfected (KatG-mutated and H37Rv strains) cells suggested that active INH does not directly enhance host-mediated killing of Mtb. Our results thus indicate that Mtb-stimulated host IL-1 and TNF have potential roles in TB chemotherapy.
Collapse
Affiliation(s)
- Lívia H Yamashiro
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Carolina Eto
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marina Soncini
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Verônica Horewicz
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Magno Garcia
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Aline D Schlindwein
- Laboratory of Protozoology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil.,Central Public Health Laboratory/LACEN, Florianópolis, Brazil
| | - Edmundo C Grisard
- Laboratory of Protozoology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - André Báfica
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
58
|
High IL-6 and low IL-15 levels mark the presence of TB infection: A preliminary study. Cytokine 2016; 81:57-62. [PMID: 26878649 DOI: 10.1016/j.cyto.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/23/2022]
Abstract
The host immune response, apart from mycobacterial factors, is a significant determinant in the development of tuberculosis (TB). The purpose of the study was to examine whether the differential serum profiles of cytokines IL-1β, IL-2, IL-4, IL-6, IL-10, IL-15, IFN-γ, TGF-β, and TNF-α could discriminate between TB patients and healthy controls and provide insights into pathogenesis. Serum samples from TB patients, TB patient contacts and healthy controls were collected and analyzed by ELISA. The cytokine concentrations obtained were stratified into three groups: below detection limit (BDL), low values, and high values. The differences in cytokine concentrations were analyzed by Fisher's exact test. The statistically significant results were interpreted based on post-hoc analysis of the chi square contingency table using the adjusted residual method. Among the assayed cytokines, there was a statistically significant difference in the detection levels of IL-6, IL-15 and IFN-γ. Levels of IL-1β, IL-2, IL-4, IL-10, TGF-β and TNF-α did not vary. Post-hoc analysis of the significant results revealed that dynamic changes in the BDL and high values of cytokines influenced the post-infection cytokine milieu in the study subjects. The study concludes that altered balance in the levels of serum cytokines can be indicative of TB pathogenesis. Hence, profiling of dynamic changes in cytokines would facilitate effective TB diagnostic and treatment strategies.
Collapse
|
59
|
Lactoferrin: A Modulator for Immunity against Tuberculosis Related Granulomatous Pathology. Mediators Inflamm 2015; 2015:409596. [PMID: 26788020 PMCID: PMC4691619 DOI: 10.1155/2015/409596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/30/2015] [Indexed: 01/21/2023] Open
Abstract
There is great need for a therapeutic that would limit tuberculosis related pathology and thus curtail spread of disease between individuals by establishing a "firebreak" to slow transmission. A promising avenue to increase current therapeutic efficacy may be through incorporation of adjunct components that slow or stop development of aggressive destructive pulmonary pathology. Lactoferrin, an iron-binding glycoprotein found in mucosal secretions and granules of neutrophils, is just such a potential adjunct therapeutic agent. The focus of this review is to explore the utility of lactoferrin to serve as a therapeutic tool to investigate "disruption" of the mycobacterial granuloma. Proposed concepts for mechanisms underlying lactoferrin efficacy to control immunopathology are supported by data generated based on in vivo models using nonpathogenic trehalose 6,6'-dimycolate (TDM, cord factor).
Collapse
|
60
|
Stephenson HN, Herzig A, Zychlinsky A. Beyond the grave: When is cell death critical for immunity to infection? Curr Opin Immunol 2015; 38:59-66. [PMID: 26682763 DOI: 10.1016/j.coi.2015.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/23/2022]
Abstract
Immune cell death is often observed in response to infection. There are three potential beneficial outcomes after host cell death: (1) the removal of an intracellular niche for microbes, (2) direct microbicidal activity of released components and (3) the propagation of an inflammatory response. Recent findings suggest that three forms of non-apoptotic regulated cell death, pyroptosis, necroptosis and NETosis, can impact on immunity to bacterial infection. However, it is challenging to design experiments that unequivocally prove the advantageous effects of regulated cell death on immunity. Recent advances in the genetic manipulation of regulated cell death and danger-associated molecular patterns and 'alarmins', such as HMGB1 and the IL-1 family, may hold the key to delineating the consequences of cell death in immunity to infection.
Collapse
Affiliation(s)
- H N Stephenson
- Department of Cellular Microbiology, Max-Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - A Herzig
- Department of Cellular Microbiology, Max-Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany
| | - A Zychlinsky
- Department of Cellular Microbiology, Max-Planck Institute for Infection Biology, Charitéplatz 1, Berlin 10117, Germany.
| |
Collapse
|
61
|
Segueni N, Vigne S, Palmer G, Bourigault ML, Olleros ML, Vesin D, Garcia I, Ryffel B, Quesniaux VFJ, Gabay C. Limited Contribution of IL-36 versus IL-1 and TNF Pathways in Host Response to Mycobacterial Infection. PLoS One 2015; 10:e0126058. [PMID: 25950182 PMCID: PMC4423901 DOI: 10.1371/journal.pone.0126058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/28/2015] [Indexed: 11/18/2022] Open
Abstract
IL-36 cytokines are members of the IL-1 family of cytokines that stimulate dendritic cells and T cells leading to enhanced T helper 1 responses in vitro and in vivo; however, their role in host defense has not been fully addressed thus far. The objective of this study was to examine the role of IL-36R signaling in the control of mycobacterial infection, using models of systemic attenuated M. bovis BCG infection and virulent aerogenic M. tuberculosis infection. IL-36γ expression was increased in the lung of M. bovis BCG infected mice. However, IL-36R deficient mice infected with M. bovis BCG showed similar survival and control of the infection as compared to wild-type mice, although their lung pathology and CXCL1 response were transiently different. While highly susceptible TNF-α deficient mice succumbed with overwhelming M. tuberculosis infection, and IL-1RI deficient mice showed intermediate susceptibility, IL-36R-deficient mice controlled the infection, with bacterial burden, lung inflammation and pathology, similar to wild-type controls. Therefore, IL-36R signaling has only limited influence in the control of mycobacterial infection.
Collapse
Affiliation(s)
- Noria Segueni
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Solenne Vigne
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Gaby Palmer
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Marie-Laure Bourigault
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Maria L. Olleros
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Dominique Vesin
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Irene Garcia
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Cape Town, South Africa
| | - Valérie F. J. Quesniaux
- CNRS, UMR7355, Orleans, France
- University of Orleans, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Cem Gabay
- Division of Rheumatology, Department of Internal Medicine Specialties, University Hospitals of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
- * E-mail:
| |
Collapse
|