51
|
Ichida K, Jangprai A, Khaosa-Art P, Yoshizaki G, Boonanuntanasarn S. Characterization of a vasa homolog in Mekong giant catfish (Pangasianodon gigas): Potential use as a germ cell marker. Anim Reprod Sci 2021; 234:106869. [PMID: 34656888 DOI: 10.1016/j.anireprosci.2021.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
For the long-term preservation of the genetic resources of endangered fish species, a combination of germ cell cryopreservation and transplantation can be an effective technique. To optimize these techniques, it is important to identify undifferentiated germ cells possessing transplantability, such as primordial germ cells, type A spermatogonia (ASGs), and oogonia. In this study, a homolog of vasa cDNA in Mekong giant catfish (MGC-vasa) (Pangasianodon gigas), which is an endangered species inhabiting the Mekong river, was cloned and characterized for use as a putative germ cell marker. Results indicate that MGC-Vasa contained all of the consensus motifs, including the arginine-glycine and arginine-glycine-glycine motifs, as well as the nine conserved motifs belonging to the DEAD-box family of proteins. Results from phylogenetic analysis indicated MGC-vasa also grouped with Vasa and was clearly distinguishable from Pl10 in other teleosts. Results from analysis of abundance of mRNA transcripts using reverse transcription-polymerase chain reaction and in situ hybridization performed on immature Mekong giant catfish testis indicated vasa was present specifically in germ cells, with large abundances of the relevant mRNA in spermatogonia and spermatocytes. Sequence similarity and the specific localization of MGC-vasa in these germ cells suggest that the sequence ascertained in this study was a vasa homolog in Mekong giant catfish. Furthermore, vasa-positive cells were detected in prepared smears of testicular cells, indicating that it may be a useful germ cell marker for enzymatically dissociated cells used for transplantation studies.
Collapse
Affiliation(s)
- Kensuke Ichida
- Institute for Reproductive Biotechnology for Aquatic Species (IRBAS), Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan
| | - Araya Jangprai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pongsawan Khaosa-Art
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Goro Yoshizaki
- Institute for Reproductive Biotechnology for Aquatic Species (IRBAS), Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan; Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-ku, Tokyo 108-8477, Japan
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
52
|
Zhao B, Katuwawala A, Oldfield CJ, Hu G, Wu Z, Uversky VN, Kurgan L. Intrinsic Disorder in Human RNA-Binding Proteins. J Mol Biol 2021; 433:167229. [PMID: 34487791 DOI: 10.1016/j.jmb.2021.167229] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
Although RNA-binding proteins (RBPs) are known to be enriched in intrinsic disorder, no previous analysis focused on RBPs interacting with specific RNA types. We fill this gap with a comprehensive analysis of the putative disorder in RBPs binding to six common RNA types: messenger RNA (mRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), non-coding RNA (ncRNA), ribosomal RNA (rRNA), and internal ribosome RNA (irRNA). We also analyze the amount of putative intrinsic disorder in the RNA-binding domains (RBDs) and non-RNA-binding-domain regions (non-RBD regions). Consistent with previous studies, we show that in comparison with human proteome, RBPs are significantly enriched in disorder. However, closer examination finds significant enrichment in predicted disorder for the mRNA-, rRNA- and snRNA-binding proteins, while the proteins that interact with ncRNA and irRNA are not enriched in disorder, and the tRNA-binding proteins are significantly depleted in disorder. We show a consistent pattern of significant disorder enrichment in the non-RBD regions coupled with low levels of disorder in RBDs, which suggests that disorder is relatively rarely utilized in the RNA-binding regions. Our analysis of the non-RBD regions suggests that disorder harbors posttranslational modification sites and is involved in the putative interactions with DNA. Importantly, we utilize experimental data from DisProt and independent data from Pfam to validate the above observations that rely on the disorder predictions. This study provides new insights into the distribution of disorder across proteins that bind different RNA types and the functional role of disorder in the regions where it is enriched.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christopher J Oldfield
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China
| | - Zhonghua Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
53
|
Wippel HH, Fioramonte M, Chavez JD, Bruce JE. Deciphering the architecture and interactome of hnRNP proteins and enigmRBPs. Mol Omics 2021; 17:503-516. [PMID: 34017973 PMCID: PMC8355073 DOI: 10.1039/d1mo00024a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RNA-binding proteins (RBPs) have conserved domains and consensus sequences that interact with RNAs and other proteins forming ribonucleoprotein (RNP) complexes. RNPs are involved in the regulation of several cellular processes, including transcription, pre-mRNA splicing, mRNA transport, localization, degradation and storage, and ultimately control of translation. Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RBPs that mediate transcription control and nuclear processing of transcripts. Some hnRNPs are part of the spliceosome complex, a dynamic machinery formed by RNPs that regulate alternative splicing of pre-mRNAs. Here, chemical crosslinking of proteins was applied to identify specific interacting regions and protein structural features of hnRNPs: hnRNPA1, hnRNPA2/B1, hnRNPC, and RALY. The results reveal interaction of these proteins within RNA-binding domains and conserved motifs, providing evidence of a coordinated action of known regulatory sequences of RBPs. Moreover, these crosslinking data enable structural model generation for RBPs, illustrating how crosslinking mass spectrometry can complement other structural methods.
Collapse
Affiliation(s)
- Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Mariana Fioramonte
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. and University of Campinas, Campinas, SP, Brazil
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
54
|
Trucks S, Hanspach G, Hengesbach M. Eukaryote specific RNA and protein features facilitate assembly and catalysis of H/ACA snoRNPs. Nucleic Acids Res 2021; 49:4629-4642. [PMID: 33823543 PMCID: PMC8096250 DOI: 10.1093/nar/gkab177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
H/ACA Box ribonucleoprotein complexes (RNPs) play a major role in modification of rRNA and snRNA, catalyzing the sequence specific pseudouridylation in eukaryotes and archaea. This enzymatic reaction takes place on a substrate RNA recruited via base pairing to an internal loop of the snoRNA. Eukaryotic snoRNPs contain the four proteins Nop10, Cbf5, Gar1 and Nhp2, with Cbf5 as the catalytic subunit. In contrast to archaeal H/ACA RNPs, eukaryotic snoRNPs contain several conserved features in both the snoRNA as well as the protein components. Here, we reconstituted the eukaryotic H/ACA RNP containing snR81 as a guide RNA in vitro and report on the effects of these eukaryote specific features on complex assembly and enzymatic activity. We compare their contribution to pseudouridylation activity for stand-alone hairpins versus the bipartite RNP. Using single molecule FRET spectroscopy, we investigated the role of the different eukaryote-specific proteins and domains on RNA folding and complex assembly, and assessed binding of substrate RNA to the RNP. Interestingly, we found diverging effects for the two hairpins of snR81, suggesting hairpin-specific requirements for folding and RNP formation. Our results for the first time allow assessing interactions between the individual hairpin RNPs in the context of the full, bipartite snoRNP.
Collapse
Affiliation(s)
- Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Gerd Hanspach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
55
|
Sharp JA, Perea-Resa C, Wang W, Blower MD. Cell division requires RNA eviction from condensing chromosomes. J Cell Biol 2021; 219:211450. [PMID: 33053167 PMCID: PMC7549315 DOI: 10.1083/jcb.201910148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
During mitosis, the genome is transformed from a decondensed, transcriptionally active state to a highly condensed, transcriptionally inactive state. Mitotic chromosome reorganization is marked by the general attenuation of transcription on chromosome arms, yet how the cell regulates nuclear and chromatin-associated RNAs after chromosome condensation and nuclear envelope breakdown is unknown. SAF-A/hnRNPU is an abundant nuclear protein with RNA-to-DNA tethering activity, coordinated by two spatially distinct nucleic acid–binding domains. Here we show that RNA is evicted from prophase chromosomes through Aurora-B–dependent phosphorylation of the SAF-A DNA-binding domain; failure to execute this pathway leads to accumulation of SAF-A–RNA complexes on mitotic chromosomes, defects in metaphase chromosome alignment, and elevated rates of chromosome missegregation in anaphase. This work reveals a role for Aurora-B in removing chromatin-associated RNAs during prophase and demonstrates that Aurora-B–dependent relocalization of SAF-A during cell division contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Judith A Sharp
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Wei Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
56
|
Puvvula PK, Moon AM. Novel Cell-Penetrating Peptides Derived From Scaffold-Attachment- Factor A Inhibits Cancer Cell Proliferation and Survival. Front Oncol 2021; 11:621825. [PMID: 33859938 PMCID: PMC8042391 DOI: 10.3389/fonc.2021.621825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Scaffold-attachment-factor A (SAFA) has important roles in many normal and pathologic cellular processes but the scope of its function in cancer cells is unknown. Here, we report dominant-negative activity of novel peptides derived from the SAP and RGG-domains of SAFA and their effects on proliferation, survival and the epigenetic landscape in a range of cancer cell types. The RGG-derived peptide dysregulates SAFA binding and regulation of alternatively spliced targets and decreases levels of key spliceosome proteins in a cell-type specific manner. In contrast, the SAP-derived peptide reduces active histone marks, promotes chromatin compaction, and activates the DNA damage response and cell death in a subset of cancer cell types. Our findings reveal an unprecedented function of SAFA-derived peptides in regulating diverse SAFA molecular functions as a tumor suppressive mechanism and demonstrate the potential therapeutic utility of SAFA-peptides in a wide range of cancer cells.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States.,Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
57
|
Roden C, Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 2021; 22:183-195. [PMID: 32632317 PMCID: PMC7785677 DOI: 10.1038/s41580-020-0264-6] [Citation(s) in RCA: 333] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
Abstract
Biomolecular condensation partitions cellular contents and has important roles in stress responses, maintaining homeostasis, development and disease. Many nuclear and cytoplasmic condensates are rich in RNA and RNA-binding proteins (RBPs), which undergo liquid-liquid phase separation (LLPS). Whereas the role of RBPs in condensates has been well studied, less attention has been paid to the contribution of RNA to LLPS. In this Review, we discuss the role of RNA in biomolecular condensation and highlight considerations for designing condensate reconstitution experiments. We focus on RNA properties such as composition, length, structure, modifications and expression level. These properties can modulate the biophysical features of native condensates, including their size, shape, viscosity, liquidity, surface tension and composition. We also discuss the role of RNA-protein condensates in development, disease and homeostasis, emphasizing how their properties and function can be determined by RNA. Finally, we discuss the multifaceted cellular functions of biomolecular condensates, including cell compartmentalization through RNA transport and localization, supporting catalytic processes, storage and inheritance of specific molecules, and buffering noise and responding to stress.
Collapse
Affiliation(s)
- Christine Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Whitman Center, Marine Biology Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
58
|
Low YH, Asi Y, Foti SC, Lashley T. Heterogeneous Nuclear Ribonucleoproteins: Implications in Neurological Diseases. Mol Neurobiol 2021; 58:631-646. [PMID: 33000450 PMCID: PMC7843550 DOI: 10.1007/s12035-020-02137-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
Heterogenous nuclear ribonucleoproteins (hnRNPs) are a complex and functionally diverse family of RNA binding proteins with multifarious roles. They are involved, directly or indirectly, in alternative splicing, transcriptional and translational regulation, stress granule formation, cell cycle regulation, and axonal transport. It is unsurprising, given their heavy involvement in maintaining functional integrity of the cell, that their dysfunction has neurological implications. However, compared to their more established roles in cancer, the evidence of hnRNP implication in neurological diseases is still in its infancy. This review aims to consolidate the evidences for hnRNP involvement in neurological diseases, with a focus on spinal muscular atrophy (SMA), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), multiple sclerosis (MS), congenital myasthenic syndrome (CMS), and fragile X-associated tremor/ataxia syndrome (FXTAS). Understanding more about hnRNP involvement in neurological diseases can further elucidate the pathomechanisms involved in these diseases and perhaps guide future therapeutic advances.
Collapse
Affiliation(s)
- Yi-Hua Low
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Duke-NUS Medical School, Singapore, Singapore
| | - Yasmine Asi
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sandrine C Foti
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
59
|
Spagnoli C, Rizzi S, Salerno GG, Frattini D, Koskenvuo J, Fusco C. Pharmacological Treatment of Severe Breathing Abnormalities in a Case of HNRNPU Epileptic Encephalopathy. Mol Syndromol 2021; 12:101-105. [PMID: 34012379 DOI: 10.1159/000512566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022] Open
Abstract
Abnormal breathing patterns are a typical feature of Rett and Pitt-Hopkins syndrome and their variants. Their treatment can be challenging, with a risk of long-term detrimental consequences. Early infantile epileptic encephalopathy (EIEE) type 54 is a rare epileptic encephalopathy caused by pathogenic variants in the heterogeneous nuclear ribonucleoprotein U (HNRNPU) gene. Only one case has been described in the literature with episodes of hyperventilation and apnea, but treatment was not discussed. We describe the clinical and genetic features and treatment strategies in a case of EIEE type 54 and severely abnormal breathing pattern. A novel and likely pathogenic c.2277dup, p.(Pro760Serfs*5) variant in the HNRNPU gene was found in a male patient with severe episodes of hyperventilation and apnea, leading to syncope. Combination therapy with acetazolamide, alprazolam and aripiprazole led to significant clinical improvement. Although HNRNPU has not been implicated in breathing control, pathogenic variants in this gene can be associated with the development of abnormal breathing patterns reminiscent of Rett and Pitt-Hopkins syndrome. Its function as a gene expression regulator and its interaction with transcription factors offers a potential pathogenetic link between these 3 disorders. Based on our experience, treatment strategies can be similar to those already applied for patients with Pitt-Hopkins and Rett syndrome.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neurology Unit, Department of Pediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Susanna Rizzi
- Child Neurology Unit, Department of Pediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Grazia Gabriella Salerno
- Child Neurology Unit, Department of Pediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Frattini
- Child Neurology Unit, Department of Pediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Carlo Fusco
- Child Neurology Unit, Department of Pediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.,Pediatric Neurophysiology Laboratory, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
60
|
Zhang B, Wang HY, Zhao DX, Wang DX, Zeng Q, Xi JF, Nan X, He LJ, Zhou JN, Pei XT, Yue W. The splicing regulatory factor hnRNPU is a novel transcriptional target of c-Myc in hepatocellular carcinoma. FEBS Lett 2021; 595:68-84. [PMID: 33040326 DOI: 10.1002/1873-3468.13943] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer with high mortality. Here, we found that hnRNPU is overexpressed in HCC tissues and is correlated with the poor prognosis of HCC patients. Besides, hnRNPU is of high significance in regulating the proliferation, apoptosis, self-renewal, and tumorigenic potential of HCC cells. Mechanismly, c-Myc regulates hnRNPU expression at the transcriptional level, and meanwhile, hnRNPU stabilizes the mRNA of c-MYC. We found that the hnRNPU and c-Myc regulatory loop exerts a synergistic effect on the proliferation and self-renewal of HCC, and promotes the HCC progression. Taken together, hnRNPU functions as a novel transcriptional target of c-Myc and promotes HCC progression, which may become a promising target for the treatment of c-Myc-driven HCC.
Collapse
Affiliation(s)
- Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - De-Xi Zhao
- Department of Hepatobiliary Surgery, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dong-Xing Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Li-Juan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, China
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| |
Collapse
|
61
|
Liang J, Zheng Y, Zeng W, Chen L, Yang S, Du P, Wang Y, Yu X, Zhang X. Comparison of proteomic profiles from the testicular tissue of males with impaired and normal spermatogenesis. Syst Biol Reprod Med 2020; 67:127-136. [PMID: 33375868 DOI: 10.1080/19396368.2020.1846822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, we aimed to explore the potential differences in proteomic profiles from the testicular tissue of azoospermatic men with impaired spermatogenesis and normal spermatogenesis. Isobaric tags for relative and absolute quantitation (iTRAQ) labeled technology and LC-MS/MS technology were used to identify differentially expressed proteins. Potential functions of differentially expressed proteins were predicted using gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG). Immunohistochemistry (IHC) and western blot (WB) were used to verify the differentially expressed proteins. A protein-protein interaction (PPI) network was built to outline the regulatory network of differentially expressed proteins. A total of 3,945 proteins were identified in men with normal and impaired spermatogenesis. Of these, 116 proteins were differentially expressed in men with impaired spermatogenesis: 39 were upregulated and 77 were downregulated. Furthermore, we found that these differentially expressed proteins were mainly involved in the cellular component, which may be mainly associated with the spliceosome, ribosome, and thyroid hormone synthesis signaling pathways. The spliceosome- and ribosome-associated proteins YBX1, FBL, and HNRNPU were downregulated. And the proteomic profile of testicular tissue in men with impaired spermatogenesis is different from that of men with normal spermatogenesis. For this reason, differentially expressed proteins such as YBX1, FBL and HNRNPU might be involved in the pathology of spermatogenesis dysfunction.Abbreviations: iTRAQ: Isobaric tags for relative and absolute quantitation;GO: Gene ontology; KEGG: Kyoto encyclopedia of genes and genomes; IHC: Immunohistochemistry; WB: Western blot; PPI: Protein-protein interaction; ICSI: Intracytoplasmic sperm injection; BP: Biological process; CC: Cellular components; MF: Molecular function; snoRNA: Small nucleolar RNA; snRNA: Small nuclear RNA; LC-MS/MS: Liquid chromatography and MS/MS analysis; BSA: Bovine serum albumin; SD: Spermatogenic dysfunction; micro-TESE: Testicular microscopic sperm extraction.
Collapse
Affiliation(s)
- Jiaying Liang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yichun Zheng
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Weihong Zeng
- Children Inherit Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Liuqing Chen
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shaofen Yang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Peng Du
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yujiang Wang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xingsu Yu
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiqian Zhang
- Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
62
|
Wen S, Wei Y, Zen C, Xiong W, Niu Y, Zhao Y. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer 2020; 19:171. [PMID: 33308223 PMCID: PMC7733260 DOI: 10.1186/s12943-020-01293-4] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background N6-methyladenosine (m6A) is the most prevalent messenger RNA modification in mammalian cells. However, the disease relevant function of m6A on specific oncogenic long non-coding RNAs (ncRNAs) is not well understood. Methods We analyzed the m6A status using patients samples and bone metastatic PDXs. Through m6A high-throughput sequencing, we identified the m6A sites on NEAT1–1 in prostate bone metastatic PDXs. Mass spec assay showed interaction among NEAT1–1, CYCLINL1 and CDK19. RNA EMSA, RNA pull-down, mutagenesis, CLIP, western blot, ChIP and ChIRP assays were used to investigate the molecular mechanisms underlying the functions of m6A on NEAT1–1. Loss-of function and rescued experiments were executed to detect the biological roles of m6A on NEAT1–1 in the PDX cell phenotypes in vivo. Results In this study, we identified 4 credible m6A sites on long ncRNA NEAT1–1. High m6A level of NEAT1–1 was related to bone metastasis of prostate cancer and m6A level of NEAT1–1 was a powerful predictor of eventual death. Transcribed NEAT1–1 served as a bridge to facility the binding between CYCLINL1 and CDK19 and promoted the Pol II ser2 phosphorylation. Importantly, depletion of NEAT1–1or decreased m6A of NEAT1–1 impaired Pol II Ser-2p level in the promoter of RUNX2. Overexpression of NEAT1–1 induced cancer cell metastasis to lung and bone; xenograft growth and shortened the survival of mice, but NEAT1–1 with m6A site mutation failed to do these. Conclusion Collectively, the findings indicate that m6A on ncRNA NEAT1–1 takes critical role in regulating Pol II ser2 phosphorylation and may be novel specific target for bone metastasis cancer therapy and diagnosis. New complex CYCLINL1/CDK19/NEAT1–1 might provide new insight into the potential mechanism of the pathogenesis and development of bone metastatic prostate cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-020-01293-4.
Collapse
Affiliation(s)
- Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China
| | - Yulei Wei
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Chong Zen
- Department of Urology, Central South University, Changsha, 410011, China
| | - Wei Xiong
- Department of Urology, Central South University, Changsha, 410011, China
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300211, China.
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
63
|
The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 2020; 140:599-623. [PMID: 32748079 PMCID: PMC7547044 DOI: 10.1007/s00401-020-02203-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated RNA metabolism is emerging as a crucially important mechanism underpinning the pathogenesis of frontotemporal dementia (FTD) and the clinically, genetically and pathologically overlapping disorder of amyotrophic lateral sclerosis (ALS). Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins with diverse, multi-functional roles across all aspects of mRNA processing. The role of these proteins in neurodegeneration is far from understood. Here, we review some of the unifying mechanisms by which hnRNPs have been directly or indirectly linked with FTD/ALS pathogenesis, including their incorporation into pathological inclusions and their best-known roles in pre-mRNA splicing regulation. We also discuss the broader functionalities of hnRNPs including their roles in cryptic exon repression, stress granule assembly and in co-ordinating the DNA damage response, which are all emerging pathogenic themes in both diseases. We then present an integrated model that depicts how a broad-ranging network of pathogenic events can arise from declining levels of functional hnRNPs that are inadequately compensated for by autoregulatory means. Finally, we provide a comprehensive overview of the most functionally relevant cellular roles, in the context of FTD/ALS pathogenesis, for hnRNPs A1-U.
Collapse
|
64
|
Topoisomerase IIβ targets DNA crossovers formed between distant homologous sites to induce chromatin opening. Sci Rep 2020; 10:18550. [PMID: 33122676 PMCID: PMC7596052 DOI: 10.1038/s41598-020-75004-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/09/2020] [Indexed: 11/08/2022] Open
Abstract
Type II DNA topoisomerases (topo II) flip the spatial positions of two DNA duplexes, called G- and T- segments, by a cleavage-passage-resealing mechanism. In living cells, these DNA segments can be derived from distant sites on the same chromosome. Due to lack of proper methodology, however, no direct evidence has been described so far. The beta isoform of topo II (topo IIβ) is essential for transcriptional regulation of genes expressed in the final stage of neuronal differentiation. Here we devise a genome-wide mapping technique (eTIP-seq) for topo IIβ target sites that can measure the genomic distance between G- and T-segments. It revealed that the enzyme operates in two distinctive modes, termed proximal strand passage (PSP) and distal strand passage (DSP). PSP sites are concentrated around transcription start sites, whereas DSP sites are heavily clustered in small number of hotspots. While PSP represent the conventional topo II targets that remove local torsional stresses, DSP sites have not been described previously. Most remarkably, DSP is driven by the pairing between homologous sequences or repeats located in a large distance. A model-building approach suggested that topo IIβ acts on crossovers to unknot the intertwined DSP sites, leading to chromatin decondensation.
Collapse
|
65
|
Hinokuma N, Nakashima M, Asai H, Nakamura K, Akaboshi S, Fukuoka M, Togawa M, Oana S, Ohno K, Kasai M, Ogawa C, Yamamoto K, Okumiya K, Chong PF, Kira R, Uchino S, Fukuyama T, Shinagawa T, Miyata Y, Abe Y, Hojo A, Kobayashi K, Maegaki Y, Ishikawa N, Ikeda H, Amamoto M, Mizuguchi T, Iwama K, Itai T, Miyatake S, Saitsu H, Matsumoto N, Kato M. Clinical and genetic characteristics of patients with Doose syndrome. Epilepsia Open 2020; 5:442-450. [PMID: 32913952 PMCID: PMC7469791 DOI: 10.1002/epi4.12417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To elucidate the genetic background and genotype-phenotype correlations for epilepsy with myoclonic-atonic seizures, also known as myoclonic-astatic epilepsy (MAE) or Doose syndrome. METHODS We collected clinical information and blood samples from 29 patients with MAE. We performed whole-exome sequencing for all except one MAE case in whom custom capture sequencing identified a variant. RESULTS We newly identified four variants: SLC6A1 and HNRNPU missense variants and microdeletions at 2q24.2 involving SCN1A and Xp22.31 involving STS. Febrile seizures preceded epileptic or afebrile seizures in four patients, of which two patients had gene variants. Myoclonic-atonic seizures occurred at onset in four patients, of which two had variants, and during the course of disease in three patients. Variants were more commonly identified in patients with a developmental delay or intellectual disability (DD/ID), but genetic status was not associated with the severity of DD/ID. Attention-deficit/hyperactivity disorder and autistic spectrum disorder were less frequently observed in patients with variants than in those with unknown etiology. SIGNIFICANCE MAE patients had genetic heterogeneity, and HNRNPU and STS emerged as possible candidate causative genes. Febrile seizures prior to epileptic seizures and myoclonic-atonic seizure at onset indicate a genetic predisposition to MAE. Comorbid conditions were not related to genetic predisposition to MAE.
Collapse
Affiliation(s)
- Nodoka Hinokuma
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Mitsuko Nakashima
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Hideyuki Asai
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Kazuyuki Nakamura
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
| | | | - Masataka Fukuoka
- Shizuoka Institute of Epilepsy and Neurological DisordersShizuokaJapan
| | - Masami Togawa
- Department of PediatricsTottori Prefectural Central HospitalTottoriJapan
| | - Shingo Oana
- Department of PediatricsTokyo Medical UniversityTokyoJapan
| | - Koyo Ohno
- Division of Child NeurologyInstitute of Neurological SciencesFaculty of MedicineTottori UniversityYonagoJapan
| | - Mariko Kasai
- Department of Developmental Medical Sciences Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Chikako Ogawa
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Kazuna Yamamoto
- Department of PediatricsTeikyo University School of MedicineTokyoJapan
| | - Kiyohito Okumiya
- Department of Pediatrics and Child HealthKurume University School of MedicineFukuokaJapan
| | - Pin Fee Chong
- Department of Pediatric NeurologyFukuoka Children's HospitalFukuokaJapan
| | - Ryutaro Kira
- Department of Pediatric NeurologyFukuoka Children's HospitalFukuokaJapan
| | - Shumpei Uchino
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
- Department of PediatricsThe University of TokyoTokyoJapan
| | - Tetsuhiro Fukuyama
- Department of PediatricsShinshu University School of MedicineMatsumotoJapan
| | | | - Yohane Miyata
- Department of PediatricsKyorin University Faculty of MedicineTokyoJapan
| | - Yuichi Abe
- Department of PediatricsSaitama Medical UniversityMoroyamaJapan
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Akira Hojo
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Kozue Kobayashi
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Yoshihiro Maegaki
- Division of Child NeurologyInstitute of Neurological SciencesFaculty of MedicineTottori UniversityYonagoJapan
| | | | - Hiroko Ikeda
- Shizuoka Institute of Epilepsy and Neurological DisordersShizuokaJapan
| | - Masano Amamoto
- Kitakyushu City Yahata Hospital Pediatric Emergency/Children’s Medical CenterFukuokaJapan
| | - Takeshi Mizuguchi
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kazuhiro Iwama
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Toshiyuki Itai
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Satoko Miyatake
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Hirotomo Saitsu
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Mitsuhiro Kato
- Department of PediatricsShowa University School of MedicineTokyoJapan
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
| |
Collapse
|
66
|
Zietzer A, Hosen MR, Wang H, Goody PR, Sylvester M, Latz E, Nickenig G, Werner N, Jansen F. The RNA-binding protein hnRNPU regulates the sorting of microRNA-30c-5p into large extracellular vesicles. J Extracell Vesicles 2020; 9:1786967. [PMID: 32944175 PMCID: PMC7480565 DOI: 10.1080/20013078.2020.1786967] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transfer of microRNAs (miRs) via extracellular vesicles (EVs) is a functionally relevant mechanism of intercellular communication that regulates both organ homoeostasis and disease development. Little is known about the packaging of miRs into EVs. Previous studies have shown that certain miRs are exported by RNA-binding proteins into small EVs, while for other miRs and for large EVs, in general, the export mechanisms remain unclear. Therefore, a proteomic analysis of endothelial cell-derived large EVs was performed, which revealed that heterogeneous nuclear ribonucleoprotein U (hnRNPU) is abundantly present in EVs. EVs were characterized by electron microscopy, immunoblotting and nanoparticle tracking analysis. Taqman microRNA array and single qPCR experiments identified specific miR patterns to be exported into EVs in an hnRNPU-dependent way. The specific role of hnRNPU for vesicular miR-sorting was confirmed independently by gain- and loss-of-function experiments. In our study, miR-30c-5p was the miR whose export was most significantly regulated by hnRNPU. Mechanistically, in silico binding analysis showed that the export of miRs into EVs depends on the binding efficiency of the respective miRs to hnRNPU. Among the exported miRs, a significant enrichment of the sequence motif AAMRUGCU was detected as a potential sorting signal. Experimentally, binding of miR-30c-5p to hnRNPU was confirmed independently by RNA-immunoprecipitation, electrophoretic mobility shift assay and reciprocally by miR-pulldown. Nuclear binding of miR-30c-5p to hnRNPU and subsequent stabilization was associated with a lower cytoplasmatic abundance and consequently reduced availability for vesicular export. hnRNPU-dependent miR-30c-5p export reduced cellular migration as well as pro-angiogenic gene expression in EV-recipient cells. In summary, hnRNPU retains miR-30c-5p and other miRs and thereby prevents their export into large EVs. The data presented provide a novel and functionally relevant mechanism of vesicular miR export.
Collapse
Affiliation(s)
- Andreas Zietzer
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Mohammed Rabiul Hosen
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Han Wang
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Philip Roger Goody
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Marc Sylvester
- Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology,Medical Faculty, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Nikos Werner
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany.,Internal Medicine III, Krankenhaus Der Barmherzigen Brüder Trier, Trier, Germany
| | - Felix Jansen
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| |
Collapse
|
67
|
Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1612. [PMID: 32588964 DOI: 10.1002/wrna.1612] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein hnRNPA2/B1 is a member of the hnRNPs family and is widely expressed in various tissues. hnRNPA2/B1 recognizes and binds specific RNA substrates and DNA motifs and is involved in the transcription, splicing processing, transport, stability, and translation regulation of a variety of RNA molecules and in regulating the expression of a large number of genes. hnRNPA2/B1 is also involved in telomere maintenance and DNA repair, while its expression changes and mutations are involved in the development of various tumors and neurodegenerative and autoimmune diseases. This paper reviews the role and mechanism of hnRNPA2/B1 in RNA metabolism, tumors, and neurodegenerative and autoimmune diseases. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
68
|
Hutter K, Lohmüller M, Jukic A, Eichin F, Avci S, Labi V, Szabo TG, Hoser SM, Hüttenhofer A, Villunger A, Herzog S. SAFB2 Enables the Processing of Suboptimal Stem-Loop Structures in Clustered Primary miRNA Transcripts. Mol Cell 2020; 78:876-889.e6. [PMID: 32502422 DOI: 10.1016/j.molcel.2020.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022]
Abstract
Many microRNAs (miRNAs) are generated from primary transcripts containing multiple clustered stem-loop structures that are thought to be recognized and cleaved by the Microprocessor complex as independent units. Here, we uncover an unexpected mode of processing of the bicistronic miR-15a-16-1 cluster. We find that the primary miR-15a stem-loop is not processed on its own but that the presence of the neighboring primary miR-16-1 stem-loop on the same transcript can compensate for this deficiency in cis. Using a CRISPR/Cas9 screen, we identify SAFB2 (scaffold attachment factor B2) as an essential co-factor in this miR-16-1-assisted pri-miR-15 cleavage and describe SAFB2 as an accessory protein of the Microprocessor. Notably, SAFB2-mediated cleavage expands to other clustered pri-miRNAs, indicating a general mechanism. Together, our study reveals an unrecognized function of SAFB2 in miRNA processing and suggests a scenario in which SAFB2 enables the binding and processing of suboptimal Microprocessor substrates in clustered primary miRNA transcripts.
Collapse
Affiliation(s)
- Katharina Hutter
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michael Lohmüller
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Almina Jukic
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Felix Eichin
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Seymen Avci
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Tamas G Szabo
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Simon M Hoser
- Institute for Genomics and RNomics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Institute for Genomics and RNomics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Villunger
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
69
|
Yugami M, Okano H, Nakanishi A, Yano M. Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method. PLoS One 2020; 15:e0231450. [PMID: 32302342 PMCID: PMC7164624 DOI: 10.1371/journal.pone.0231450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
RNA-binding proteins (RBPs) control many types of post-transcriptional regulation, including mRNA splicing, mRNA stability, and translational efficiency, by directly binding to their target RNAs and their mutation and dysfunction are often associated with several human neurological diseases and tumorigenesis. Crosslinking immunoprecipitation (CLIP), coupled with high-throughput sequencing (HITS-CLIP), is a powerful technique for investigating the molecular mechanisms underlying disease pathogenesis by comprehensive identification of RBP target sequences at the transcriptome level. However, HITS-CLIP protocol is still required for some optimization due to experimental complication, low efficiency and time-consuming, whose library has to be generated from very small amounts of RNAs. Here we improved a more efficient, rapid, and reproducible CLIP method by optimizing BrdU-CLIP. Our protocol produced a 10-fold greater yield of pre-amplified CLIP library, which resulted in a low duplicate rate of CLIP-tag reads because the number of PCR cycles required for library amplification was reduced. Variance of the yields was also reduced, and the experimental period was shortened by 2 days. Using this, we validated IL-6 expression by a nuclear RBP, HNRNPU, which directly binds the 3’-UTR of IL-6 mRNA in HeLa cells. Importantly, this interaction was only observed in the cytoplasmic fraction, suggesting a role of cytoplasmic HNRNPU in mRNA stability control. This optimized method enables us to accurately identify target genes and provides a snapshot of the protein-RNA interactions of nucleocytoplasmic shuttling RBPs.
Collapse
Affiliation(s)
- Masato Yugami
- Takeda Pharmaceutical Company, Ltd, Osaka, Japan
- * E-mail: (MYu); (MYa)
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Minato, Japan
| | | | - Masato Yano
- Department of Physiology, School of Medicine, Keio University, Minato, Japan
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- * E-mail: (MYu); (MYa)
| |
Collapse
|
70
|
Oostdyk LT, Wang Z, Zang C, Li H, McConnell MJ, Paschal BM. An epilepsy-associated mutation in the nuclear import receptor KPNA7 reduces nuclear localization signal binding. Sci Rep 2020; 10:4844. [PMID: 32179771 PMCID: PMC7076015 DOI: 10.1038/s41598-020-61369-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
KPNA7 is a member of the Importin-α family of nuclear import receptors. KPNA7 forms a complex with Importin-β and facilitates the translocation of signal-containing proteins from the cytoplasm to the nucleus. Exome sequencing of siblings with severe neurodevelopmental defects and clinical features of epilepsy identified two amino acid-altering mutations in KPNA7. Here, we show that the E344Q substitution reduces KPNA7 binding to nuclear localization signals, and that this limits KPNA7 nuclear import activity. The P339A substitution, by contrast, has little effect on KPNA7 binding to nuclear localization signals. Given the neuronal phenotype described in the two patients, we used SILAC labeling, affinity enrichment, and mass spectrometry to identify KPNA7-interacting proteins in human induced pluripotent stem cell-derived neurons. We identified heterogeneous nuclear ribonucleoproteins hnRNP R and hnRNP U as KPNA7-interacting proteins. The E344Q substitution reduced binding and KPNA7-mediated import of these cargoes. The c.1030G > C allele which generates E344Q is within a predicted CTCF binding site, and we found that it reduces CTCF binding by approximately 40-fold. Our data support a role for altered neuronal expression and activity of KPNA7 in a rare type of pediatric epilepsy.
Collapse
Affiliation(s)
- Luke T Oostdyk
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Zhenjia Wang
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Chongzhi Zang
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hui Li
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Michael J McConnell
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bryce M Paschal
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
71
|
Chen Y, Chan J, Chen W, Li J, Sun M, Kannan GS, Mok YK, Yuan YA, Jobichen C. SYNCRIP, a new player in pri-let-7a processing. RNA (NEW YORK, N.Y.) 2020; 26:290-305. [PMID: 31907208 PMCID: PMC7025501 DOI: 10.1261/rna.072959.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
microRNAs (miRNAs), a class of small and endogenous molecules that control gene expression, are broadly involved in biological processes. Although a number of cofactors that assist or antagonize let-7 miRNA biogenesis are well-established, more auxiliary factors remain to be investigated. Here, we identified SYNCRIP (Synaptotagmin Binding Cytoplasmic RNA Interacting Protein) as a new player for let-7a miRNA. SYNCRIP interacts with pri-let-7a both in vivo and in vitro. Knockdown of SYNCRIP impairs, while overexpression of SYNCRIP promotes, the expression of let-7a miRNA. A broad miRNA profiling analysis revealed that silencing of SYNCRIP regulates the expression of a set of mature miRNAs positively or negatively. In addition, SYNCRIP is associated with microprocessor complex and promotes the processing of pri-let-7a. Strikingly, the terminal loop of pri-let-7a was shown to be the main contributor for its interaction with SYNCRIP. Functional studies demonstrated that the SYNCRIP RRM2-3 domain can promote the processing of pri-let-7a. Structure-based alignment of RRM2-3 with other RNA binding proteins identified the residues likely to participate in protein-RNA interactions. Taken together, these findings suggest the promising role that SYNCRIP plays in miRNA regulation, thus providing insights into the function of SYNCRIP in eukaryotic development.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jingru Chan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wei Chen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jianwei Li
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Meng Sun
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Gayathiri Sathyamoorthy Kannan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yu-Keung Mok
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Yuren Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Jiangsu 215123, China
| | - Chacko Jobichen
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
72
|
Kundinger SR, Bishof I, Dammer EB, Duong DM, Seyfried NT. Middle-Down Proteomics Reveals Dense Sites of Methylation and Phosphorylation in Arginine-Rich RNA-Binding Proteins. J Proteome Res 2020; 19:1574-1591. [PMID: 31994892 DOI: 10.1021/acs.jproteome.9b00633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Post-translational modifications (PTMs) within arginine (Arg)-rich RNA-binding proteins, such as phosphorylation and methylation, regulate multiple steps in RNA metabolism. However, the identification of PTMs within Arg-rich domains with complete trypsin digestion is extremely challenging due to the high density of Arg residues within these proteins. Here, we report a middle-down proteomic approach coupled with electron-transfer dissociation (ETD) mass spectrometry to map previously unknown sites of phosphorylation and methylation within the Arg-rich domains of U1-70K and structurally similar RNA-binding proteins from nuclear extracts of human embryonic kidney (HEK)-293T cells. Notably, the Arg-rich domains in RNA-binding proteins are densely modified by methylation and phosphorylation compared with the remainder of the proteome, with methylation and phosphorylation favoring RSRS motifs. Although they favor a common motif, analysis of combinatorial PTMs within RSRS motifs indicates that phosphorylation and methylation do not often co-occur, suggesting that they may functionally oppose one another. Furthermore, we show that phosphorylation may modify interactions between Arg-rich proteins, as serine-arginine splicing factor 2 (SRSF2) has a stronger association with U1-70K and LUC7L3 upon dephosphorylation. Collectively, these findings suggest that the level of PTMs within Arg-rich domains may be among the highest in the proteome and a possible unexplored regulator of RNA-binding protein interactions.
Collapse
|
73
|
Ntountoumi C, Vlastaridis P, Mossialos D, Stathopoulos C, Iliopoulos I, Promponas V, Oliver SG, Amoutzias GD. Low complexity regions in the proteins of prokaryotes perform important functional roles and are highly conserved. Nucleic Acids Res 2019; 47:9998-10009. [PMID: 31504783 PMCID: PMC6821194 DOI: 10.1093/nar/gkz730] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023] Open
Abstract
We provide the first high-throughput analysis of the properties and functional role of Low Complexity Regions (LCRs) in more than 1500 prokaryotic and phage proteomes. We observe that, contrary to a widespread belief based on older and sparse data, LCRs actually have a significant, persistent and highly conserved presence and role in many and diverse prokaryotes. Their specific amino acid content is linked to proteins with certain molecular functions, such as the binding of RNA, DNA, metal-ions and polysaccharides. In addition, LCRs have been repeatedly identified in very ancient, and usually highly expressed proteins of the translation machinery. At last, based on the amino acid content enriched in certain categories, we have developed a neural network web server to identify LCRs and accurately predict whether they can bind nucleic acids, metal-ions or are involved in chaperone functions. An evaluation of the tool showed that it is highly accurate for eukaryotic proteins as well.
Collapse
Affiliation(s)
- Chrysa Ntountoumi
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | - Panayotis Vlastaridis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| | | | | | - Vasilios Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, New Campus, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus
| | - Stephen G Oliver
- Cambridge Systems Biology Centre & Department of Biochemistry, University of Cambridge, CB2 1GA, UK
| | - Grigoris D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500, Greece
| |
Collapse
|
74
|
Colleti C, Melo-Hanchuk TD, da Silva FRM, Saito Â, Kobarg J. Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World J Biol Chem 2019; 10:44-64. [PMID: 31768228 PMCID: PMC6872977 DOI: 10.4331/wjbc.v10.i3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.
Collapse
Affiliation(s)
- Carolina Colleti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Talita Diniz Melo-Hanchuk
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Flávia Regina Moraes da Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Ângela Saito
- Laboratório Nacional de Biociências, CNPEM, Campinas 13083-970, Brazil
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
75
|
Shotwell CR, Cleary JD, Berglund JA. The potential of engineered eukaryotic RNA-binding proteins as molecular tools and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1573. [PMID: 31680457 DOI: 10.1002/wrna.1573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Eukaroytic RNA-binding proteins (RBPs) recognize and process RNAs through recognition of their sequence motifs via RNA-binding domains (RBDs). RBPs usually consist of one or more RBDs and can include additional functional domains that modify or cleave RNA. Engineered RBPs have been used to answer basic biology questions, control gene expression, locate viral RNA in vivo, as well as many other tasks. Given the growing number of diseases associated with RNA and RBPs, engineered RBPs also have the potential to serve as therapeutics. This review provides an in depth description of recent advances in engineered RBPs and discusses opportunities and challenges in the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Methods > RNA Nanotechnology RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Carl R Shotwell
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - John D Cleary
- RNA Institute, University at Albany, Albany, New York
| | - J Andrew Berglund
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York
| |
Collapse
|
76
|
Yin Z, Liu X, Ariosa A, Huang H, Jin M, Karbstein K, Klionsky DJ. Psp2, a novel regulator of autophagy that promotes autophagy-related protein translation. Cell Res 2019; 29:994-1008. [PMID: 31666677 DOI: 10.1038/s41422-019-0246-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/05/2019] [Indexed: 01/27/2023] Open
Abstract
Macroautophagy/autophagy defines an evolutionarily conserved catabolic process that targets cytoplasmic components for lysosomal degradation. The process of autophagy from initiation to closure is tightly executed and controlled by the concerted action of autophagy-related (Atg) proteins. Although substantial progress has been made in characterizing transcriptional and post-translational regulation of ATG/Atg genes/proteins, little is known about the translational control of autophagy. Here we report that Psp2, an RGG motif protein, positively regulates autophagy through promoting the translation of Atg1 and Atg13, two proteins that are crucial in the initiation of autophagy. During nitrogen starvation conditions, Psp2 interacts with the 5' UTR of ATG1 and ATG13 transcripts in an RGG motif-dependent manner and with eIF4E and eIF4G2, components of the translation initiation machinery, to regulate the translation of these transcripts. Deletion of the PSP2 gene leads to a decrease in the synthesis of Atg1 and Atg13, which correlates with reduced autophagy activity and cell survival. Furthermore, deactivation of the methyltransferase Hmt1 constitutes a molecular switch that regulates Psp2 arginine methylation status as well as its mRNA binding activity in response to starvation. These results reveal a novel mechanism by which Atg proteins become upregulated to fulfill the increased demands of autophagy activity as part of translational reprogramming during stress conditions, and help explain how ATG genes bypass the general block in protein translation that occurs during starvation.
Collapse
Affiliation(s)
- Zhangyuan Yin
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xu Liu
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.,Harvard Medical School, Department of Microbiology, Brigham and Women's Hospital, Division of Infectious Diseases, Boston, MA, USA
| | - Aileen Ariosa
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Haina Huang
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, Jupiter, FL, 33458, USA
| | - Meiyan Jin
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Katrin Karbstein
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, Jupiter, FL, 33458, USA
| | - Daniel J Klionsky
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
77
|
Long noncoding RNA PANDA promotes esophageal squamous carcinoma cell progress by dissociating from NF-YA but interact with SAFA. Pathol Res Pract 2019; 215:152604. [DOI: 10.1016/j.prp.2019.152604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/03/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
|
78
|
Xing S, Li Z, Ma W, He X, Shen S, Wei H, Li ST, Shu Y, Sun L, Zhong X, Huangfu Y, Su L, Feng J, Zhang X, Gao P, Jia WD, Zhang H. DIS3L2 Promotes Progression of Hepatocellular Carcinoma via hnRNP U-Mediated Alternative Splicing. Cancer Res 2019; 79:4923-4936. [PMID: 31331910 DOI: 10.1158/0008-5472.can-19-0376] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/20/2019] [Accepted: 07/17/2019] [Indexed: 11/16/2022]
Abstract
DIS3-like 3'-5' exoribonuclease 2 (DIS3L2) degrades aberrant RNAs, however, its function in tumorigenesis remains largely unexplored. Here, aberrant DIS3L2 expression promoted human hepatocellular carcinoma (HCC) progression via heterogeneous nuclear ribonucleoproteins (hnRNP) U-mediated alternative splicing. DIS3L2 directly interacted with hnRNP U through its cold-shock domains and promoted inclusion of exon 3b during splicing of pre-Rac1 independent of its exonuclease activity, yielding an oncogenic splicing variant, Rac1b, which is known to stimulate cellular transformation and tumorigenesis. DIS3L2 regulated alternative splicing by recruiting hnRNP U to pre-Rac1. Rac1b was critical for DIS3L2 promotion of liver cancer development both in vitro and in vivo. Importantly, DIS3L2 and Rac1b expression highly correlated with HCC progression and patient survival. Taken together, our findings uncover an oncogenic role of DIS3L2, in which it promotes liver cancer progression through a previously unappreciated mechanism of regulating hnRNP U-mediated alterative splicing. SIGNIFICANCE: These findings establish the role and mechanism of the 3'-5' exoribonuclease DIS3L2 in hepatocellular carcinoma carcinogenesis.
Collapse
Affiliation(s)
- Songge Xing
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Zhaoyong Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Wenhao Ma
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiaoping He
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Shengqi Shen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Haoran Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Shi-Ting Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Ying Shu
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Linchong Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Xiuying Zhong
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yuhao Huangfu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Lanhong Su
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Junru Feng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Xiaozhang Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Ping Gao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Wei-Dong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
| | - Huafeng Zhang
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China. .,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
79
|
Xu L, Zhang T, Huang W, Liu X, Lu J, Gao X, Zhang YF, Liu L. YAP mediates the positive regulation of hnRNPK on the lung adenocarcinoma H1299 cell growth. Acta Biochim Biophys Sin (Shanghai) 2019; 51:677-687. [PMID: 31187136 DOI: 10.1093/abbs/gmz053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide, and non-small cell lung cancer (NSCLC) accounts for 80%-85% of diagnostic cases. The molecular mechanisms of NSCLC pathogenesis are not well understood. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a multifunctional protein that regulates gene expression and signal transduction and closely associated with tumorigenesis, but its mechanism of action in the pathogenesis of NSCLC is unclear. In this study, we observed that the expression pattern of hnRNPK in H1299 lung adenocarcinoma cells varied depending on the cell density in culture. Moreover, hnRNPK stimulated the ability of proliferation and colony formation of H1299 cells, which is important for the multilayered cell growth in culture. We further investigated whether there is an association between hnRNPK and the elements involved in the cell contact inhibition pathway. By using quantitative reverse transcriptase-polymerase chain reaction assay and a YAP activity reporter system, we found that hnRNPK upregulated the mRNA and protein levels and transcriptional activity of Yes-associated protein 1 (YAP), a master negative regulator of Hippo contact inhibition pathway. Furthermore, YAP knockdown with siRNA abolished the stimulatory effect of hnRNPK on H1299 cell proliferation. These results suggested that YAP could be one of the effectors of hnRNPK. Our data may provide new clues for further understanding the biological functions of hnRNPK, particularly in the context of lung adenocarcinoma oncogenesis.
Collapse
Affiliation(s)
- Lipei Xu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Tingting Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Wensi Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Junlei Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Yun-Fang Zhang
- Center of Kidney Disease, Huadu District People’s Hospital, Southern Medical University, Guangzhou 510800, China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
80
|
CAPRI enables comparison of evolutionarily conserved RNA interacting regions. Nat Commun 2019; 10:2682. [PMID: 31213602 PMCID: PMC6581911 DOI: 10.1038/s41467-019-10585-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
RNA-protein complexes play essential regulatory roles at nearly all levels of gene expression. Using in vivo crosslinking and RNA capture, we report a comprehensive RNA-protein interactome in a metazoan at four levels of resolution: single amino acids, domains, proteins and multisubunit complexes. We devise CAPRI, a method to map RNA-binding domains (RBDs) by simultaneous identification of RNA interacting crosslinked peptides and peptides adjacent to such crosslinked sites. CAPRI identifies more than 3000 RNA proximal peptides in Drosophila and human proteins with more than 45% of them forming new interaction interfaces. The comparison of orthologous proteins enables the identification of evolutionary conserved RBDs in globular domains and intrinsically disordered regions (IDRs). By comparing the sequences of IDRs through evolution, we classify them based on the type of motif, accumulation of tandem repeats, conservation of amino acid composition and high sequence divergence. Comprehensive characterisation of RNA-protein interactions requires different levels of resolution. Here, the authors present an integrated mass spectrometry-based approach that allows them to define the Drosophila RNA-protein interactome from the level of multisubunit complexes down to the RNA-binding amino acid.
Collapse
|
81
|
Götte B, Panas MD, Hellström K, Liu L, Samreen B, Larsson O, Ahola T, McInerney GM. Separate domains of G3BP promote efficient clustering of alphavirus replication complexes and recruitment of the translation initiation machinery. PLoS Pathog 2019; 15:e1007842. [PMID: 31199850 PMCID: PMC6594655 DOI: 10.1371/journal.ppat.1007842] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/26/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
G3BP-1 and -2 (hereafter referred to as G3BP) are multifunctional RNA-binding proteins involved in stress granule (SG) assembly. Viruses from diverse families target G3BP for recruitment to replication or transcription complexes in order to block SG assembly but also to acquire pro-viral effects via other unknown functions of G3BP. The Old World alphaviruses, including Semliki Forest virus (SFV) and chikungunya virus (CHIKV) recruit G3BP into viral replication complexes, via an interaction between FGDF motifs in the C-terminus of the viral non-structural protein 3 (nsP3) and the NTF2-like domain of G3BP. To study potential proviral roles of G3BP, we used human osteosarcoma (U2OS) cell lines lacking endogenous G3BP generated using CRISPR-Cas9 and reconstituted with a panel of G3BP1 mutants and truncation variants. While SFV replicated with varying efficiency in all cell lines, CHIKV could only replicate in cells expressing G3BP1 variants containing both the NTF2-like and the RGG domains. The ability of SFV to replicate in the absence of G3BP allowed us to study effects of different domains of the protein. We used immunoprecipitation to demonstrate that that both NTF2-like and RGG domains are necessary for the formation a complex between nsP3, G3BP1 and the 40S ribosomal subunit. Electron microscopy of SFV-infected cells revealed that formation of nsP3:G3BP1 complexes via the NTF2-like domain was necessary for clustering of cytopathic vacuoles (CPVs) and that the presence of the RGG domain was necessary for accumulation of electron dense material containing G3BP1 and nsP3 surrounding the CPV clusters. Clustered CPVs also exhibited localised high levels of translation of viral mRNAs as detected by ribopuromycylation staining. These data confirm that G3BP is a ribosomal binding protein and reveal that alphaviral nsP3 uses G3BP to concentrate viral replication complexes and to recruit the translation initiation machinery, promoting the efficient translation of viral mRNAs. In order to repel viral infections, cells activate stress responses. One such response involves inhibition of translation and restricted availability of the translation machinery via the formation of stress granules. However, the host translation machinery is absolutely essential for synthesis of viral proteins and consequently viruses have developed a broad spectrum of strategies to circumvent this restriction. Old World alphaviruses, such as Semliki Forest virus (SFV) and chikungunya virus (CHIKV), interfere with stress granule formation by sequestration of G3BP, a stress granule nucleating protein, mediated by the viral non-structural protein 3 (nsP3). Here we show that nsP3:G3BP complexes engage factors of the host translation machinery, which during the course of infection accumulate in the vicinity of viral replication complexes. Accordingly, we demonstrate that the nsP3:G3BP interaction is required for high localized translational activity around viral replication complexes. We find the RGG domain of G3BP to be essential for the recruitment of the host translation machinery. In cells expressing mutant G3BP lacking the RGG domain, SFV replication was attenuated, but detectable, while CHIKV was essentially non-viable. Our data demonstrate a novel mechanism by which viruses can recruit factors of the translation machinery in a G3BP-dependent manner.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Chikungunya Fever/genetics
- Chikungunya Fever/metabolism
- Chikungunya Fever/pathology
- Chikungunya virus/physiology
- Cricetinae
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Humans
- Peptide Chain Initiation, Translational
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Protein Domains
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Recognition Motif Proteins/genetics
- RNA Recognition Motif Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Semliki forest virus/physiology
- Virus Replication
Collapse
Affiliation(s)
- Benjamin Götte
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Marc D. Panas
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Kirsi Hellström
- University of Helsinki, Department of Microbiology, Faculty of Agriculture and Forestry, Helsinki, Finland
| | - Lifeng Liu
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Baila Samreen
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Tero Ahola
- University of Helsinki, Department of Microbiology, Faculty of Agriculture and Forestry, Helsinki, Finland
- * E-mail: (GMM); (TA)
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (GMM); (TA)
| |
Collapse
|
82
|
Duangkaew R, Jangprai A, Ichida K, Yoshizaki G, Boonanuntanasarn S. Characterization and expression of a vasa homolog in the gonads and primordial germ cells of the striped catfish (Pangasianodon hypophthalmus). Theriogenology 2019; 131:61-71. [DOI: 10.1016/j.theriogenology.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/19/2019] [Accepted: 01/27/2019] [Indexed: 10/27/2022]
|
83
|
Verdile V, De Paola E, Paronetto MP. Aberrant Phase Transitions: Side Effects and Novel Therapeutic Strategies in Human Disease. Front Genet 2019; 10:173. [PMID: 30967892 PMCID: PMC6440380 DOI: 10.3389/fgene.2019.00173] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Phase separation is a physiological process occurring spontaneously when single-phase molecular complexes separate in two phases, a concentrated phase and a more diluted one. Eukaryotic cells employ phase transition strategies to promote the formation of intracellular territories not delimited by membranes with increased local RNA concentration, such as nucleolus, paraspeckles, P granules, Cajal bodies, P-bodies, and stress granules. These organelles contain both proteins and coding and non-coding RNAs and play important roles in different steps of the regulation of gene expression and in cellular signaling. Recently, it has been shown that most human RNA-binding proteins (RBPs) contain at least one low-complexity domain, called prion-like domain (PrLD), because proteins harboring them display aggregation properties like prion proteins. PrLDs support RBP function and contribute to liquid–liquid phase transitions that drive ribonucleoprotein granule assembly, but also render RBPs prone to misfolding by promoting the formation of pathological aggregates that lead to toxicity in specific cell types. Protein–protein and protein-RNA interactions within the separated phase can enhance the transition of RBPs into solid aberrant aggregates, thus causing diseases. In this review, we highlight the role of phase transition in human disease such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and in cancer. Moreover, we discuss novel therapeutic strategies focused to control phase transitions by preventing the conversion into aberrant aggregates. In this regard, the stimulation of chaperone machinery to disassemble membrane-less organelles, the induction of pathways that could inhibit aberrant phase separation, and the development of antisense oligonucleotides (ASOs) to knockdown RNAs could be evaluated as novel therapeutic strategies for the treatment of those human diseases characterized by aberrant phase transition aggregates.
Collapse
Affiliation(s)
- Veronica Verdile
- University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy
| | - Elisa De Paola
- University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy
| | - Maria Paola Paronetto
- University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
84
|
Nozawa RS, Gilbert N. RNA: Nuclear Glue for Folding the Genome. Trends Cell Biol 2019; 29:201-211. [DOI: 10.1016/j.tcb.2018.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
|
85
|
Levengood JD, Tolbert BS. Idiosyncrasies of hnRNP A1-RNA recognition: Can binding mode influence function. Semin Cell Dev Biol 2019; 86:150-161. [PMID: 29625167 PMCID: PMC6177329 DOI: 10.1016/j.semcdb.2018.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that function in most stages of RNA metabolism. The prototypical member, hnRNP A1, is composed of three major domains; tandem N-terminal RNA Recognition Motifs (RRMs) and a C-terminal mostly intrinsically disordered region. HnRNP A1 is broadly implicated in basic cellular RNA processing events such as splicing, stability, nuclear export and translation. Due to its ubiquity and abundance, hnRNP A1 is also frequently usurped to control viral gene expression. Deregulation of the RNA metabolism functions of hnRNP A1 in neuronal cells contributes to several neurodegenerative disorders. Because of these roles in human pathologies, the study of hnRNP A1 provides opportunities for the development of novel therapeutics, with disruption of its RNA binding capabilities being the most promising target. The functional diversity of hnRNP A1 is reflected in the complex nature by which it interacts with various RNA targets. Indeed, hnRNP A1 binds both structured and unstructured RNAs with binding affinities that span several magnitudes. Available structures of hnRNP A1-RNA complexes also suggest a degree of plasticity in molecular recognition. Given the reinvigoration in hnRNP A1, the goal of this review is to use the available structural biochemical developments as a framework to interpret its wide-range of RNA functions.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
86
|
Chu WK, Hung LM, Hou CW, Chen JK. Heterogeneous ribonucleoprotein F regulates YAP expression via a G-tract in 3'UTR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:12-24. [PMID: 30312683 DOI: 10.1016/j.bbagrm.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
Abstract
The Yes-associated protein (YAP) is a transcription coactivator that plays crucial roles in organ size control and tumorigenesis, and was demonstrated to be inhibited by the Hippo signaling pathway. To date, the molecular mechanisms regulating the expression of YAP in human cells remain unknown. In the present study, we found that hnRNP F and hnRNP U negatively regulate YAP expression. We also showed that downregulation of YAP expression by hnRNP F and hnRNP U was not at the transcriptional level. Knockdown of hnRNP F or hnRNP U increased YAP mRNA stability, suggesting the downregulation of YAP expression was by a post-transcriptional mechanism. A putative hnRNP F binding site was identified in the YAP 3'UTR at 685 to 698, and deletion of this putative hnRNP F element abolished the down-regulation effect of YAP mRNA stability by hnRNP F. Binding of the hnRNP F to the YAP 3'UTR was demonstrated by Cross-linked RNA Immunoprecipitation. mRNA stability is a possible secondary effect of alternative splicing or other nuclear process. Understanding the regulation of YAP expression would provide insights into the mechanisms underlying the maintenance of tissue size homeostasis and tumorigenesis.
Collapse
Affiliation(s)
- Wing-Keung Chu
- Department of Physiology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Li-Man Hung
- Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Wei Hou
- Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Jan-Kan Chen
- Department of Physiology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
87
|
Sithole N, Williams CA, Vaughan AM, Kenyon JC, Lever AML. DDX17 Specifically, and Independently of DDX5, Controls Use of the HIV A4/5 Splice Acceptor Cluster and Is Essential for Efficient Replication of HIV. J Mol Biol 2018; 430:3111-3128. [PMID: 30131116 PMCID: PMC6119765 DOI: 10.1016/j.jmb.2018.06.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
HIV splicing involves five splice donor and eight splice acceptor sequences which, together with cryptic splice sites, generate over 100 mRNA species. Ninety percent of both partially spliced and fully spliced transcripts utilize the intrinsically weak A4/A5 3' splice site cluster. We show that DDX17, but not its close paralog DDX5, specifically controls the usage of this splice acceptor group. In its absence, production of the viral envelope protein and other regulatory and accessory proteins is grossly reduced, while Vif, which uses the A1 splice acceptor, is unaffected. This is associated with a profound decrease in viral export from the cell. Loss of Vpu expression causing upregulation of cellular Tetherin compounds the phenotype. DDX17 utilizes distinct RNA binding motifs for its role in efficient HIV replication, and we identify RNA binding motifs essential for its role, while the Walker A, Walker B (DEAD), Q motif and the glycine doublet motif are all dispensable. We show that DDX17 interacts with SRSF1/SF2 and the heterodimeric auxiliary factor U2AF65/35, which are essential splicing factors in the generation of Rev and Env/Vpu transcripts.
Collapse
Affiliation(s)
- Nyaradzai Sithole
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Claire A Williams
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Aisling M Vaughan
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Microbiology and Immunology, National University of Singapore, Singapore 117545
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Medicine, National University of Singapore, Singapore 119228.
| |
Collapse
|
88
|
Zhang L, Song D, Zhu B, Wang X. The role of nuclear matrix protein HNRNPU in maintaining the architecture of 3D genome. Semin Cell Dev Biol 2018; 90:161-167. [PMID: 29981443 DOI: 10.1016/j.semcdb.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
The complexity of higher eukaryote genomes is far from being explained by linear information. There is a need to understand roles of genome regulation at the organism level through defining a comprehensive profile of chromosomal organization. Chromosome conformation capture (3C)-based studies reveal that higher-order of chromatin include not only long-range chromatin loops, but also compartments and topologically associating domains as the basis of genome structure and functions. However, the molecular machinery how the genome is spatially organized is still inadequate. Exciting progress has been made with the development of today's technology, we find that heterogeneous nuclear ribonucleoprotein U, initially identified as a structural nuclear protein, plays important role in three-dimensional (3D) genome organization by high-throughput assays. The disruption of this protein not only results in compartment switching on of the genome, it also reduces of TAD boundary strengths at borders between two types of compartments, and regulates chromatin loop by decrease its intensities. In addition, HNRNPU mainly binds to active chromatin. Most of HNRNPU peaks is consistent with CTCF or RAD21.It also plays an irreplaceable role in the processes of mitosis. This review aims to discuss the role of HNRNPU in maintaining the 3D chromatin architecture, as well as the recent development and human diseases involved in this nuclear matrix (NM)-associated protein.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Dongli Song
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
89
|
Chong PA, Vernon RM, Forman-Kay JD. RGG/RG Motif Regions in RNA Binding and Phase Separation. J Mol Biol 2018; 430:4650-4665. [PMID: 29913160 DOI: 10.1016/j.jmb.2018.06.014] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022]
Abstract
RGG/RG motifs are RNA binding segments found in many proteins that can partition into membraneless organelles. They occur in the context of low-complexity disordered regions and often in multiple copies. Although short RGG/RG-containing regions can sometimes form high-affinity interactions with RNA structures, multiple RGG/RG repeats are generally required for high-affinity binding, suggestive of the dynamic, multivalent interactions that are thought to underlie phase separation in formation of cellular membraneless organelles. Arginine can interact with nucleotide bases via hydrogen bonding and π-stacking; thus, nucleotide conformers that provide access to the bases provide enhanced opportunities for RGG interactions. Methylation of RGG/RG regions, which is accomplished by protein arginine methyltransferase enzymes, occurs to different degrees in different cell types and may regulate the behavior of proteins containing these regions.
Collapse
Affiliation(s)
- P Andrew Chong
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Robert M Vernon
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
90
|
Marichal L, Renault JP, Chédin S, Lagniel G, Klein G, Aude JC, Tellier-Lebegue C, Armengaud J, Pin S, Labarre J, Boulard Y. Importance of Post-translational Modifications in the Interaction of Proteins with Mineral Surfaces: The Case of Arginine Methylation and Silica surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5312-5322. [PMID: 29648834 DOI: 10.1021/acs.langmuir.8b00752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest for both basic research and practical applications involving nanotechnology. From the list of cellular proteins with the highest affinity for silica nanoparticles, we highlighted the group of proteins containing arginine-glycine-glycine (RGG) motifs. Biochemical experiments confirmed that RGG motifs interact strongly with the silica surfaces. The affinity of these motifs is further increased when the R residue is asymmetrically, but not symmetrically, dimethylated. Molecular dynamics simulations show that the asymmetrical dimethylation generates an electrostatic asymmetry in the guanidinium group of the R residue, orientating and stabilizing it on the silica surface. The RGG motifs (methylated or not) systematically target the siloxide groups on the silica surface through an ionic interaction, immediately strengthened by hydrogen bonds with proximal silanol and siloxane groups. Given that, in vivo, RGG motifs are often asymmetrically dimethylated by specific cellular methylases, our data add support to the idea that this type of methylation is a key mechanism for cells to regulate the interaction of the RGG proteins with their cellular partners.
Collapse
Affiliation(s)
- Laurent Marichal
- I2BC, JOLIOT, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
- LIONS, IRAMIS, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
| | - Jean-Philippe Renault
- LIONS, IRAMIS, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
| | - Stéphane Chédin
- I2BC, JOLIOT, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
| | - Gilles Lagniel
- I2BC, JOLIOT, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
| | - Géraldine Klein
- I2BC, JOLIOT, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
- LIONS, IRAMIS, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
| | - Jean-Christophe Aude
- I2BC, JOLIOT, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
- I2BC, CEA, CNRS, Université Paris-Saclay , Orsay , 91400 , France
| | | | - Jean Armengaud
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA , F-30207 Bagnols sur Cèze , France
| | - Serge Pin
- LIONS, IRAMIS, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
| | - Jean Labarre
- I2BC, JOLIOT, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
| | - Yves Boulard
- I2BC, JOLIOT, DRF, CEA, CNRS, Université Paris-Saclay , Gif-sur-Yvette , 91191 , France
| |
Collapse
|
91
|
Suess B, Kemmerer K, Weigand JE. Splicing and Alternative Splicing Impact on Gene Design. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Beatrix Suess
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Katrin Kemmerer
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Julia E. Weigand
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| |
Collapse
|
92
|
Jiao W, Chen Y, Song H, Li D, Mei H, Yang F, Fang E, Wang X, Huang K, Zheng L, Tong Q. HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene 2018; 37:2728-2745. [PMID: 29511351 DOI: 10.1038/s41388-018-0128-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
Recent studies reveal the emerging functions of enhancer RNAs (eRNAs) in gene expression. However, the roles of eRNAs in regulating the expression of heparanase (HPSE), an established endo-β-D-glucuronidase essential for cancer invasion and metastasis, still remain elusive. Herein, through comprehensive analysis of publically available FANTOM5 expression atlas and chromatin interaction dataset, we identified a super enhancer and its derived eRNA facilitating the HPSE expression (HPSE eRNA) in cancers. Gain-of-function and loss-of-function experiments indicated that HPSE eRNA facilitated the in vitro and in vivo tumorigenesis and aggressiveness of cancer cells. Mechanistically, as a p300-regulated nuclear noncoding RNA, HPSE eRNA bond to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with p300 and their enrichment on super enhancer, resulting in chromatin looping between super enhancer and HPSE promoter, p300-mediated transactivation of transcription factor early growth response 1 (EGR1), and subsequent elevation of HPSE expression. In addition, rescue studies in HPSE overexpressing or silencing cancer cells indicated that HPSE eRNA exerted oncogenic properties via driving HPSE expression. In clinical cancer tissues, HPSE eRNA was highly expressed and positively correlated with HPSE levels, and served as an independent prognostic factor for poor outcome of cancer patients. Therefore, these findings indicate that as a novel noncoding RNA, HPSE eRNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis.
Collapse
Affiliation(s)
- Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
93
|
Tanikawa C, Ueda K, Suzuki A, Iida A, Nakamura R, Atsuta N, Tohnai G, Sobue G, Saichi N, Momozawa Y, Kamatani Y, Kubo M, Yamamoto K, Nakamura Y, Matsuda K. Citrullination of RGG Motifs in FET Proteins by PAD4 Regulates Protein Aggregation and ALS Susceptibility. Cell Rep 2018; 22:1473-1483. [DOI: 10.1016/j.celrep.2018.01.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/18/2017] [Accepted: 01/10/2018] [Indexed: 02/08/2023] Open
|
94
|
Therapeutic Applications of Targeted Alternative Splicing to Cancer Treatment. Int J Mol Sci 2017; 19:ijms19010075. [PMID: 29283381 PMCID: PMC5796025 DOI: 10.3390/ijms19010075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022] Open
Abstract
A growing body of studies has documented the pathological influence of impaired alternative splicing (AS) events on numerous diseases, including cancer. In addition, the generation of alternatively spliced isoforms is frequently noted to result in drug resistance in many cancer therapies. To gain comprehensive insights into the impacts of AS events on cancer biology and therapeutic developments, this paper highlights recent findings regarding the therapeutic routes of targeting alternative-spliced isoforms and splicing regulators to treatment strategies for distinct cancers.
Collapse
|
95
|
Schmidt T, Friedrich S, Golbik RP, Behrens SE. NF90-NF45 is a selective RNA chaperone that rearranges viral and cellular riboswitches: biochemical analysis of a virus host factor activity. Nucleic Acids Res 2017; 45:12441-12454. [PMID: 29040738 PMCID: PMC5716087 DOI: 10.1093/nar/gkx931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
The heterodimer NF90-NF45 is an RNA-binding protein complex that modulates the expression of various cellular mRNAs on the post-transcriptional level. Furthermore, it acts as a host factor that supports the replication of several RNA viruses. The molecular mechanisms underlying these activities have yet to be elucidated. Recently, we showed that the RNA-binding capabilities and binding specificity of NF90 considerably improves when it forms a complex with NF45. Here, we demonstrate that NF90 has a substrate-selective RNA chaperone activity (RCA) involving RNA annealing and strand displacement activities. The mechanism of the NF90-catalyzed RNA annealing was elucidated to comprise a combination of 'matchmaking' and compensation of repulsive charges, which finally results in the population of dsRNA products. Heterodimer formation with NF45 enhances 'matchmaking' of complementary ssRNAs and substantially increases the efficiency of NF90's RCA. During investigations of the relevance of the NF90-NF45 RCA, the complex was shown to stimulate the first step in the RNA replication process of hepatitis C virus (HCV) in vitro and to stabilize a regulatory element within the mRNA of vascular endothelial growth factor (VEGF) by protein-guided changes of the RNAs' structures. Thus, our study reveals how the intrinsic properties of an RNA-binding protein determine its biological activities.
Collapse
Affiliation(s)
- Tobias Schmidt
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
- To whom correspondence should be addressed. Tel: +49 3455 5249 60; Fax: +49 3455 5273 87; . Correspondence may also be addressed to Tobias Schmidt.
| | - Susann Friedrich
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology (NFI), Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle/Saale, Germany
- To whom correspondence should be addressed. Tel: +49 3455 5249 60; Fax: +49 3455 5273 87; . Correspondence may also be addressed to Tobias Schmidt.
| |
Collapse
|
96
|
Huang H, Zhang J, Harvey SE, Hu X, Cheng C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes Dev 2017; 31:2296-2309. [PMID: 29269483 PMCID: PMC5769772 DOI: 10.1101/gad.305862.117] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022]
Abstract
Here, Huang et al. investigated the role of RNA secondary structure in splicing regulation and show that RNA elements with G-quadruplex-forming capacity promote exon inclusion. Analysis of RNA-binding protein footprints revealed that G quadruplexes are enriched in hnRNPF-binding sites and near hnRNPF-regulated alternatively spliced exons in the human transcriptome, thus providing new insights into the regulation of alternative splicing. It is generally thought that splicing factors regulate alternative splicing through binding to RNA consensus sequences. In addition to these linear motifs, RNA secondary structure is emerging as an important layer in splicing regulation. Here we demonstrate that RNA elements with G-quadruplex-forming capacity promote exon inclusion. Destroying G-quadruplex-forming capacity while keeping G tracts intact abrogates exon inclusion. Analysis of RNA-binding protein footprints revealed that G quadruplexes are enriched in heterogeneous nuclear ribonucleoprotein F (hnRNPF)-binding sites and near hnRNPF-regulated alternatively spliced exons in the human transcriptome. Moreover, hnRNPF regulates an epithelial–mesenchymal transition (EMT)-associated CD44 isoform switch in a G-quadruplex-dependent manner, which results in inhibition of EMT. Mining breast cancer TCGA (The Cancer Genome Atlas) data sets, we demonstrate that hnRNPF negatively correlates with an EMT gene signature and positively correlates with patient survival. These data suggest a critical role for RNA G quadruplexes in regulating alternative splicing. Modulation of G-quadruplex structural integrity may control cellular processes important for tumor progression.
Collapse
Affiliation(s)
- Huilin Huang
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jing Zhang
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Samuel E Harvey
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaohui Hu
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chonghui Cheng
- Division of Hematology and Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
97
|
Fidaleo M, De Paola E, Paronetto MP. The RNA helicase A in malignant transformation. Oncotarget 2017; 7:28711-23. [PMID: 26885691 PMCID: PMC5053757 DOI: 10.18632/oncotarget.7377] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
The RNA helicase A (RHA) is involved in several steps of RNA metabolism, such as RNA processing, cellular transit of viral molecules, ribosome assembly, regulation of transcription and translation of specific mRNAs. RHA is a multifunctional protein whose roles depend on the specific interaction with different molecular partners, which have been extensively characterized in physiological situations. More recently, the functional implication of RHA in human cancer has emerged. Interestingly, RHA was shown to cooperate with both tumor suppressors and oncoproteins in different tumours, indicating that its specific role in cancer is strongly influenced by the cellular context. For instance, silencing of RHA and/or disruption of its interaction with the oncoprotein EWS-FLI1 rendered Ewing sarcoma cells more sensitive to genotoxic stresses and affected tumor growth and maintenance, suggesting possible therapeutic implications. Herein, we review the recent advances in the cellular functions of RHA and discuss its implication in oncogenesis, providing a perspective for future studies and potential translational opportunities in human cancer.
Collapse
Affiliation(s)
- Marco Fidaleo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy
| | - Elisa De Paola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Laboratory of Cellular and Molecular Neurobiology, CERC, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
98
|
Serikawa T, Spanos C, von Hacht A, Budisa N, Rappsilber J, Kurreck J. Comprehensive identification of proteins binding to RNA G-quadruplex motifs in the 5' UTR of tumor-associated mRNAs. Biochimie 2017; 144:169-184. [PMID: 29129743 DOI: 10.1016/j.biochi.2017.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
G-quadruplex structures in the 5' UTR of mRNAs are widely considered to suppress translation without affecting transcription. The current study describes the comprehensive analysis of proteins binding to four different G-quadruplex motifs located in mRNAs of the cancer-related genes Bcl-2, NRAS, MMP16, and ARPC2. Following metabolic labeling (Stable Isotope Labeling with Amino acids in Cell culture, SILAC) of proteins in the human cell line HEK293, G-quadruplex binding proteins were enriched by pull-down assays and identified by LC-orbitrap mass spectrometry. We found different patterns of interactions for the G-quadruplex motifs under investigation. While the G-quadruplexes in the mRNAs of NRAS and MMP16 specifically interacted with a small number of proteins, the Bcl-2 and ARPC2 G-quadruplexes exhibited a broad range of proteinaceous interaction partners with 99 and 82 candidate proteins identified in at least two replicates, respectively. The use of a control composed of samples from all G-quadruplex-forming sequences and their mutated controls ensured that the identified proteins are specific for RNA G-quadruplex structures and are not general RNA-binding proteins. Independent validation experiments based on pull-down assays and Western blotting confirmed the MS data. Among the interaction partners were many proteins known to bind to RNA, including multiple heterogenous nuclear ribonucleoproteins (hnRNPs). Several of the candidate proteins are likely to reflect stalling of the ribosome by RNA G-quadruplex structures. Interestingly, additional proteins were identified that have not previously been described to interact with RNA. Gene ontology analysis of the candidate proteins revealed that many interaction partners are known to be tumor related. The majority of the identified RNA G-quadruplex interacting proteins are thought to be involved in post-transcriptional processes, particularly in splicing. These findings indicate that protein-G-quadruplex interactions are not only important for the fine-tuning of translation but are also relevant to the regulation of mRNA maturation and may play an important role in tumor biology. Proteomic data are available via ProteomeXchange with identifier PXD005761.
Collapse
Affiliation(s)
- Tatsuo Serikawa
- Department of Applied Biochemistry, Institute of Biotechnology, TIB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Annekathrin von Hacht
- Department of Applied Biochemistry, Institute of Biotechnology, TIB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Nediljko Budisa
- Department of Biocatalysis, Institute of Chemistry, L 1, Technische Universität Berlin, Müller-Breslau-Straße 10, 10623, Berlin, Germany
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK; Department of Bioanalytics, Institute of Biotechnology, TIB 4/4-3, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, TIB 4/3-2, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|
99
|
Baralle M, Baralle FE. The splicing code. Biosystems 2017; 164:39-48. [PMID: 29122587 DOI: 10.1016/j.biosystems.2017.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/09/2023]
Abstract
This issue dedicated to the code of life tackles very challenging and open questions in Biology. The genetic code, brilliantly uncovered over 50 years ago is an example of a univocal biological code. In fact, except for very few and marginal variations, it is the same from bacteria to man, the RNA stretch: 5' GUGUUC 3' reads as the dipeptide: Val-Phe in bacteria, in yeast, in Arabidopsis, in zebra fish, in mouse and in human. A degree of ambiguity is possible if mutations are introduced in the tRNAs in a way that the anticodon reads one amino acid but the aminoacyl-transferase attaches a different one onto the tRNA. These were the very useful suppressor genes that aided greatly the study of bacterial genetics. Other biological codes however, are more akin to social codes and are less amenable to an unambiguous deciphering. Legal and ethical codes, weather we like it or not, are flexible and depend on the structure and history of the society that has produced them, as well as a specific point in time. The codes that govern RNA splicing have similar characteristics. In fact, the splicing code depends on a myriad of different factors that in part are influenced by the background in which they are read such as different cells, tissues or developmental stages. Given the complexity of the splicing process, the construction of an algorithm that can define exons or their fate with certainty has not yet been achieved. However a substantial amount of information towards the deciphering of the splicing code has been gathered and in this manuscript we summarize the point reached.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, Italy.
| | | |
Collapse
|
100
|
Ozdilek BA, Thompson VF, Ahmed NS, White CI, Batey RT, Schwartz JC. Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding. Nucleic Acids Res 2017; 45:7984-7996. [PMID: 28575444 PMCID: PMC5570134 DOI: 10.1093/nar/gkx460] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
RGG/RG domains are the second most common RNA binding domain in the human genome, yet their RNA-binding properties remain poorly understood. Here, we report a detailed analysis of the RNA binding characteristics of intrinsically disordered RGG/RG domains from Fused in Sarcoma (FUS), FMRP and hnRNPU. For FUS, previous studies defined RNA binding as mediated by its well-folded domains; however, we show that RGG/RG domains are the primary mediators of binding. RGG/RG domains coupled to adjacent folded domains can achieve affinities approaching that of full-length FUS. Analysis of RGG/RG domains from FUS, FMRP and hnRNPU against a spectrum of contrasting RNAs reveals that each display degenerate binding specificity, while still displaying different degrees of preference for RNA.
Collapse
Affiliation(s)
- Bagdeser A Ozdilek
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Campus Box 347, Boulder, CO 80309, USA
| | - Valery F Thompson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Nasiha S Ahmed
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA.,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Connor I White
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado, Campus Box 596, Boulder, CO 80309, USA
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|