51
|
Kanonenberg K, Spitz O, Erenburg IN, Beer T, Schmitt L. Type I secretion system—it takes three and a substrate. FEMS Microbiol Lett 2018; 365:4966979. [DOI: 10.1093/femsle/fny094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Isabelle N Erenburg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tobias Beer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
52
|
Ravindran A, Saenkham P, Levy J, Tamborindeguy C, Lin H, Gross DC, Pierson E. Characterization of the Serralysin-Like Gene of 'Candidatus Liberibacter solanacearum' Associated with Potato Zebra Chip Disease. PHYTOPATHOLOGY 2018; 108:327-335. [PMID: 29106346 DOI: 10.1094/phyto-02-17-0064-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nonculturable bacterium 'Candidatus Liberibacter solanacearum' is the causative agent of zebra chip disease in potato. Computational analysis of the 'Ca. L. solanacearum' genome revealed a serralysin-like gene based on conserved domains characteristic of genes encoding metalloprotease enzymes similar to serralysin. Serralysin and other serralysin family metalloprotease are typically characterized as virulence factors and are secreted by the type I secretion system (T1SS). The 'Ca. L. solanacearum' serralysin-like gene is located next to and divergently transcribed from genes encoding a T1SS. Based on its relationship to the T1SS and the role of other serralysin family proteases in circumventing host antimicrobial defenses, it was speculated that a functional 'Ca. L. solanacearum' serralysin-like protease could be a potent virulence factor. Gene expression analysis showed that, from weeks 2 to 6, the expression of the 'Ca. L. solanacearum' serralysin-like gene was at least twofold higher than week 1, indicating that gene expression stays high as the disease progresses. A previously constructed serralysin-deficient mutant of Serratia liquefaciens FK01, an endophyte associated with insects, as well as an Escherichia coli lacking serralysin production were used as surrogates for expression analysis of the 'Ca. L. solanacearum' serralysin-like gene. The LsoA and LsoB proteins were expressed as both intact proteins and chimeric S. liquefaciens-'Ca. L. solanacearum' serralysin-like proteins to facilitate secretion in the S. liquefaciens surrogate and as intact proteins or as a truncated LsoB protein containing just the putative catalytic domains in the E. coli surrogate. None of the 'Ca. L. solanacearum' protein constructs expressed in either surrogate demonstrated proteolytic activity in skim milk or zymogram assays, or in colorimetric assays using purified protein, suggesting that the 'Ca. L. solanacearum' serralysin-like gene does not encode a functional protease, or at least not in our surrogate systems.
Collapse
Affiliation(s)
- Aravind Ravindran
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Panatda Saenkham
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Julien Levy
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Cecilia Tamborindeguy
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Hong Lin
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Dennis C Gross
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Elizabeth Pierson
- First and sixth authors: Department of Plant Pathology and Microbiology, second, third, and seventh authors: Department of Horticultural Sciences, and fourth author: Department of Entomology, Texas A&M University, College Station 77843; and fifth author: Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
53
|
Polyviou D, Baylay AJ, Hitchcock A, Robidart J, Moore CM, Bibby TS. Desert Dust as a Source of Iron to the Globally Important Diazotroph Trichodesmium. Front Microbiol 2018; 8:2683. [PMID: 29387046 PMCID: PMC5776111 DOI: 10.3389/fmicb.2017.02683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
The marine cyanobacterium Trichodesmium sp. accounts for approximately half of the annual ‘new’ nitrogen introduced to the global ocean but its biogeography and activity is often limited by the availability of iron (Fe). A major source of Fe to the open ocean is Aeolian dust deposition in which Fe is largely comprised of particles with reduced bioavailability over soluble forms of Fe. We report that Trichodesmium erythraeum IMS101 has improved growth rate and photosynthetic physiology and down-regulates Fe-stress biomarker genes when cells are grown in the direct vicinity of, rather than physically separated from, Saharan dust particles as the sole source of Fe. These findings suggest that availability of non-soluble forms of dust-associated Fe may depend on cell contact. Transcriptomic analysis further reveals unique profiles of gene expression in all tested conditions, implying that Trichodesmium has distinct molecular signatures related to acquisition of Fe from different sources. Trichodesmium thus appears to be capable of employing specific mechanisms to access Fe from complex sources in oceanic systems, helping to explain its role as a key microbe in global biogeochemical cycles.
Collapse
Affiliation(s)
- Despo Polyviou
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Alison J Baylay
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Sheffield, United Kingdom
| | - Julie Robidart
- Ocean Technology and Engineering Group, National Oceanography Centre, Southampton, United Kingdom
| | - C M Moore
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Thomas S Bibby
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| |
Collapse
|
54
|
Murata D, Okano H, Angkawidjaja C, Akutsu M, Tanaka SI, Kitahara K, Yoshizawa T, Matsumura H, Kado Y, Mizohata E, Inoue T, Sano S, Koga Y, Kanaya S, Takano K. Structural Basis for the Serratia marcescens Lipase Secretion System: Crystal Structures of the Membrane Fusion Protein and Nucleotide-Binding Domain. Biochemistry 2017; 56:6281-6291. [PMID: 29094929 DOI: 10.1021/acs.biochem.7b00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Serratia marcescens secretes a lipase, LipA, through a type I secretion system (T1SS). The T1SS for LipA, the Lip system, is composed of an inner membrane ABC transporter with its nucleotide-binding domains (NBD), LipB, a membrane fusion protein, LipC, and an outer membrane channel protein, LipD. Passenger protein secreted by this system has been functionally and structurally characterized well, but relatively little information about the transporter complex is available. Here, we report the crystallographic studies of LipC without the membrane anchor region, LipC-, and the NBD of LipB (LipB-NBD). LipC- crystallographic analysis has led to the determination of the structure of the long α-helical and lipoyl domains, but not the area where it interacts with LipB, suggesting that the region is flexible without LipB. The long α-helical domain has three α-helices, which interacts with LipD in the periplasm. LipB-NBD has the common overall architecture and ATP hydrolysis activity of ABC transporter NBDs. Using the predicted models of full-length LipB and LipD, the overall structural insight into the Lip system is discussed.
Collapse
Affiliation(s)
- Daichi Murata
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hiroyuki Okano
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Clement Angkawidjaja
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt , Max-von-Laue-Straße, 60438 Frankfurt am Main, Germany
| | - Shun-Ichi Tanaka
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Kenyu Kitahara
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University , Noji-Higashi, Kusatsu 525-8577, Japan
| | - Yuji Kado
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Eiichi Mizohata
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Tsuyoshi Inoue
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Satoshi Sano
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Shigenori Kanaya
- Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University , Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
55
|
Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins (Basel) 2017; 9:toxins9100300. [PMID: 28946636 PMCID: PMC5666347 DOI: 10.3390/toxins9100300] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023] Open
Abstract
Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMβ₂) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3',5'-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.
Collapse
|
56
|
Hepp C, Maier B. Bacterial Translocation Ratchets: Shared Physical Principles with Different Molecular Implementations: How bacterial secretion systems bias Brownian motion for efficient translocation of macromolecules. Bioessays 2017; 39. [PMID: 28895164 DOI: 10.1002/bies.201700099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/02/2017] [Indexed: 12/20/2022]
Abstract
Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism.
Collapse
Affiliation(s)
- Christof Hepp
- Department of Physics Universität zu Köln, Köln, Nordrhein-Westfalen, Germany
| | - Berenike Maier
- Department of Physics Universität zu Köln, Köln, Nordrhein-Westfalen, Germany
| |
Collapse
|
57
|
Lima S, Oliveira P, Tamagnini P. The secretion signal peptide of the cyanobacterial extracellular protein HesF is located at its C-terminus. FEMS Microbiol Lett 2017; 364:4036450. [PMID: 28859322 DOI: 10.1093/femsle/fnx160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/25/2017] [Indexed: 11/14/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes, capable of sustaining their growth by converting sunlight into chemical energy by fixing CO2 into organic matter. The cyanobacterium Anabaena sp. PCC 7120 is also capable of fixing atmospheric nitrogen, a metabolic process that occurs in specialized cells, the heterocysts. During the process of heterocyst differentiation, drastic morphological changes occur to prepare the future differentiated cell to accommodate the nitrogen fixation metabolism, which is a highly O2-sensitive process. Recently, we identified an unknown extracellular protein (termed HesF) in Anabaena sp. PCC 7120 and found it to be required for the proper deposition of the polysaccharide layers in the heterocyst cell wall. HesF is a non-classical type I secretion system (T1SS)-dependent secreted substrate, and its secretion signal remained elusive. Here, we report that the secretion signal of HesF is located in its C-terminus. We present evidence that a heterologous reporter protein fused with HesF's secretion signal could be successfully expressed in heterocysts and secreted to the extracellular medium, following hesF's native regulation. This represents the first time that the secretion signal of a cyanobacterial T1SS-dependent substrate is identified, and demonstrates the feasibility of using cyanobacteria for selected protein expression and secretion.
Collapse
Affiliation(s)
- Steeve Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, 4169-007 Porto, Portugal
| | - Paulo Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
58
|
Vázquez RF, Daza Millone MA, Pavinatto FJ, Herlax VS, Bakás LS, Oliveira ON, Vela ME, Maté SM. Interaction of acylated and unacylated forms of E. coli alpha-hemolysin with lipid monolayers: a PM-IRRAS study. Colloids Surf B Biointerfaces 2017; 158:76-83. [PMID: 28683345 DOI: 10.1016/j.colsurfb.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 11/18/2022]
Abstract
Uropathogenic strains of Escherichia coli produce virulence factors, such as the protein toxin alpha-hemolysin (HlyA), that enable the bacteria to colonize the host and establish an infection. HlyA is synthetized as a protoxin (ProHlyA) that is transformed into the active form in the bacterial cytosol by the covalent linkage of two fatty-acyl moieties to the polypeptide chain before the secretion of HlyA into the extracellular medium. The aim of this work was to investigate the effect of the fatty acylation of HlyA on protein conformation and protein-membrane interactions. Polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) experiments were performed at the air-water interface, and lipid monolayers mimicking the outer leaflet of red-blood-cell membranes were used as model systems for the study of protein-membrane interaction. According to surface-pressure measurements, incorporation of the acylated protein into the lipid films was faster than that of the nonacylated form. PM-IRRAS measurements revealed that the adsorption of the proteins to the lipid monolayers induced disorder in the lipid acyl chains and also changed the elastic properties of the films independently of protein acylation. No significant difference was observed between HlyA and ProHlyA in the interaction with the model lipid monolayers; but when these proteins became adsorbed on a bare air-water interface, they adopted different secondary structures. The assumption of the correct protein conformation at a hydrophobic-hydrophilic interface could constitute a critical condition for biologic activity.
Collapse
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - María A Daza Millone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT- La Plata, CONICET. Universidad Nacional de La Plata, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Felippe J Pavinatto
- Instituto de Física de São Carlos (IFSC), Universidade de São Paulo, SP, Brazil
| | - Vanesa S Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Laura S Bakás
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas. Universidad Nacional de La Plata. 47 y 115, 1900, La Plata, Argentina
| | - Osvaldo N Oliveira
- Instituto de Física de São Carlos (IFSC), Universidade de São Paulo, SP, Brazil
| | - María E Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT- La Plata, CONICET. Universidad Nacional de La Plata, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET. Facultad de Ciencias Médicas. Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
59
|
Baglinière F, Salgado RL, Salgado CA, Vanetti MCD. Biochemical Characterization of an Extracellular Heat-Stable Protease fromSerratia liquefaciensIsolated from Raw Milk. J Food Sci 2017; 82:952-959. [DOI: 10.1111/1750-3841.13660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/04/2017] [Accepted: 01/23/2017] [Indexed: 11/27/2022]
Affiliation(s)
- François Baglinière
- Dept. of Microbiology; Federal Univ. of Viçosa; Viçosa MG 36.570-900 Brazil
- CAPES Foundation; Ministry of Education of Brazil; Brasília DF 70.040-020 Brazil
| | | | | | | |
Collapse
|
60
|
Denesyuk AI, Permyakov SE, Johnson MS, Permyakov EA, Denessiouk K. Novel calcium recognition constructions in proteins: Calcium blade and EF-hand zone. Biochem Biophys Res Commun 2017; 483:958-963. [PMID: 28089868 DOI: 10.1016/j.bbrc.2017.01.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022]
Abstract
Metal ions can regulate various cell processes being first, second or third messengers, and some of them, especially transition metal ions, take part in catalysis in many enzymes. As an intracellular ion, Ca2+ is involved in many cellular functions from fertilization and contraction, cell differentiation and proliferation, to apoptosis and cancer. Here, we have identified and described two novel calcium recognition environments in proteins: the calcium blade zone and the EF-hand zone, common to 12 and 8 different protein families, respectively. Each of the two environments contains three distinct structural elements: (a) the well-known characteristic Dx[DN]xDG motif; (b) an adjacent structurally identical segment, which binds metal ion in the same way between the calcium blade zone and the EF-hand zone; and (c) the following structurally variable segment, which distinguishes the calcium blade zone from the EF-hand zone. Both zones have sequence insertions between the last residue of the zone and calcium-binding residues in positions V or VI. The long insertion often connects the active and the calcium-binding sites in proteins. Using the structurally identical segments as an anchor, we were able to construct the classical calmodulin type EF-hand calcium-binding site out of two different calcium-binding motifs from two unrelated proteins.
Collapse
Affiliation(s)
- Alexander I Denesyuk
- Faculty of Science and Engineering, Åbo Akademi University, Turku 20500, Finland; Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Mark S Johnson
- Faculty of Science and Engineering, Åbo Akademi University, Turku 20500, Finland
| | - Eugene A Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Konstantin Denessiouk
- Molecular Plant Biology, Department of Biochemistry, University of Turku, Turku 20520, Finland
| |
Collapse
|
61
|
Xu D, Zhou J, Lou X, He J, Ran T, Wang W. Myroilysin Is a New Bacterial Member of the M12A Family of Metzincin Metallopeptidases and Is Activated by a Cysteine Switch Mechanism. J Biol Chem 2017; 292:5195-5206. [PMID: 28188295 DOI: 10.1074/jbc.m116.758110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/01/2017] [Indexed: 11/06/2022] Open
Abstract
Proteases play important roles in all living organisms and also have important industrial applications. Family M12A metalloproteases, mainly found throughout the animal kingdom, belong to the metzincin protease family and are synthesized as inactive precursors. So far, only flavastacin and myroilysin, isolated from bacteria, were reported to be M12A proteases, whereas the classification of myroilysin is still unclear due to the lack of structural information. Here, we report the crystal structures of pro-myroilysin from bacterium Myroides sp. cslb8. The catalytic zinc ion of pro-myroilysin, at the bottom of a deep active site, is coordinated by three histidine residues in the conserved motif HEXXHXXGXXH; the cysteine residue in the pro-peptide coordinates the catalytic zinc ion and inhibits myroilysin activity. Structure comparisons revealed that myroilysin shares high similarity with the members of the M12A, M10A, and M10B families of metalloproteases. However, a unique "cap" structure tops the active site cleft in the structure of pro-myroilysin, and this "cap" structure does not exist in the above structure-reported subfamilies. Further structure-based sequence analysis revealed that myroilysin appears to belong to the M12A family, but pro-myroilysin uses a "cysteine switch" activation mechanism with a unique segment, including the conserved cysteine residue, whereas other reported M12A family proteases use an "aspartate switch" activation mechanism. Thus, our results suggest that myroilysin is a new bacterial member of the M12A family with an exceptional cysteine switch activation mechanism. Our results shed new light on the classification of the M12A family and may suggest a divergent evolution of the M12 family.
Collapse
Affiliation(s)
- Dongqing Xu
- From the Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China and
| | - Jiale Zhou
- From the Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China and
| | - Xiangdi Lou
- From the Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China and
| | - Jianhua He
- the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Tingting Ran
- From the Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China and
| | - Weiwu Wang
- From the Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China and
| |
Collapse
|
62
|
Holland IB, Peherstorfer S, Kanonenberg K, Lenders M, Reimann S, Schmitt L. Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus 2016; 7. [PMID: 28084193 PMCID: PMC11575716 DOI: 10.1128/ecosalplus.esp-0019-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/08/2023]
Abstract
A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology (I2BC) and Institute of Genetics and Microbiology, University Paris-Sud, Orsay 91450, France
| | - Sandra Peherstorfer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Lenders
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
63
|
Sharma S, Meena LS. Potential of Ca 2+ in Mycobacterium tuberculosis H 37Rv Pathogenesis and Survival. Appl Biochem Biotechnol 2016; 181:762-771. [PMID: 27660000 DOI: 10.1007/s12010-016-2247-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022]
Abstract
The host-pathogen interaction and involvement of calcium (Ca2+) signaling in tuberculosis infection is crucial and plays a significant role in pathogenesis. Ca2+ is known as a ubiquitous second messenger that could control multiple processes and is included in cellular activities like division, motility, stress response, and signaling. However, Ca2+ is thought to be a regulative molecule in terms of TB infection but its binding relation with proteins/substrates molecules which are influenced with Ca2+ concentrations in host-pathogen interaction requires attention. So, in this review, our primary goal is to focus on some Ca2+ substrates/proteins and their imperative involvement in pathogenesis, which is unclear. We have discussed several Ca2+-binding substrate and protein that affect intracellular mechanism of infected host cell. The major involvement of these proteins/substrates including calmodulin (CaM), calpain, annexin, surfactant protein A (SP-A), surfactant protein D (SP-D), calprotectin (MRP8/14), and PE_PGRS family protein are considered to be significant; however, their detailed understanding in mycobacterium infection is limited. In this aspect, this study will help in adding up our understanding in TB biology and additionally in the development of new therapeutic approach to reduce TB pandemic worldwide.
Collapse
Affiliation(s)
- Somya Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi, 110007, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi, 110007, India.
| |
Collapse
|
64
|
Masin J, Osickova A, Sukova A, Fiser R, Halada P, Bumba L, Linhartova I, Osicka R, Sebo P. Negatively charged residues of the segment linking the enzyme and cytolysin moieties restrict the membrane-permeabilizing capacity of adenylate cyclase toxin. Sci Rep 2016; 6:29137. [PMID: 27581058 PMCID: PMC5007505 DOI: 10.1038/srep29137] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins.
Collapse
Affiliation(s)
- Jiri Masin
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Sukova
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radovan Fiser
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Halada
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Irena Linhartova
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
65
|
Depluverez S, Devos S, Devreese B. The Role of Bacterial Secretion Systems in the Virulence of Gram-Negative Airway Pathogens Associated with Cystic Fibrosis. Front Microbiol 2016; 7:1336. [PMID: 27625638 PMCID: PMC5003817 DOI: 10.3389/fmicb.2016.01336] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited disorder in Caucasians. It is caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. A defect in the CFTR ion channel causes a dramatic change in the composition of the airway surface fluid, leading to a highly viscous mucus layer. In healthy individuals, the majority of bacteria trapped in the mucus layer are removed and destroyed by mucociliary clearance. However, in the lungs of patients with CF, the mucociliary clearance is impaired due to dehydration of the airway surface fluid. As a consequence, patients with CF are highly susceptible to chronic or intermittent pulmonary infections, often causing extensive lung inflammation and damage, accompanied by a decreased life expectancy. This mini review will focus on the different secretion mechanisms used by the major bacterial CF pathogens to release virulence factors, their role in resistance and discusses the potential for therapeutically targeting secretion systems.
Collapse
Affiliation(s)
- Sofie Depluverez
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Simon Devos
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Bart Devreese
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| |
Collapse
|
66
|
Interdomain regulation of the ATPase activity of the ABC transporter haemolysin B from Escherichia coli. Biochem J 2016; 473:2471-83. [DOI: 10.1042/bcj20160154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/07/2016] [Indexed: 12/27/2022]
Abstract
Type 1 secretion systems (T1SS) transport a wide range of substrates across both membranes of Gram-negative bacteria and are composed of an outer membrane protein, a membrane fusion protein and an ABC (ATP-binding cassette) transporter. The ABC transporter HlyB (haemolysin B) is part of a T1SS catalysing the export of the toxin HlyA in E. coli. HlyB consists of the canonical transmembrane and nucleotide-binding domains. Additionally, HlyB contains an N-terminal CLD (C39-peptidase-like domain) that interacts with the transport substrate, but its functional relevance is still not precisely defined. In the present paper, we describe the purification and biochemical characterization of detergent-solubilized HlyB in the presence of its transport substrate. Our results exhibit a positive co-operativity in ATP hydrolysis. We characterized further the influence of the CLD on kinetic parameters by using an HlyB variant lacking the CLD (HlyB∆CLD). The biochemical parameters of HlyB∆CLD revealed an increased basal maximum velocity but no change in substrate-binding affinity in comparison with full-length HlyB. We also assigned a distinct interaction of the CLD and a transport substrate (HlyA1), leading to an inhibition of HlyB hydrolytic activity at low HlyA1 concentrations. At higher HlyA1 concentrations, we observed a stimulation of the hydrolytic activities of both HlyB and HlyB∆CLD, which was completely independent of the interaction of HlyA1 with the CLD. Notably, all observed effects on ATPase activity, which were also analysed in detail by mass spectrometry, were independent of the HlyA1 secretion signal. These results assign an interdomain regulatory role for the CLD modulating the hydrolytic activity of HlyB.
Collapse
|
67
|
Yeruva VC, Kulkarni A, Khandelwal R, Sharma Y, Raghunand TR. The PE_PGRS Proteins of Mycobacterium tuberculosis Are Ca2+ Binding Mediators of Host–Pathogen Interaction. Biochemistry 2016; 55:4675-87. [DOI: 10.1021/acs.biochem.6b00289] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Veena C. Yeruva
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Apoorva Kulkarni
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
68
|
Jaffar N, Miyazaki T, Maeda T. Biofilm formation of periodontal pathogens on hydroxyapatite surfaces: Implications for periodontium damage. J Biomed Mater Res A 2016; 104:2873-80. [PMID: 27390886 DOI: 10.1002/jbm.a.35827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 11/05/2022]
Abstract
Biofilm formation of periodontal pathogens on teeth surfaces promotes the progression of periodontal disease. Hence, understanding the mechanisms of bacterial attachment to the dental surfaces may inform strategies for the maintenance of oral health. Although hydroxyapatite (HA) is a major calcium phosphate component of teeth, effect of biofilm formation on HA surfaces remains poorly characterized. In this study, biofilm-forming abilities by the periodontal pathogens Aggregatibacter actinomycetemcomitans Y4 and Porphyromonas gingivalis 381 were investigated on dense and porous HAs that represent enamel and dentin surfaces, respectively. These experiments showed greater biofilm formation on porous HA, but differing attachment profiles and effects of the two pathogens. Specifically, while the detachment of A. actinomycetemcomitans Y4 biofilm was observed, P. gingivalis 381 biofilm increased with time. Moreover, observations of HA morphology following formation of A. actinomycetemcomitans Y4 biofilm revealed gaps between particles, whereas no significant changes were observed in the presence of P. gingivalis 381. Finally, comparisons of calcium leakage showed only slight differences between bacterial species and HA types and may be masked by bacterial calcium uptake. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2873-2880, 2016.
Collapse
Affiliation(s)
- Norzawani Jaffar
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan.,Faculty of Health Sciences, Gong Badak Campus, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Terengganu Darul Iman, Malaysia
| | - Toshiki Miyazaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan
| | - Toshinari Maeda
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan. .,Research Center for Advanced Eco-Fitting Technology, Kyushu Institute of Technology, Kitakyushu, Japan.
| |
Collapse
|
69
|
Marchadier E, Oates ME, Fang H, Donoghue PCJ, Hetherington AM, Gough J. Evolution of the Calcium-Based Intracellular Signaling System. Genome Biol Evol 2016; 8:2118-32. [PMID: 27358427 PMCID: PMC4987107 DOI: 10.1093/gbe/evw139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To progress our understanding of molecular evolution from a collection of well-studied genes toward the level of the cell, we must consider whole systems. Here, we reveal the evolution of an important intracellular signaling system. The calcium-signaling toolkit is made up of different multidomain proteins that have undergone duplication, recombination, sequence divergence, and selection. The picture of evolution, considering the repertoire of proteins in the toolkit of both extant organisms and ancestors, is radically different from that of other systems. In eukaryotes, the repertoire increased in both abundance and diversity at a far greater rate than general genomic expansion. We describe how calcium-based intracellular signaling evolution differs not only in rate but in nature, and how this correlates with the disparity of plants and animals.
Collapse
Affiliation(s)
- Elodie Marchadier
- Life Sciences Building, University of Bristol, United Kingdom GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Matt E Oates
- Department of Computer Sciences, University of Bristol, United Kingdom
| | - Hai Fang
- Department of Computer Sciences, University of Bristol, United Kingdom
| | | | | | - Julian Gough
- Department of Computer Sciences, University of Bristol, United Kingdom
| |
Collapse
|
70
|
Abstract
Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins are a heterogeneous group of toxins found in a number of Vibrio species and other Gram-negative bacteria. The toxins are composed of conserved repeat regions and an autoprocessing protease domain that together function as a delivery platform for transfer of cytotoxic and cytopathic domains into target eukaryotic cell cytosol. Within the cells, the effectors can alter biological processes such as signaling or cytoskeletal structure, presumably to the benefit of the bacterium. Ten effector domains are found in the various Vibrio MARTX toxins, although any one toxin carries only two to five effector domains. The specific toxin variant expressed by a species can be modified by homologous recombination to acquire or lose effector domains, such that different strains within the same species can express distinct variants of the toxins. This review examines the conserved structural elements of the MARTX toxins and details the different toxin arrangements carried by Vibrio species and strains. The catalytic function of domains and how the toxins are linked to pathogenesis of human and animals is described.
Collapse
|
71
|
Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, Klimova N, Bednarova L, Veverka V, Kachala M, Svergun D, Barinka C, Sebo P. Calcium-Driven Folding of RTX Domain β-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts. Mol Cell 2016; 62:47-62. [DOI: 10.1016/j.molcel.2016.03.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 12/31/2015] [Accepted: 03/15/2016] [Indexed: 11/17/2022]
|
72
|
Basu K, Campbell RL, Guo S, Sun T, Davies PL. Modeling repetitive, non-globular proteins. Protein Sci 2016; 25:946-58. [PMID: 26914323 DOI: 10.1002/pro.2907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 11/07/2022]
Abstract
While ab initio modeling of protein structures is not routine, certain types of proteins are more straightforward to model than others. Proteins with short repetitive sequences typically exhibit repetitive structures. These repetitive sequences can be more amenable to modeling if some information is known about the predominant secondary structure or other key features of the protein sequence. We have successfully built models of a number of repetitive structures with novel folds using knowledge of the consensus sequence within the sequence repeat and an understanding of the likely secondary structures that these may adopt. Our methods for achieving this success are reviewed here.
Collapse
Affiliation(s)
- Koli Basu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Robert L Campbell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Shuaiqi Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Tianjun Sun
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
73
|
Identification and characterization of a heat-resistant protease from Serratia liquefaciens isolated from Brazilian cold raw milk. Int J Food Microbiol 2016; 222:65-71. [PMID: 26874224 DOI: 10.1016/j.ijfoodmicro.2016.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 01/12/2016] [Accepted: 01/23/2016] [Indexed: 11/24/2022]
Abstract
The cold storage of raw milk before heat treatment in dairy industry promotes the growth of psychrotrophic microorganisms, which are known for their ability to produce heat-resistant proteolytic enzymes. Although Pseudomonas is described as the main causative genus for high proteolytic spoilage potential in dairy products, Serratia liquefaciens secretes proteases and may be found in raw milk samples as well. However, at the present there is no information about the proteolytic spoilage potential of S. liquefaciens in milk after heat-treatment. The main aim of this research was to assess the proteolytic spoilage potential of S. liquefaciens isolated from Brazilian raw milk and to characterize the involved protease. S. liquefaciens was shown to secrete one heat-resistant spoilage metalloprotease of, approximately, 52 kDa encoded by the ser2 gene. The heat-resistance of Ser2 was similar to the aprX encoded metalloprotease produced by Pseudomonas. Although the ser2 gene was detected in all S. liquefaciens isolates tested in this study, the proteolytic activity of the isolates in milk was highly heterogeneous. Since nucleotide and deduced amino acid sequences of ser2 of all tested isolates are identical, this heterogeneity may be attributed to differences in enzyme expression levels or post-translational modifications.
Collapse
|
74
|
Oliveira P, Martins NM, Santos M, Pinto F, Büttel Z, Couto NAS, Wright PC, Tamagnini P. The versatile TolC-like Slr1270 in the cyanobacteriumSynechocystissp. PCC 6803. Environ Microbiol 2016; 18:486-502. [DOI: 10.1111/1462-2920.13172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/04/2015] [Accepted: 12/01/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Paulo Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Nuno M. Martins
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
| | - Marina Santos
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Filipe Pinto
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Zsófia Büttel
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Narciso A. S. Couto
- ChELSI Institute; Chemical and Biological Engineering; University of Sheffield; Sheffield UK
| | - Phillip C. Wright
- ChELSI Institute; Chemical and Biological Engineering; University of Sheffield; Sheffield UK
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
| |
Collapse
|
75
|
Wu D, Ran T, Wang W, Xu D. Structure of a thermostable serralysin from Serratia sp. FS14 at 1.1 Å resolution. Acta Crystallogr F Struct Biol Commun 2016; 72:10-5. [PMID: 26750478 PMCID: PMC4708044 DOI: 10.1107/s2053230x15023092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/01/2015] [Indexed: 11/10/2022] Open
Abstract
Serralysin is a well studied metalloprotease, and typical serralysins are not thermostable. The serralysin isolated from Serratia sp. FS14 was found to be thermostable, and in order to reveal the mechanism responsible for its thermostability, the crystal structure of serralysin from Serratia sp. FS14 was solved to a crystallographic R factor of 0.1619 at 1.10 Å resolution. Similar to its homologues, it mainly consists of two domains: an N-terminal catalytic domain and a `parallel β-roll' C-terminal domain. Comparative studies show that the shape of the catalytic active-site cavity is more open owing to the 189-198 loop, with a short 310-helix protruding further from the molecular surface, and that the β-sheets comprising the `parallel β-roll' are longer than those in its homologues. The formation of hydrogen bonds from one of the nonconserved residues (Asn200) to Lys27 may contribute to the thermostability.
Collapse
Affiliation(s)
- Dongxia Wu
- Department of Microbiology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, People’s Republic of China
| | - Tinting Ran
- Department of Microbiology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, People’s Republic of China
| | - Weiwu Wang
- Department of Microbiology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, People’s Republic of China
| | - Dongqing Xu
- Department of Microbiology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, People’s Republic of China
| |
Collapse
|
76
|
Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:526-37. [PMID: 26523409 DOI: 10.1016/j.bbamem.2015.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022]
Abstract
The pore-forming cytolysins of the RTX-toxin (Repeats in ToXin) family are a relatively small fraction of a steadily increasing family of proteins that contain several functionally important glycine-rich and aspartate containing nonapeptide repeats. These cytolysins produced by a variety of Gram-negative bacteria form ion-permeable channels in erythrocytes and other eukaryotic cells. Hemolytic and cytolytic RTX-toxins represent pathogenicity factors of the toxin-producing bacteria and are very often important key factors in pathogenesis of the bacteria. Channel formation by RTX-toxins lead to the dissipation of ionic gradients and membrane potential across the cytoplasmic membrane of target cells, which results in cell death. Here we discuss channel formation and channel properties of some of the best known RTX-toxins, such as α-hemolysin (HlyA) of Escherichia coli and the uropathogenic EHEC strains, the adenylate cyclase toxin (ACT, CyaA) of Bordetella pertussis and the RTX-toxins (ApxI, ApxII and ApxIII) produced by different strains of Actinobacillus pleuropneumoniae. The channels formed by these RTX-toxins in lipid bilayers share some common properties such as cation selectivity and voltage-dependence. Furthermore the channels are transient and show frequent switching between different ion-conducting states. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
77
|
The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition. Infect Immun 2015; 84:162-71. [PMID: 26502908 DOI: 10.1128/iai.00939-15] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/16/2015] [Indexed: 01/02/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions.
Collapse
|
78
|
Mohammadi M, Sepehrizadeh Z, Ebrahim-Habibi A, Reza Shahverdi A, Ali Faramarzi M, Setayesh N. Bacterial expression and characterization of an active recombinant lipase A from Serratia marcescens with truncated C-terminal region. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
79
|
Zhang L, Morrison AJ, Thibodeau PH. Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens. PLoS One 2015; 10:e0138419. [PMID: 26378460 PMCID: PMC4574703 DOI: 10.1371/journal.pone.0138419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/30/2015] [Indexed: 11/20/2022] Open
Abstract
The serralysin family of bacterial metalloproteases is associated with virulence in multiple modes of infection. These extracellular proteases are members of the Repeats-in-ToXin (RTX) family of toxins and virulence factors, which mediated virulence in E. coli, B. pertussis, and P. aeruginosa, as well as other animal and plant pathogens. The serralysin proteases are structurally dynamic and their folding is regulated by calcium binding to a C-terminal domain that defines the RTX family of proteins. Previous studies have suggested that interactions between N-terminal sequences and this C-terminal domain are important for the high thermal and chemical stabilities of the RTX proteases. Extending from this, stabilization of these interactions in the native structure may lead to hyperstabilization of the folded protein. To test this hypothesis, cysteine pairs were introduced into the N-terminal helix and the RTX domain and protease folding and activity were assessed. Under stringent pH and temperature conditions, the disulfide-bonded mutant showed increased protease activity and stability. This activity was dependent on the redox environment of the refolding reaction and could be blocked by selective modification of the cysteine residues before protease refolding. These data demonstrate that the thermal and chemical stability of these proteases is, in part, mediated by binding between the RTX domain and the N-terminal helix and demonstrate that stabilization of this interaction can further stabilize the active protease, leading to additional pH and thermal tolerance.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
| | - Anneliese J. Morrison
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
| | - Patrick H. Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
- * E-mail:
| |
Collapse
|
80
|
O'Brien DP, Hernandez B, Durand D, Hourdel V, Sotomayor-Pérez AC, Vachette P, Ghomi M, Chamot-Rooke J, Ladant D, Brier S, Chenal A. Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion. Sci Rep 2015; 5:14223. [PMID: 26374675 PMCID: PMC4642704 DOI: 10.1038/srep14223] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/20/2015] [Indexed: 01/28/2023] Open
Abstract
Many Gram-negative bacteria use Type I secretion systems, T1SS, to secrete virulence factors that contain calcium-binding Repeat-in-ToXin (RTX) motifs. Here, we present structural models of an RTX protein, RD, in both its intrinsically disordered calcium-free Apo-state and its folded calcium-bound Holo-state. Apo-RD behaves as a disordered polymer chain comprising several statistical elements that exhibit local rigidity with residual secondary structure. Holo-RD is a folded multi-domain protein with an anisometric shape. RTX motifs thus appear remarkably adapted to the structural and mechanistic constraints of the secretion process. In the low calcium environment of the bacterial cytosol, Apo-RD is an elongated disordered coil appropriately sized for transport through the narrow secretion machinery. The progressive folding of Holo-RD in the extracellular calcium-rich environment as it emerges form the T1SS may then favor its unidirectional export through the secretory channel. This process is relevant for hundreds of bacterial species producing virulent RTX proteins.
Collapse
Affiliation(s)
- Darragh P O'Brien
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Belen Hernandez
- Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 74 rue Marcel Cachin, 93017 Bobigny Cedex, France
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - Véronique Hourdel
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | | | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Université Paris-Sud, F-91405 ORSAY Cedex, France
| | - Mahmoud Ghomi
- Sorbonne Paris Cité, Université Paris 13, Groupe de Biophysique Moléculaire, UFR Santé-Médecine-Biologie Humaine, 74 rue Marcel Cachin, 93017 Bobigny Cedex, France
| | - Julia Chamot-Rooke
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Daniel Ladant
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Sébastien Brier
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| | - Alexandre Chenal
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, 75724 PARIS cedex 15, France
| |
Collapse
|
81
|
Ertesvåg H. Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol 2015; 6:523. [PMID: 26074905 PMCID: PMC4444821 DOI: 10.3389/fmicb.2015.00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022] Open
Abstract
Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M) and α-L-guluronic acid (G). The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g., gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG) and an alginate acetylase (AlgX) are integral parts of the protein complex necessary for alginate polymerization and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. An enzyme from Pseudomonas syringae with alginate deacetylase activity has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Helga Ertesvåg
- Department of Biotechnology, Norwegian University of Science and Technology Trondheim, Norway
| |
Collapse
|
82
|
Distinct roles of the repeat-containing regions and effector domains of the Vibrio vulnificus multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin. mBio 2015; 6:mBio.00324-15. [PMID: 25827415 PMCID: PMC4453568 DOI: 10.1128/mbio.00324-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a seafood-borne pathogen that destroys the intestinal epithelium, leading to rapid bacterial dissemination and death. The most important virulence factor is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin comprised of effector domains in the center region flanked by long repeat-containing regions which are well conserved among MARTX toxins and predicted to translocate effector domains. Here, we examined the role of the repeat-containing regions using a modified V. vulnificus MARTX (MARTXVv) toxin generated by replacing all the internal effector domains with β-lactamase (Bla). Bla activity was detected in secretions from the bacterium and also in the cytosol of intoxicated epithelial cells. The modified MARTXVv toxin without effector domains retained its necrotic activity but lost its cell-rounding activity. Further, deletion of the carboxyl-terminal repeat-containing region blocked toxin secretion from the bacterium. Deletion of the amino-terminal repeat-containing region had no effect on secretion but completely abolished translocation and necrosis. Neither secretion nor translocation was affected by enzymatically inactivating the cysteine protease domain of the toxin. These data demonstrate that the amino-terminal and carboxyl-terminal repeat-containing regions of the MARTXVv toxin are necessary and sufficient for the delivery of effector domains and epithelial cell lysis in vitro but that effector domains are required for other cytopathic functions. Furthermore, Ca2+-dependent secretion of the modified MARTXVv toxin suggests that nonclassical RTX-like repeats found in the carboxyl-terminal repeat-containing region are functionally similar to classical RTX repeats found in other RTX proteins. Up to 95% of deaths from seafood-borne infections in the United States are due solely to one pathogen, V. vulnificus. Among its various virulence factors, the MARTXVv toxin has been characterized as a critical exotoxin for successful pathogenesis of V. vulnificus in mouse infection models. Similarly to MARTX toxins of other pathogens, MARTXVv toxin is comprised of repeat-containing regions, central effector domains, and an autoprocessing cysteine protease domain. Yet how each of these regions contributes to essential activities of the toxins has not been fully identified for any of MARTX toxins. Using modified MARTXVv toxin fused with β-lactamase as a reporter enzyme, the portion(s) responsible for toxin secretion from bacteria, effector domain translocation into host cells, rapid host cell rounding, and necrotic host cell death was identified. The results are relevant for understanding how MARTXVv toxin serves as both a necrotic pore-forming toxin and an effector delivery platform.
Collapse
|
83
|
Ertan H, Cassel C, Verma A, Poljak A, Charlton T, Aldrich-Wright J, Omar SM, Siddiqui KS, Cavicchioli R. A new broad specificity alkaline metalloprotease from a Pseudomonas sp. isolated from refrigerated milk: Role of calcium in improving enzyme productivity. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
84
|
Disorder-to-order transition in the CyaA toxin RTX domain: implications for toxin secretion. Toxins (Basel) 2014; 7:1-20. [PMID: 25559101 PMCID: PMC4303809 DOI: 10.3390/toxins7010001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/24/2014] [Indexed: 11/23/2022] Open
Abstract
The past decade has seen a fundamental reappraisal of the protein structure-to-function paradigm because it became evident that a significant fraction of polypeptides are lacking ordered structures under physiological conditions. Ligand-induced disorder-to-order transition plays a key role in the biological functions of many proteins that contain intrinsically disordered regions. This trait is exhibited by RTX (Repeat in ToXin) motifs found in more than 250 virulence factors secreted by Gram-negative pathogenic bacteria. We have investigated several RTX-containing polypeptides of different lengths, all derived from the Bordetella pertussis adenylate cyclase toxin, CyaA. Using a combination of experimental approaches, we showed that the RTX proteins exhibit the hallmarks of intrinsically disordered proteins in the absence of calcium. This intrinsic disorder mainly results from internal electrostatic repulsions between negatively charged residues of the RTX motifs. Calcium binding triggers a strong reduction of the mean net charge, dehydration and compaction, folding and stabilization of secondary and tertiary structures of the RTX proteins. We propose that the intrinsically disordered character of the RTX proteins may facilitate the uptake and secretion of virulence factors through the bacterial secretion machinery. These results support the hypothesis that the folding reaction is achieved upon protein secretion and, in the case of proteins containing RTX motifs, could be finely regulated by the calcium gradient across bacterial cell wall.
Collapse
|
85
|
Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 2014; 57:151-65. [PMID: 25555683 DOI: 10.1016/j.ceca.2014.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.
Collapse
|
86
|
Zhang L, Franks J, Stolz DB, Conway JF, Thibodeau PH. Inducible polymerization and two-dimensional assembly of the repeats-in-toxin (RTX) domain from the Pseudomonas aeruginosa alkaline protease. Biochemistry 2014; 53:6452-62. [PMID: 25232897 PMCID: PMC4204888 DOI: 10.1021/bi5007546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Self-assembling proteins represent
potential scaffolds for the
organization of enzymatic activities. The alkaline protease repeats-in-toxin
(RTX) domain from Pseudomonas aeruginosa undergoes
multiple structural transitions in the presence and absence of calcium,
a native structural cofactor. In the absence of calcium, this domain
is capable of spontaneous, ordered polymerization, producing amyloid-like
fibrils and large two-dimensional protein sheets. This polymerization
occurs under near-physiological conditions, is rapid, and can be controlled
by regulating calcium in solution. Fusion of the RTX domain to a soluble
protein results in the incorporation of engineered protein function
into these macromolecular assemblies. Applications of this protein
sequence in bacterial adherence and colonization and the generation
of biomaterials are discussed.
Collapse
Affiliation(s)
- Liang Zhang
- Departments of Cell Biology and ‡Structural Biology, The University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15261, United States
| | | | | | | | | |
Collapse
|
87
|
Buchinger E, Knudsen DH, Behrens MA, Pedersen JS, Aarstad OA, Tøndervik A, Valla S, Skjåk-Bræk G, Wimmer R, Aachmann FL. Structural and functional characterization of the R-modules in alginate C-5 epimerases AlgE4 and AlgE6 from Azotobacter vinelandii. J Biol Chem 2014; 289:31382-96. [PMID: 25266718 DOI: 10.1074/jbc.m114.567008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The bacterium Azotobacter vinelandii produces a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1-7). These epimerases are responsible for the epimerization of β-D-mannuronic acid (M) to α-L-guluronic acid (G) in alginate polymers. The epimerases display a modular structure composed of one or two catalytic A-modules and from one to seven R-modules having an activating effect on the A-module. In this study, we have determined the NMR structure of the three individual R-modules from AlgE6 (AR1R2R3) and the overall structure of both AlgE4 (AR) and AlgE6 using small angle x-ray scattering. Furthermore, the alginate binding ability of the R-modules of AlgE4 and AlgE6 has been studied with NMR and isothermal titration calorimetry. The AlgE6 R-modules fold into an elongated parallel β-roll with a shallow, positively charged groove across the module. Small angle x-ray scattering analyses of AlgE4 and AlgE6 show an overall elongated shape with some degree of flexibility between the modules for both enzymes. Titration of the R-modules with defined alginate oligomers shows strong interaction between AlgE4R and both oligo-M and MG, whereas no interaction was detected between these oligomers and the individual R-modules from AlgE6. A combination of all three R-modules from AlgE6 shows weak interaction with long M-oligomers. Exchanging the R-modules between AlgE4 and AlgE6 resulted in a novel epimerase called AlgE64 with increased G-block forming ability compared with AlgE6.
Collapse
Affiliation(s)
- Edith Buchinger
- From the Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Frederik Bajers vej 7H, DK-9220 Aalborg, Denmark, the Department of Biotechnology, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Daniel H Knudsen
- From the Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Frederik Bajers vej 7H, DK-9220 Aalborg, Denmark
| | - Manja A Behrens
- the Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000, Denmark, and
| | - Jan Skov Pedersen
- the Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000, Denmark, and
| | - Olav A Aarstad
- the Department of Biotechnology, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Anne Tøndervik
- the Department of Bioprocess Technology, SINTEF Materials and Chemistry, N-7465 Trondheim, Norway
| | - Svein Valla
- the Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000, Denmark, and
| | - Gudmund Skjåk-Bræk
- the Department of Biotechnology, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Reinhard Wimmer
- From the Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Frederik Bajers vej 7H, DK-9220 Aalborg, Denmark
| | - Finn L Aachmann
- the Department of Biotechnology, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway,
| |
Collapse
|
88
|
Cerdà-Costa N, Gomis-Rüth FX. Architecture and function of metallopeptidase catalytic domains. Protein Sci 2014; 23:123-44. [PMID: 24596965 DOI: 10.1002/pro.2400] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single-step reaction involving a solvent molecule, a general base/acid, and a mono- or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal-binding motif (HEXXH), which includes two metal-binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ∼ 130-270-residue catalytic domains, which are usually preceded by N-terminal pro-segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C-terminal domains for substrate recognition and other protein-protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N-terminal subdomain spanning a five-stranded β-sheet, a backing helix, and an active-site helix. The latter contains most of the metal-binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C-terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop--the Met-turn--and a C-terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs.
Collapse
|
89
|
Karst JC, Ntsogo Enguéné VY, Cannella SE, Subrini O, Hessel A, Debard S, Ladant D, Chenal A. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J Biol Chem 2014; 289:30702-30716. [PMID: 25231985 DOI: 10.1074/jbc.m114.580852] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.
Collapse
Affiliation(s)
- Johanna C Karst
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - V Yvette Ntsogo Enguéné
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Sara E Cannella
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Orso Subrini
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Audrey Hessel
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Sylvain Debard
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Daniel Ladant
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | - Alexandre Chenal
- Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
90
|
Lux TM, Lee R, Love J. Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii. Front Microbiol 2014; 5:435. [PMID: 25191313 PMCID: PMC4139957 DOI: 10.3389/fmicb.2014.00435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/31/2014] [Indexed: 11/15/2022] Open
Abstract
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change.
Collapse
Affiliation(s)
- Thomas M Lux
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - Rob Lee
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - John Love
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| |
Collapse
|
91
|
Hahn A, Stevanovic M, Brouwer E, Bublak D, Tripp J, Schorge T, Karas M, Schleiff E. Secretome analysis of Anabaena sp. PCC 7120 and the involvement of the TolC-homologue HgdD in protein secretion. Environ Microbiol 2014; 17:767-80. [PMID: 24890022 DOI: 10.1111/1462-2920.12516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/18/2014] [Indexed: 12/01/2022]
Abstract
Secretion of proteins is a central strategy of bacteria to influence and respond to their environment. Until now, there has been very few discoveries regarding the cyanobacterial secrotome or the secretion machineries involved. For a mutant of the outer membrane channel TolC-homologue HgdD of Anabaena sp. PCC 7120, a filamentous and heterocyst-forming cyanobacterium, an altered secretome profile was reported. To define the role of HgdD in protein secretion, we have developed a method to isolate extracellular proteins of Anabaena sp. PCC 7120 wild type and an hgdD loss-of-function mutant. We identified 51 proteins of which the majority is predicted to have an extracellular secretion signal, while few seem to be localized in the periplasmic space. Eight proteins were exclusively identified in the secretome of wild-type cells, which coincides with the distribution of type I secretion signal. We selected three candidates and generated hemagglutinin-tagged fusion proteins which could be exclusively detected in the extracellular protein fraction. However, these proteins are not secreted in the hgdD-mutant background, where they are rapidly degraded. This confirms a direct function of HgdD in protein secretion and points to the existence of a quality control mechanism at least for proteins secreted in an HgdD-dependent pathway.
Collapse
Affiliation(s)
- Alexander Hahn
- Institute of Molecular Biosciences, Cell Biology of Plants, Goethe University, Max-von-Laue Str. 9, Frankfurt/am Main, 60438, Germany
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Thomas S, Smits SHJ, Schmitt L. A simple in vitro acylation assay based on optimized HlyA and HlyC purification. Anal Biochem 2014; 464:17-23. [PMID: 25016191 DOI: 10.1016/j.ab.2014.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
Abstract
HlyA is a toxin secreted by uropathogenic Escherichia coli strains. HlyA belongs to the repeats in the toxin protein family and needs (i) a posttranslational, fatty acylation at two internal lysines by the acyltransferase HlyC and (ii) extracellular ion binding to achieve its active conformation. Both processes are not fully understood and experiments are often limited due to the low amounts of protein available. Here, we present an optimized purification protocol for the proteins involved in HlyA activation as well as a quick and nonradioactive assay for in vitro HlyA acylation. These may simplify future experiments, e.g., activity scanning and characterization of HlyA or HlyC mutants as demonstrated with single and double HlyA lysine mutants.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
93
|
Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors. PLoS One 2014; 9:e100313. [PMID: 24963801 PMCID: PMC4070987 DOI: 10.1371/journal.pone.0100313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/25/2014] [Indexed: 12/28/2022] Open
Abstract
The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP) from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC), leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.
Collapse
|
94
|
Thomas S, Bakkes PJ, Smits SHJ, Schmitt L. Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1500-10. [PMID: 24865936 DOI: 10.1016/j.bbapap.2014.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/17/2022]
Abstract
HlyA from Escherichia coli is a member of the repeats in toxin (RTX) protein family, produced by a wide range of Gram-negative bacteria and secreted by a dedicated Type 1 Secretion System (T1SS). RTX proteins are thought to be secreted in an unfolded conformation and to fold upon secretion by Ca(2+) binding. However, the exact mechanism of secretion, ion binding and folding to the correct native state remains largely unknown. In this study we provide an easy protocol for high-level pro-HlyA purification from E. coli. Equilibrium folding studies, using intrinsic tryptophan fluorescence, revealed the well-known fact that Ca(2+) is essential for stability as well as correct folding of the whole protein. In the absence of Ca(2+), pro-HlyA adopts a non-native conformation. Such molecules could however be rescued by Ca(2+) addition, indicating that these are not dead-end species and that Ca(2+) drives pro-HlyA folding. More importantly, pro-HlyA unfolded via a two-state mechanism, whereas folding was a three-state process. The latter is indicative of the presence of a stable folding intermediate. Analysis of deletion and Trp mutants revealed that the first folding transition, at 6-7M urea, relates to Ca(2+) dependent structural changes at the extreme C-terminus of pro-HlyA, sensed exclusively by Trp914. Since all Trp residues of HlyA are located outside the RTX domain, our results demonstrate that Ca(2+) induced folding is not restricted to the RTX domain. Taken together, Ca(2+) binding to the pro-HlyA RTX domain is required to drive the folding of the entire protein to its native conformation.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Patrick J Bakkes
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
95
|
Charge-dependent secretion of an intrinsically disordered protein via the autotransporter pathway. Proc Natl Acad Sci U S A 2013; 110:E4246-55. [PMID: 24145447 DOI: 10.1073/pnas.1310345110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autotransporters are a large class of virulence proteins produced by Gram-negative bacteria. They contain an N-terminal extracellular ("passenger") domain that folds into a β-helical structure and a C-terminal β-barrel ("β") domain that anchors the protein to the outer membrane. Because the periplasm lacks ATP, the source of energy that drives passenger domain secretion is unknown. The prevailing model postulates that vectorial folding of the β-helix in the extracellular space facilitates unidirectional secretion of the passenger domain. In this study we used a chimeric protein composed of the 675-residue receptor-binding domain (RD) of the Bordetella pertussis adenylate cyclase toxin CyaA fused to the C terminus of the Escherichia coli O157:H7 autotransporter EspP to test this hypothesis. The RD is a highly acidic, repetitive polypeptide that is intrinsically disordered in the absence of calcium. Surprisingly, we found that the RD moiety was efficiently secreted when it remained in an unfolded conformation. Furthermore, we found that neutralizing or reversing the charge of acidic amino acid clusters stalled translocation in the vicinity of the altered residues. These results challenge the vectorial folding model and, together with the finding that naturally occurring passenger domains are predominantly acidic, provide evidence that a net negative charge plays a significant role in driving the translocation reaction.
Collapse
|
96
|
Thomas S, Holland IB, Schmitt L. The Type 1 secretion pathway - the hemolysin system and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1629-41. [PMID: 24129268 DOI: 10.1016/j.bbamcr.2013.09.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022]
Abstract
Type 1 secretion systems (T1SS) are wide-spread among Gram-negative bacteria. An important example is the secretion of the hemolytic toxin HlyA from uropathogenic strains. Secretion is achieved in a single step directly from the cytosol to the extracellular space. The translocation machinery is composed of three indispensable membrane proteins, two in the inner membrane, and the third in the outer membrane. The inner membrane proteins belong to the ABC transporter and membrane fusion protein families (MFPs), respectively, while the outer membrane component is a porin-like protein. Assembly of the three proteins is triggered by accumulation of the transport substrate (HlyA) in the cytoplasm, to form a continuous channel from the inner membrane, bridging the periplasm and finally to the exterior. Interestingly, the majority of substrates of T1SS contain all the information necessary for targeting the polypeptide to the translocation channel - a specific sequence at the extreme C-terminus. Here, we summarize our current knowledge of regulation, channel assembly, translocation of substrates, and in the case of the HlyA toxin, its interaction with host membranes. We try to provide a complete picture of structure function of the components of the translocation channel and their interaction with the substrate. Although we will place the emphasis on the paradigm of Type 1 secretion systems, the hemolysin A secretion machinery from E. coli, we also cover as completely as possible current knowledge of other examples of these fascinating translocation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr, 1, 40225 Düsseldorf, Germany
| | - I Barry Holland
- Institute of Genetics and Microbiology, CNRS UMR 8621, University Paris-Sud XI, Building 409, 91405 Orsay Cedex, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr, 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
97
|
Differences in purinergic amplification of osmotic cell lysis by the pore-forming RTX toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the role of pore size. Infect Immun 2013; 81:4571-82. [PMID: 24082076 DOI: 10.1128/iai.00711-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins.
Collapse
|
98
|
Turk D. MAIN software for density averaging, model building, structure refinement and validation. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1342-57. [PMID: 23897458 PMCID: PMC3727325 DOI: 10.1107/s0907444913008408] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022]
Abstract
MAIN is software that has been designed to interactively perform the complex tasks of macromolecular crystal structure determination and validation. Using MAIN, it is possible to perform density modification, manual and semi-automated or automated model building and rebuilding, real- and reciprocal-space structure optimization and refinement, map calculations and various types of molecular structure validation. The prompt availability of various analytical tools and the immediate visualization of molecular and map objects allow a user to efficiently progress towards the completed refined structure. The extraordinary depth perception of molecular objects in three dimensions that is provided by MAIN is achieved by the clarity and contrast of colours and the smooth rotation of the displayed objects. MAIN allows simultaneous work on several molecular models and various crystal forms. The strength of MAIN lies in its manipulation of averaged density maps and molecular models when noncrystallographic symmetry (NCS) is present. Using MAIN, it is possible to optimize NCS parameters and envelopes and to refine the structure in single or multiple crystal forms.
Collapse
Affiliation(s)
- Dušan Turk
- Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
99
|
Sotomayor-Pérez AC, Subrini O, Hessel A, Ladant D, Chenal A. Molecular Crowding Stabilizes Both the Intrinsically Disordered Calcium-Free State and the Folded Calcium-Bound State of a Repeat in Toxin (RTX) Protein. J Am Chem Soc 2013; 135:11929-34. [DOI: 10.1021/ja404790f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana-Cristina Sotomayor-Pérez
- Unité
de Biochimie des Interactions Macromoléculaires, CNRS UMR 3528,
Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex
15, France
| | - Orso Subrini
- Unité
de Biochimie des Interactions Macromoléculaires, CNRS UMR 3528,
Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex
15, France
| | - Audrey Hessel
- Unité
de Biochimie des Interactions Macromoléculaires, CNRS UMR 3528,
Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex
15, France
| | - Daniel Ladant
- Unité
de Biochimie des Interactions Macromoléculaires, CNRS UMR 3528,
Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex
15, France
| | - Alexandre Chenal
- Unité
de Biochimie des Interactions Macromoléculaires, CNRS UMR 3528,
Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex
15, France
| |
Collapse
|
100
|
Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung. J Bacteriol 2013; 195:4013-9. [PMID: 23836869 DOI: 10.1128/jb.00339-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen with multiple niches in the human body, including the lung. P. aeruginosa infections are particularly damaging or fatal for patients with ventilator-associated pneumonia, chronic obstructive pulmonary disease, and cystic fibrosis (CF). To establish an infection, P. aeruginosa relies on a suite of virulence factors, including lipopolysaccharide, phospholipases, exoproteases, phenazines, outer membrane vesicles, type III secreted effectors, flagella, and pili. These factors not only damage the epithelial cell lining but also induce changes in cell physiology and function such as cell shape, membrane permeability, and protein synthesis. While such virulence factors are important in initial infection, many become dysregulated or nonfunctional during the course of chronic infection. Recent work on the virulence factors alkaline protease (AprA) and CF transmembrane conductance regulator inhibitory factor (Cif) show that P. aeruginosa also perturbs epithelial ion transport and osmosis, which may be important for the long-term survival of this microbe in the lung. Here we discuss the literature regarding host physiology-altering virulence factors with a focus on Cif and AprA and their potential roles in chronic infection and immune evasion.
Collapse
|