51
|
Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy. Arch Pharm Res 2018; 41:594-616. [PMID: 29804279 DOI: 10.1007/s12272-018-1038-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
Abstract
Cancer is a leading cause of death worldwide. Despite many advances in the field of cancer therapy, an effective cure is yet to be found. As a more potent alternative for the conventional small molecule anti-cancer drugs, pro-apoptotic peptides have emerged as a new class of anticancer agents. By interaction with certain members in the apoptotic pathways, they could effectively kill tumor cells. However, there remain bottleneck challenges for clinical application of these pro-apoptotic peptides in cancer therapy. In this review, we will overview the developed pro-apoptotic peptides and outline the widely adopted molecular-based and nanoparticle-based strategies to enhance their anti-tumor effects.
Collapse
|
52
|
Rompicharla SVK, Kumari P, Ghosh B, Biswas S. Octa-arginine modified poly(amidoamine) dendrimers for improved delivery and cytotoxic effect of paclitaxel in cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:847-859. [PMID: 29790795 DOI: 10.1080/21691401.2018.1470527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell penetrating peptides (CPP) have the ability to penetrate the cell membrane and have been associated with various cargos for their facile intracellular translocation. The current study involves the synthesis of a CPP, octa-arginine (R8)-modified poly(amidoamine) dendrimer of generation 4 (G4), which has additionally been PEGylated and conjugated to the poorly soluble anticancer drug, paclitaxel (PTX). The synthesized dendrimer conjugates were characterized by proton nuclear magnetic resonance (1H-NMR) Spectroscopy and zeta potential measurements and evaluated in vitro in cell monolayers and 3D spheroids. Cellular uptake study in human cervical cancer cell line (HeLa) revealed that R8 modification significantly improved the cell association of conjugates. G4-PTX- polyethylene glycol (PEG)-R8 conjugate demonstrated enhanced cytotoxic potential and higher induction of apoptosis compared to free PTX and G4-PTX-PEG. Further, the penetrability of fluorescently labeled F-G4-PTX-PEG-R8 was evaluated in 3D spheroids of HeLa at various depths by using confocal microscopy. G4-PTX-PEG-R8 induced cell death and inhibited the growth in 3D spheroids as competently as in monolayers. The enhanced intracellular translocation of R8-modified dendrimers resulted in improved anticancer efficacy of PTX. Therefore, the newly developed dendrimer system is efficient for the intracellular delivery of PTX in cancer cells and has a strong potential to be utilized as an effective chemotherapeutic agent for cancer.
Collapse
Affiliation(s)
- Sri Vishnu Kiran Rompicharla
- a Department of Pharmacy , Birla Institute of Technology & Science-Pilani - Hyderabad Campus , Hyderabad , India
| | - Preeti Kumari
- a Department of Pharmacy , Birla Institute of Technology & Science-Pilani - Hyderabad Campus , Hyderabad , India
| | - Balaram Ghosh
- a Department of Pharmacy , Birla Institute of Technology & Science-Pilani - Hyderabad Campus , Hyderabad , India
| | - Swati Biswas
- a Department of Pharmacy , Birla Institute of Technology & Science-Pilani - Hyderabad Campus , Hyderabad , India
| |
Collapse
|
53
|
Via MA, Del Pópolo MG, Wilke N. Negative Dipole Potentials and Carboxylic Polar Head Groups Foster the Insertion of Cell-Penetrating Peptides into Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3102-3111. [PMID: 29394073 DOI: 10.1021/acs.langmuir.7b04038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cell-penetrating peptides (CPPs) are polycationic sequences of amino acids recognized as some of the most effective vehicles for delivering membrane-impermeable cargos into cells. CPPs can traverse cell membranes by direct translocation, and assessing the role of lipids on the membrane permeation process is important to convene a complete model of the CPP translocation. In this work, we focus on the biophysical basis of peptide-fatty acid interactions, analyzing how the acid-base and electrostatic properties of the lipids determine the CPP adsorption and incorporation into a Langmuir monolayer, focusing thus on the first two stages of the direct translocation mechanism. We sense the binding and insertion of the peptide into the lipid structure by measuring the changes in the surface pressure, the surface potential, and the reflectivity of the interface. We show that, beyond the presence of anionic moieties, negative dipole potentials and carboxylic polar head groups significantly promote the insertion of the peptide into the monolayer. On the basis of our results, we propose the appearance of stable CPP-lipid complexes whose kinetics of formation depends on the length of the lipids' hydrocarbon chains.
Collapse
Affiliation(s)
- Matías A Via
- CONICET & Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza , Argentina
- Instituto de Histologı́a y Embriologı́a de Mendoza (IHEM-CONICET) & Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina
| | - Mario G Del Pópolo
- CONICET & Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza , Argentina
| | | |
Collapse
|
54
|
He Y, Li F, Huang Y. Smart Cell-Penetrating Peptide-Based Techniques for Intracellular Delivery of Therapeutic Macromolecules. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:183-220. [PMID: 29680237 DOI: 10.1016/bs.apcsb.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many therapeutic macromolecules must enter cells to take their action. However, their treatment outcomes are often hampered by their poor transportation into target cells. Therefore, efficient intracellular delivery of these macromolecules is critical for improving their therapeutic efficacy. Cell-penetrating peptide (CPP)-based approaches are one of the most efficient methods for intracellular delivery of macromolecular therapeutics. Nevertheless, poor specificity is a significant concern for systemic administrated CPP-based delivery systems. This chapter will review recent advances in CPP-mediated macromolecule delivery with a focus on various smart strategies which not only enhance the intracellular delivery but also improve the targeting specificity.
Collapse
Affiliation(s)
- Yang He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Feng Li
- Harrison School of Pharmacy, Auburn University, Auburn, AL, United states.
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
55
|
Zhang Y, Røise JJ, Lee K, Li J, Murthy N. Recent developments in intracellular protein delivery. Curr Opin Biotechnol 2018; 52:25-31. [PMID: 29486392 DOI: 10.1016/j.copbio.2018.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/11/2018] [Indexed: 12/23/2022]
Abstract
Protein therapeutics based on transcription factors, gene editing enzymes, signaling proteins and protein antigens, have the potential to provide cures for a wide number of untreatable diseases, but cannot be developed into therapeutics due to challenges in delivering them into the cytoplasm. There is therefore great interest in developing strategies that can enable proteins to enter the cytoplasm of cells. In this review article we will discuss recent progress in intracellular protein therapeutics, which are focused on the following four classes of therapeutics, Firstly, vaccine development, secondly, transcription factor therapies, thirdly, gene editing and finally, cancer therapeutics. These exciting new advances raise the prospect of developing cures for several un-treatable diseases.
Collapse
Affiliation(s)
- Yumiao Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joachim Justad Røise
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Jie Li
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
56
|
Zhao J, Zhao F, Wang X, Fan X, Wu G. Secondary nuclear targeting of mesoporous silica nano-particles for cancer-specific drug delivery based on charge inversion. Oncotarget 2018; 7:70100-70112. [PMID: 27661121 PMCID: PMC5342538 DOI: 10.18632/oncotarget.12149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/14/2016] [Indexed: 11/25/2022] Open
Abstract
A novel multifunctional nano-drug delivery system based on reversal of peptide charge was successfully developed for anticancer drug delivery and imaging. Mesoporous silica nano-particles (MSN) ~50 nm in diameter were chosen as the drug reservoirs, and their surfaces were modified with HIV-1 transactivator peptide-fluorescein isothiocyanate (TAT-FITC) and YSA-BHQ1. The short TAT peptide labeled with FITC was used to facilitate intranuclear delivery, while the YSA peptide tagged with the BHQ1 quencher group was used to specifically bind to the tumor EphA2 membrane receptor. Citraconic anhydride (Cit) was used to invert the charge of the TAT peptide in neutral or weak alkaline conditions so that the positively charged YSA peptide could combine with the TAT peptide through electrostatic attraction. The FITC fluorescence was quenched by the spatial approach of BHQ1 after the two peptides bound to each other. However, the Cit-amino bond was unstable in the acidic atmosphere, so the positive charge of the TAT peptide was restored and the positively charged YSA moiety was repelled. The FITC fluorescence was recovered after the YSA-BHQ1 moiety was removed, and the TAT peptide led the nano-particles into the nucleolus. This nano-drug delivery system was stable at physiological pH, rapidly released the drug in acidic buffer, and was easily taken up by MCF-7 cells. Compared with free doxorubicin hydrochloride at an equal concentration, this modified MSN loaded with doxorubicin molecules had an equivalent inhibitory effect on MCF-7 cells. This nano-drug delivery system is thus a promising method for simultaneous cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jianwen Zhao
- Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing, 210009, China.,Medical School, Southeast University, Nanjing, 210009, China
| | - Fengfeng Zhao
- Medical School, Southeast University, Nanjing, 210009, China
| | - Xiyong Wang
- Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaobo Fan
- Medical School, Southeast University, Nanjing, 210009, China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing, 210009, China.,Medical School, Southeast University, Nanjing, 210009, China
| |
Collapse
|
57
|
Sims LB, Huss MK, Frieboes HB, Steinbach-Rankins JM. Distribution of PLGA-modified nanoparticles in 3D cell culture models of hypo-vascularized tumor tissue. J Nanobiotechnology 2017; 15:67. [PMID: 28982361 PMCID: PMC5629750 DOI: 10.1186/s12951-017-0298-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/23/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Advanced stage cancer treatments are often invasive and painful-typically comprised of surgery, chemotherapy, and/or radiation treatment. Low transport efficiency during systemic chemotherapy may require high chemotherapeutic doses to effectively target cancerous tissue, resulting in systemic toxicity. Nanotherapeutic platforms have been proposed as an alternative to more safely and effectively deliver therapeutic agents directly to tumor sites. However, cellular internalization and tumor penetration are often diametrically opposed, with limited access to tumor regions distal from vasculature, due to irregular tissue morphologies. To address these transport challenges, nanoparticles (NPs) are often surface-modified with ligands to enhance transport and longevity after localized or systemic administration. Here, we evaluate stealth polyethylene-glycol (PEG), cell-penetrating (MPG), and CPP-stealth (MPG/PEG) poly(lactic-co-glycolic-acid) (PLGA) NP co-treatment strategies in 3D cell culture representing hypo-vascularized tissue. RESULTS Smaller, more regularly-shaped avascular tissue was generated using the hanging drop (HD) method, while more irregularly-shaped masses were formed with the liquid overlay (LO) technique. To compare NP distribution differences within the same type of tissue as a function of different cancer types, we selected HeLa, cervical epithelial adenocarcinoma cells; CaSki, cervical epidermoid carcinoma cells; and SiHa, grade II cervical squamous cell carcinoma cells. In HD tumors, enhanced distribution relative to unmodified NPs was measured for MPG and PEG NPs in HeLa, and for all modified NPs in SiHa spheroids. In LO tumors, the greatest distribution was observed for MPG and MPG/PEG NPs in HeLa, and for PEG and MPG/PEG NPs in SiHa spheroids. CONCLUSIONS Pre-clinical evaluation of PLGA-modified NP distribution into hypo-vascularized tumor tissue may benefit from considering tissue morphology in addition to cancer type.
Collapse
Affiliation(s)
- Lee B Sims
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA
| | - Maya K Huss
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA. .,Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA. .,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA. .,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
58
|
Kolawole OM, Lau WM, Mostafid H, Khutoryanskiy VV. Advances in intravesical drug delivery systems to treat bladder cancer. Int J Pharm 2017; 532:105-117. [DOI: 10.1016/j.ijpharm.2017.08.120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
|
59
|
The Effect of RGD/NGR Peptide Modification of Melanoma Differentiation-Associated Gene-7/Interleukin-24 on Its Receptor Attachment, an In Silico Analysis. Cancer Biother Radiopharm 2017; 32:205-214. [DOI: 10.1089/cbr.2017.2195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
60
|
Guo H, Xu W, Chen J, Yan L, Ding J, Hou Y, Chen X. Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. J Control Release 2017; 259:136-148. [PMID: 28062300 DOI: 10.1016/j.jconrel.2016.12.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
|
61
|
Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 2017; 190:64-83. [PMID: 28760499 DOI: 10.1016/j.imlet.2017.07.015] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
Abstract
Surgery, chemotherapy, radiotherapy, and hormone therapy are the main common anti-tumor therapeutic approaches. However, the non-specific targeting of cancer cells has made these approaches non-effective in the significant number of patients. Non-specific targeting of malignant cells also makes indispensable the application of the higher doses of drugs to reach the tumor region. Therefore, there are two main barriers in the way to reach the tumor area with maximum efficacy. The first, inhibition of drug delivery to healthy non-cancer cells and the second, the direct conduction of drugs into tumor site. Nanoparticles (NPs) are the new identified tools by which we can deliver drugs into tumor cells with minimum drug leakage into normal cells. Conjugation of NPs with ligands of cancer specific tumor biomarkers is a potent therapeutic approach to treat cancer diseases with the high efficacy. It has been shown that conjugation of nanocarriers with molecules such as antibodies and their variable fragments, peptides, nucleic aptamers, vitamins, and carbohydrates can lead to effective targeted drug delivery to cancer cells and thereby cancer attenuation. In this review, we will discuss on the efficacy of the different targeting approaches used for targeted drug delivery to malignant cells by NPs.
Collapse
|
62
|
Mousavizadeh A, Jabbari A, Akrami M, Bardania H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf B Biointerfaces 2017; 158:507-517. [PMID: 28738290 DOI: 10.1016/j.colsurfb.2017.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications.
Collapse
Affiliation(s)
- Ali Mousavizadeh
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Jabbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
63
|
Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther 2017; 24:441-452. [PMID: 28504657 DOI: 10.1038/gt.2017.41] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.
Collapse
Affiliation(s)
| | | | - S Pasley
- Akron Biotech, Boca Raton, FL, USA
| | | |
Collapse
|
64
|
Acar H, Srivastava S, Chung EJ, Schnorenberg MR, Barrett JC, LaBelle JL, Tirrell M. Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliv Rev 2017; 110-111:65-79. [PMID: 27535485 PMCID: PMC5922461 DOI: 10.1016/j.addr.2016.08.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/01/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. The studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA.
| | - Samanvaya Srivastava
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Institute for Molecular Engineering, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Eun Ji Chung
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mathew R Schnorenberg
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA; Medical Scientist Training Program, University of Chicago, Chicago, IL 60637, USA.
| | - John C Barrett
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, IL 60637, USA.
| | - James L LaBelle
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA.
| | - Matthew Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Institute for Molecular Engineering, Argonne National Laboratory, Argonne, IL 60439, USA.
| |
Collapse
|
65
|
Haddad Y, Heger Z, Adam V. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB. Front Mol Neurosci 2017; 10:7. [PMID: 28163672 PMCID: PMC5247432 DOI: 10.3389/fnmol.2017.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/06/2017] [Indexed: 11/13/2022] Open
Abstract
Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of "good modeling practice" to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level.
Collapse
Affiliation(s)
- Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia; Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia; Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia; Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| |
Collapse
|
66
|
McKeon AM, Noonan J, Devocelle M, Murphy BM, Griffith DM. Platinum(iv) oxaliplatin–peptide conjugates targeting memHsp70+ phenotype in colorectal cancer cells. Chem Commun (Camb) 2017; 53:11318-11321. [DOI: 10.1039/c7cc04764a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel Pt(iv) tumour penetrating peptide (TPP) conjugates are reported.
Collapse
Affiliation(s)
- A. M. McKeon
- Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | - J. Noonan
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland
- D2
- Ireland
| | - M. Devocelle
- Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | - B. M. Murphy
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland
- D2
- Ireland
| | - D. M. Griffith
- Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| |
Collapse
|
67
|
Feni L, Neundorf I. The Current Role of Cell-Penetrating Peptides in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:279-295. [PMID: 29081059 DOI: 10.1007/978-3-319-66095-0_13] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a heterogeneous class of peptides with the ability to translocate across the plasma membrane and to carry attached cargos inside the cell. Two main entry pathways are discussed, as direct translocation and endocytosis , whereas the latter is often favored when bulky cargos are added to the CPP. Attachment to the CPP can be achieved by means of covalent coupling or non-covalent complex formation, depending on the chemical nature of the cargo. Owing to their striking abilities the further development and application of CPP-based delivery strategies has steadily emerged during the past years. However, one main pitfall when using CPPs is their non-selective uptake in nearly all types of cells. Thus, one particular interest lies in the design of targeting strategies that help to circumvent this drawback but still benefit from the potent delivery abilities of CPPs. The following review aims to summarize some of these very recent concepts and to highlight the current role of CPPs in cancer therapy.
Collapse
Affiliation(s)
- Lucia Feni
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicherstr. 47a, D-50674, Cologne, Germany.
| |
Collapse
|
68
|
Chen L, Fang S, Xiao X, Zheng B, Zhao M. Single-Stranded DNA Assisted Cell Penetrating Peptide-DNA Conjugation Strategy for Intracellular Imaging of Nucleases. Anal Chem 2016; 88:11306-11309. [PMID: 27934106 DOI: 10.1021/acs.analchem.6b03743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell penetrating peptides (CPPs) are very useful tools for delivery of DNA molecules into living cells without damaging the cell membranes. However, covalent conjugation of DNAs to CPPs is technically difficult, and the reactions between DNA and target nucleases are also liable to be affected by the cationic CPP molecules. In this work, we demonstrate that the electrostatic interactions between CPPs and single-stranded DNA (ssDNA) were stronger than those between CPP and double-stranded DNA (dsDNA). Taking advantage of this property, we developed an ssDNA protected CPP-DNA fluorescent probe which allowed for noninvasive and efficient cellular uptake and rapid imaging of target nucleases in living cells. The probe is highly sensitive and selective. This work represents the first example of using CPP-DNA conjugate to deliver DNA fluorescent probes for in situ imaging of nucleases within cells. The developed approach also holds great potential for the cellular delivery of other nucleic acid molecules for diagnosis or therapeutics purposes.
Collapse
Affiliation(s)
- Lu Chen
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Simin Fang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Xianjin Xiao
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei 430030, China
| | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
69
|
Yong T, Hu J, Zhang X, Li F, Yang H, Gan L, Yang X. Domino-Like Intercellular Delivery of Undecylenic Acid-Conjugated Porous Silicon Nanoparticles for Deep Tumor Penetration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27611-27621. [PMID: 27653799 DOI: 10.1021/acsami.6b11127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Improving the intratumoral distribution of anticancer agents remains the critical challenge for developing efficient cancer chemotherapy. Luminescent porous silicon nanoparticles (PSiNPs) have attracted considerable attention in the biomedical field especially in drug delivery. Here, we described the lysosomal exocytosis-mediated domino-like intercellular delivery of undecylenic acid-conjugated PSiNPs (UA-PSiNPs) for deep tumor penetration. UA-PSiNPs with significantly improved stability in physiological conditions were internalized into tumor cells by macropinocytosis-, caveolae-, and clathrin-mediated endocytosis and mainly colocalized with Golgi apparatus and lysosomes. Substantial evidence showed that UA-PSiNPs was excreted from cells via lysosomal exocytosis after cellular uptake. The exocytosed UA-PSiNPs induced a domino-like infection of adjacent cancer cells and allowed encapsulated doxorubicin (DOX) to deeply penetrate into both three-dimensional tumor spheroids and in vivo tumors. In addition, DOX-loaded UA-PSiNPs exhibited strong antitumor activity and few side effects in vivo. This study demonstrated that UA-PSiNPs as a drug carrier might be applied for deep tumor penetration, offering a new insight into the design of more efficient delivery systems of anticancer drugs.
Collapse
Affiliation(s)
- Tuying Yong
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Xiaoqiong Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Fuying Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Hao Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan, Hubei 430074, China
| |
Collapse
|
70
|
A novel trichosanthin fusion protein with increased cytotoxicity to tumor cells. Biotechnol Lett 2016; 39:71-78. [DOI: 10.1007/s10529-016-2222-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
|
71
|
He H, Sun L, Ye J, Liu E, Chen S, Liang Q, Shin MC, Yang VC. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J Control Release 2016; 240:67-76. [DOI: 10.1016/j.jconrel.2015.10.040] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
|
72
|
Vries RD, Andrade CAS, Bakuzis AF, Mandal SM, Franco OL. Next-generation nanoantibacterial tools developed from peptides. Nanomedicine (Lond) 2016; 10:1643-61. [PMID: 26008197 DOI: 10.2217/nnm.15.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria resistant against various antimicrobial compounds have emerged in many countries, and the age of resistance has just started. Among the more promising novel antimicrobial compounds on which current research is focusing are the antimicrobial peptides (AMPs). These are often less susceptible to bacterial resistance since multiple modifications in the cellular membranes, cell wall and metabolism are required to reduce their effectiveness. Most likely, the use of pure AMPs will be insufficient for controlling pathogenic bacteria, and innovative approaches are required to employ AMPs in new antibiotic treatments. Therefore, here we review novel bionanotechnological approaches, including nanofibers, nanoparticles and magnetic particles for effectively using AMPs in fighting infectious diseases.
Collapse
Affiliation(s)
- Renko de Vries
- 2Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, PO Box 196, 9700 AD Groningen, The Netherlands
| | - Cesar A S Andrade
- 3Departamento de Bioquímica e Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Andris F Bakuzis
- 4Instituto de Física, Universidade Federal de Goiás, 74001-970, Goiânia, GO, Brazil
| | - Santi M Mandal
- 5Anti-Infective Research Lab, Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, Índia
| | - Octavio L Franco
- 6Centro de Análises, Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, 70790-160, Brazil.,7S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| |
Collapse
|
73
|
Moret F, Gobbo M, Reddi E. Conjugation of photosensitisers to antimicrobial peptides increases the efficiency of photodynamic therapy in cancer cells. Photochem Photobiol Sci 2016; 14:1238-50. [PMID: 26014915 DOI: 10.1039/c5pp00038f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Some antimicrobial peptides (AMPs) have the ability to penetrate and kill not only pathogenic microorganisms but also cancer cells, while they are less active toward normal eukaryotic cells. Here we have investigated the potential of three AMPs, namely apidaecin 1b (Api), magainin 2 (Mag) and buforin II (Buf), as carriers of drugs for cancer cells by using the hydrophobic photosensitiser 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (cTPP) as the drug model, conjugated to the N-terminus of the peptides. Flow cytometry measurements demonstrated that conjugation of cTPP increased its rate and efficiency of uptake in A549 human lung adenocarcinoma cells in the order Mag > Buf > Api. In vitro photodynamic therapy (PDT) experiments showed that the increased uptake of the conjugated cTPP determined 100% cell killing at concentrations in the nanomolar range while micromolar concentrations were required for the same killing effect with unconjugated cTPP. Serum proteins interacted with cTPP conjugated to Buf and Api and slightly interfered with the cellular uptake of these conjugates but not with that of Mag. The data suggest electrostatic interactions of the conjugates with sialic acid and ganglioside rich domains, as lipid rafts of the plasma membrane, followed by cell internalization via non-caveolar dynamin-dependent endocytosis as indicated by the effects of inhibitors of specific endocytic pathways. Our study demonstrated that the three AMPs investigated, Mag in particular, have the ability to carry a hydrophobic cargo inside cancer cells and may therefore represent useful carriers of anticancer drugs, especially those with a poor capacity to penetrate inside the target cells.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, via U. Bassi 58/B, 35121 Padova, Italy.
| | | | | |
Collapse
|
74
|
Driesschaert B, Bobko AA, Eubank TD, Samouilov A, Khramtsov VV, Zweier JL. Poly-arginine conjugated triarylmethyl radical as intracellular spin label. Bioorg Med Chem Lett 2016; 26:1742-4. [PMID: 26923698 DOI: 10.1016/j.bmcl.2016.02.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Stable triarylmethyl radicals are ideal spin labels used for biomedical electron paramagnetic resonance applications. Previously reported structures exhibit polar charged functions for water solubilization preventing them from crossing the cell membrane. We report the synthesis of a triarylmethyl radical conjugated to poly-arginine peptide allowing intracellular delivery of the paramagnetic label.
Collapse
Affiliation(s)
- Benoit Driesschaert
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Science Center, West Virginia University, Morgantown, WV 26506, United States; Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Andrey A Bobko
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Science Center, West Virginia University, Morgantown, WV 26506, United States; Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Science Center, West Virginia University, Morgantown, WV 26506, United States; Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Alexandre Samouilov
- Davis Heart & Lung Research Institute, The Ohio State University/Wexner Medical Center, 460 West 12th Avenue, BRT 0390, Columbus, OH 43210, United States
| | - Valery V Khramtsov
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Science Center, West Virginia University, Morgantown, WV 26506, United States; Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - Jay L Zweier
- Davis Heart & Lung Research Institute, The Ohio State University/Wexner Medical Center, 460 West 12th Avenue, BRT 0390, Columbus, OH 43210, United States.
| |
Collapse
|
75
|
Kato M. Development of analytical methods for functional analysis of intracellular protein using signal-responsive silica or organic nanoparticles. J Pharm Biomed Anal 2016; 118:292-306. [PMID: 26580827 DOI: 10.1016/j.jpba.2015.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Because proteins control cellular function, intracellular protein analysis is needed to gain a better understanding of life and disease. However, in situ protein analysis still faces many difficulties because proteins are heterogeneously located within the cell and the types and amount of proteins within the cell are ever changing. Recently, nanotechnology has received increasing attention and multiple protein-containing nanoparticles have been developed. Nanoparticles offer a promising tool for intracellular protein analysis because (1) they can permeate the cellular membrane after modification or changing composition, (2) the stability of various proteins is improved by encapsulation within nanoparticles, and (3) protein release and activity can be controlled. In this review, we discuss the development of analytical methods for intracellular functional protein analysis using signal-responsive silica and organic nanoparticles.
Collapse
Affiliation(s)
- Masaru Kato
- Graduate School of Pharmaceutical Sciences and GPLLI Program, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
76
|
Terracciano M, Shahbazi MA, Correia A, Rea I, Lamberti A, De Stefano L, Santos HA. Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. NANOSCALE 2015; 7:20063-20074. [PMID: 26568517 DOI: 10.1039/c5nr05173h] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Diatomite is a natural porous silica material of sedimentary origin. Due to its peculiar properties, it can be considered as a valid surrogate of synthetic porous silica for nano-based drug delivery. In this work, we exploit the potential of diatomite nanoparticles (DNPs) for drug delivery with the aim of developing a successful dual-biofunctionalization method by polyethylene glycol (PEG) coverage and cell-penetrating peptide (CPP) bioconjugation, to improve the physicochemical and biological properties of the particles, to enhance the intracellular uptake in cancer cells, and to increase the biocompatibility of 3-aminopropyltriethoxysilane (APT) modified-DNPs. DNPs-APT-PEG-CPP showed hemocompatibility for up to 200 μg mL(-1) after 48 h of incubation with erythrocytes, with a hemolysis value of only 1.3%. The cytotoxicity of the modified-DNPs with a concentration up to 200 μg mL(-1) and incubation with MCF-7 and MDA-MB-231 breast cancer cells for 24 h, demonstrated that PEGylation and CPP-bioconjugation can strongly reduce the cytotoxicity of DNPs-APT. The cellular uptake of the modified-DNPs was also evaluated using the above mentioned cancer cell lines, showing that the CPP-bioconjugation can considerably increase the DNP cellular uptake. Moreover, the dual surface modification of DNPs improved both the loading of a poorly water-soluble anticancer drug, sorafenib, with a loading degree up to 22 wt%, and also enhanced the drug release profiles in aqueous solutions. Overall, this work demonstrates that the biofunctionalization of DNPs is a promising platform for drug delivery applications in cancer therapy as a result of its enhanced stability, biocompatibility, cellular uptake, and drug release profiles.
Collapse
Affiliation(s)
- Monica Terracciano
- Institute for Microelectronics and Microsystems, National Research Council, Naples, 80131, Italy.
| | | | | | | | | | | | | |
Collapse
|
77
|
Gao D, Lin XP, Zhang ZP, Li W, Men D, Zhang XE, Cui ZQ. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:365-76. [PMID: 26711962 DOI: 10.1016/j.nano.2015.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. FROM THE CLINICAL EDITOR Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications.
Collapse
Affiliation(s)
- Ding Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Ping Lin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; National Key Laboratory of Macrobiomolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zong-Qiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
78
|
Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles. Ther Deliv 2015; 6:873-87. [PMID: 26228777 DOI: 10.4155/tde.15.40] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanoparticle-based therapeutics are poised to play a critical role in treating disease. These complex multifunctional drug delivery vehicles provide for the passive and active targeted delivery of numerous small molecule, peptide and protein-derived pharmaceuticals. This article will first discuss some of the current state of the art nanoparticle classes (dendrimers, lipid-based, polymeric and inorganic), highlighting benefits/drawbacks associated with their implementation. We will then discuss an emerging class of nanoparticle therapeutics, bacterial outer membrane vesicles, that can provide many of the nanoparticle benefits while simplifying assembly. Through molecular biology techniques; outer membrane vesicle hijacking potentially allows for stringent control over nanoparticle production allowing for targeted protein packaged nanoparticles to be fully synthesized by bacteria.
Collapse
|
79
|
Abstract
In the era of biomedicines and engineered carrier systems, cell penetrating peptides (CPPs) have been established as a promising tool for therapeutic application. Likewise, other therapeutic peptides, successful in vivo application of CPPs will strongly depend on peptide stability, the bottleneck for this type of biodegradable molecules. In this review, the authors describe the current knowledge of the in vivo degradation for known CPPs and the different strategies available to provide a higher resistance to metabolic degradation while preserving cell penetration efficiency. Peptide stability can be improved by different means, either modifying the structure to make it unrecognizable to proteases, or preventing access of proteolytic enzymes by applying conformation restriction or shielding strategies.
Collapse
|
80
|
Zhong F, Xie J, Zhang D, Han Y, Wang C. Polypeptide from Chlamys farreri suppresses ultraviolet-B irradiation-induced apoptosis through restoring ER redox homeostasis, scavenging ROS generation, and suppressing the PERK-eIF2a-CHOP pathway in HaCaT cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 151:10-6. [DOI: 10.1016/j.jphotobiol.2015.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/04/2015] [Accepted: 06/18/2015] [Indexed: 12/25/2022]
|
81
|
Jong T, Pérez-López AM, Johansson EMV, Lilienkampf A, Bradley M. Flow and Microwave-Assisted Synthesis of N-(Triethylene glycol)glycine Oligomers and Their Remarkable Cellular Transporter Activities. Bioconjug Chem 2015; 26:1759-65. [PMID: 26155805 DOI: 10.1021/acs.bioconjchem.5b00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- ThingSoon Jong
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Ana M. Pérez-López
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Emma M. V. Johansson
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Annamaria Lilienkampf
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Mark Bradley
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| |
Collapse
|
82
|
Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity. Protein Expr Purif 2015; 111:9-17. [DOI: 10.1016/j.pep.2015.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 11/24/2022]
|
83
|
Durzyńska J, Przysiecka Ł, Nawrot R, Barylski J, Nowicki G, Warowicka A, Musidlak O, Goździcka-Józefiak A. Viral and other cell-penetrating peptides as vectors of therapeutic agents in medicine. J Pharmacol Exp Ther 2015; 354:32-42. [PMID: 25922342 DOI: 10.1124/jpet.115.223305] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/27/2015] [Indexed: 03/08/2025] Open
Abstract
Efficient delivery of heterologous molecules for treatment of cells is a great challenge in modern medicine and pharmacology. Cell-penetrating peptides (CPPs) may improve efficient delivery of a wide range of macromolecular cargos, including plasmid DNA, small interfering RNA, drugs, nanoparticulate pharmaceutical carriers, and anticancer drugs. In this paper, we present the history of CPPs' discovery with special attention drawn to sequences of viral origin. We also describe different CPP families with regard to their physicochemical properties and numerous mechanisms of CPP cell uptake by direct penetration and endocytotic pathways. A detailed description is focused on formation of carrier-cargo complexes, which are needed for practical use of CPPs in medicine and biotechnology. Examples of successful application of CPPs in treatment of human diseases are also presented, including decreased tumor growth and induction of cancer cell death. Finally, we review modern design approaches to novel CPPs and prediction of their activity. To sum up, the current review presents a thorough and up-to-date knowledge of CPPs and may be a valuable source of information for researchers in pharmacology designing new therapeutic agents.
Collapse
Affiliation(s)
- Julia Durzyńska
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Łucja Przysiecka
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Grzegorz Nowicki
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Alicja Warowicka
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Anna Goździcka-Józefiak
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
84
|
Jafari S, Maleki Dizaj S, Adibkia K. Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. ACTA ACUST UNITED AC 2015; 5:103-11. [PMID: 26191505 PMCID: PMC4492185 DOI: 10.15171/bi.2015.10] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The impermeability of biological membranes is a major obstacle in drug delivery; however, some peptides have transition capabilities of biomembranes. In recent decades, cell-penetrating peptides (CPPs) have been introduced as novel biocarriers that are able to translocate into the cells. CPPs are biologically potent tools for non-invasive cellular internalization of cargo molecules. Nevertheless, the non-specificity of these peptides presents a restriction for targeting drug delivery; therefore, a peptidic nanocarrier sensitive to matrix metalloproteinase (MMP) has been prepared, called activatable cell-penetrating peptide (ACPP). In addition to the cell-penetrating peptide dendrimer (DCPP), other analogues of CPPs have been synthesized. METHODS In this study, the most recent literature in the field of biomedical application of CPPs and their analogues, ACPP and DCCP, were reviewed. RESULTS This review focuses on CPP and its analogues, ACPP and DCPP, as novel nanocarriers for drug delivery. In addition, nanoconjugates and bioconjugates of these peptide sequences are discussed. CONCLUSION DCCP, branched CPPs, compared to linear peptides have advantages such as resistance to rapid biodegradation, high loading capacities and large-scale production capability.
Collapse
Affiliation(s)
- Samira Jafari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
85
|
Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. BIOMED RESEARCH INTERNATIONAL 2015; 2015:834079. [PMID: 25883975 PMCID: PMC4391616 DOI: 10.1155/2015/834079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022]
Abstract
Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review, we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the nature of versatile CPPs and their interactions with various types of cargoes. We then discuss in vivo and in vitro delivery of nucleic acids and nanomaterials by CPPs. Studies on the mechanisms of cellular entry and limitations in the methods used are detailed.
Collapse
|
86
|
PTD-Modified ATTEMPTS for Enhanced Toxin-based Cancer Therapy: An In Vivo Proof-of-Concept Study. Pharm Res 2015; 32:2690-703. [PMID: 25701313 DOI: 10.1007/s11095-015-1653-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/10/2015] [Indexed: 01/10/2023]
Abstract
PURPOSE To investigate the feasibility of applying PTD-modified ATTEMPTS (Antibody Targeted Triggered Electrically Modified Prodrug-Type Strategy) for enhanced toxin therapy for the treatment of cancer. METHODS A heparin-functionalized murine anti-CEA monoclonal antibody (mAb), T84.66-heparin (T84.66-Hep), was chemically synthesized and characterized for specific binding to CEA overexpressed cells. The T84.66-Hep was then applied to the PTD-modified ATTEMPTS approach and the crucial features of the drug delivery system (DDS), 'antibody targeting' and 'heparin/protamine-based prodrug', were evaluated in vitro to examine whether it could selective delivery a PTD-modified toxin, recombinant TAT-gelonin chimera (TAT-Gel), to CEA high expression cancer cells (LS174T). Furthermore, the feasibility of the drug delivery system (DDS) was assessed in vivo by biodistribution and efficacy studies using LS174T s.c. xenograft tumor bearing mice. RESULTS T84.66-Hep displayed specific binding, but limited internalization (35% after 48 h incubation) to CEA high expression LS174T cells over low expression HCT116 cells. When mixed together with TAT-Gel, the T84.66-Hep formed a strong yet reversible complex. This complex formation provided an effective means of active tumor targeting of TAT-Gel, by 1) directing the TAT-Gel to CEA overexpressed tumor cells and 2) preventing nonspecific cell transduction to non-targeted normal cells. The cell transduction of TAT-Gel could, however, be efficiently reversed by addition of protamine. Feasibility of in vivo tumor targeting and "protamine-induced release" of TAT-Gel from the T84.66-Hep counterpart was confirmed by biodistribution and preliminary efficacy studies. CONCLUSIONS This study successfully demonstrated in vitro and in vivo the applicability of PTD-modified ATTEMPTS for toxin-based cancer therapy.
Collapse
|
87
|
Jain A, Yadav BK, Chugh A. Marine antimicrobial peptide tachyplesin as an efficient nanocarrier for macromolecule delivery in plant and mammalian cells. FEBS J 2015; 282:732-45. [DOI: 10.1111/febs.13178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/17/2014] [Accepted: 12/12/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Aastha Jain
- Kusuma School of Biological Sciences; Indian Institute of Technology Delhi; India
| | - Bhoopesh K. Yadav
- Kusuma School of Biological Sciences; Indian Institute of Technology Delhi; India
| | - Archana Chugh
- Kusuma School of Biological Sciences; Indian Institute of Technology Delhi; India
| |
Collapse
|
88
|
Shinde A, Feher KM, Hu C, Slowinska K. Peptide internalization enabled by folding: triple helical cell-penetrating peptides. J Pept Sci 2014; 21:77-84. [PMID: 25524829 DOI: 10.1002/psc.2725] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/14/2014] [Accepted: 11/26/2014] [Indexed: 11/11/2022]
Abstract
Cell-penetrating peptides (CPPs) are known as efficient transporters of molecular cargo across cellular membranes. Their properties make them ideal candidates for in vivo applications. However, challenges in the development of effective CPPs still exist: CPPs are often fast degraded by proteases and large concentration of CPPs required for cargo transporting can cause cytotoxicity. It was previously shown that restricting peptide flexibility can improve peptide stability against enzymatic degradation and limiting length of CPP peptide can lower cytotoxic effects. Here, we present peptides (30-mers) that efficiently penetrate cellular membranes by combining very short CPP sequences and collagen-like folding domains. The CPP domains are hexa-arginine (R6) or arginine/glycine (RRGRRG). Folding is achieved through multiple proline-hydroxyproline-glycine (POG [proline-hydroxyproline-glycine])n repeats that form a collagen-like triple helical conformation. The folded peptides with CPP domains are efficiently internalized, show stability against enzymatic degradation in human serum and have minimal toxicity. Peptides lacking correct folding (random coil) or CPP domains are unable to cross cellular membranes. These features make triple helical cell-penetrating peptides promising candidates for efficient transporters of molecular cargo across cellular membranes.
Collapse
Affiliation(s)
- Aparna Shinde
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, 90840, Canada
| | | | | | | |
Collapse
|
89
|
15 years of ATTEMPTS: a macromolecular drug delivery system based on the CPP-mediated intracellular drug delivery and antibody targeting. J Control Release 2014; 205:58-69. [PMID: 25483423 DOI: 10.1016/j.jconrel.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 01/22/2023]
Abstract
Traditionally, any drug intended for combating the tumor would distribute profoundly to other organs and tissues as lack of targeting specificity, thus resulting in limited therapeutic effects toward the tumor but severe drug-induced toxic side effects. To prevail over this obstacle of drug-induced systemic toxicity, a novel approach termed "ATTEMPTS" (antibody targeted triggered electrically modified prodrug type strategy) was designed, which directly introduces both of the targeting and prodrug features onto the protein drugs. The ATTEMPTS system is composed of the antibody targeting component consisting of antibodies linked with heparin, and the cell penetrating peptide (CPP) modified drug component. The two components mentioned above self-assembled into a tight complex via the charge to charge interaction between the anionic heparin and cationic CPP. Once accumulated at the targeting site, the CPP modified drug is released from the blockage by a second triggering agent, while remaining inactive in the circulation during tumor targeting thus aborting its effect on normal tissues. We utilized the heparin-induced inhibition on the cell-penetrating activity of CPP to create the prodrug feature, and subsequently the protamine-induced reversal of heparin inhibition to resume cell transduction of the protein drug via the CPP function. Our approach is the first known system to overcome this selectivity issue, enabling CPP-mediated cellular drug delivery to be practically applicable clinically. In this review, we thoroughly discussed the historical and novel progress of the "ATTEMPTS" system.
Collapse
|
90
|
Low molecular weight protamine (LMWP): A nontoxic protamine substitute and an effective cell-penetrating peptide. J Control Release 2014; 193:63-73. [DOI: 10.1016/j.jconrel.2014.05.056] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023]
|
91
|
Penetrating the cell membrane, thermal targeting and novel anticancer drugs: the development of thermally targeted, elastin-like polypeptide cancer therapeutics. Ther Deliv 2014; 5:429-45. [PMID: 24856169 DOI: 10.4155/tde.14.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic peptides offer important cancer treatment approaches. Designed to inhibit oncogenes and other oncoproteins, early therapeutic peptides applications were hampered by pharmacokinetic properties now addressed through tumor targeting strategies. Active targeting with environmentally responsive biopolymers or macromolecules enhances therapeutics accumulation at tumor sites; passive targeting with macromolecules, or liposomes, exploits angiogenesis and poor lymphatic drainage to preferentially accumulate therapeutics within tumors. Genetically engineered, thermally-responsive, elastin-like polypeptides use both strategies and cell-penetrating peptides to further intratumoral cell uptake. This review describes the development and application of cell-penetrating peptide-elastin-like polypeptide therapeutics for the thermally targeted delivery of therapeutic peptides.
Collapse
|
92
|
Shin MC, Zhang J, Ah Min K, Lee K, Moon C, Balthasar JP, Yang VC. Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy. J Control Release 2014; 194:197-210. [PMID: 25204286 DOI: 10.1016/j.jconrel.2014.08.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/12/2014] [Accepted: 08/30/2014] [Indexed: 12/20/2022]
Abstract
The bottlenecks of current chemotherapy in the treatment of colorectal cancer lie in the ineffectiveness of the existing anti-cancer small molecule drugs as well as the dose-limiting toxicity caused by the nonselective action on normal tissues by such drugs. To address these problems, we introduce a novel therapeutic strategy based on tumor targeting using a non-internalizing anti-carcinoembryonic antigen (CEA) monoclonal antibody (mAb) and intracellular delivery of the extremely potent yet cell-impermeable protein toxin gelonin via the aid of a cell-penetrating peptide (also termed as protein transduction domain; PTD). A chimeric TAT-gelonin fusion protein was genetically engineered, and it displayed remarkably enhanced anti-cancer activity against human colorectal cancer cells, with IC50 values being several orders of magnitude lower than the unmodified gelonin. On the other hand, a chemically synthesized conjugate of heparin and a murine anti-CEA mAb, T84.66 (termed T84.66-Hep) was found able to bind highly specifically to CEA over-expressing LS174T colorectal cancer cells. When mixing together, TAT-gelonin and T84.66-Hep could associate tightly and automatically through an electrostatic interaction between the cationic TAT and anionic heparin. In preliminary in vivo studies using LS174T s.c. xenograft tumor bearing mouse, selective and significantly augmented (58-fold) delivery of TAT-gelonin to the tumor target was observed, when compared with administration of TAT-gelonin alone. More importantly, efficacy studies also revealed that only the TAT-gelonin/T84.66-Hep complex yielded a significant inhibition of tumor growth (46%) without causing gelonin-induced systemic toxicity. Overall, this study suggested a generic strategy to effectively yet safely deliver potent PTD-modified protein toxins to the tumor.
Collapse
Affiliation(s)
- Meong Cheol Shin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kyoung Ah Min
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Kyuri Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Cheol Moon
- College of Pharmacy, Sunchon National University, Suncheon, Jeonnam, 540-950, Republic of Korea
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| |
Collapse
|
93
|
Structural and Thermodynamic Insight into Spontaneous Membrane-Translocating Peptides Across Model PC/PG Lipid Bilayers. J Membr Biol 2014; 248:505-15. [PMID: 25008278 DOI: 10.1007/s00232-014-9702-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/18/2014] [Indexed: 12/20/2022]
Abstract
We present results of Martini coarse-grained force field simulations to estimate the potentials of mean force for a series of recently screened spontaneous membrane-translocating peptides, SMTPs. We consider model bilayer composed of POPC and POPG, the latter providing the anionic component as used in experimental studies. We observe a significant barrier for translocation in the case of the canonical cationic cell-penetrating peptide nona-arginine, ARG9. In the case of the TP1, TP2, and TP3 peptides, potentials of mean force are systematically lower relative to the ARG9 case. Though the barriers predicted by the simulations, on the order of 20 kcal/mol, are still rather large to recapitulate the experimental kinetics of internalization, we emphasize that the qualitative trend of reduction of barrier heights is a significant result. Decomposition of the PMFs indicates that though there is a substantial entropic stability when the peptides reside at bilayer center, barriers as predicted from these force field-based studies are largely determined by enthalpic (potential energy) interactions. We note that the binding of the SMTPs is critically dependent on the mix of hydrophilic and hydrophobic residues that constitute the amino acid motif/sequence of these peptides. For the cationic ARG9 which only contains hydrophilic residues, there is no tight binding observed. The specific motif [Formula: see text] (where [Formula: see text] is a general residue) is a potential sequence in drug/peptide design. The SMTPs with this motif are able to translocate into membrane at a significantly lower free energy cost, compared to the negative control peptides. Finally, we compare the different membrane perturbations induced by the presence of the different peptides in the bilayer center. In some cases, hydrophilic pores are observed to form, thus conferring stability to the internalized state. In other cases, SMTPs are associated only with membrane defects such as induced membrane curvature. These latter observations suggest some influence of membrane rigidity as embodied in the full range of membrane undulatory modes in defining pore-forming propensities in bilayers.
Collapse
|
94
|
Shin MC, Zhao J, Zhang J, Huang Y, He H, Wang M, Min KA, Yang VC. Recombinant TAT-gelonin fusion toxin: synthesis and characterization of heparin/protamine-regulated cell transduction. J Biomed Mater Res A 2014; 103:409-419. [PMID: 24733757 DOI: 10.1002/jbm.a.35188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 03/31/2014] [Indexed: 11/05/2022]
Abstract
Protein toxins, such as gelonin, are highly desirable anti-cancer drug candidates due to their unparalleled potency and repetitive reaction mechanism in inhibiting protein translation. However, for its potential application in cancer therapy, there remains the cell membrane barrier that allows permeation of only small molecules, which must be overcome. To address this challenge, we conjugated gelonin with a protein transduction domain (PTD), the TAT peptide, via genetic recombination. The chimeric TAT-gelonin fusion protein (TAT-Gel) retained equipotent N-glycosidase activity yet displayed greater cell uptake than unmodified recombinant gelonin (rGel), thereby yielding a significantly augmented cytotoxic activity. Remarkably, TAT-Gel displayed up to 177-fold lower IC₅₀ (avg. 54.3 nM) than rGel (avg. IC₅₀ : 3640 nM) in tested cell lines. This enhanced cytotoxicity, however, also raised potential toxicity concerns due to the non-selectivity of PTD in its mediated cell transduction. To solve this problem, we investigated the plausibility of regulating the cell transduction of TAT-Gel via a reversible masking using heparin and protamine. Here, we demonstrated, both in vitro and in vivo, that the cell transduction of TAT-Gel can be completely curbed with heparin and yet this heparin block can be efficiently reversed by the addition of protamine. This reversible tight regulation of the cell transduction of TAT-Gel by heparin and protamine sheds light of possible application of TAT-Gel in achieving a highly effective yet safe drug therapy for the treatment of tumors.
Collapse
Affiliation(s)
- Meong Cheol Shin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Jingwen Zhao
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Mei Wang
- College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi 830011, China
| | - Kyoung Ah Min
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| |
Collapse
|
95
|
Hu Y, Liu X, Sinha SK, Patel S. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity. J Phys Chem B 2014; 118:2670-82. [PMID: 24506488 PMCID: PMC3983342 DOI: 10.1021/jp412600e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Structural mechanisms
and underlying thermodynamic determinants
of efficient internalization of charged cationic peptides (cell-penetrating
peptides, CPPs) such as TAT, polyarginine, and their variants, into
cells, cellular constructs, and model membrane/lipid bilayers (large
and giant unilamellar or multilamelar vesicles) continue to garner
significant attention. Two widely held views on the translocation
mechanism center on endocytotic and nonendocytotic (diffusive) processes.
Espousing the view of a purely diffusive internalization process (supported
by recent experimental evidence, [Säälik, P.; et al. J. Controlled Release2011, 153, 117–125]), we consider the underlying free energetics of
the translocation of a nonaarginine peptide (Arg9) into
a model DPPC bilayer. In the case of the Arg9 cationic
peptide, recent experiments indicate a higher internalization efficiency
of the cyclic structure (cyclic Arg9) relative to the linear
conformer. Furthermore, recent all-atom resolution molecular dynamics
simulations of cyclic Arg9 [Huang, K.; et al. Biophys.
J., 2013, 104, 412–420]
suggested a critical stabilizing role of water- and lipid-constituted
pores that form within the bilayer as the charged Arg9 translocates
deep into the bilayer center. Herein, we use umbrella sampling molecular
dynamics simulations with coarse-grained Martini lipids, polarizable
coarse-grained water, and peptide to explore the dependence of translocation
free energetics on peptide structure and conformation via calculation
of potentials of mean force along preselected reaction paths allowing
and preventing membrane deformations that lead to pore formation.
Within the context of the coarse-grained force fields we employ, we
observe significant barriers for Arg9 translocation from
bulk aqueous solution to bilayer center. Moreover, we do not find
free-energy minima in the headgroup–water interfacial region,
as observed in simulations using all-atom force fields. The pore-forming
paths systematically predict lower free-energy barriers (ca. 90 kJ/mol
lower) than the non pore-forming paths, again consistent with all-atom
force field simulations. The current force field suggests no preference
for the more compact or covalently cyclic structures upon entering
the bilayer. Decomposition of the PMF into the system’s components
indicates that the dominant stabilizing contribution along the pore-forming
path originates from the membrane as both layers of it deformed due
to the formation of pore. Furthermore, our analysis revealed that
although there is significant entropic stabilization arising from
the enhanced configurational entropy exposing more states as the peptide
moves through the bilayer, the enthalpic loss (as predicted by the
interactions of this coarse-grained model) far outweighs any former
stabilization, thus leading to significant barrier to translocation.
Finally, we observe reduction in the translocation free-energy barrier
for a second Arg9 entering the bilayer in the presence
of an initial peptide restrained at the center, again, in qualitative
agreement with all-atom force fields.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Chemistry and Biochemistry, University of Delaware , 238 Brown Laboratory, Newark, Delaware 19716, United States
| | | | | | | |
Collapse
|