51
|
Wu Y, Ravnic DJ, Ozbolat IT. Intraoperative Bioprinting: Repairing Tissues and Organs in a Surgical Setting. Trends Biotechnol 2020; 38:594-605. [PMID: 32407688 PMCID: PMC7666846 DOI: 10.1016/j.tibtech.2020.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/29/2022]
Abstract
3D bioprinting directly into injured sites in a surgical setting, intraoperative bioprinting (IOB), is an effective process, in which the defect information can be rapidly acquired and then repaired via bioprinting on a live subject. In patients needing tissue resection, debridement, traumatic reconstruction, or fracture repair, the ability to scan and bioprint immediately following surgical preparation of the defect site has great potential to improve the precision and efficiency of these procedures. In this opinion article, we provide the reader with current major limitations of IOB from engineering and clinical points of view, as well as possibilities of future translation of bioprinting technologies from bench to bedside, and expound our perspectives in the context of IOB of composite and vascularized tissues.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; Engineering Science and Mechanics Department, The Pennsylvania State University, State College, PA 16801, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16801, USA
| | - Dino J Ravnic
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, The Pennsylvania State University, State College, PA 16801, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16801, USA; Department of Biomedical Engineering, Penn State University, University Park, PA 16801, USA; Materials Research Institute, Penn State University, University Park, PA 16801, USA.
| |
Collapse
|
52
|
Rajan SAP, Skardal A, Hall AR. Multi-Domain Photopatterned 3D Tumor Constructs in a Micro-Physiological System for Analysis, Quantification, and Isolation of Infiltrating Cells. ADVANCED BIOSYSTEMS 2020; 4:e1900273. [PMID: 32293164 PMCID: PMC7323471 DOI: 10.1002/adbi.201900273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Cancer cell motility plays a central role in metastasis and tumor invasion but can be difficult to study accurately in vitro. A simple approach to address this challenge through the production of monolithic, photopatterned 3D tumor constructs in situ in a microfluidic device is described here. Through step-wise fabrication of adjoining hydrogel regions with and without incorporated cells, multidomain structures with defined boundaries are produced. By imaging cells over time, cellular activity with arbitrary control over medium conditions, including drug concentration and flow rate, is studied. First, malignant human colon carcinoma cells (HCT116) are studied for 10 days, comparing invasion dynamics and viability of cells in normal media to those exposed to two independent chemotherapeutic drugs: anti-proliferative 5-fluorouracil and anti-migratory Marimastat. Cytotoxicity is measured and significant differences are observed in cellular dynamics (migrating cell count, distance traveled, and rate) that correlate with the mechanism of each drug. Then, the platform is applied to the selective isolation of infiltrated cells through the photopatterning and subsequent dissolution of cleavable hydrogel domains. As a demonstration, the preferential collection of highly migratory cells (HCT116) over a comparable cell line with low malignancy and migratory potential (Caco-2) is shown.
Collapse
Affiliation(s)
- Shiny A P Rajan
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27101, USA
| | - Aleksander Skardal
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27101, USA
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Department of Biomedical Engineering, The Ohio State University and The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, USA
| | - Adam R Hall
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27101, USA
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
53
|
Neves MI, Araújo M, Moroni L, da Silva RM, Barrias CC. Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks. Molecules 2020; 25:E978. [PMID: 32098281 PMCID: PMC7070556 DOI: 10.3390/molecules25040978] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosaminoglycans (GAG) are long, linear polysaccharides that display a wide range of relevant biological roles. Particularly, in the extracellular matrix (ECM) GAG specifically interact with other biological molecules, such as growth factors, protecting them from proteolysis or inhibiting factors. Additionally, ECM GAG are partially responsible for the mechanical stability of tissues due to their capacity to retain high amounts of water, enabling hydration of the ECM and rendering it resistant to compressive forces. In this review, the use of GAG for developing hydrogel networks with improved biological activity and/or mechanical properties is discussed. Greater focus is given to strategies involving the production of hydrogels that are composed of GAG alone or in combination with other materials. Additionally, approaches used to introduce GAG-inspired features in biomaterials of different sources will also be presented.
Collapse
Affiliation(s)
- Mariana I. Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Marco Araújo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands;
| | - Ricardo M.P. da Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
54
|
Murphy SV, Skardal A, Nelson RA, Sunnon K, Reid T, Clouse C, Kock ND, Jackson J, Soker S, Atala A. Amnion membrane hydrogel and amnion membrane powder accelerate wound healing in a full thickness porcine skin wound model. Stem Cells Transl Med 2020; 9:80-92. [PMID: 31328435 PMCID: PMC6954699 DOI: 10.1002/sctm.19-0101] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023] Open
Abstract
There is a need for effective wound treatments that retain the bioactivity of a cellular treatment, but without the high costs and complexities associated with manufacturing, storing, and applying living biological products. Previously, we developed an amnion membrane-derived hydrogel and evaluated its wound healing properties using a mouse wound model. In this study, we used a full thickness porcine skin wound model to evaluate the wound-healing efficacy of the amnion hydrogel and a less-processed amnion product comprising a lyophilized amnion membrane powder. These products were compared with commercially available amnion and nonamnion wound healing products. We found that the amnion hydrogel and amnion powder treatments demonstrated significant and rapid wound healing, driven primarily by new epithelialization versus closure by contraction. Histological analysis demonstrated that these treatments promote the formation of a mature epidermis and dermis with similar composition to healthy skin. The positive skin regenerative outcomes using amnion hydrogel and amnion powder treatments in a large animal model further demonstrate their potential translational value for human wound treatments.
Collapse
Affiliation(s)
- Sean V. Murphy
- Wake Forest Institute for Regenerative MedicineWake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth Carolina
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative MedicineWake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth Carolina
| | - Ronald A. Nelson
- Wake Forest Institute for Regenerative MedicineWake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth Carolina
| | - Khiry Sunnon
- Wake Forest Institute for Regenerative MedicineWake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth Carolina
| | - Tanya Reid
- Wake Forest Institute for Regenerative MedicineWake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth Carolina
| | - Cara Clouse
- Wake Forest Institute for Regenerative MedicineWake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth Carolina
| | - Nancy D. Kock
- Department of Pathology/Comparative MedicineWake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth Carolina
| | - John Jackson
- Wake Forest Institute for Regenerative MedicineWake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth Carolina
| | - Shay Soker
- Wake Forest Institute for Regenerative MedicineWake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth Carolina
| | - Anthony Atala
- Wake Forest Institute for Regenerative MedicineWake Forest School of Medicine, Medical Center BoulevardWinston‐SalemNorth Carolina
| |
Collapse
|
55
|
Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng 2019; 4:370-380. [PMID: 31695178 DOI: 10.1038/s41551-019-0471-7] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/30/2019] [Indexed: 12/29/2022]
Abstract
3D-printed orthopaedic devices and surgical tools, printed maxillofacial implants and other printed acellular devices have been used in patients. By contrast, bioprinted living cellular constructs face considerable translational challenges. In this Perspective, we first summarize the most recent developments in 3D bioprinting for clinical applications, with a focus on how 3D-printed cartilage, bone and skin can be designed for individual patients and fabricated using the patient's own cells. We then discuss key translational considerations, such as the need to ensure close integration of the living device with the patient's vascular network, the development of biocompatible bioinks and the challenges in deriving a physiologically relevant number of cells. Lastly, we outline untested regulatory pathways, as well as logistical challenges in material sourcing, manufacturing, standardization and transportation.
Collapse
|
56
|
|
57
|
Aleman J, George SK, Herberg S, Devarasetty M, Porada CD, Skardal A, Almeida-Porada G. Deconstructed Microfluidic Bone Marrow On-A-Chip to Study Normal and Malignant Hemopoietic Cell-Niche Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902971. [PMID: 31464364 PMCID: PMC8011350 DOI: 10.1002/smll.201902971] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/31/2019] [Indexed: 05/23/2023]
Abstract
Human hematopoietic niches are complex specialized microenvironments that maintain and regulate hematopoietic stem and progenitor cells (HSPC). Thus far, most of the studies performed investigating alterations of HSPC-niche dynamic interactions are conducted in animal models. Herein, organ microengineering with microfluidics is combined to develop a human bone marrow (BM)-on-a-chip with an integrated recirculating perfusion system that consolidates a variety of important parameters such as 3D architecture, cell-cell/cell-matrix interactions, and circulation, allowing a better mimicry of in vivo conditions. The complex BM environment is deconvoluted to 4 major distinct, but integrated, tissue-engineered 3D niche constructs housed within a single, closed, recirculating microfluidic device system, and equipped with cell tracking technology. It is shown that this technology successfully enables the identification and quantification of preferential interactions-homing and retention-of circulating normal and malignant HSPC with distinct niches.
Collapse
Affiliation(s)
- Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Sunil K George
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Samuel Herberg
- Department of Opthamology, State University of New York Upstate Medical University, 4609 Institute for Human Performance, Syracuse, NY, 13210, USA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| |
Collapse
|
58
|
Design and evaluation of mesenchymal stem cells seeded chitosan/glycosaminoglycans quaternary hydrogel scaffolds for wound healing applications. Int J Pharm 2019; 570:118632. [PMID: 31437562 DOI: 10.1016/j.ijpharm.2019.118632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/11/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
The main goal of this study was the design, development and characterization of a chitosan based scaffolding substrate including three glycosaminoglycans and collagen to provide an optimal microenvironment for human mesemchymal stem cells isolated from adipose tissue (hMSCs). Chitosan scaffolds provide a moist wound environment which promotes healing and epidermal regeneration. Furthermore, the importance of extracellular molecules such as glycosaminoglycans in wound healing makes them essential ingredients in these types of formulations. The physical properties of hydrogels scaffolds and stability were investigated. The scaffolds were evaluated by structural and microscopic assays, as well as cell culture analyses. The hydrogel with best suitable properties was selected as candidate scaffold for hMSCs encapsulation. The viability of hMSCs remained above 75%, indicating good cell viability. The number of living hMSCs in the scaffold reached a steady state up to ~100% at days 5 and 7. Scanning electron microscopy showed irregular compartments with the presence of the hMSCs. These findings indicated that our hydrogel scaffold provided a suitable niche for cell viability which could be considered a promising candidate for further in vivo studies.
Collapse
|
59
|
Chameettachal S, Yeleswarapu S, Sasikumar S, Shukla P, Hibare P, Bera AK, Bojedla SSR, Pati F. 3D Bioprinting: Recent Trends and Challenges. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00113-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
60
|
Atkinson SP. A Preview of Selected Articles. Stem Cells 2019. [DOI: 10.1002/stem.3054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
61
|
da Silva LP, Reis RL, Correlo VM, Marques AP. Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annu Rev Biomed Eng 2019; 21:145-169. [DOI: 10.1146/annurev-bioeng-060418-052422] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic skin wounds are the leading cause of nontraumatic foot amputations worldwide and present a significant risk of morbidity and mortality due to the lack of efficient therapies. The intrinsic characteristics of hydrogels allow them to benefit cutaneous healing essentially by supporting a moist environment. This property has long been explored in wound management to aid in autolytic debridement. However, chronic wounds require additional therapeutic features that can be provided by a combination of hydrogels with biochemical mediators or cells, promoting faster and better healing. We survey hydrogel-based approaches with potential to improve the healing of chronic wounds by reviewing their effects as observed in preclinical models. Topics covered include strategies to ablate infection and resolve inflammation, the delivery of bioactive agents to accelerate healing, and tissue engineering approaches for skin regeneration. The article concludes by considering the relevance of treating chronic skin wounds using hydrogel-based strategies.
Collapse
Affiliation(s)
- Lucília P. da Silva
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Vitor M. Correlo
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Alexandra P. Marques
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
62
|
Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, Pi Q, Mu X, Hu N, Schiffelers RM, Prakash J, Xie J, Zhang YS. 3D Bioprinting: from Benches to Translational Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805510. [PMID: 31033203 PMCID: PMC6752725 DOI: 10.1002/smll.201805510] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Indexed: 05/07/2023]
Abstract
Over the last decades, the fabrication of 3D tissues has become commonplace in tissue engineering and regenerative medicine. However, conventional 3D biofabrication techniques such as scaffolding, microengineering, and fiber and cell sheet engineering are limited in their capacity to fabricate complex tissue constructs with the required precision and controllability that is needed to replicate biologically relevant tissues. To this end, 3D bioprinting offers great versatility to fabricate biomimetic, volumetric tissues that are structurally and functionally relevant. It enables precise control of the composition, spatial distribution, and architecture of resulting constructs facilitating the recapitulation of the delicate shapes and structures of targeted organs and tissues. This Review systematically covers the history of bioprinting and the most recent advances in instrumentation and methods. It then focuses on the requirements for bioinks and cells to achieve optimal fabrication of biomimetic constructs. Next, emerging evolutions and future directions of bioprinting are discussed, such as freeform, high-resolution, multimaterial, and 4D bioprinting. Finally, the translational potential of bioprinting and bioprinted tissues of various categories are presented and the Review is concluded by exemplifying commercially available bioprinting platforms.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Wanjun Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, P.R. China
| | - Andrea Jimenez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biomedical Engineering Laboratory, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Jingzhou Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding 071000, P.R. China
| | - Ali Akpek
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Istanbul Yeni Yuzyil University, Istanbul 34010, Turkey
| | - Xiao Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Qingmeng Pi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, P.R. China
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ning Hu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Raymond Michel Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Jingwei Xie
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
63
|
Yim HE, Kim DS, Chung HC, Shing B, Moon KH, George SK, Kim MW, Atala Z, Kim JH, Ko IK, Yoo JJ. Controlled Delivery of Stem Cell-Derived Trophic Factors Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury in Rats. Stem Cells Transl Med 2019; 8:959-970. [PMID: 31144785 PMCID: PMC6708069 DOI: 10.1002/sctm.18-0222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Renal disease is a worldwide health issue. Besides transplantation, current therapies revolve around dialysis, which only delays disease progression but cannot replace other renal functions, such as synthesizing erythropoietin. To address these limitations, cell‐based approaches have been proposed to restore damaged kidneys as an alternative to current therapies. Recent studies have shown that stem cell‐derived secretomes can enhance tissue regeneration. However, many growth factors undergo rapid degradation when they are injected into the body in a soluble form. Efficient delivery and controlled release of secreting factors at the sites of injury would improve the efficacy in tissue regeneration. Herein, we developed a gel‐based delivery system for controlled delivery of trophic factors in the conditioned medium (CM) secreted from human placental stem cells (HPSCs) and evaluated the effect of trophic factors on renal regeneration. CM treatment significantly enhanced cell proliferation and survival in vitro. Platelet‐rich plasma (PRP) was used as a delivery vehicle for CM. Analysis of the release kinetics demonstrated that CM delivery through the PRP gel resulted in a controlled release of the factors both in vitro and in vivo. In an acute kidney injury model in rats, functional and structural analysis showed that CM delivery using the PRP gel system into the injured kidney minimized renal tissue damage, leading to a more rapid functional recovery when compared with saline, CM, or vehicle only injection groups. These results suggest that controlled delivery of HPSC‐derived trophic factors may provide efficient repair of renal tissue injury. stem cells translational medicine2019;8:959&970
Collapse
Affiliation(s)
- Hyung Eun Yim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| | - Doo Sang Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Urology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyun Chul Chung
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Urology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Brian Shing
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Kyung Hyun Moon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Department of Urology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sunil K George
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Michael W Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Zachary Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| |
Collapse
|
64
|
Strnadova K, Sandera V, Dvorankova B, Kodet O, Duskova M, Smetana K, Lacina L. Skin aging: the dermal perspective. Clin Dermatol 2019; 37:326-335. [PMID: 31345320 DOI: 10.1016/j.clindermatol.2019.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The world population of adults aged 60 years or more is increasing globally, and this development can impact skin disease morbidity and mortality, as well as being reflected in the health care system organization. There is substantial evidence that the burden from a remarkable number of skin nonmalignant and malignant conditions is greater in the elderly. Dermatologic research and clinical education in dermatology should focus on both challenges and opportunities created by aging. Skin aging due to intrinsic and extrinsic factors can alter significantly epidermal and dermal structure and functions. Dermal aging can be linked to a great number of complications in routine dermatologic conditions, with slow healing as an example of a severe complication in the elderly. This may be attributed to aged dermal fibroblasts modifying the tissue microenvironment via a shift in their soluble factors and extracellular matrix repertoire. This senescence-associated secretory phenotype can explain the particular proclivity of aged skin to develop malignancies.
Collapse
Affiliation(s)
- Karolina Strnadova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Vojtech Sandera
- Department of Plastic Surgery, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Dvorankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ondrej Kodet
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic; Department of Dermatovenereology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Duskova
- Department of Plastic Surgery, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Lukas Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic; Department of Dermatovenereology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
65
|
Ashammakhi N, Ahadian S, Pountos I, Hu SK, Tellisi N, Bandaru P, Ostrovidov S, Dokmeci MR, Khademhosseini A. In situ three-dimensional printing for reparative and regenerative therapy. Biomed Microdevices 2019; 21:42. [PMID: 30955134 DOI: 10.1007/s10544-019-0372-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) bioprinting is an emerging biofabrication technology, driving many innovations and opening new avenues in regenerative therapeutics. The aim of 3D bioprinting is to fabricate grafts in vitro, which can then be implanted in vivo. However, the tissue culture ex vivo carries safety risks and thereby complicated manufacturing equipment and practice are required for tissues to be implanted in the humans. The implantation of printed tissues also adds complexities due to the difficulty in maintaining the structural integrity of fabricated constructs. To tackle this challenge, the concept of in situ 3D bioprinting has been suggested in which tissues are directly printed at the site of injury or defect. Such approach could be combined with cells freshly isolated from patients to produce custom-made grafts that resemble target tissue and fit precisely to target defects. Moreover, the natural cellular microenvironment in the body can be harnessed for tissue maturation resulting in the tissue regeneration and repair. Here, we discuss literature reports on in situ 3D printing and we describe future directions and challenges for in situ 3D bioprinting. We expect that this novel technology would find great attention in different biomedical fields in near future.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA.
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA.
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA.
- Department of Bioengineering, University of California - Los Angeles, California, Los Angeles, USA.
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.
- School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California - Los Angeles, California, Los Angeles, USA
| | - Ippokratis Pountos
- Department of Trauma and Orthopaedics, University of Leeds, Leeds, UK
- Chapel Allerton Hospital, Leeds Teaching Hospitals, Leeds, UK
| | - Shu-Kai Hu
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Nazzar Tellisi
- Department of Trauma and Orthopaedics, University of Leeds, Leeds, UK
| | - Praveen Bandaru
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Mehmet Remzi Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, California, Los Angeles, USA.
- California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Building 114, Room 4528, Los Angeles, CA, 90095, USA.
- Department of Radiological Sciences, University of California - Los Angeles, California, Los Angeles, USA.
- Department of Bioengineering, University of California - Los Angeles, California, Los Angeles, USA.
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, California, Los Angeles, USA.
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
66
|
|
67
|
Aleman J, Skardal A. A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells. Biotechnol Bioeng 2018; 116:936-944. [PMID: 30450540 DOI: 10.1002/bit.26871] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
Abstract
Metastatic disease remains one of the primary reasons for cancer-related deaths, yet the majority of in vitro cancer models focus on the primary tumor sites. Here, we describe a metastasis-on-a-chip device that houses multiple bioengineered three-dimensional (3D) organoids, established by a 3D photopatterning technique employing extracellular matrix-derived hydrogel biomaterials. Specifically, cancer cells begin in colorectal cancer (CRC) organoid, which resides in a single microfluidic chamber connected to multiple downstream chambers in which liver, lung, and endothelial constructs are housed. Under recirculating fluid flow, tumor cells grow in the primary site, eventually enter circulation, and can be tracked via fluorescent imaging. Importantly, we describe that in the current version of this platform, HCT116 CRC cells preferentially home to the liver and lung constructs; the corresponding organs of which CRC metastases arise the most in human patients. We believe that in subsequent studies this platform can be implemented to better understand the mechanisms underlying metastasis, perhaps resulting in the identification of targets for intervention.
Collapse
Affiliation(s)
- Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, North Carolina
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, North Carolina.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Department of Molecular Medicine and Translational Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.,Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, North Carolina
| |
Collapse
|
68
|
Bejleri D, Streeter BW, Nachlas ALY, Brown ME, Gaetani R, Christman KL, Davis ME. A Bioprinted Cardiac Patch Composed of Cardiac-Specific Extracellular Matrix and Progenitor Cells for Heart Repair. Adv Healthc Mater 2018; 7:e1800672. [PMID: 30379414 PMCID: PMC6521871 DOI: 10.1002/adhm.201800672] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/16/2018] [Indexed: 12/12/2022]
Abstract
Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D-bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs, and gelatin methacrylate (GelMA). GelMA-cECM bioinks print uniformly with a homogeneous distribution of cECM and hCPCs. hCPCs maintain >75% viability and incorporation of cECM within patches results in a 30-fold increase in cardiogenic gene expression of hCPCs compared to hCPCs grown in pure GelMA patches. Conditioned media from GelMA-cECM patches show increased angiogenic potential (>2-fold) over GelMA alone, as seen by improved endothelial cell tube formation. Finally, patches are retained on rat hearts and show vascularization over 14 d in vivo. This work shows the successful bioprinting and implementation of cECM-hCPC patches for potential use in repairing damaged myocardium.
Collapse
Affiliation(s)
- Donald Bejleri
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Benjamin W Streeter
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Aline L Y Nachlas
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Milton E Brown
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Roberto Gaetani
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Dr., La Jolla, CA, 92037, USA
| | - Karen L Christman
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Dr., La Jolla, CA, 92037, USA
| | - Michael E Davis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| |
Collapse
|
69
|
Votanopoulos KI, Mazzocchi A, Sivakumar H, Forsythe S, Aleman J, Levine EA, Skardal A. Appendiceal Cancer Patient-Specific Tumor Organoid Model for Predicting Chemotherapy Efficacy Prior to Initiation of Treatment: A Feasibility Study. Ann Surg Oncol 2018; 26:139-147. [PMID: 30414038 DOI: 10.1245/s10434-018-7008-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION We have hypothesized that biofabrication of appendiceal tumor organoids allows for a more personalized clinical approach and facilitates research in a rare disease. METHODS Appendiceal cancer specimens obtained during cytoreduction with hyperthermic intraperitoneal chemotherapy procedures (CRS/HIPEC) were dissociated and incorporated into an extracellular matrix-based hydrogel system as three-dimensional (3D), patient-specific tumor organoids. Cells were not sorted, preserving tumor heterogeneity, including stroma and immune cell components. Following establishment of organoid sets, chemotherapy drugs were screened in parallel. Live/dead staining and quantitative metabolism assays recorded which chemotherapies were most effective in killing cancer cells for a specific patient. Maintenance of cancer phenotypes were confirmed by using immunohistochemistry. RESULTS Biospecimens from 12 patients were applied for organoid development between November 2016 and May 2018. Successful establishment rate of viable organoid sets was 75% (9/12). Average time from organoid development to chemotherapy testing was 7 days. These tumors included three high-grade appendiceal (HGA) and nine low-grade appendiceal (LGA) primaries obtained from sites of peritoneal metastasis. All tumor organoids were tested with chemotherapeutic agents exhibited responses that were either similar to the patient response or within the variability of the expected clinical response. More specifically, HGA tumor organoids derived from different patients demonstrated variable chemotherapy tumor-killing responses, whereas LGA organoids tested with the same regimens showed no response to chemotherapy. One LGA set of organoids was immune-enhanced with cells from a patient-matched lymph node to demonstrate feasibility of a symbiotic 3D reconstruction of a patient matched tumor and immune system component. CONCLUSIONS Development of 3D appendiceal tumor organoids is feasible even in low cellularity LGA tumors, allowing for individual patient tumors to remain viable for research and personalized drug screening.
Collapse
Affiliation(s)
- Konstantinos I Votanopoulos
- Department of Surgery - Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA. .,Comprehensive Cancer Center at Wake Forest Baptist Medical, Winston-Salem, NC, USA.
| | - Andrea Mazzocchi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hemamylammal Sivakumar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven Forsythe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Edward A Levine
- Department of Surgery - Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA.,Comprehensive Cancer Center at Wake Forest Baptist Medical, Winston-Salem, NC, USA
| | - Aleksander Skardal
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Winston-Salem, NC, USA. .,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
70
|
Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res 2018; 22:27. [PMID: 30275970 PMCID: PMC6158836 DOI: 10.1186/s40824-018-0138-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. MAIN BODY In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, π-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. CONCLUSION Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Jin Hyun Lee
- Polymer Technology Institute, Sungkyunkwan University, Suwon, Gyeonggi-Do 16419 Republic of Korea
- Department of Polymer Science & Engineering, Inha University, Incheon, 22212 Republic of Korea
| |
Collapse
|
71
|
Ferreira LP, Gaspar VM, Mano JF. Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomater 2018; 75:11-34. [PMID: 29803007 PMCID: PMC7617007 DOI: 10.1016/j.actbio.2018.05.034] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Three-dimensional multicellular tumor models are receiving an ever-growing focus as preclinical drug-screening platforms due to their potential to recapitulate major physiological features of human tumors in vitro. In line with this momentum, the technologies for assembly of 3D microtumors are rapidly evolving towards a comprehensive inclusion of tumor microenvironment elements. Customized spherically structured platforms, including microparticles and microcapsules, provide a robust and scalable technology to imprint unique biomolecular tumor microenvironment hallmarks into 3D in vitro models. Herein, a comprehensive overview of novel advances on the integration of tumor-ECM components and biomechanical cues into 3D in vitro models assembled in spherical shaped platforms is provided. Future improvements regarding spatiotemporal/mechanical adaptability, and degradability, during microtumors in vitro 3D culture are also critically discussed considering the realistic potential of these platforms to mimic the dynamic tumor microenvironment. From a global perspective, the production of 3D multicellular spheroids with tumor ECM components included in spherical models will unlock their potential to be used in high-throughput screening of therapeutic compounds. It is envisioned, in a near future, that a combination of spherically structured 3D microtumor models with other advanced microfluidic technologies will properly recapitulate the flow dynamics of human tumors in vitro. STATEMENT OF SIGNIFICANCE The ability to correctly mimic the complexity of the tumor microenvironment in vitro is a key aspect for the development of evermore realistic in vitro models for drug-screening and fundamental cancer biology studies. In this regard, conventional spheroid-based 3D tumor models, combined with spherically structured biomaterials, opens the opportunity to precisely recapitulate complex cell-extracellular matrix interactions and tumor compartmentalization. This review provides an in-depth focus on current developments regarding spherically structured scaffolds engineered into in vitro 3D tumor models, and discusses future advances toward all-encompassing platforms that may provide an improved in vitro/in vivo correlation in a foreseeable future.
Collapse
Affiliation(s)
- L P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - V M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - J F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
72
|
Chamundeswari VN, Chuah YJ, Loo SCJ. Multidrug-eluting bi-layered microparticle-mesh scaffolds for musculoskeletal tissue regeneration. J Mater Chem B 2018; 6:3340-3347. [PMID: 32254391 DOI: 10.1039/c8tb00397a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stem cell-based tissue engineering necessitates the development of a biocompatible scaffold, as a structural support, that provides a continuous supply of bioactive molecules for specific lineage differentiation. While incorporating bioactive molecules within a scaffold to improve stem cell differentiation has been reported in the literature, there is minimal evidence of any scaffold that can deliver a customized concoction of both hydrophobic and hydrophilic bioactive molecules to induce in situ lineage differentiation without any external supplements. In this study, we established a bioactive, drug-eluting bi-layered microparticle-mesh scaffold (BMMS) using the electrospinning technique. This BMMS was co-encapsulated with hydrophobic dexamethasone (in the mesh), hydrophilic ascorbic acid and β-glycerophosphate or proline (in the microparticles). We hypothesized that a sustained-releasing BMMS can direct in situ specific lineage differentiation of MSCs (e.g. osteogenic and chondrogenic) in a minimally supplemented culture environment into musculoskeletal tissues. The characterization of this BMMS revealed good encapsulation efficiencies of the bioactive molecules with sustained-releasing capabilities. The release kinetics of each drug was further analyzed using mathematical drug-releasing models. These scaffolds were subsequently shown to have potential for osteogenic or chondrogenic lineage differentiation from mesenchymal stem cells (MSCs) in a minimally supplemented culture medium.
Collapse
Affiliation(s)
- Vidya N Chamundeswari
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | | | | |
Collapse
|
73
|
Mazzocchi AR, Rajan SAP, Votanopoulos KI, Hall AR, Skardal A. In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening. Sci Rep 2018; 8:2886. [PMID: 29440675 PMCID: PMC5811529 DOI: 10.1038/s41598-018-21200-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/30/2018] [Indexed: 01/08/2023] Open
Abstract
Variability in patient response to anti-cancer drugs is currently addressed by relating genetic mutations to chemotherapy through precision medicine. However, practical benefits of precision medicine to therapy design are less clear. Even after identification of mutations, oncologists are often left with several drug options, and for some patients there is no definitive treatment solution. There is a need for model systems to help predict personalized responses to chemotherapeutics. We have microengineered 3D tumor organoids directly from fresh tumor biopsies to provide patient-specific models with which treatment optimization can be performed before initiation of therapy. We demonstrate the initial implementation of this platform using tumor biospecimens surgically removed from two mesothelioma patients. First, we show the ability to biofabricate and maintain viable 3D tumor constructs within a tumor-on-a-chip microfluidic device. Second, we demonstrate that results of on-chip chemotherapy screening mimic those observed in subjects themselves. Finally, we demonstrate mutation-specific drug testing by considering the results of precision medicine genetic screening and confirming the effectiveness of the non-standard compound 3-deazaneplanocin A for an identified mutation. This patient-derived tumor organoid strategy is adaptable to a wide variety of cancers and may provide a framework with which to improve efforts in precision medicine oncology.
Collapse
Affiliation(s)
- Andrea R Mazzocchi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Shiny A P Rajan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Konstantinos I Votanopoulos
- Department of Surgery-Surgical Oncology, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Adam R Hall
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27101, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, NC, 27101, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
74
|
Hyaluronan chemistries for three-dimensional matrix applications. Matrix Biol 2018; 78-79:337-345. [PMID: 29438729 DOI: 10.1016/j.matbio.2018.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 01/02/2023]
Abstract
Hyaluronan is a ubiquitous constituent of mammalian extracellular matrices and, because of its excellent intrinsic biocompatibility and chemical modification versatility, has been widely employed in a multitude of biomedical applications. In this article, we will survey the approaches used to tailor hyaluronan to specific needs of tissue engineering, regenerative and reconstructive medicine and overall biomedical research. We will also describe recent examples of applications in these broader areas, such as 3D cell culture, bioprinting, organoid biofabrication, and precision medicine that are facilitated by the use of hyaluronan as a biomaterial.
Collapse
|
75
|
Mazzocchi A, Soker S, Skardal A. Biofabrication Technologies for Developing In Vitro Tumor Models. CANCER DRUG DISCOVERY AND DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-60511-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
76
|
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123:33-64. [PMID: 28782570 PMCID: PMC5742034 DOI: 10.1016/j.addr.2017.08.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue regeneration and skin wound therapy (that are as the basis of burn wound therapies) are briefly taken into consideration including 3D-printing, cell-imprinted substrates, nano-architectured surfaces, and novel gene-editing tools such as CRISPR-Cas.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Keyvan Sahandi Zangabad
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ameneh Ghamarypour
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, Iran
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
77
|
Ter Horst B, Chouhan G, Moiemen NS, Grover LM. Advances in keratinocyte delivery in burn wound care. Adv Drug Deliv Rev 2018; 123:18-32. [PMID: 28668483 PMCID: PMC5764224 DOI: 10.1016/j.addr.2017.06.012] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
Abstract
This review gives an updated overview on keratinocyte transplantation in burn wounds concentrating on application methods and future therapeutic cell delivery options with a special interest in hydrogels and spray devices for cell delivery. To achieve faster re-epithelialisation of burn wounds, the original autologous keratinocyte culture and transplantation technique was introduced over 3 decades ago. Application types of keratinocytes transplantation have improved from cell sheets to single-cell solutions delivered with a spray system. However, further enhancement of cell culture, cell viability and function in vivo, cell carrier and cell delivery systems remain themes of interest. Hydrogels such as chitosan, alginate, fibrin and collagen are frequently used in burn wound care and have advantageous characteristics as cell carriers. Future approaches of keratinocyte transplantation involve spray devices, but optimisation of application technique and carrier type is necessary.
Collapse
Affiliation(s)
- Britt Ter Horst
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom; University Hospital Birmingham Foundation Trust, Burns Centre, Mindelsohn Way, B15 2TH Birmingham, United Kingdom
| | - Gurpreet Chouhan
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Naiem S Moiemen
- University Hospital Birmingham Foundation Trust, Burns Centre, Mindelsohn Way, B15 2TH Birmingham, United Kingdom
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
78
|
Human Umbilical Cord Wharton Jelly-Derived Adult Mesenchymal Stem Cells, in Biohybrid Scaffolds, for Experimental Skin Regeneration. Stem Cells Int 2017; 2017:1472642. [PMID: 29456556 PMCID: PMC5804405 DOI: 10.1155/2017/1472642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 12/29/2022] Open
Abstract
The ultimate goal for skin tissue engineering is to regenerate skin lesions to allow the full restoration of morphological and functional properties as what they were before injury. To this end, we have assembled a new prototype of a biomimetic human umbilical cord adult mesenchymal stem cell (hUCMS)/fibrin-based scaffold. We have fully characterized the proposed dermal equivalent (DE) in vitro, to assess morphological, functional, and biological properties of the encased cells. We transplanted DE subcutaneously into immunocompetent rodents, to verify its full biocompatibility. Finally, we studied DE graft effects on full-thickness wounds, in immunocompetent mice to demonstrate its capability to drive the healing process in the absence of significant scarring tissue. The excellent outcome of these in vivo studies fuels hope that this new approach, based on a biohybrid DE, may be applied to the operative treatment of skin lesions (i.e., diabetic foot ulcers and burns) in man.
Collapse
|
79
|
Abstract
Angiogenesis plays an important role not only in the growth and regeneration of tissues in humans but also in pathological conditions such as inflammation, degenerative disease and the formation of tumors. Angiogenesis is also vital in thick engineered tissues and constructs, such as those for the heart and bone, as these can face difficulties in successful implantation if they are insufficiently vascularized or unable to connect to the host vasculature. Considerable research has been carried out on angiogenic processes using a variety of approaches. Pathological angiogenesis has been analyzed at the cellular level through investigation of cell migration and interactions, modeling tissue level interactions between engineered blood vessels and whole organs, and elucidating signaling pathways involved in different angiogenic stimuli. Approaches to regenerative angiogenesis in ischemic tissues or wound repair focus on the vascularization of tissues, which can be broadly classified into two categories: scaffolds to direct and facilitate tissue growth and targeted delivery of genes, cells, growth factors or drugs that promote the regeneration. With technological advancement, models have been designed and fabricated to recapitulate the innate microenvironment. Moreover, engineered constructs provide not only a scaffold for tissue ingrowth but a reservoir of agents that can be controllably released for therapeutic purposes. This review summarizes the current approaches for modeling pathological and regenerative angiogenesis in the context of micro-/nanotechnology and seeks to bridge these two seemingly distant aspects of angiogenesis. The ultimate aim is to provide insights and advances from various models in the realm of angiogenesis studies that can be applied to clinical situations.
Collapse
Affiliation(s)
- Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | |
Collapse
|
80
|
Murphy SV, Skardal A, Song L, Sutton K, Haug R, Mack DL, Jackson J, Soker S, Atala A. Solubilized Amnion Membrane Hyaluronic Acid Hydrogel Accelerates Full-Thickness Wound Healing. Stem Cells Transl Med 2017; 6:2020-2032. [PMID: 28941321 PMCID: PMC6430059 DOI: 10.1002/sctm.17-0053] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
Abstract
The early and effective treatment of wounds is vital to ensure proper wound closure and healing with appropriate functional and cosmetic outcomes. The use of human amnion membranes for wound care has been shown to be safe and effective. However, the difficulty in handling and placing thin sheets of membrane, and the high costs associated with the use of living cellularized tissue has limited the clinical application of amniotic membrane wound healing products. Here, we describe a novel amnion membrane-derived product, processed to result in a cell-free solution, while maintaining high concentrations of cell-derived cytokines and growth factors. The solubilized amnion membrane (SAM) combined with the carrier hyaluronic acid (HA) hydrogel (HA-SAM) is easy to produce, store, and apply to wounds. We demonstrated the efficacy of HA-SAM as a wound treatment using a full-thickness murine wound model. HA-SAM significantly accelerated wound closure through re-epithelialization and prevented wound contraction. HA-SAM-treated wounds had thicker regenerated skin, increased total number of blood vessels, and greater numbers of proliferating keratinocytes within the epidermis. Overall, this study confirms the efficacy of the amnion membrane as a wound treatment/dressing, and overcomes many of the limitations associated with using fresh, cryopreserved, or dehydrated tissue by providing a hydrogel delivery system for SAM. Stem Cells Translational Medicine 2017;6:2020-2032.
Collapse
Affiliation(s)
- Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Lujie Song
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Khiry Sutton
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Rebecca Haug
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - David L Mack
- Department of Rehabilitation Medicine, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - John Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| |
Collapse
|
81
|
Pereira RF, Sousa A, Barrias CC, Bayat A, Granja PL, Bártolo PJ. Advances in bioprinted cell-laden hydrogels for skin tissue engineering. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40898-017-0003-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
82
|
Sivakumar H, Strowd R, Skardal A. Exploration of Dynamic Elastic Modulus Changes on Glioblastoma Cell Populations with Aberrant EGFR Expression as a Potential Therapeutic Intervention Using a Tunable Hyaluronic Acid Hydrogel Platform. Gels 2017; 3:gels3030028. [PMID: 30920523 PMCID: PMC6318698 DOI: 10.3390/gels3030028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/21/2017] [Accepted: 07/07/2017] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is one of most aggressive forms of brain cancer, with a median survival time of 14.6 months following diagnosis. This low survival rate could in part be attributed to the lack of model systems of this type of cancer that faithfully recapitulate the tumor architecture and microenvironment seen in vivo in humans. Therapeutic studies would provide results that could be translated to the clinic efficiently. Here, we assess the role of the tumor microenvironment physical parameters on the tumor, and its potential use as a biomarker using a hyaluronic acid hydrogel system capable of elastic modulus tuning and dynamic elastic moduli changes. Experiments were conducted to assess the sensitivity of glioblastoma cell populations with different mutations to varying elastic moduli. Cells with aberrant epithelial growth factor receptor (EGFR) expression have a predilection for a stiffer environment, sensing these parameters through focal adhesion kinase (FAK). Importantly, the inhibition of FAK or EGFR generally resulted in reversed elastic modulus preference. Lastly, we explore the concept of therapeutically targeting the elastic modulus and dynamically reducing it via chemical or enzymatic degradation, both showing the capability to reduce or stunt proliferation rates of these GBM populations.
Collapse
Affiliation(s)
- Hemamylammal Sivakumar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Roy Strowd
- Department of Neurology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Comprehensive Cancer Center at Wake Forest Baptist, Wake Forest Baptist Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
- Comprehensive Cancer Center at Wake Forest Baptist, Wake Forest Baptist Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
83
|
Vagias A, Sergelen K, Koynov K, Košovan P, Dostalek J, Jonas U, Knoll W, Fytas G. Diffusion and Permeation of Labeled IgG in Grafted Hydrogels. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- A. Vagias
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - K. Sergelen
- Biosensor
Technologies, AIT-Austrian Institute of Technology GmbH, Muthgasse
11, Wien 1190, Austria
- International
Graduate School on Bionanotechnology, University of Natural Resources
and Life Sciences, Nanyang Technological University, Singapore 639798
| | - K. Koynov
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - P. Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - J. Dostalek
- Biosensor
Technologies, AIT-Austrian Institute of Technology GmbH, Muthgasse
11, Wien 1190, Austria
| | - U. Jonas
- Macromolecular
Chemistry, Department Chemistry - Biology, University of Siegen, 57076 Siegen, Germany
| | - W. Knoll
- Biosensor
Technologies, AIT-Austrian Institute of Technology GmbH, Muthgasse
11, Wien 1190, Austria
| | - G. Fytas
- Max Planck Institute
for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
84
|
Sekhon UDS, Sen Gupta A. Platelets and Platelet-Inspired Biomaterials Technologies in Wound Healing Applications. ACS Biomater Sci Eng 2017; 4:1176-1192. [DOI: 10.1021/acsbiomaterials.7b00013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ujjal Didar Singh Sekhon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44102, United States
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44102, United States
| |
Collapse
|
85
|
Das S, Baker AB. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front Bioeng Biotechnol 2016; 4:82. [PMID: 27843895 PMCID: PMC5087310 DOI: 10.3389/fbioe.2016.00082] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin , Austin, TX , USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|